Inductive Bias Extraction and Matching for LLM Prompts

Anonymous ACL submission

Abstract

All LLMs are sensitive to small changes in
prompt wording, and a portion of this can be as-
cribed to the inductive bias that is present in the
LLM. By using an LLM’s output as a portion
of its prompt, we can easily create satisfactory
wording for prompts. This has the effect of
creating a prompt that matches the inductive
bias in model. Empirically, we show that using
this Inductive Bias Extraction and Matching
strategy improves LLM Likert ratings used for
classification by up to 19% and LLM Likert
ratings used for ranking by up to 27%.

1 Introduction

If you wanted to build a patio, you may ask an
LLM about how to get started. Two of the steps
that it could suggest are "Purchase patio blocks,"
and "Place patio blocks in the desired area." While
placing patio blocks is a logical course of action
after purchasing patio blocks, it does not necessar-
ily follow that you must place them immediately,
or you may want to build something else that also
requires patio blocks. This kind of out of the ordi-
nary application may confuse an LLM that has only
seen these two segments in this order, and would
be liable to label the placement of the patio blocks
as a result of purchasing.

To determine the relationship between two text
segments (such as in the patio block example), it
will be helpful to know whether one is a direct re-
sult of the other, or if the one is a requirement of
the other. These requirement and result relation-
ships are subtly different, and it would be helpful to
have a fine grained scale for both to help quantify
what the relationship is. The issue is that produc-
ing high quality scales of this nature would require
a knowledge of the inductive biases of the LLM
for that particular task. Normally this would be
determined through a lengthy prompt engineering
process, but creating a method for automatically

Task
Description

Action

WikiHow Conditions

Figure 1: An overview of the IBEaM pipeline. Inputs
are in green, human steps are in purple, and LLM steps
are in blue.

extracting these inductive biases would require less
labor and would not be subject to human error.

The method that we use to improve LLMs’ per-
formance on non-comparative classification tasks is
a process that we call Inductive Bias Extraction and
Matching (IBEaM), shown in Figure 1. By incor-
porating prior knowledge we have about the task,
namely what sub-tasks it can be broken down into
and how we should combine them once they are
solved, we can more fully take advantage of the dif-
ferent strengths of the LLM. When using the LLM
to solve these sub-tasks, ideally we would know
what the optimal prompt would be to solve the sub-
task. As shown by the large body of work done in
prompt engineering (Chen et al., 2025), LLMs are
sensitive to small changes in prompt wording, and
a portion of this can be ascribed to the inductive
bias that is present in the LLM that gives it a "pref-
erence" for certain wordings. Usually these issues
with prompt wording are solved through a repeti-

tive prompt engineering process, but by prompting
the LLM for its preference for prompt wording,
we can eliminate the need for using prompt engi-
neering to find the specific wording that works best
with an LLM’s inductive biases. IBEaM is not in-
herently limited to non-comparative classification
tasks, but due to the difficulty of quantifying perfor-
mance changes in other tasks, we limit the scope
of this paper to this type of task.

For each of the tasks that we examine in this
paper, we prompt an LLM for one or more 10
point Likert scales that can be used to generate
one or more scores for each instance for each task.
These scores are then combined to generate an over-
all score (or multiple overall scores if the task is
multiple-choice) that is then used to perform clas-
sification. For each task, we also evaluate a simple
baseline where the LLM is prompted for a rating
from 1 to 10 (or, again, multiple ratings if the task is
multiple-choice) for each instance. Like the scores
generated with our IBEaM method, these ratings
are then used to perform the downstream classifica-
tion task.

The contributions presented in this paper are as
follows:

* We define methods for inductive bias extrac-
tion and including that extracted inductive
bias in prompts to improve LLM performance.

* We demonstrate that you can describe the cri-
teria to evaluate and let the LLM identify its
preferred wording.

* We show that an LLM’s ability to generate
numeric scores is limited, and we demonstrate
that IBEaM can be used to generate improved
numeric scores from LLMs.

