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Abstract001

All LLMs are sensitive to small changes in002
prompt wording, and a portion of this can be as-003
cribed to the inductive bias that is present in the004
LLM. By using an LLM’s output as a portion005
of its prompt, we can easily create satisfactory006
wording for prompts. This has the effect of007
creating a prompt that matches the inductive008
bias in model. Empirically, we show that using009
this Inductive Bias Extraction and Matching010
strategy improves LLM Likert ratings used for011
classification by up to 19% and LLM Likert012
ratings used for ranking by up to 27%.013

1 Introduction014

If you wanted to build a patio, you may ask an015

LLM about how to get started. Two of the steps016

that it could suggest are "Purchase patio blocks,"017

and "Place patio blocks in the desired area." While018

placing patio blocks is a logical course of action019

after purchasing patio blocks, it does not necessar-020

ily follow that you must place them immediately,021

or you may want to build something else that also022

requires patio blocks. This kind of out of the ordi-023

nary application may confuse an LLM that has only024

seen these two segments in this order, and would025

be liable to label the placement of the patio blocks026

as a result of purchasing.027

To determine the relationship between two text028

segments (such as in the patio block example), it029

will be helpful to know whether one is a direct re-030

sult of the other, or if the one is a requirement of031

the other. These requirement and result relation-032

ships are subtly different, and it would be helpful to033

have a fine grained scale for both to help quantify034

what the relationship is. The issue is that produc-035

ing high quality scales of this nature would require036

a knowledge of the inductive biases of the LLM037

for that particular task. Normally this would be038

determined through a lengthy prompt engineering039

process, but creating a method for automatically040

Figure 1: An overview of the IBEaM pipeline. Inputs
are in green, human steps are in purple, and LLM steps
are in blue.

extracting these inductive biases would require less 041

labor and would not be subject to human error. 042

The method that we use to improve LLMs’ per- 043

formance on non-comparative classification tasks is 044

a process that we call Inductive Bias Extraction and 045

Matching (IBEaM), shown in Figure 1. By incor- 046

porating prior knowledge we have about the task, 047

namely what sub-tasks it can be broken down into 048

and how we should combine them once they are 049

solved, we can more fully take advantage of the dif- 050

ferent strengths of the LLM. When using the LLM 051

to solve these sub-tasks, ideally we would know 052

what the optimal prompt would be to solve the sub- 053

task. As shown by the large body of work done in 054

prompt engineering (Chen et al., 2025), LLMs are 055

sensitive to small changes in prompt wording, and 056

a portion of this can be ascribed to the inductive 057

bias that is present in the LLM that gives it a "pref- 058

erence" for certain wordings. Usually these issues 059

with prompt wording are solved through a repeti- 060
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tive prompt engineering process, but by prompting061

