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Abstract

Prior works mainly used input perturbation001
methods for testing stability of post-hoc inter-002
pretation methods and observed fragile inter-003
pretations. However, different works show con-004
flicting results on the primary source of frag-005
ile interpretations because input perturbation006
can cause potential effects on the model and007
the interpretation methods. Instead, this work008
proposes a simple output perturbation method009
that circumvents models’ potential effects by010
slightly modifying the prediction probability.011
We evaluate the proposed method using two012
popularly-used post-hoc interpretation meth-013
ods (LIME and Sample Shapley), and CNN,014
LSTM, and BERT as the neural classifiers. The015
results show that post-hoc methods produce016
only slightly different interpretations under out-017
put perturbation. It suggests that the black-box018
model is the primary source causing fragile in-019
terpretations.020

1 Introduction021

Interpretation methods have been developed to gen-022

erate interpretations to provide insights into the023

model decision-making process because of the024

opacity of neural networks models’ prediction pro-025

cess (Du et al., 2019). Recent works have raised026

concerns on interpretation robustness (Ghorbani027

et al., 2019; Slack et al., 2020; Yeh et al., 2019).028

Slack et al. (2020) show post-hoc interpretation029

methods are not stable to input perturbation due030

to the observation of fragile interpretations. Yet,031

Ghorbani et al. (2019) conclude that input pertur-032

bation may cause fragile interpretations, but the033

perturbation might not influence post-hoc interpre-034

tation methods. Two conflicting conclusions raise035

the concern about how to assess the stability of036

post-hoc interpretation methods. In this work, we037

propose to analyze the stability of post-hoc inter-038

pretation methods by tracing the primary source of039

fragile interpretations.040

Figure 1: The pipeline to generate interpretations by a
post-hoc method (a) with no perturbation applied; (b)
with input perturbation applied; (c) with output pertur-
bation applied. We apply colors to represent sentiment
polarities in interpretations. We use blue for positive
and red for negative.

Prior work assesses the stability of post-hoc in- 041

terpretation methods by applying perturbation on 042

model inputs, which is not sufficient for concluding 043

interpretation methods are not stable. As illustrated 044

in Figure 1(a) and (b), we demonstrate examples 045

of the process that generate interpretations with no 046

perturbation and with input perturbation applied (at 047

the input text embedding), respectively. Figure 1(a) 048

shows the standard pipeline of using post-hoc in- 049

terpretation methods, and Figure 1(b) shows the 050

one of applying input perturbation for assessing 051

stability. One intuitive thing is that the random in- 052

put perturbation has to go through both the model 053

and the interpretation method. Therefore, when 054

interpretations are inconsistent due to the random 055

input perturbation, it is difficult to tell whether it is 056

the model or the interpretation method that causes 057

the inconsistency. 058

To circumvent the potential influence on inter- 059

pretations from the model’s vulnerability in this 060

work, we design an output perturbation method 061
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by slightly modifying the prediction probability062