2 Related Work

With the advent of generative large language mod-
els (LLMs) (Achiam et al., 2023; Touvron et al.,
2023; Brown et al., 2020), a large body of research
has been conducted to determine what tasks they
can be applied to and what their efficacy is for
those tasks (Zhao et al., 2025). While LLMs ex-
hibit emergent behaviors that allow them to per-
form tasks that machine learning methods were
previously ineffective for, they can also be applied
to tasks that existed prior to LLMs being intro-
duced. The motivation for applying LLMs to these
older tasks may be the desire to improve efficiency

in execution speed, improve accessibility to non-
technical users, or improve the state-of-the-art in
accuracy. This broad spectrum of LLM applica-
tions is what has motivated us to evaluate IBEaM
by generating numeric scores and using them as
a proxy for performing classification and ranking
tasks .

One method of improving LLM performance
on tasks is to perform chain of thought reasoning,
where the LLM is walked through the process of
solving one or more examples in the prompt prior
to being asked to evaluate an instance (Wei et al.,
2022). Another method of improving LLM per-
formance is to perform extensive prompt engineer-
ing (Chen et al., 2025), which is typically a repeti-
tive process that optimizes an LLM’s downstream
performance by making small adjustments to its
prompt. All prompt engineering techniques funda-
mentally are attempting to make the prompt work
better with the parameters learned by the LLM, or
in other words, are attempting to find the prompt
that is most compatible with the LLM’s inductive
biases.

All of the datasets examined in this paper have
some concept of a world state implied by the text.
LLMs are able to reason about the hypothetical
world state implied in a prompt, and also the real
world state implied by their training data (Zhu et al.,
2023). The encoding of this real world state is a
form of inductive bias in LLMs.

3 Method

Applying IBEaM to a new task is a four step pro-
cess. First, the user must create some number of
component metrics to enable the extraction of addi-
tional inductive bias. Second, the user must create
a prompt template that can integrate the extracted
inductive bias into an evaluation prompt. Third, the
user must prompt the LLM to extract the inductive
bias for each component metric, and finally, the
user must devise some method of combining the
component scores into a final evaluation. Once all
of these steps have been performed, the result is
a pipeline that can be used to improve the perfor-
mance of an LLM on the desired task.

3.1 Creation of Component Metrics

The first step in the process of applying IBEaM to
a problem is to break the problem into a reasonable
number of fine-grained sub-problems. The goal
here is not to break the problem into overly small

problems, but rather to determine the high-level
dimensions that define the task. For example, if
our task is to determine how well "Putting a potato
in the oven" continues the process of "Baking a
potato” given a previously completed step of "Pre-
heat the oven," two logical dimensions of this task
are progress and feasibility. Ideally, when determin-
ing whether or not a step is a good continuation of a
process when working towards a goal, we want the
candidate step to both make substantial progress
and to be substantially feasible. Other tasks will
break into different component metrics, and this
is a determination that needs to be made by the
IBEaM user.

Splitting a task into component sub-tasks is not
unique to IBEaM, but IBEaM obtains outsized ben-
efits from this process. This is because the more
Likert scales obtained from an LLM across unique
dimensions, the more inductive bias can be ex-
tracted from the LLM. The benefit that IBEaM
gets from this additional inductive bias extraction
is in addition to the intuitive benefits from breaking
a task into logical sub-problems. These intuitive
benefits include getting more detailed output from
the LLM, getting an evaluation across multiple di-
mensions, and, if applicable, getting the ability to
unevenly weight the answers to the different sub-
problems.

3.2 Inductive Bias Extraction

The next step in the process of applying IBEaM to
a problem is to extract the LLM’s inductive bias
for each component metric. For all of the tasks that
we study in this paper, this involves prompting the
LLM for a Likert scale for each component metric.
For example, for the feasibility metric mentioned
previously, the LLM may produce a 10 point scale
along the lines of the scale seen in Figure 2.