the LLM for its preference for prompt wording,062

we can eliminate the need for using prompt engi-063

neering to find the specific wording that works best064

with an LLM’s inductive biases. IBEaM is not in-065

herently limited to non-comparative classification066

tasks, but due to the difficulty of quantifying perfor-067

mance changes in other tasks, we limit the scope068

of this paper to this type of task.069

For each of the tasks that we examine in this070

paper, we prompt an LLM for one or more 10071

point Likert scales that can be used to generate072

one or more scores for each instance for each task.073

These scores are then combined to generate an over-074

all score (or multiple overall scores if the task is075

multiple-choice) that is then used to perform clas-076

sification. For each task, we also evaluate a simple077

baseline where the LLM is prompted for a rating078

from 1 to 10 (or, again, multiple ratings if the task is079

multiple-choice) for each instance. Like the scores080

generated with our IBEaM method, these ratings081

are then used to perform the downstream classifica-082

tion task.083

The contributions presented in this paper are as084

follows:085

• We define methods for inductive bias extrac-086

tion and including that extracted inductive087

bias in prompts to improve LLM performance.088

• We demonstrate that you can describe the cri-089

teria to evaluate and let the LLM identify its090

preferred wording.091

• We show that an LLM’s ability to generate092

numeric scores is limited, and we demonstrate093

that IBEaM can be used to generate improved094

numeric scores from LLMs.095

2 Related Work096

With the advent of generative large language mod-097

els (LLMs) (Achiam et al., 2023; Touvron et al.,098

2023; Brown et al., 2020), a large body of research099

has been conducted to determine what tasks they100

can be applied to and what their efficacy is for101

those tasks (Zhao et al., 2025). While LLMs ex-102

hibit emergent behaviors that allow them to per-103

form tasks that machine learning methods were104

previously ineffective for, they can also be applied105

to tasks that existed prior to LLMs being intro-106

duced. The motivation for applying LLMs to these107

older tasks may be the desire to improve efficiency108

in execution speed, improve accessibility to non- 109

technical users, or improve the state-of-the-art in 110

accuracy. This broad spectrum of LLM applica- 111

tions is what has motivated us to evaluate IBEaM 112

by generating numeric scores and using them as 113

a proxy for performing classification and ranking 114

tasks . 115

One method of improving LLM performance 116

on tasks is to perform chain of thought reasoning, 117

where the LLM is walked through the process of 118

solving one or more examples in the prompt prior 119

to being asked to evaluate an instance (Wei et al., 120

2022). Another method of improving LLM per- 121

formance is to perform extensive prompt engineer- 122

ing (Chen et al., 2025), which is typically a repeti- 123

tive process that optimizes an LLM’s downstream 124

performance by making small adjustments to its 125

prompt. All prompt engineering techniques funda- 126

mentally are attempting to make the prompt work 127

better with the parameters learned by the LLM, or 128

in other words, are attempting to find the prompt 129

that is most compatible with the LLM’s inductive 130

biases. 131

All of the datasets examined in this paper have 132

some concept of a world state implied by the text. 133

LLMs are able to reason about the hypothetical 134

world state implied in a prompt, and also the real 135

world state implied by their training data (Zhu et al., 136

2023). The encoding of this real world state is a 137

form of inductive bias in LLMs. 138

3 Method 139

Applying IBEaM to a new task is a four step pro- 140

cess. First, the user must create some number of 141

component metrics to enable the extraction of addi- 142

tional inductive bias. Second, the user must create 143

a prompt template that can integrate the extracted 144

inductive bias into an evaluation prompt. Third, the 145

user must prompt the LLM to extract the inductive 146

bias for each component metric, and finally, the 147

user must devise some method of combining the 148

component scores into a final evaluation. Once all 149

of these steps have been performed, the result is 150

a pipeline that can be used to improve the perfor- 151

mance of an LLM on the desired task. 152

3.1 Creation of Component Metrics 153

The first step in the process of applying IBEaM to 154

a problem is to break the problem into a reasonable 155

number of fine-grained sub-problems. The goal 156

here is not to break the problem into overly small 157
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problems, but rather to determine the high-level158