of black-box models, shown in Figure 1(c). We063

propose to apply a small noise directly to the pre-064

diction probability of the model in order to isolate065

the influence from classification models.066

First, we conduct an experiment of perturbation067

comparison to assess the stability of post-hoc in-068

terpretation methods by identifying the primary069

source causing fragile interpretations. Our analysis070

shows that the primary reason for fragile interpreta-071

tions is the model vulnerability, and the stability of072

interpretation methods only has some minimal con-073

tributions. Based on the previous result, we design074

an experiment of evaluating the effects of different075

perturbations. It provides a potential explanation076

that input perturbation might enlarge models’ vul-077

nerability that reflects in prediction probability and078

indirectly causes fragile interpretations.079

2 Output Perturbation Method080

For text classification, x denotes the input text con-081

sisting of N words, x = [x(1), · · · ,x(N)], with082

each component x(n) ∈ Rd representing the n-th083

word embedding. We define a classifier as f(·) and084

the output probability of a given x on label k is085

P (y = k | x) = fk(x), where k ∈ {1, . . . , C}086

and C is the total number of classes.087

Let I(x, ŷ, P ) denote the interpretation for the088

model prediction on x, where ŷ is the predicted089

label and P represents output probabilities. Let090

I(x̄, ŷ, P̄ ) denote the interpretation for the model091

prediction on the perturbed input x̄, where the per-092

turbed input x̄ = x + εinput. P̄ represents out-093

put probabilities that are caused by the perturbed094

input x̄. Similarly, we apply I(x, ŷ, P̃ ) as the in-095

terpretation for the perturbed output probabilities096

P̃ = P + εoutput. Let the interpretation change097

between I(x̄, ŷ, P̄ ) and I(x, ŷ, P ) denote δ1. Let098

the interpretation change between I(x, ŷ, P̃ ) and099

I(x, ŷ, P ) denote δ2.100

Previous work applies the input perturbation101

method to access the stability of post-hoc inter-102

pretation methods. Fragile δ1 is observed and post-103

hoc interpretation methods are considered unstable.104

But with different inputs, the model may behave105

differently, e.g. P ̸= P̄ , which would reflect in106

post-hoc interpretations, though may not in pre-107

diction labels, e.g. ŷ = ȳ. We propose a method108

to evaluate δ2 by directly adding perturbation to109

model output probabilities. The method can cir-110

cumvent the potential model influence.111

Output Perturbation. Given an example x, we 112

add a small perturbation to model output prob- 113

abilities {P (y = k | x) + εoutput}Ck=1, where 114

each εoutput ∼ N (0, σ2), σ2 is the variance of 115

Gaussian distribution. To guarantee the modified 116

{P (y = k | x) + εoutput}Ck=1 are still legitimate 117

probabilities, we further normalize them as 118

P̃ (y = k | x) = P (y = k | x) + εoutput∑C
i=1 P (y = i | x) + εoutput

(1) 119

Similar to finding an interpretation of the original 120

prediction, the interpretation of perturbed outputs 121

is computed based on P̃ (y = ŷ | x). 122

Example: Output perturbation in LIME. To 123

give an example of the proposed perturbation idea, 124

we would like to represent r′ as the bag-of-words 125

representations of the original input texts. A sim- 126

plified version 1 of LIME is equivalent to finding a 127

solution of the following linear equation: 128

wT
ŷ r

′ = p̃ŷ (2) 129

where p̃ŷ = [P̃ (y = ŷ | x), P̃ (y = ŷ | 130

z1), . . . , P̃ (y = ŷ | zL)]T are the perturbed proba- 131

bilities on the label ŷ, and wT
ŷ is the weight vector, 132

where each element measures the contribution of 133

an input word to the prediction ŷ. A typical in- 134

terpretation from LIME consists of top important 135

words according to wŷ. Essentially, our proposed 136

output perturbation is similar to the perturbation 137

analysis in linear systems (Golub and Van Loan, 138

2013), which aims to identify the stability of these 139

systems. Despite the simple formulation in Equa- 140

tion 2, a similar linear system can also be used to 141

explain the Shapley-based interpretation methods 142

(e.g., Sample Shapley (Strumbelj and Kononenko, 143

2010)). We leave the detailed description out due 144

to the page limitation. 145

3 Experiments and Results 146

3.1 Experimental Setup 147

Models. We apply three neural network models, 148

Convolutional Neural Network (Kim, 2014, CNN), 149

Long Short Term Memory network (Hochreiter and 150

Schmidhuber, 1997, LSTM), and Bidirectional En- 151

coder Representations from Transformers (Devlin 152

et al., 2018, BERT). 153

1Without the example weight computed from a kernel func-
tion and the regularization term of interpretation complexity.
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Datasets. We adopt four text classification154

