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Abstract

Prior works mainly used input perturbation
methods for testing stability of post-hoc inter-
pretation methods and observed fragile inter-
pretations. However, different works show con-
flicting results on the primary source of frag-
ile interpretations because input perturbation
can cause potential effects on the model and
the interpretation methods. Instead, this work
proposes a simple output perturbation method
that circumvents models’ potential effects by
slightly modifying the prediction probability.
We evaluate the proposed method using two
popularly-used post-hoc interpretation meth-
ods (LIME and Sample Shapley), and CNN,
LSTM, and BERT as the neural classifiers. The
results show that post-hoc methods produce
only slightly different interpretations under out-
put perturbation. It suggests that the black-box
model is the primary source causing fragile in-
terpretations.

1 Introduction

Interpretation methods have been developed to gen-
erate interpretations to provide insights into the
model decision-making process because of the
opacity of neural networks models’ prediction pro-
cess (Du et al., 2019). Recent works have raised
concerns on interpretation robustness (Ghorbani
et al., 2019; Slack et al., 2020; Yeh et al., 2019).
Slack et al. (2020) show post-hoc interpretation
methods are not stable to input perturbation due
to the observation of fragile interpretations. Yet,
Ghorbani et al. (2019) conclude that input pertur-
bation may cause fragile interpretations, but the
perturbation might not influence post-hoc interpre-
tation methods. Two conflicting conclusions raise
the concern about how to assess the stability of
post-hoc interpretation methods. In this work, we
propose to analyze the stability of post-hoc inter-
pretation methods by tracing the primary source of
fragile interpretations.
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Figure 1: The pipeline to generate interpretations by a
post-hoc method (a) with no perturbation applied; (b)
with input perturbation applied; (c) with output pertur-
bation applied. We apply colors to represent sentiment
polarities in interpretations. We use blue for positive
and red for negative.

Prior work assesses the stability of post-hoc in-
terpretation methods by applying perturbation on
model inputs, which is not sufficient for concluding
interpretation methods are not stable. As illustrated
in Figure 1(a) and (b), we demonstrate examples
of the process that generate interpretations with no
perturbation and with input perturbation applied (at
the input text embedding), respectively. Figure 1(a)
shows the standard pipeline of using post-hoc in-
terpretation methods, and Figure 1(b) shows the
one of applying input perturbation for assessing
stability. One intuitive thing is that the random in-
put perturbation has to go through both the model
and the interpretation method. Therefore, when
interpretations are inconsistent due to the random
input perturbation, it is difficult to tell whether it is
the model or the interpretation method that causes
the inconsistency.

To circumvent the potential influence on inter-
pretations from the model’s vulnerability in this
work, we design an output perturbation method



by slightly modifying the prediction probability
of black-box models, shown in Figure 1(c). We
propose to apply a small noise directly to the pre-
diction probability of the model in order to isolate
the influence from classification models.

First, we conduct an experiment of perturbation
comparison to assess the stability of post-hoc in-
terpretation methods by identifying the primary
source causing fragile interpretations. Our analysis
shows that the primary reason for fragile interpreta-
tions is the model vulnerability, and the stability of
interpretation methods only has some minimal con-
tributions. Based on the previous result, we design
an experiment of evaluating the effects of different
perturbations. It provides a potential explanation
that input perturbation might enlarge models’ vul-
nerability that reflects in prediction probability and
indirectly causes fragile interpretations.

2 Output Perturbation Method

For text classification,  denotes the input text con-
sisting of N words, = [, ... (™), with
each component (™ € R? representing the n-th
word embedding. We define a classifier as f(-) and
the output probability of a given x on label k is
Ply=k | x) = fr(x), where k € {1,...,C}
and C is the total number of classes.

Let I(x,y, P) denote the interpretation for the
model prediction on @&, where g is the predicted
label and P represents output probabilities. Let
I(z, 7, P) denote the interpretation for the model
prediction on the perturbed input &, where the per-
turbed input £ = T + Einput- P represents out-
put probabilities that are caused by the perturbed
input . Similarly, we apply I(x, 9, P) as the in-
terpretation for the perturbed output probabilities
P = P + coutput- Let the interpretation change
between I(Z, §j, P) and I(, §j, P) denote . Let
the interpretation change between I (x, 9, P) and
I(x,y, P) denote 0.