dimensions that define the task. For example, if159

our task is to determine how well "Putting a potato160

in the oven" continues the process of "Baking a161

potato" given a previously completed step of "Pre-162

heat the oven," two logical dimensions of this task163

are progress and feasibility. Ideally, when determin-164

ing whether or not a step is a good continuation of a165

process when working towards a goal, we want the166

candidate step to both make substantial progress167

and to be substantially feasible. Other tasks will168

break into different component metrics, and this169

is a determination that needs to be made by the170

IBEaM user.171

Splitting a task into component sub-tasks is not172

unique to IBEaM, but IBEaM obtains outsized ben-173

efits from this process. This is because the more174

Likert scales obtained from an LLM across unique175

dimensions, the more inductive bias can be ex-176

tracted from the LLM. The benefit that IBEaM177

gets from this additional inductive bias extraction178

is in addition to the intuitive benefits from breaking179

a task into logical sub-problems. These intuitive180

benefits include getting more detailed output from181

the LLM, getting an evaluation across multiple di-182

mensions, and, if applicable, getting the ability to183

unevenly weight the answers to the different sub-184

problems.185

3.2 Inductive Bias Extraction186

The next step in the process of applying IBEaM to187

a problem is to extract the LLM’s inductive bias188

for each component metric. For all of the tasks that189

we study in this paper, this involves prompting the190

LLM for a Likert scale for each component metric.191

For example, for the feasibility metric mentioned192

previously, the LLM may produce a 10 point scale193

along the lines of the scale seen in Figure 2.194

As shown above, we now have extracted the in-195

ductive bias of the model in the form of its preferred196

wording for each rating in the Likert scale. If we197

were to attempt to create this scale manually as op-198

posed to prompting the LLM for it, we would have199

to go through a labor intensive prompt engineering200

process.201

An additional benefit of this inductive bias ex-202

traction process is that we obtain the LLM’s pre-203

ferred wording for each 10 point Likert scale with-204

out having to go through a labor intensive prompt205

engineering process.206

Figure 2: For each of our trials, we use a consistent
Likert scale that has been defined by an LLM across all
instances. To eliminate the need for the curation of these
scales, we include the scale as part of the conversation
history when making future calls to the LLM. Keeping
the scale the same across all instances improves rating
consistency and reduces the cost and computation time
when compared to regenerating the scales for each in-
stance.

3.3 Inductive Bias Matching 207

The third step in the process of applying IBEaM 208

to a problem is to match the LLM’s inductive bias 209

when prompting. This involves creating a prompt 210

to evaluate each metric which includes the gen- 211

erated Likert scale. As we demonstrate with our 212

experiments, the prompts for evaluating each met- 213

ric do not need to be complicated, and can include 214

the generated Likert scale as part of the LLM’s 215

conversation history, which allows us to skip any 216

postprocessing of the Likert scales in our experi- 217

ments. This conversation history is utilized in the 218

prompt by using wording such as, "Rate the follow- 219

ing candidate from 1 to 10 on the previous feasi- 220

bility scale." A simplified version of this process is 221

shown in Figure 2. 222

An additional benefit of this inductive bias 223

matching process is that we obtain a consistent 224

rating scale that we can apply to all instances in a 225

task, which allows the LLM to apply consistent and 226

more specific criteria when compared to intuitive 227

baseline approaches. 228

3.4 Combine Component Metrics 229

As a result of splitting a task into multiple sub- 230

problems, we have the issue of there being mul- 231

tiple component scores that need to be combined 232

in some way to make an overall score. The exact 233

method by which we combine the scores varies 234

depending on the type of task. For ranking tasks 235
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like WikiHow, a simple summation of the scores236

