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ABSTRACT

Human motion is highly expressive and naturally aligned with language, yet pre-
vailing methods relying heavily on joint text-motion embeddings struggle to syn-
thesize temporally accurate, detailed motions and often lack explainability. To ad-
dress these limitations, we introduce LabanLite, a motion representation grounded
in the Labanotation system. Unlike black-box text-motion embeddings, Laban-
Lite encodes each atomic body-part action (e.g., a single left-foot step) as a dis-
crete Laban symbol paired with a textual template. This abstraction decomposes
complex motions into interpretable symbol sequences and body-part instructions,
establishing a symbolic link between high-level language and low-level motion
trajectories. Building on LabanLite, we present LaMoGen, a Text-to-LabanLite-
to-Motion Generation framework that enables large language models (LLMs) to
compose motion sequences through symbolic reasoning. The LLM interprets mo-
tion patterns, relates them to textual descriptions, and recombines symbols into
executable plans, producing motions that are both interpretable and linguistically
grounded. To support rigorous evaluation, we introduce a Labanotation-based
benchmark with structured description—motion pairs and three metrics that jointly
measure text—-motion alignment across symbolic, temporal, and harmony dimen-
sions. Experiments demonstrate that LaMoGen establishes a new baseline for both
interpretability and controllability, outperforming prior methods on our bench-
mark and public datasets. These results highlight the advantages of symbolic rea-
soning and agent-based design for language-driven motion synthesis.

1 INTRODUCTION

Human motions convey rich semantics that often correspond to intentions and instructions expressed
in natural language. Establishing a precise mapping between language and motion is therefore essen-
tial for computational understanding and modelling of human behaviour. Recent approaches (Guo
et al.| [2022; [Tevet et al., [2023; Zhang et al., [2023a) have made promising progress in generating
motion from textual descriptions. However, purely text-driven motion generation remains challeng-
ing. Existing methods typically operate by aligning text and motion embeddings within a joint latent
space, but this space often fails to capture fine-grained semantic relationships, resulting in motions
that do not faithfully reflect the input text instructions. The problem becomes more pronounced
when the input text differs from the training data, leading to irrelevant or inaccurate motion outputs
due to out-of-distribution issues.

Recent works (Huang et al.,|2024; [Li et al., [2024b) attempt to address this by decomposing the de-
scription into multiple tokens, each describing different body parts or sub-action chronology. Nev-
ertheless, these approaches still do not resolve a key issue: when users provide complex, multi-step
instructions—such as “walk forward in 5 steps and then walk backward in 3 steps”—the methods
tend to encode the entire instruction as one or more text embeddings, which cannot accurately rep-
resent the number of steps or capture the explicit temporal order and causal relationships between
sub-actions. Several methods introduce explicit signals to guide motion generation, such as using
key joint trajectories (Karunratanakul et al.|[2023;|Wan et al.||2024) or drawing key poses (Liu et al.|
2023; [Wang et al.l 2025). However, these approaches require manual input and specialised user
interfaces, limiting their intuitiveness and ease of use.
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Figure 1: Given a structured text description, methods based on text-motion joint embeddings often
fail to generate semantically consistent motion. In contrast, our approach leverages symbolic mo-
tion representations, allowing for accurate motion generation. As each symbol is associated with
one textual instruction, this design enables LLMs to compose symbolic motion via retrieval aug-
mentation prompting. The right panel illustrates the meaning of each LabanLite symbol.

In contrast, Labanotation (Topaz et al.l [1996) provides a motion analysis system that encodes de-
tailed aspects of movement—including which body part is moving, the direction, level, duration, and
other qualitative features—into interpretable symbols. By abstracting complex motion into concise
symbolic representations, Labanotation enables trained performers to accurately reconstruct intri-
cate motions. For example, the previously mentioned action “walk forward in 5 steps and then walk
backward in 3 steps” can be efficiently decomposed into a sequence of symbols representing each
atomic movement, as shown in Fig.[I] The combination of these symbols explicitly outlines the tem-
poral and structural characteristics of the entire action. Moreover, if each symbol is associated with
a fixed textual description, the motion sequence can be unambiguously translated into a body-part-
level instructional description. Therefore, this symbolic system serves as an ideal interface bridging
language and motion, clearly delineating both the temporal and spatial structure of actions.