Previous work applies the input perturbation
method to access the stability of post-hoc inter-
pretation methods. Fragile d; is observed and post-
hoc interpretation methods are considered unstable.
But with different inputs, the model may behave
differently, e.g. P # P, which would reflect in
post-hoc interpretations, though may not in pre-
diction labels, e.g. 7 = y. We propose a method
to evaluate o by directly adding perturbation to
model output probabilities. The method can cir-
cumvent the potential model influence.

Output Perturbation. Given an example x, we
add a small perturbation to model output prob-
abilities {P(y = k | @) + €output}$_,» Where
each eoutput ~ N(0,0?), 02 is the variance of
Gaussian distribution. To guarantee the modified
{Ply=F|x)+ Eoutput}kozl are still legitimate
probabilities, we further normalize them as

= Ply==k outpu

P(y:k|w): C(y |$)—|—€ tput
Zi:l P(y:Z | $)+5output
(1

Similar to finding an interpretation of the original
prediction, the interpretation of perturbed outputs
is computed based on P(y =y | x).

Example: Output perturbation in LIME. To
give an example of the proposed perturbation idea,
we would like to represent r’ as the bag-of-words
representations of the original input texts. A sim-
plified version ! of LIME is equivalent to finding a
solution of the following linear equation:

w)r’ = py )

[Pty = 9 | =),Ply = 3 |
21),...,P(y =19 | z1)]" are the perturbed proba-
bilities on the label ¢, and wg is the weight vector,
where each element measures the contribution of
an input word to the prediction g. A typical in-
terpretation from LIME consists of top important
words according to wy. Essentially, our proposed
output perturbation is similar to the perturbation
analysis in linear systems (Golub and Van Loan,
2013), which aims to identify the stability of these
systems. Despite the simple formulation in Equa-
tion 2, a similar linear system can also be used to
explain the Shapley-based interpretation methods
(e.g., Sample Shapley (Strumbelj and Kononenko,
2010)). We leave the detailed description out due
to the page limitation.

where p; =

3 Experiments and Results

3.1 Experimental Setup

Models. We apply three neural network models,
Convolutional Neural Network (Kim, 2014, CNN),
Long Short Term Memory network (Hochreiter and
Schmidhuber, 1997, LSTM), and Bidirectional En-
coder Representations from Transformers (Devlin
et al., 2018, BERT).

"Without the example weight computed from a kernel func-
tion and the regularization term of interpretation complexity.



Datasets. We adopt four text classification
datasets: IMDB movie reviews dataset (Maas et al.,
2011, IMDB), AG’s news dataset (Zhang et al.,
2015, AG’s News), Stanford Sentiment Treebank
dataset with binary labels (Socher et al., 2013,
SST-2), and 6-class questions classification dataset
TREC (Li and Roth, 2002, TREC).

Post-hoc Interpretation Methods. We adopt
two post-hoc interpretation methods, LIME
(Ribeiro et al., 2016) and Sample Shapley (Strum-
belj and Kononenko, 2010). LIME and Sample
Shapley are additive feature attribution methods.
The additive feature method provides a feature im-
portance score on every feature for each text input
based on model prediction. The summary statis-
tics of datasets are shown in Table 2 in Appendix
refapppendix:tablel.

In the experiment of perturbation comparison,
we apply all models, datasets, and post-hoc inter-
pretation methods listed for evaluation. In the ex-
periment of evaluating the effects of different per-
turbations experiment, we apply the CNN model,
the SST-2 dataset, and the LIME method.

Evaluation Metrics. In the experiment of per-
turbation comparison (subsection 3.2), we apply
Kendall’s Tau order rank correlation score, and the
top-k important words overlap score as two eval-
uation metrics. We use the first metric to evaluate
the discrepancy in feature scores on each feature in
the same text input between different perturbation
levels. We use the second metric to evaluate the
discrepancy on the ordered feature indices (rank
by order of feature scores) on the same text input
between different perturbation levels. In this work,
we set k = .