is usually an effective and intuitive starting point.237

We tested summation, product, summation of score238

ranks, and product of score ranks. Of these we239

found that the product of score ranks was the most240

effective combination method while not requiring241

any learned parameters. Assuming n is the number242

of multiple choice options, this method works by243

assigning a rank from 0 to n− 1 to each candidate244

for each metric. The final combined score is the245

product of these ranking numbers. The benefit of246

this method is that it promotes candidates that have247

more balanced scores compared to the other can-248

didates while still promoting candidates that have249

high scores overall.250

Our other two tasks, SAGA Task 2 and the Ac-251

tion Conditions task, are classification tasks as op-252

posed to ranking tasks. This requires us to create253

some sort of decision boundary depending on the254

values of the scores. Empirically, we found that255

feeding one-hot encoded vectors for all of the sub-256

metrics into logistic regression was the most ef-257

fective way of creating a decision boundary. This,258

however, necessitates the use of a training set for259

the logistic regression model which is not required260

for ranking tasks. As such, for SAGA Task 2 and261

the Action Conditions task, we take a small sample262

of the training set and feed that through the IBEaM263

pipeline. The labels and the LLM’s responses are264

then used to fit the logistic regression models for265

both of these tasks.266

4 Datasets267

We use three different datasets to evaluate the effi-268

cacy of IBEaM when compared to intuitive base-269

lines. These datasets include SAGA, the Action270

Conditions dataset, and our own WikiHow-based271

dataset. SAGA and the Action Conditions dataset272

allow us to evaluate IBEaM’s ability to enable clas-273

sification while our WikiHow-based dataset allows274

us to evaluate IBEaM’s ability to perform ranking.275

4.1 Custom WikiHow-based Dataset276

WikiHow was selected as one of our datasets be-277

cause we wanted one of our tasks to require the278

LLM to have an understanding of implied world279

state. Any task requiring this will test the LLM’s280

capacity for reasoning, and we wanted to evaluate281

IBEaM’s effect on the LLM’s reasoning capabili-282

ties. The sheer volume of procedural text within283

WikiHow makes it an invaluable resource when284

evaluating an LLM’s ability to perform world state 285

reasoning. 286

We created a 5-way multiple choice task from 287

WikiHow where each instance contains an in- 288

progress goal, some number of completed steps, 289

and five candidate continuations for the procedure. 290

The five candidates are composed of the target step 291

and four distractors. The four distractors include a 292

duplicate step that has already been performed, two 293

out-of-document steps, and an out-of-order future 294

step. In particular, the out-of-order future steps is 295

part of the same article as the goal and the target, 296

but there is another step that needs to be completed 297

first before the out-of-order future step can be per- 298

formed. We annotated 66 instances with the target, 299

distractors, previously completed steps, and overall 300

goal. Since a training set is not required for our 301

ranking method, this dataset is exclusively a test set 302

and does not contain training or validation splits. 303

Of these distractors, the duplicate step is particu- 304

larly difficult to rank correctly because it is usually 305

feasible to repeat a step (e.g. preheat the oven) 306

when it already has been done, but it does not make 307

any progress towards the goal. However, the out- 308

of-order future step is even more difficult because 309

it makes progress towards the goal (e.g. leave the 310

potatoes in the oven for an hour), but the LLM 311

needs to identify the gap between its requirements 312

(e.g. potatoes in the oven) and the world state (e.g. 313

potatoes on the table) in order to determine that it 314

is not a viable continuation to the current process. 315

4.2 SAGA Dataset (Task 2) 316

The ROCStories dataset is composed of instances 317

referred to as stories, which have five events in a 318

sequence that can be summarized by a single sen- 319

tence (Mostafazadeh et al., 2016). The the PASTA 320

dataset is an extension of ROCStories that substi- 321

tutes alternative events into the stories, which may 322

or may not match up with the original summary 323

sentence (Ghosh et al., 2023). The Story Alter- 324

natives and Goal Applicability (SAGA) dataset is 325

an annotated extension to PASTA, which among 326

other things, contains human evaluations of how 327

applicable these alternative stories in PASTA are 328

to the original summary (Vallurupalli et al., 2024). 329

The paper for SAGA defines multiple tasks that can 330

be tested on SAGA, and in particular we will be 331

performing Task 2. Task 2 is a binary classification 332

task that tests a model’s ability to determine if a 333

summary is applicable to a story or not. We chose 334

this dataset because it is nontrivial to perform, but 335
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it also has the simple evaluation criteria of Macro336