As shown above, we now have extracted the in-
ductive bias of the model in the form of its preferred
wording for each rating in the Likert scale. If we
were to attempt to create this scale manually as op-
posed to prompting the LLLM for it, we would have
to go through a labor intensive prompt engineering
process.

An additional benefit of this inductive bias ex-
traction process is that we obtain the LLM’s pre-
ferred wording for each 10 point Likert scale with-
out having to go through a labor intensive prompt
engineering process.

&

Certainly. Here is a 10 point scale that describes the feasibility of a candidate:

1. Impossible: The candidate step cannot be pursued with the current world state, as
i exist. i are hievabl

2. Nearly Impossible: Requirements are vast and highly complex with minimal prospects for
resolution. Major constraints exist without visible solutions.

10. Fully Doable: The
The current world state

with no

step is i

Figure 2: For each of our trials, we use a consistent
Likert scale that has been defined by an LLM across all
instances. To eliminate the need for the curation of these
scales, we include the scale as part of the conversation
history when making future calls to the LLM. Keeping
the scale the same across all instances improves rating
consistency and reduces the cost and computation time
when compared to regenerating the scales for each in-
stance.

3.3 Inductive Bias Matching

The third step in the process of applying IBEaM
to a problem is to match the LLM’s inductive bias
when prompting. This involves creating a prompt
to evaluate each metric which includes the gen-
erated Likert scale. As we demonstrate with our
experiments, the prompts for evaluating each met-
ric do not need to be complicated, and can include
the generated Likert scale as part of the LLM’s
conversation history, which allows us to skip any
postprocessing of the Likert scales in our experi-
ments. This conversation history is utilized in the
prompt by using wording such as, "Rate the follow-
ing candidate from 1 to 10 on the previous feasi-
bility scale." A simplified version of this process is
shown in Figure 2.

An additional benefit of this inductive bias
matching process is that we obtain a consistent
rating scale that we can apply to all instances in a
task, which allows the LLM to apply consistent and
more specific criteria when compared to intuitive
baseline approaches.

3.4 Combine Component Metrics

As a result of splitting a task into multiple sub-
problems, we have the issue of there being mul-
tiple component scores that need to be combined
in some way to make an overall score. The exact
method by which we combine the scores varies
depending on the type of task. For ranking tasks

like WikiHow, a simple summation of the scores
is usually an effective and intuitive starting point.
We tested summation, product, summation of score
ranks, and product of score ranks. Of these we
found that the product of score ranks was the most
effective combination method while not requiring
any learned parameters. Assuming 7 is the number
of multiple choice options, this method works by
assigning a rank from O to n — 1 to each candidate
for each metric. The final combined score is the
product of these ranking numbers. The benefit of
this method is that it promotes candidates that have
more balanced scores compared to the other can-
didates while still promoting candidates that have
high scores overall.

Our other two tasks, SAGA Task 2 and the Ac-
tion Conditions task, are classification tasks as op-
posed to ranking tasks. This requires us to create
some sort of decision boundary depending on the
values of the scores. Empirically, we found that
feeding one-hot encoded vectors for all of the sub-
metrics into logistic regression was the most ef-
fective way of creating a decision boundary. This,
however, necessitates the use of a training set for
the logistic regression model which is not required
for ranking tasks. As such, for SAGA Task 2 and
the Action Conditions task, we take a small sample
of the training set and feed that through the IBEaM
pipeline. The labels and the LLM’s responses are
then used to fit the logistic regression models for
both of these tasks.

4 Datasets

We use three different datasets to evaluate the effi-
cacy of IBEaM when compared to intuitive base-
lines. These datasets include SAGA, the Action
Conditions dataset, and our own WikiHow-based
dataset. SAGA and the Action Conditions dataset
allow us to evaluate IBEaM’s ability to enable clas-
sification while our WikiHow-based dataset allows
us to evaluate IBEaM’s ability to perform ranking.