When evaluating the effects of different pertur-
bations (subsection 3.3), We apply the relative en-
tropy between the original probability distribution
and the perturbed probability distribution as the
evaluation metric. Let D 1,(P||P) denote the rela-
tive entropy between the original probability distri-
bution and the output perturbed probability distri-
bution. Let the relative entropy between the origi-
nal probability distribution and the input perturbed
probability distribution denote as D1, (P||P). We
calculate the mean and the standard deviation of
relative entropy to represent the situation of the
entire dataset.

Dataset CNN LSTM BERT
IMDB 86.30 86.60  92.00
SST-2 82.00 81.05 91.43
AG’s News 89.80 90.25 94.80
TREC 90.80 9240 97.20

Table 1: Prediction accuracy(%) of three models on the
four benchmark datasets.
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Figure 2: Results on SST-2 dataset in comparison exper-
iments. (a), (b) are results of Kendall’s Tau order rank
correlation score in. (c), (d) are results of top-k word
importance score.

3.2 Perturbation Comparison

To explore the primary source causing interpreta-
tion vulnerability, we conduct comparison experi-
ments to evaluate and compare 1, and ds. d1 rep-
resents the interpretation discrepancy of I(x, g, P)
and I(, , P). 63 represents the interpretation dis-
crepancy of I(x,y, P) and I(z, 7, ﬁ) If 61 and 2
have an obvious gap, it illustrates that the black-box
model is more likely the primary source causing
fragile interpretations.

We train the three models on the four benchmark
datasets to ensure the performance on all models is
acceptable. Prediction accuracy is recorded in Ta-
ble 1. In this experiment, we select an input pertur-
bation method that is directly adding random noise
to the input word embeddings (Liu et al., 2020),
as shown in Figure 1(b). We apply the Gaussian
distribution to generate perturbation and control
the level by modifying the variance of Gaussian
distribution az-gnput. Detailed values of input pertur-
bation levels and output perturbation levels applied
are shown in Table 3 in Appendix subsection B.2.

We display plots of results on the SST-2 dataset
in Figure 2. Kendall’s Tau order rank correlation



score plots are shown in Figure 2(a) and (b). Top-k
important words overlap score plots are shown in
Figure 2(c) and (d). Due to page limitations, we
include plots on other datasets in Figure 4, Figure 5
and Figure 6 in Appendix B, which are indicating
a similar tendency and conclusion.

Kendall’s Tau order rank correlation score re-
sults. Kendall’s Tau order rank correlation score
results indirectly illustrate the stability of post-hoc
interpretation methods. In Figure 2(a) and (b), plots
display apparent discrepancies between d; against
02 on the evaluation metric in LIME and Sample
Shapley. For output perturbation method results,
it is noticeable that the values of Kendall’s Tau or-
der rank correlation scores remain the same with
the increased perturbation levels. This tendency
indicates that, for a given input, if  and gy stay
unchanged, the output perturbation €,ypy¢ 18 un-
likely to influence interpretations generated by post-
hoc interpretation methods. In other words, the
interpretation vulnerability is unlikely caused by
post-hoc interpretation methods. Meanwhile, for
input perturbation method results, it is notifiable
that the values of Kendall’s Tau order rank corre-
lation scores decrease obviously with the increase
of input perturbation intensity levels. It means
that the black-box model becomes more vulnerable
to the input perturbation and causes fragile inter-
pretations. Compared to the previous result, the
black-box model is more likely to be the primary
source causing fragile interpretations.

Top-k word importance score results. Top-k
word importance score plots reflect the same result:
the model is the primary source causing fragile
interpretations. In Figure 2(c) and (d), §; against
09 displays an obvious discrepancy in both post-hoc
interpretation methods as well. For output method
results, o displays no change on the overlap score
of the k£ most important words. The result in this
metric indicates that the black-box model is more
likely to be the source that causes interpretation
vulnerability compared to interpretation methods.