Motivated by these advantages, we propose a novel motion representation LabanLite, that faithfully
adheres to Labanotation theory, encoding the transition between action states in an interpretable and
abstract manner. This unique level of abstraction not only makes the representation human-readable,
but also enables direct collaboration with large language models (LLMs) for motion generation. That
is, it allows LLMs to actively plan and compose motion sequences by arranging Laban symbols in
a retrieval-augmented one-shot, interpretable manner, rather than passively mapping text to motion
through black-box embeddings.

Meanwhile, KP (Liu et al.| 2024) highlights that commonly used evaluation metrics (Guo et al.,
2022) are increasingly indistinct, as some methods even achieve results surpassing those of the
ground truth. This observation suggests that current metrics are insufficient for capturing semantic
consistency. Building on KP’s insights, we introduce a new benchmark based on Labanotation,
featuring three metrics that explicitly assess alignment between motion and text, across symbolic,
temporal, and harmony dimensions. In contrast to KP’s benchmark, which is limited to one or two
body parts, our approach assesses all four major body-part groups. This comprehensive evaluation
framework promotes greater rigor and transparency within the field.

Building on these foundations, we propose a Text-to-Labanotation-to-Metion Generation frame-
work, dubbed LaMoGen. As shown in Fig.[I} to the best of our knowledge, LaMoGen is the pio-
neering framework that enables LLMs to autonomously compose motion via interpretable symbolic
representations. We evaluate LaMoGen on our new benchmark and two standard text-to-motion
datasets. Experimental results demonstrate that our framework achieves state-of-the-art perfor-
mance in aligning textual descriptions with generated motions, highlighting the effectiveness of
Labanotation-based representations for both interpretability and controllability in motion synthesis.
The main contributions of this work can be summarised as follows. All code and data are available
atlhttps://github.com/xxx/xXxx\

* We introduce LabanLite, a motion representation grounded in Labanotation that abstracts
motion into symbolic codes. This enables both explicit text association and faithful trajec-
tory reconstruction.


https://github.com/xxx/xxx
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* We introduce a new paradigm where LLMs act as autonomous agents, actively planning
and composing motion sequences via symbolic reasoning. This allows them to address
challenges of chronology, compositionality, and precise control over motion attributes that
existing frameworks struggle with.

* We propose LaMoGen, a two-level framework that unifies LLM-driven symbolic plan-
ning with motion generation over a learnable latent Laban codebook for detail augmen-
tation. LaMoGen delivers superior interpretability and controllability compared to prior
approaches.

* We present a comprehensive Labanotation-based benchmark with new metrics and a struc-
tured dataset for evaluating alignment between language and motion.

2 RELATED WORKS

Text-based Human Motion Generation aims to generate diverse, human-like motion from nat-
ural language descriptions or action labels, typically by mapping paired textual and motion data
into a joint embedding space (Guo et al., [2022} Tevet et al., 2023; Lee et al., 2023} [Zhang et al.,
2024aj [Li et al.| 2024b). Subsequent research has focused on abstracting motion signals to extract
their semantic content, for achieving a semantically consistent representation between motion and
text. Kinematic Phrase (KP) (Liu et al., [2024) proposed a heuristic approach to abstract motions
by computing the relative distance between inter-body parts, and used a variational autoencoder
to generate motions. However, such methods are limited to low-level signal abstraction and have
difficulty capturing high-level semantic meaning. On the other hand, Vector Quantised Variational
Autoencoders (Zhang et al., [2023a}; Jiang et all 2024aj [Li et al., [2024b}; |[Zeng et al., [2025) have
been widely adopted to represent motion as discretised tokens, which can be effectively combined
with autoregressive transformers to produce coherent motion sequences. CoMo (Huang et al.| [2024)
further advances this line of work by discretising motion into pose codes using Posescript (Del-
mas et al.,2024). However, pose codes represent only the key pose state of individual frames, thus
lacking the ability to capture transitional dynamics. To address this limitation, we draw inspiration
from CoMo and propose the use of Laban symbols as the intermediate representation between text
and motion. Unlike pose codes, each Laban symbol encapsulates not only the starting and ending
poses but also the transformation process between them. This makes Laban symbols more abstract
and semantically expressive. Consequently, our proposed LaMoGen framework enables LLMs to
compose Laban symbols directly, as they are more closely aligned with textual representations and
facilitate symbolic reasoning about motion.