and Micro F1 score.337

4.3 Action Conditions Dataset338

The Action Conditions dataset is also derived from339

WikiHow (Wu et al., 2023), but instead of focus-340

ing on ranking next steps in a process, it instead341

defines segments of text within WikiHow articles342

as pre-conditions and post-conditions. In this con-343

text, a pre-condition relationship indicates that one344

text segment is a requirement for the other, while a345

post-condition relationship indicates that one text346

segment is the result of another. Any pair of text347

segments within a WikiHow article that does not348

have an indicated pre-condition or post-condition349

relationship has what they refer to as a NULL re-350

lationship. These relationships are not necessar-351

ily bidirectional, so if one text segment is a pre-352

condition of another, the second text segment is not353

necessarily a pre-condition or post-condition of the354

first unless labeled as such. For our evaluations,355

we define an instance as a pair of text segments, a356

label, and the minimum body of text that contains357

both text segments. We chose this dataset because358

it is also nontrivial to perform, has simple evalua-359

tion criteria of Macro and Micro F1 scores, and is360

sufficiently different from our other two tasks.361

5 Experimental Setup362

For all of our experiments, each trial uses a freshly363

generated set of Likert scales both for IBEaM, and364

both IBEaM and the baselines re-prompt the LLM365

even in cases where the prompt would be identical366

to a prompt from another trial. The reason for this is367

that we observed that the LLM tended to have small368

variances in their responses even when given an369

identical prompt. Within each trial, LLM responses370

are cached to reduce inference time and cost. The371

LLM used for both IBEaM and the baselines is372

the 2024-08-06 snapshot of GPT-4o (Hurst et al.,373

2024).374

5.1 Custom WikiHow-based Dataset375

For IBEaM, we split the task into progress and fea-376

sibility sub-tasks. Each of these sub-tasks has a377

Likert scale generated for it which is then included378

as part of the conversation history for the LLM.379

Each Likert scale is regenerated for each trial, but380

is consistent for each instance within a trial. The381

most effective score aggregator that we found was382

to rank the scores for progress and feasibility in-383

dividually, and then take the product of the two384

numeric rankings. Whichever candidate has the 385

highest product is selected as the prediction. 386

For our baseline, we simply prompt the LLM for 387

a rating from 1 to 10 for each candidate given the in- 388

progress goal and the completed steps. Whichever 389

candidate has the highest rating is chosen as the 390

prediction. 391

5.2 SAGA Dataset (Task 2) 392

For IBEaM, we split the task into summarization, 393

objective, and accomplishment sub-tasks. Like the 394

WikiHow task, each of these subtasks has a Likert 395

scale regenerated for it for each trial. However, 396

unlike the WikiHow task, SAGA Task 2 is a binary 397

classification task as opposed to a ranking task, so 398

we cannot rank the scores to determine what the 399

best prediction is. Instead, we get a number of 400

training instances for a logistic regression model. 401

This logistic regression model takes in the numeric 402

ratings as one-hot encoded vectors and predicts 403

either true or false for applicability, and we fit sep- 404

arate logistic regression models for IBEaM and the 405

baseline. The complete pipeline is shown in Figure 406

4. 407

While the logistic regression component is not 408

a part of IBEaM, it does aid in evaluating the im- 409

provement in the ratings produced by IBEaM over 410

the ratings produced by the baseline. As a result 411

of us using the LLM to produce ratings rather than 412

direct classification predictions, we need a way to 413

convert the ratings into a binary classification. Lo- 414

gistic regression does this for us while still being 415

informative because it will perform better when 416

the ratings are closer to being linearly separable. 417

Whichever prompting strategy that produces more 418

linearly separable results is the prompting strategy 419

that is more certain about its predictions. While cer- 420

tainty is not a direct proxy for downstream results, 421

using a separate training set for logistic regression 422

will also translate any decreased quality in the rat- 423

ings to decreased accuracy. 424

The test set for SAGA is composed of 512 in- 425

stances, and each trial uses the same test set, of 426

these 512 instances, 419 have a positive label while 427

only 93 have a negative label. This imbalance in 428

labeling is representative of the training set, so we 429

must apply a modifier to the class weights when fit- 430

ting the logistic regression model. For the purposes 431

of fitting the logistic regression model, a different 432

512 instance sample is taken from the training set 433

for each trial. 434

For our baseline, we again prompt the LLM for 435
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Figure 3: An overview of IBEaM in use for our WikiHow task.

Figure 4: An overview of IBEaM in use for SAGA Task 2.