3.3 Effects of Different Perturbations

Based on the previous results, input perturbation
causes vulnerability of the black-box models to
generate fragile interpretations indirectly . It is
natural to consider the potential models’ effects of
different perturbations. Unfortunately, there is no
direct answer to this question. The reason is that
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Figure 3: Effects of different perturbations experiment
results. (a) the mean of the relative entropy. (b) the
standard deviation of the relative entropy.

we cannot directly compare the effects of perturba-
tions that are applied at different positions of the
pipeline. Therefore, we propose an experiment to
provide simple insights into the effects of differ-
ent perturbations. The basic idea is to compare
the relative entropy of prediction probability under
output perturbation with the relative entropy of the
prediction probability under input perturbation.

Results show that the mean and the standard de-
viation of D (P||P) are remarkably lower than
those of D1, (P||P), shown in Figure 3(a) and (b).
It indicates that the average value and dispersion
degree of prediction probability of the input per-
turbation are higher than those of prediction prob-
ability of output perturbation. It provides slight
insight that the vulnerability of black-box models
may enlarge the influence of input perturbation
and deteriorate the potential models’ effects, which
reflects in the prediction probability. When a post-
hoc interpretation method uses the influenced pre-
diction probability, it is possible to generate fragile
interpretations. The experiment result provides a
potential explanation for the observation in prior
works.

4 Conclusion

In this work, we propose an output perturbation
method by slightly modifying the prediction proba-
bilitiy of black-box models. The major contribution
of the proposed method helps to identify the pri-
mary source causing non-robust interpretations is
the black-box model. Also, we provide slight in-
sights into the stability of post-hoc interpretation
methods. Our method provides a new focus on
the research of interpretations robustness in post-
hoc interpretation methods with some fine-grained
experiment design in future works.
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A Related Works

Post-hoc interpretations. Most work focuses on
explaining neural network models from the post-
hoc manner, especially generating a local inter-
pretation for each model prediction. The white-
box interpretation methods, such as gradient-based
interpretations (Hechtlinger, 2016) and attention-
based interpretations (Ghaeini et al., 2018), either
require additional information (e.g. gradients) from
the model or incur much debates regarding their
faithfulness to model predictions (Jain and Wallace,
2019). Another line of work focuses on explaining
black-box models in a model-agnostic way. For
example, Li et al. (2016) proposed a perturbation-
based explanation method, Leave-one-out, that at-
tributes feature importance to model predictions
by erasing input features one by one. Ribeiro et al.
(2016) proposed to estimate feature contributions
locally via linear approximation based on pseudo
examples. Some other works proposed the variants
of Shapley value (Shapley, 2016) to measure fea-
ture importance, such as Sample Shapley (Strum-
belj and Kononenko, 2010), KernelSHAP (Lund-
berg and Lee, 2017), and L/C-Shapley (Chen et al.,
2018). In this work, we focus on two well-adopted
black-box interpretation methods, LIME (Ribeiro
et al., 2016) and Sample Shapley (Strumbelj and
Kononenko, 2010), and their robustness to input
perturbation.

Model robustness. Recent works have shown
the vulnerability of model prediction robustness
to adversarial attacks (Szegedy et al., 2013; Zhao
et al., 2017). Adversarial examples are similar to
original examples but can quickly flip model pre-
dictions (Jia et al., 2019). In the text domain, a
common way to generate adversarial examples is
by heuristically manipulating the input text, such
as replacing words with their synonyms (Ren et al.,
2019; Jin et al., 2020), inserting/removing words
(Liang et al., 2017), or concatenating triggers (Wal-
lace et al., 2019). Unlike these works that modify
original input texts, we add noise at model outputs
and disentangle the sources of fragile interpreta-
tions.

Interpretation robustness. Previous work ex-
plored interpretation robustness by either perturb-
ing the inputs (Ghorbani et al., 2019; Subramanya
etal., 2019; Zhang et al., 2020; Heo et al., 2019) or
manipulating the model (Wang et al., 2020; Slack
et al., 2020; Zafar et al., 2021). For example, Slack

et al. (2020) fooled post-hoc interpretation methods
by hiding the bias for black-box models based on
the proposed novel scaffolding technique. How-
ever, all of these works cannot disentangle the
sources that cause fragile interpretations. Differ-
ently, our proposed method mitigates the influence
of model to the interpretations by perturbing model
outputs.