datasets: IMDB movie reviews dataset (Maas et al.,155

2011, IMDB), AG’s news dataset (Zhang et al.,156

2015, AG’s News), Stanford Sentiment Treebank157

dataset with binary labels (Socher et al., 2013,158

SST-2), and 6-class questions classification dataset159

TREC (Li and Roth, 2002, TREC).160

Post-hoc Interpretation Methods. We adopt161

two post-hoc interpretation methods, LIME162

(Ribeiro et al., 2016) and Sample Shapley (Strum-163

belj and Kononenko, 2010). LIME and Sample164

Shapley are additive feature attribution methods.165

The additive feature method provides a feature im-166

portance score on every feature for each text input167

based on model prediction. The summary statis-168

tics of datasets are shown in Table 2 in Appendix169

refapppendix:table1.170

In the experiment of perturbation comparison,171

we apply all models, datasets, and post-hoc inter-172

pretation methods listed for evaluation. In the ex-173

periment of evaluating the effects of different per-174

turbations experiment, we apply the CNN model,175

the SST-2 dataset, and the LIME method.176

Evaluation Metrics. In the experiment of per-177

turbation comparison (subsection 3.2), we apply178

Kendall’s Tau order rank correlation score, and the179

top-k important words overlap score as two eval-180

uation metrics. We use the first metric to evaluate181

the discrepancy in feature scores on each feature in182

the same text input between different perturbation183

levels. We use the second metric to evaluate the184

discrepancy on the ordered feature indices (rank185

by order of feature scores) on the same text input186

between different perturbation levels. In this work,187

we set k = 5.188

When evaluating the effects of different pertur-189

bations (subsection 3.3), We apply the relative en-190

tropy between the original probability distribution191

and the perturbed probability distribution as the192

evaluation metric. Let DKL(P ||P̃ ) denote the rela-193

tive entropy between the original probability distri-194

bution and the output perturbed probability distri-195

bution. Let the relative entropy between the origi-196

nal probability distribution and the input perturbed197

probability distribution denote as DKL(P ||P̄ ). We198

calculate the mean and the standard deviation of199

relative entropy to represent the situation of the200

entire dataset.201

Dataset CNN LSTM BERT
IMDB 86.30 86.60 92.00
SST-2 82.00 81.05 91.43
AG’s News 89.80 90.25 94.80
TREC 90.80 92.40 97.20

Table 1: Prediction accuracy(%) of three models on the
four benchmark datasets.

Figure 2: Results on SST-2 dataset in comparison exper-
iments. (a), (b) are results of Kendall’s Tau order rank
correlation score in. (c), (d) are results of top-k word
importance score.

3.2 Perturbation Comparison 202

To explore the primary source causing interpreta- 203

tion vulnerability, we conduct comparison experi- 204

ments to evaluate and compare δ1, and δ2. δ1 rep- 205

resents the interpretation discrepancy of I(x, ŷ, P ) 206

and I(x̄, ŷ, P̄ ). δ2 represents the interpretation dis- 207

crepancy of I(x, ŷ, P ) and I(x̄, ŷ, P̃ ). If δ1 and δ2 208

have an obvious gap, it illustrates that the black-box 209

model is more likely the primary source causing 210

fragile interpretations. 211

We train the three models on the four benchmark 212

datasets to ensure the performance on all models is 213

acceptable. Prediction accuracy is recorded in Ta- 214

ble 1. In this experiment, we select an input pertur- 215

bation method that is directly adding random noise 216

to the input word embeddings (Liu et al., 2020), 217

as shown in Figure 1(b). We apply the Gaussian 218

distribution to generate perturbation and control 219

the level by modifying the variance of Gaussian 220

distribution σ2
input. Detailed values of input pertur- 221

bation levels and output perturbation levels applied 222

are shown in Table 3 in Appendix subsection B.2. 223

We display plots of results on the SST-2 dataset 224

in Figure 2. Kendall’s Tau order rank correlation 225
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score plots are shown in Figure 2(a) and (b). Top-k226

important words overlap score plots are shown in227

Figure 2(c) and (d). Due to page limitations, we228

include plots on other datasets in Figure 4, Figure 5229

and Figure 6 in Appendix B, which are indicating230

a similar tendency and conclusion.231

Kendall’s Tau order rank correlation score re-232

sults. Kendall’s Tau order rank correlation score233

results indirectly illustrate the stability of post-hoc234

interpretation methods. In Figure 2(a) and (b), plots235

display apparent discrepancies between δ1 against236

δ2 on the evaluation metric in LIME and Sample237

Shapley. For output perturbation method results,238

it is noticeable that the values of Kendall’s Tau or-239

der rank correlation scores remain the same with240

the increased perturbation levels. This tendency241

indicates that, for a given input, if x and ŷ stay242

unchanged, the output perturbation εoutput is un-243

likely to influence interpretations generated by post-244

hoc interpretation methods. In other words, the245

interpretation vulnerability is unlikely caused by246

post-hoc interpretation methods. Meanwhile, for247

input perturbation method results, it is notifiable248

that the values of Kendall’s Tau order rank corre-249

lation scores decrease obviously with the increase250

of input perturbation intensity levels. It means251

that the black-box model becomes more vulnerable252

to the input perturbation and causes fragile inter-253

pretations. Compared to the previous result, the254

black-box model is more likely to be the primary255

source causing fragile interpretations.256

Top-k word importance score results. Top-k257

word importance score plots reflect the same result:258

the model is the primary source causing fragile259

interpretations. In Figure 2(c) and (d), δ1 against260

δ2 displays an obvious discrepancy in both post-hoc261

interpretation methods as well. For output method262

results, δ2 displays no change on the overlap score263

of the k most important words. The result in this264

metric indicates that the black-box model is more265

likely to be the source that causes interpretation266

vulnerability compared to interpretation methods.267

3.3 Effects of Different Perturbations268

Based on the previous results, input perturbation269

causes vulnerability of the black-box models to270

generate fragile interpretations indirectly . It is271

natural to consider the potential models’ effects of272

different perturbations. Unfortunately, there is no273

direct answer to this question. The reason is that274

Figure 3: Effects of different perturbations experiment
results. (a) the mean of the relative entropy. (b) the
standard deviation of the relative entropy.