4.1 Custom WikiHow-based Dataset

WikiHow was selected as one of our datasets be-
cause we wanted one of our tasks to require the
LLM to have an understanding of implied world
state. Any task requiring this will test the LLM’s
capacity for reasoning, and we wanted to evaluate
IBEaM’s effect on the LLM’s reasoning capabili-
ties. The sheer volume of procedural text within
WikiHow makes it an invaluable resource when

evaluating an LLM’s ability to perform world state
reasoning.

We created a 5-way multiple choice task from
WikiHow where each instance contains an in-
progress goal, some number of completed steps,
and five candidate continuations for the procedure.
The five candidates are composed of the target step
and four distractors. The four distractors include a
duplicate step that has already been performed, two
out-of-document steps, and an out-of-order future
step. In particular, the out-of-order future steps is
part of the same article as the goal and the target,
but there is another step that needs to be completed
first before the out-of-order future step can be per-
formed. We annotated 66 instances with the target,
distractors, previously completed steps, and overall
goal. Since a training set is not required for our
ranking method, this dataset is exclusively a test set
and does not contain training or validation splits.

Of these distractors, the duplicate step is particu-
larly difficult to rank correctly because it is usually
feasible to repeat a step (e.g. preheat the oven)
when it already has been done, but it does not make
any progress towards the goal. However, the out-
of-order future step is even more difficult because
it makes progress towards the goal (e.g. leave the
potatoes in the oven for an hour), but the LLM
needs to identify the gap between its requirements
(e.g. potatoes in the oven) and the world state (e.g.
potatoes on the table) in order to determine that it
is not a viable continuation to the current process.

4.2 SAGA Dataset (Task 2)

The ROCStories dataset is composed of instances
referred to as stories, which have five events in a
sequence that can be summarized by a single sen-
tence (Mostafazadeh et al., 2016). The the PASTA
dataset is an extension of ROCStories that substi-
tutes alternative events into the stories, which may
or may not match up with the original summary
sentence (Ghosh et al., 2023). The Story Alter-
natives and Goal Applicability (SAGA) dataset is
an annotated extension to PASTA, which among
other things, contains human evaluations of how
applicable these alternative stories in PASTA are
to the original summary (Vallurupalli et al., 2024).
The paper for SAGA defines multiple tasks that can
be tested on SAGA, and in particular we will be
performing Task 2. Task 2 is a binary classification
task that tests a model’s ability to determine if a
summary is applicable to a story or not. We chose
this dataset because it is nontrivial to perform, but

it also has the simple evaluation criteria of Macro
and Micro F1 score.

4.3 Action Conditions Dataset

The Action Conditions dataset is also derived from
WikiHow (Wu et al., 2023), but instead of focus-
ing on ranking next steps in a process, it instead
defines segments of text within WikiHow articles
as pre-conditions and post-conditions. In this con-
text, a pre-condition relationship indicates that one
text segment is a requirement for the other, while a
post-condition relationship indicates that one text
segment is the result of another. Any pair of text
segments within a WikiHow article that does not
have an indicated pre-condition or post-condition
relationship has what they refer to as a NULL re-
lationship. These relationships are not necessar-
ily bidirectional, so if one text segment is a pre-
condition of another, the second text segment is not
necessarily a pre-condition or post-condition of the
first unless labeled as such. For our evaluations,
we define an instance as a pair of text segments, a
label, and the minimum body of text that contains
both text segments. We chose this dataset because
it is also nontrivial to perform, has simple evalua-
tion criteria of Macro and Micro F1 scores, and is
sufficiently different from our other two tasks.

S Experimental Setup

For all of our experiments, each trial uses a freshly
generated set of Likert scales both for IBEaM, and
both IBEaM and the baselines re-prompt the LLM
even in cases where the prompt would be identical
to a prompt from another trial. The reason for this is
that we observed that the LLM tended to have small
variances in their responses even when given an
identical prompt. Within each trial, LLM responses
are cached to reduce inference time and cost. The
LLM used for both IBEaM and the baselines is
the 2024-08-06 snapshot of GPT-40 (Hurst et al.,
2024).