a rating from 1 to 10 for how applicable a goal is436

to a sequence of steps. Like the method we used437

for IBEaM, we again fit a logistic regression model438

to determine which ratings predict true or false for439

applicability. For each trial, the training set used to440

fit the logistic regression model for the baseline is441

the same one that is used for IBEaM.442

5.3 Action Conditions Dataset443

For IBEaM, we split the task into sequence, de-444

pendence, and independence sub-tasks. Like the445

WikiHow task and SAGA Task 2, each of these446

sub-tasks has a Likert scale regenerated for it for447

each trial. The Action Conditions task is a ternary448

classification task as opposed to a binary classifi-449

cation task, but we can still apply the same logistic450

regression method that we used for SAGA Task451

2. Again, we get a number of training instances452

for our logistic regression model, but instead of453

predicting true or false, it predicts pre-condition,454

post-condition, or NULL. The complete pipeline is455

shown in Figure 5.456

The test set for the Action Conditions dataset is457

far too large to evaluate in its entirety, so instead we458

take a different 512 instance sample from the test459

set for each trial. Like SAGA Task 2, a different460

512 instance sample is taken from the training set461

for the purposes of fitting the logistic regression462

models for each trial.463

For our baseline, we prompt the LLM for two 464

different scores on a scale from 1 to 10. The first 465

score is a pre-condition score and the second score 466

is a post-condition score. Like SAGA Task 2, these 467

two scores are given to a trained logistic regression 468

model to determine whether the prediction should 469

be pre-condition, post-condition, or NULL. Again 470

for each trial, the training set for the baseline is 471

the same one that is used for IBEaM, and the test 472

set for the baseline is the same one that is used for 473

IBEaM. 474

6 Discussion 475

For all of our experiments, we see at least a small 476

improvement in the relevant evaluation metrics 477

on average. The amount of improvement varies 478

widely depending on the task, and that can likely 479

be attributed to the LLM’s ability to perform well 480

with the baseline prompt. In particular, the LLM 481

struggles to perform well on the Action Conditions 482

baseline, which leads to the largest increase in per- 483

formance when applying IBEaM. 484

6.1 Custom WikiHow-based Dataset 485

As shown in Figure 6 and Table 1, we show an al- 486

most 12 percentage point improvement in accuracy 487

and more than a 0.15 improvement in MRR over 488

the baseline when averaged across all trials. For 489

this dataset, all trials show consistent improvement 490
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Figure 5: An overview of IBEaM in use for the Action Conditions Task.

Figure 6: A representation of the overall improvement
in performance when applying IBEaM to our WikiHow
task. The combined height of the blue and red bars is
the performance of IBEaM.

Figure 7: A breakdown of IBEaM and the baseline’s per-
formance on the WikiHow dataset. Since all assigned
scores for both methods are integers, there are a non-
trivial number of ties for both methods. This figure
shows the performance of both models when counting
half of the ties as correct and the other half of the ties
as incorrect, which would simulate the model randomly
choosing one of the highest scoring candidates if multi-
ple candidates were assigned the highest score.

Accuracy MRR
IBEaM Baseline IBEaM Baseline

Trial 1 0.573 0.500 0.718 0.598
Trial 2 0.591 0.495 0.751 0.610
Trial 3 0.636 0.492 0.771 0.605
Trial 4 0.583 0.477 0.728 0.561
Trial 5 0.614 0.442 0.764 0.560
Average 0.599 0.481 0.746 0.587

Table 1: An overview of the performance of IBEaM
and the baseline for each WikiHow trial. Accuracy
values give partial credit for ties. If the target has the
same score as one distractor, half credit is given, two
distractors result in one third credit, and so on.

over the baseline as well. We also performed an 491

analysis of the performance on each individual dis- 492

tractor to see if each category of distractor was as 493

difficult as we expected. As shown in Figure 7, 494

the performance on each category is about what 495

we expected for both IBEaM and the baseline. Of 496

particular interest is the number of scoring ties pro- 497

duced by each method. The baseline, likely as a 498

result of its predictions being derived from a sin- 499

gle 10 point scale, had many ties when evaluating 500

both the duplicate distractor and the out-of-order 501

distractor. IBEaM had substantially fewer ties, and 502

this was likely in part because it was combining 503

multiple metrics, which allows for finer grained 504

scoring predictions than the baseline. Even with its 505

increased certainty, it still outperformed the base- 506

line in all categories both when counting all ties as 507

incorrect predictions and when counting 50% of 508

ties as incorrect predictions. 509

6.2 SAGA Dataset (Task 2) 510

As shown in Table 2, out of the five trials we per- 511

formed, all macro F1 scores showed improvement, 512

and four out of five micro F1 scores showed im- 513

provement. For Trial 4 where the Micro F1 score 514

was lower than the baseline, we need to recall that 515

there is a substantial labeling imbalance in the test 516
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SAGA Task 2 Action Conditions
Micro F1 Macro F1 Micro F1 Macro F1