we cannot directly compare the effects of perturba- 275

tions that are applied at different positions of the 276

pipeline. Therefore, we propose an experiment to 277

provide simple insights into the effects of differ- 278

ent perturbations. The basic idea is to compare 279

the relative entropy of prediction probability under 280

output perturbation with the relative entropy of the 281

prediction probability under input perturbation. 282

Results show that the mean and the standard de- 283

viation of DKL(P ||P̃ ) are remarkably lower than 284

those of DKL(P ||P̄ ), shown in Figure 3(a) and (b). 285

It indicates that the average value and dispersion 286

degree of prediction probability of the input per- 287

turbation are higher than those of prediction prob- 288

ability of output perturbation. It provides slight 289

insight that the vulnerability of black-box models 290

may enlarge the influence of input perturbation 291

and deteriorate the potential models’ effects, which 292

reflects in the prediction probability. When a post- 293

hoc interpretation method uses the influenced pre- 294

diction probability, it is possible to generate fragile 295

interpretations. The experiment result provides a 296

potential explanation for the observation in prior 297

works. 298

4 Conclusion 299

In this work, we propose an output perturbation 300

method by slightly modifying the prediction proba- 301

bilitiy of black-box models. The major contribution 302

of the proposed method helps to identify the pri- 303

mary source causing non-robust interpretations is 304

the black-box model. Also, we provide slight in- 305

sights into the stability of post-hoc interpretation 306

methods. Our method provides a new focus on 307

the research of interpretations robustness in post- 308

hoc interpretation methods with some fine-grained 309

experiment design in future works. 310
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A Related Works450

Post-hoc interpretations. Most work focuses on451

explaining neural network models from the post-452

hoc manner, especially generating a local inter-453

pretation for each model prediction. The white-454

box interpretation methods, such as gradient-based455

interpretations (Hechtlinger, 2016) and attention-456

based interpretations (Ghaeini et al., 2018), either457

require additional information (e.g. gradients) from458

the model or incur much debates regarding their459

faithfulness to model predictions (Jain and Wallace,460

2019). Another line of work focuses on explaining461

black-box models in a model-agnostic way. For462

example, Li et al. (2016) proposed a perturbation-463

based explanation method, Leave-one-out, that at-464

tributes feature importance to model predictions465

by erasing input features one by one. Ribeiro et al.466

(2016) proposed to estimate feature contributions467

locally via linear approximation based on pseudo468

examples. Some other works proposed the variants469

of Shapley value (Shapley, 2016) to measure fea-470

ture importance, such as Sample Shapley (Strum-471

belj and Kononenko, 2010), KernelSHAP (Lund-472

berg and Lee, 2017), and L/C-Shapley (Chen et al.,473

2018). In this work, we focus on two well-adopted474

black-box interpretation methods, LIME (Ribeiro475

et al., 2016) and Sample Shapley (Strumbelj and476

Kononenko, 2010), and their robustness to input477

perturbation.478

Model robustness. Recent works have shown479

the vulnerability of model prediction robustness480

to adversarial attacks (Szegedy et al., 2013; Zhao481

et al., 2017). Adversarial examples are similar to482

original examples but can quickly flip model pre-483

dictions (Jia et al., 2019). In the text domain, a484

common way to generate adversarial examples is485

by heuristically manipulating the input text, such486

as replacing words with their synonyms (Ren et al.,487

2019; Jin et al., 2020), inserting/removing words488

(Liang et al., 2017), or concatenating triggers (Wal-489

lace et al., 2019). Unlike these works that modify490

original input texts, we add noise at model outputs491

and disentangle the sources of fragile interpreta-492

tions.493

Interpretation robustness. Previous work ex-494

plored interpretation robustness by either perturb-495

ing the inputs (Ghorbani et al., 2019; Subramanya496

et al., 2019; Zhang et al., 2020; Heo et al., 2019) or497

manipulating the model (Wang et al., 2020; Slack498

et al., 2020; Zafar et al., 2021). For example, Slack499

et al. (2020) fooled post-hoc interpretation methods 500

by hiding the bias for black-box models based on 501

the proposed novel scaffolding technique. How- 502

ever, all of these works cannot disentangle the 503

sources that cause fragile interpretations. Differ- 504

ently, our proposed method mitigates the influence 505

of model to the interpretations by perturbing model 506

outputs. 507
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B More Tables and Figures508