5.1 Custom WikiHow-based Dataset

For IBEaM, we split the task into progress and fea-
sibility sub-tasks. Each of these sub-tasks has a
Likert scale generated for it which is then included
as part of the conversation history for the LLM.
Each Likert scale is regenerated for each trial, but
is consistent for each instance within a trial. The
most effective score aggregator that we found was
to rank the scores for progress and feasibility in-
dividually, and then take the product of the two

numeric rankings. Whichever candidate has the
highest product is selected as the prediction.

For our baseline, we simply prompt the LLM for
arating from 1 to 10 for each candidate given the in-
progress goal and the completed steps. Whichever
candidate has the highest rating is chosen as the
prediction.

5.2 SAGA Dataset (Task 2)

For IBEaM, we split the task into summarization,
objective, and accomplishment sub-tasks. Like the
WikiHow task, each of these subtasks has a Likert
scale regenerated for it for each trial. However,
unlike the WikiHow task, SAGA Task 2 is a binary
classification task as opposed to a ranking task, so
we cannot rank the scores to determine what the
best prediction is. Instead, we get a number of
training instances for a logistic regression model.
This logistic regression model takes in the numeric
ratings as one-hot encoded vectors and predicts
either true or false for applicability, and we fit sep-
arate logistic regression models for IBEaM and the
baseline. The complete pipeline is shown in Figure
4.

While the logistic regression component is not
a part of IBEaM, it does aid in evaluating the im-
provement in the ratings produced by IBEaM over
the ratings produced by the baseline. As a result
of us using the LLM to produce ratings rather than
direct classification predictions, we need a way to
convert the ratings into a binary classification. Lo-
gistic regression does this for us while still being
informative because it will perform better when
the ratings are closer to being linearly separable.
Whichever prompting strategy that produces more
linearly separable results is the prompting strategy
that is more certain about its predictions. While cer-
tainty is not a direct proxy for downstream results,
using a separate training set for logistic regression
will also translate any decreased quality in the rat-
ings to decreased accuracy.

The test set for SAGA is composed of 512 in-
stances, and each trial uses the same test set, of
these 512 instances, 419 have a positive label while
only 93 have a negative label. This imbalance in
labeling is representative of the training set, so we
must apply a modifier to the class weights when fit-
ting the logistic regression model. For the purposes
of fitting the logistic regression model, a different
512 instance sample is taken from the training set
for each trial.

For our baseline, we again prompt the LLM for

Bake potatoes

' Candidate A

Put potatoes in oven

End Goal

v

Progress Evaluator

— y Y
e g e
- doldo!

Figureitout! that?

Candidate B 10,B:1,C: 1
Preheat oven Feasibility Evaluator Score Aggregator }—> Prediction

Candidate C A A0, B: 10, C: 1 Candidate A
Put on skis World State The ovenis hot

Figure 3: An overview of IBEaM in use for our WikiHow task.
Steps Accomplishment Evaluator
1. James got bread
2. James put meat o — ; s
on the bread Objective Evaluator Logistic Regression H Prediction
Applicable

Goal

James made a
sandwich

Summarization Evaluator

10

Figure 4: An overview of IBEaM in use for SAGA Task 2.

a rating from 1 to 10 for how applicable a goal is
to a sequence of steps. Like the method we used
for IBEaM, we again fit a logistic regression model
to determine which ratings predict true or false for
applicability. For each trial, the training set used to
fit the logistic regression model for the baseline is
the same one that is used for IBEaM.

5.3 Action Conditions Dataset

For IBEaM, we split the task into sequence, de-
pendence, and independence sub-tasks. Like the
WikiHow task and SAGA Task 2, each of these
sub-tasks has a Likert scale regenerated for it for
each trial. The Action Conditions task is a ternary
classification task as opposed to a binary classifi-
cation task, but we can still apply the same logistic
regression method that we used for SAGA Task
2. Again, we get a number of training instances
for our logistic regression model, but instead of
predicting true or false, it predicts pre-condition,
post-condition, or NULL. The complete pipeline is
shown in Figure 5.