B More Tables and Figures

B.1 Table of Dataset Summary Statistics

Table 2 displays the summary statics on four
datasets, IMDB movie reviews dataset (Maas et al.,
2011, IMDB), AG’s news dataset (Zhang et al.,
2015, AG’s News), Stanford Sentiment Treebank
dataset with binary labels (Socher et al., 2013,
SST-2), and 6-class questions classification dataset
TREC (Li and Roth, 2002, TREC) .

Dataset C L #train Fdev Ftest vocab threshold length
IMDB 2 268 20K 5K 25K 29571 5 250
SST-2 2 19 6920 872 1821 16190 O 50
AG’sNews 4 32 114K 6K 7.6K 21838 5 50
TREC 6 10 5000 452 500 8026 0 15

Table 2: Summary statistics for the datasets where C is
the number of classes, L is the average sentence length,
# counts the number of examples in train/dev/test sets,
vocab is the vocab size, threshold is low-frequency
threshold, and length is mini-batch sentence length.



B.2 Table of Detailed Value of o2

Table 3 displays the detailed value of o2

npu
agutput that represents the detailed perturbation lev-
els we applied in interpretation robustness experi-
ments.

, and

Dataset Model Input Perturbation Level (o7 utput)

input) Output Perturbation Level (o

0 1 2 3 4 0 1 2 3 4
CNN 0 0.05 0.14 0.18 0.2 0 025 050 075 1
IMDB LSTM 0 0.05 0.13 0.16 0.18 0 025 050 075 1
BERT 0 0.25 050 085 1 0 025 050 075 1
CNN 0 0.16 0.26 0.33 0.38 0 025 050 075 1
SST-2 LSTM 0 0.05 0.13 0.18 0.24 0 025 050 0.75 1
BERT 0 0.25 0.50 0.75 0.85 0 025 050 075 1
CNN 0 0.08 0.14 0.18 0.24 0 025 038 050 0.75
AG’sNews LSTM 0 0.05 0.13 0.16 0.18 0 025 038 050 0.75
BERT 0 0.25 0.50 0.75 1.25 0 025 038 050 0.75
CNN 0 0.04 0.05 0.09 0.11 0 025 033 041 0.50
TREC LSTM 0 0.08 0.12 0.19 0.21 0 025 033 041 0.50
BERT 0 0.25 0.50 0.75 0.85 0 025 050 075 1

Table 3: Perturbation levels applied on four datasets. In-
put Perturbation Level (afnput) represents the input per-
turbation applied. Output Perturbation Level (agutpm)
represents the output perturbation applied.



B.3 Figures of IMDB Dataset

Figure 4 displays results of IMDB dataset.
Kendall’s Tau order rank correlation score results
are shown in Figure 4(a) and (b). Top-k important
words overlap score results are shown in Figure 4(c)
and (d).
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Figure 4: Results on IMDB dataset in comparison ex-
periments. (a), (b) are results of Kendall’s Tau order
rank correlation score in. (c), (d) are results of top-k
word importance score.
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B.4 Figures of AG’s News Dataset

Figure 5 displays results of AG’s News dataset.
Kendall’s Tau order rank correlation score results
are shown in Figure 5(a) and (b). Top-k important
words overlap score results are shown in Figure 5(c)
and (d).
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Figure 5: Results on AG’s News dataset in comparison
experiments. (a), (b) are results of Kendall’s Tau order
rank correlation score in. (c), (d) are results of top-k
word importance score.
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B.5 Figures of TREC Dataset

Figure 6 displays results of TREC dataset.
Kendall’s Tau order rank correlation score results
are shown in Figure 6(a) and (b). Top-k important
words overlap score results are shown in Figure 6(c)
and (d).
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Figure 6: Results on TREC dataset in comparison exper-
iments. (a), (b) are results of Kendall’s Tau order rank
correlation score in. (c), (d) are results of top-k word
importance score.
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