B.1 Table of Dataset Summary Statistics509

Table 2 displays the summary statics on four510

datasets, IMDB movie reviews dataset (Maas et al.,511

2011, IMDB), AG’s news dataset (Zhang et al.,512

2015, AG’s News), Stanford Sentiment Treebank513

dataset with binary labels (Socher et al., 2013,514

SST-2), and 6-class questions classification dataset515

TREC (Li and Roth, 2002, TREC) .

Dataset C L #train #dev #test vocab threshold length
IMDB 2 268 20K 5K 25K 29571 5 250
SST-2 2 19 6920 872 1821 16190 0 50
AG’s News 4 32 114K 6K 7.6K 21838 5 50
TREC 6 10 5000 452 500 8026 0 15

Table 2: Summary statistics for the datasets where C is
the number of classes, L is the average sentence length,
# counts the number of examples in train/dev/test sets,
vocab is the vocab size, threshold is low-frequency
threshold, and length is mini-batch sentence length.

516
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B.2 Table of Detailed Value of σ2517

Table 3 displays the detailed value of σ2
input and518

σ2
output that represents the detailed perturbation lev-519

els we applied in interpretation robustness experi-520

ments.

Dataset Model Input Perturbation Level (σ2
input) Output Perturbation Level (σ2

output)
0 1 2 3 4 0 1 2 3 4

CNN 0 0.05 0.14 0.18 0.2 0 0.25 0.50 0.75 1
IMDB LSTM 0 0.05 0.13 0.16 0.18 0 0.25 0.50 0.75 1

BERT 0 0.25 0.50 0.85 1 0 0.25 0.50 0.75 1
CNN 0 0.16 0.26 0.33 0.38 0 0.25 0.50 0.75 1

SST-2 LSTM 0 0.05 0.13 0.18 0.24 0 0.25 0.50 0.75 1
BERT 0 0.25 0.50 0.75 0.85 0 0.25 0.50 0.75 1
CNN 0 0.08 0.14 0.18 0.24 0 0.25 0.38 0.50 0.75

AG’s News LSTM 0 0.05 0.13 0.16 0.18 0 0.25 0.38 0.50 0.75
BERT 0 0.25 0.50 0.75 1.25 0 0.25 0.38 0.50 0.75
CNN 0 0.04 0.05 0.09 0.11 0 0.25 0.33 0.41 0.50

TREC LSTM 0 0.08 0.12 0.19 0.21 0 0.25 0.33 0.41 0.50
BERT 0 0.25 0.50 0.75 0.85 0 0.25 0.50 0.75 1

Table 3: Perturbation levels applied on four datasets. In-
put Perturbation Level (σ2

input) represents the input per-
turbation applied. Output Perturbation Level (σ2

output)
represents the output perturbation applied.
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B.3 Figures of IMDB Dataset522

Figure 4 displays results of IMDB dataset.523

Kendall’s Tau order rank correlation score results524

are shown in Figure 4(a) and (b). Top-k important525

words overlap score results are shown in Figure 4(c)526

and (d).

Figure 4: Results on IMDB dataset in comparison ex-
periments. (a), (b) are results of Kendall’s Tau order
rank correlation score in. (c), (d) are results of top-k
word importance score.
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B.4 Figures of AG’s News Dataset528

Figure 5 displays results of AG’s News dataset.529

Kendall’s Tau order rank correlation score results530

are shown in Figure 5(a) and (b). Top-k important531

words overlap score results are shown in Figure 5(c)532

and (d).

Figure 5: Results on AG’s News dataset in comparison
experiments. (a), (b) are results of Kendall’s Tau order
rank correlation score in. (c), (d) are results of top-k
word importance score.
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B.5 Figures of TREC Dataset534

Figure 6 displays results of TREC dataset.535

Kendall’s Tau order rank correlation score results536

are shown in Figure 6(a) and (b). Top-k important537

words overlap score results are shown in Figure 6(c)538

and (d).

Figure 6: Results on TREC dataset in comparison exper-
iments. (a), (b) are results of Kendall’s Tau order rank
correlation score in. (c), (d) are results of top-k word
importance score.
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