The test set for the Action Conditions dataset is
far too large to evaluate in its entirety, so instead we
take a different 512 instance sample from the test
set for each trial. Like SAGA Task 2, a different
512 instance sample is taken from the training set
for the purposes of fitting the logistic regression
models for each trial.

For our baseline, we prompt the LLM for two
different scores on a scale from 1 to 10. The first
score is a pre-condition score and the second score
is a post-condition score. Like SAGA Task 2, these
two scores are given to a trained logistic regression
model to determine whether the prediction should
be pre-condition, post-condition, or NULL. Again
for each trial, the training set for the baseline is
the same one that is used for IBEaM, and the test
set for the baseline is the same one that is used for
IBEaM.

6 Discussion

For all of our experiments, we see at least a small
improvement in the relevant evaluation metrics
on average. The amount of improvement varies
widely depending on the task, and that can likely
be attributed to the LLM’s ability to perform well
with the baseline prompt. In particular, the LLM
struggles to perform well on the Action Conditions
baseline, which leads to the largest increase in per-
formance when applying IBEaM.

6.1 Custom WikiHow-based Dataset

As shown in Figure 6 and Table 1, we show an al-
most 12 percentage point improvement in accuracy
and more than a 0.15 improvement in MRR over
the baseline when averaged across all trials. For
this dataset, all trials show consistent improvement

Segment A Dependence Evaluator

Prediction

10
Grab a shovel
Segment B Independence Evaluator - Logistic Regression }—>
Start digging
Context Sequence Evaluator /10

Before you start digging, grab a shovel

Pre-condition

Figure 5: An overview of IBEaM in use for the Action Conditions Task.

04

VR:]

07
0.6
05
0.4
03
0.z
01
0.0

Average Accuracy Average MRR

B Improvement over Baseline [l Baseline

Figure 6: A representation of the overall improvement
in performance when applying IBEaM to our WikiHow
task. The combined height of the blue and red bars is
the performance of IBEaM.

100% —— —
EEEE
80%

T0%
60%
50%
40%
30%
20%

10%
0%
IBEaM Baseline |BEaM Baseline |BEaM Baseline
Target Target Target Target Target Target
over 00D over OOD over over over Q0O over 000
Duplicate Duplicate
B Incorrect Tied -= Incorrect Tied-= Correct [l Correct

Figure 7: A breakdown of IBEaM and the baseline’s per-
formance on the WikiHow dataset. Since all assigned
scores for both methods are integers, there are a non-
trivial number of ties for both methods. This figure
shows the performance of both models when counting
half of the ties as correct and the other half of the ties
as incorrect, which would simulate the model randomly
choosing one of the highest scoring candidates if multi-
ple candidates were assigned the highest score.

Accuracy MRR
IBEaM Baseline | IBEaM Baseline
Trial 1 0.573 0.500 0.718 0.598
Trial 2 0.591 0.495 0.751 0.610
Trial 3 0.636 0.492 0.771 0.605
Trial 4 0.583 0.477 0.728 0.561
Trial 5 0.614 0.442 0.764 0.560
Average | 0.599 0.481 0.746 0.587

Table 1: An overview of the performance of IBEaM
and the baseline for each WikiHow trial. Accuracy
values give partial credit for ties. If the target has the
same score as one distractor, half credit is given, two
distractors result in one third credit, and so on.

over the baseline as well. We also performed an
analysis of the performance on each individual dis-
tractor to see if each category of distractor was as
difficult as we expected. As shown in Figure 7,
the performance on each category is about what
we expected for both IBEaM and the baseline. Of
particular interest is the number of scoring ties pro-
duced by each method. The baseline, likely as a
result of its predictions being derived from a sin-
gle 10 point scale, had many ties when evaluating
both the duplicate distractor and the out-of-order
distractor. IBEaM had substantially fewer ties, and
this was likely in part because it was combining
multiple metrics, which allows for finer grained
scoring predictions than the baseline. Even with its
increased certainty, it still outperformed the base-
line in all categories both when counting all ties as
incorrect predictions and when counting 50% of
ties as incorrect predictions.