IBEaM Baseline IBEaM Baseline IBEaM Baseline IBEaM Baseline
Trial 1 0.717 0.674 0.660 0.616 0.469 0.465 0.423 0.405
Trial 2 0.697 0.643 0.639 0.595 0.477 0.447 0.431 0.420
Trial 3 0.662 0.643 0.607 0.585 0.533 0.402 0.467 0.362
Trial 4 0.674 0.689 0.634 0.620 0.496 0.455 0.441 0.387
Trial 5 0.736 0.656 0.644 0.603 0.514 0.328 0.479 0.299
Average 0.697 0.661 0.637 0.604 0.498 0.420 0.448 0.375

Table 2: An overview of the performance of IBEaM and the baseline for the classification tasks. IBEaM consistently
performs better than the baseline with the exception of one SAGA Task 2 trial.

Figure 8: A representation of the overall improvement in
performance when applying IBEaM to our classification
tasks. The combined height of the blue and red bars is
the performance of IBEaM.

set, meaning that if IBEaM or the baseline is more517

biased towards labeling instances as applicable, the518

Micro F1 score will increase and the Macro F1519

score will decrease. The inverse relationship is true520

as well, so this is an indication that IBEaM and the521

baseline performed about the same overall in Trial522

4. However, the other four trials show a consistent523

increase in both Macro and Micro F1 scores when524

compared to the baseline, so IBEaM performs bet-525

ter overall. This overall increase in performance is526

also shown in Figure 8.527

6.3 Action Conditions Dataset528

As shown in Table 2 and 8, IBEaM performs bet-529

ter than the baseline in all trials, but considering530

that the Action Conditions task is a ternary clas-531

sification problem, both IBEaM and the baseline532

struggle to perform well on this task. The range of533

F1 scores is also much higher for the baseline than534

it is for SAGA Task 2, and this can be partially at- 535

tributed to a different test sample being taken from 536

the Action Conditions dataset for each trial, which 537

was not done for SAGA Task 2. Of note is that 538

IBEaM has a lower variance in its F1 scores even 539

with the different test sample for each trial. The 540

baseline’s lowest Micro F1 score is 0.328 and its 541

highest Micro F1 score is 0.465, giving it a range 542

of 0.137. Also its lowest Macro F1 score is 0.299 543

and its highest Macro F1 score is 0.420, giving it 544

a range of 0.121. This is in contrast to IBEaM’s 545

Micro and Macro F1 ranges being 0.064 and 0.056, 546

respectively, so in addition to performing better 547

than the baseline, it is also much more consistent. 548

7 Conclusion 549

In this paper, we presented IBEaM, which is a 550

method for writing prompts that automatically ex- 551

tract and apply the LLM’s inductive biases in a way 552

that improves its ability to assign scores that can 553

be used for downstream ranking and classification. 554

This ability of LLMs to extract their own induc- 555

tive biases likely has broad applications, but we 556

quantified the possible performance improvements 557

in multiple contexts with concrete evaluation crite- 558

ria. When compared to our baselines that prompt 559

the LLM for a rating from 1 to 10 with a short 560

description of the task, the increased complexity 561

of IBEaM is a worthwhile investment in contexts 562

where a numeric score is required in addition to an 563

overall prediction of ranking or classification. 564

Limitations 565

All of our experimentation was performed using 566

GPT-4o, which is a closed source LLM trained on a 567

proprietary dataset. IBEaM is not dependent specif- 568

ically on GPT-4o, but it is a technique specifically 569

designed for interacting with LLMs, and as such, 570

8



is subject to the same limitations as whatever LLM571

it is being used with.572
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