6.2 SAGA Dataset (Task 2)

As shown in Table 2, out of the five trials we per-
formed, all macro F1 scores showed improvement,
and four out of five micro F1 scores showed im-
provement. For Trial 4 where the Micro F1 score
was lower than the baseline, we need to recall that
there is a substantial labeling imbalance in the test

SAGA Task 2 Action Conditions
Micro F1 Macro F1 Micro F1 Macro F1
IBEaM Baseline | IBEaM Baseline | IBEaM Baseline | IBEaM Baseline
Trial 1 0.717 0.674 0.660 0.616 0.469 0.465 0.423 0.405
Trial 2 0.697 0.643 0.639 0.595 0.477 0.447 0.431 0.420
Trial 3 0.662 0.643 0.607 0.585 0.533 0.402 0.467 0.362
Trial 4 0.674 0.689 0.634 0.620 0.496 0.455 0.441 0.387
Trial 5 0.736 0.656 0.644 0.603 0.514 0.328 0.479 0.299
Average | 0.697 0.661 0.637 0.604 0.498 0.420 0.448 0.375

Table 2: An overview of the performance of IBEaM and the baseline for the classification tasks. IBEaM consistently
performs better than the baseline with the exception of one SAGA Task 2 trial.

1.0
09
VR:]
07
0.6
05
0.4
03
0.2
01
0.0

SAGA Average SAGA Average
Micro F1 Macro F1

AC Average
Micro F1

AC Average
Macro F1

B Improvement over Baseline [l Baseline

Figure 8: A representation of the overall improvement in
performance when applying IBEaM to our classification
tasks. The combined height of the blue and red bars is
the performance of IBEaM.

set, meaning that if IBEaM or the baseline is more
biased towards labeling instances as applicable, the
Micro F1 score will increase and the Macro F1
score will decrease. The inverse relationship is true
as well, so this is an indication that IBEaM and the
baseline performed about the same overall in Trial
4. However, the other four trials show a consistent
increase in both Macro and Micro F1 scores when
compared to the baseline, so IBEaM performs bet-
ter overall. This overall increase in performance is
also shown in Figure 8.

6.3 Action Conditions Dataset

As shown in Table 2 and 8, IBEaM performs bet-
ter than the baseline in all trials, but considering
that the Action Conditions task is a ternary clas-
sification problem, both IBEaM and the baseline
struggle to perform well on this task. The range of
F1 scores is also much higher for the baseline than

it is for SAGA Task 2, and this can be partially at-
tributed to a different test sample being taken from
the Action Conditions dataset for each trial, which
was not done for SAGA Task 2. Of note is that
IBEaM has a lower variance in its F1 scores even
with the different test sample for each trial. The
baseline’s lowest Micro F1 score is 0.328 and its
highest Micro F1 score is 0.465, giving it a range
of 0.137. Also its lowest Macro F1 score is 0.299
and its highest Macro F1 score is 0.420, giving it
arange of 0.121. This is in contrast to IBEaM’s
Micro and Macro F1 ranges being 0.064 and 0.056,
respectively, so in addition to performing better
than the baseline, it is also much more consistent.

7 Conclusion

In this paper, we presented IBEaM, which is a
method for writing prompts that automatically ex-
tract and apply the LLM’s inductive biases in a way
that improves its ability to assign scores that can
be used for downstream ranking and classification.
This ability of LLMs to extract their own induc-
tive biases likely has broad applications, but we
quantified the possible performance improvements
in multiple contexts with concrete evaluation crite-
ria. When compared to our baselines that prompt
the LLM for a rating from 1 to 10 with a short
description of the task, the increased complexity
of IBEaM is a worthwhile investment in contexts
where a numeric score is required in addition to an
overall prediction of ranking or classification.

Limitations

All of our experimentation was performed using
GPT-40, which is a closed source LLLM trained on a
proprietary dataset. IBEaM is not dependent specif-
ically on GPT-40, but it is a technique specifically
designed for interacting with LLMs, and as such,

is subject to the same limitations as whatever LLM
it is being used with.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Lan-
guage models are few-shot learners. Preprint,
arXiv:2005.14165.

Banghao Chen, Zhaofeng Zhang, Nicolas Langrené,
and Shengxin Zhu. 2025. Unleashing the potential
of prompt engineering for large language models.
Patterns, page 101260.

Sayontan Ghosh, Mahnaz Koupaee, Isabella Chen,
Francis Ferraro, Nathanael Chambers, and Niran-
jan Balasubramanian. 2023. Pasta: A dataset for
modeling participant states in narratives. Preprint,
arXiv:2208.00329.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow,
Akila Welihinda, Alan Hayes, Alec Radford, and 1
others. 2024. Gpt-4o0 system card. arXiv preprint
arXiv:2410.21276.

Nasrin Mostafazadeh, Nathanael Chambers, Xiaodong
He, Devi Parikh, Dhruv Batra, Lucy Vanderwende,
Pushmeet Kohli, and James Allen. 2016. A corpus
and cloze evaluation for deeper understanding of
commonsense stories. In Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 839-849, San Diego,
California. Association for Computational Linguis-
tics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. Preprint,
arXiv:2302.13971.

Sai Vallurupalli, Katrin Erk, and Francis Ferraro.
2024. Saga: A participant-specific examination
of story alternatives and goal applicability for a
deeper understanding of complex events. Preprint,
arXiv:2408.05793.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824-24837. Curran Associates,
Inc.

Te-Lin Wu, Caiqi Zhang, Qingyuan Hu, Alexander
Spangher, and Nanyun Peng. 2023. Learning action
conditions from instructional manuals for instruction
understanding. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3023-3043,
Toronto, Canada. Association for Computational Lin-
guistics.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yinggian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen
Yang, Yushuo Chen, Zhipeng Chen, Jinhao Jiang,
Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, and
3 others. 2025. A survey of large language models.
Preprint, arXiv:2303.18223.

Yutao Zhu, Huaying Yuan, Shuting Wang, Jiongnan Liu,
Wenhan Liu, Chenlong Deng, Haonan Chen, Zheng
Liu, Zhicheng Dou, and Ji-Rong Wen. 2023. Large
language models for information retrieval: A survey.
arXiv preprint arXiv:2308.07107.

https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.1016/j.patter.2025.101260
https://doi.org/10.1016/j.patter.2025.101260
https://doi.org/10.1016/j.patter.2025.101260
https://arxiv.org/abs/2208.00329
https://arxiv.org/abs/2208.00329
https://arxiv.org/abs/2208.00329
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://doi.org/10.18653/v1/N16-1098
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2408.05793
https://arxiv.org/abs/2408.05793
https://arxiv.org/abs/2408.05793
https://arxiv.org/abs/2408.05793
https://arxiv.org/abs/2408.05793
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.18653/v1/2023.acl-long.170
https://doi.org/10.18653/v1/2023.acl-long.170
https://doi.org/10.18653/v1/2023.acl-long.170
https://doi.org/10.18653/v1/2023.acl-long.170
https://doi.org/10.18653/v1/2023.acl-long.170
https://arxiv.org/abs/2303.18223

	Introduction
	Related Work
	Method
	Creation of Component Metrics
	Inductive Bias Extraction
	Inductive Bias Matching
	Combine Component Metrics

	Datasets
	Custom WikiHow-based Dataset
	SAGA Dataset (Task 2)
	Action Conditions Dataset

	Experimental Setup
	Custom WikiHow-based Dataset
	SAGA Dataset (Task 2)
	Action Conditions Dataset

	Discussion
	Custom WikiHow-based Dataset
	SAGA Dataset (Task 2)
	Action Conditions Dataset

	Conclusion