Motion Generation with LLMs. To our knowledge, no existing work explicitly enables LLMs
to autonomously generate motion without fine-tuning (Kalakonda et al.,[2023}; Zhang et al., [2024b;
Zhou et al.,|2024). The closest prior works (Shi et al.| 2023} |Athanasiou et al., [2023; [Huang et al.|
2024) use LLMs to decompose text into body part descriptions, without allowing them to compose
or generate motions. In contrast, we adopt a retrieval-augmented prompting strategy, providing
LLMs with reference Laban scores to help them understand how to produce the desired motions.

Labanotation. Recent studies primarily use Labanotation as a motion representation for recon-
struction tasks. Jiang et al.|(2024b) used Laban symbols to explicitly represent and reconstruct
inbetweening motions. [Li et al.| (2024a) mapped hand images to Laban symbols and then to hand
motions, to improve hand pose estimation accuracy. In this work, we apply Labanotation to motion
generation, bridging textual descriptions and motions.

3 METHOD

In this section, we first present LabanLite, an interpretable motion representation derived from La-
banotation that encodes detailed body-part movements into symbolic fomﬂ Building on this, we
introduce LaMoGen, a unified framework that leverages LabanLite to support LLM-driven motion
generation. As illustrated in Fig. [2] LaMoGen integrates two core components: a Laban-Motion

"Here, symbolic refers to a discretised encoding system aligned with the symbols of an annotation language,
each carrying specific semantic and domain-level attributes. This differs fundamentally from continuous-space
modelling, which is grounded in raw vector embeddings rather than interpretable symbolic units.
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Figure 2: Overview of LaMoGen: (a) The Laban-motion Encoder-Decoder enables bidirectional
conversion between motion and LabanLite symbols. These symbols are human-readable, as each
corresponds to one instructional description, stored in a Text-Laban Database. (b) LLMs perform
high-level symbolic planning through retrieval-augmented prompting. The Kinematic Detail Aug-
mentor enriches these plans into temporally coherent motion through autoregressive generation.

Encoder—-Decoder Module, which enables bidirectional conversion between raw motion data and
LabanLite symbols, and a LLM-Guided Text-Laban-Motion Generation Module, where LLMs
autonomously compose high-level symbolic motion sequences through retrieval-augmented prompt-
ing. These symbolic plans are then expanded by a Kinematic Detail Augmentor that enriches them
with fine-grained symbols and attributes, ensuring realistic and text-aligned motion generation.

3.1 CORE CONCEPTS

3.1.1 LABANOTETAION AND LABANLITE

Labanotation is a symbolic system for recording movement, where Laban symbols are arranged
on a vertical staff to form a score that captures spatial positions and temporal sequences of body
parts (Topaz et al.| [1996)). A standard staff has eleven columns, each representing a body part, with
symbols stacked bottom to top to indicate order and duration. Symbol attributes encode motion
details: direction (forward, left, right, etc.) is conveyed by shape, level (high, middle, low) by
shading, and additional aspects such as orientation or effort by further markings. Together, these
conventions provide a structured and interpretable record of whole-body motion.

Based on Labanotation, we introduce LabanLite, a curated subset designed to preserve expressive
richness while being more suitable for digital encoding and motion modeling. As shown in Fig. [T}
LabanLite symbols are organized into conceptual and detail categories. Conceptual symbols capture
overall motion structures, e.g., Direction and Level, while Hold denotes stationary states. Detail
symbols refine these structures with attributes such as body Orientation, Bend, and Moving-eﬂorﬂ

LabanLite differs from conventional Labanotation both in symbol selection and data representation.
In practice, it focuses on a subset of body-part groups: Left/Right supports, Left/Right leg gestures,
Right/Left arms, Right/Left hands, the lower torso (Body), and the Head. Rather than vertical staff
columns, each body-part group is represented as a compact record, with attributes encoded directly
into fields derived from symbol combinations. This design yields a frame-wise annotation that is
both human-interpretable and computation-ready.

Remark. One unique strength of LabanLite lies in its temporal expressiveness. Unlike frame-
based pose representations (e.g., CoMo (Huang et al.,2024))), LabanLite encodes both intention and
duration, allowing LaMoGen to operate over symbolic action units. This design enables the model
to interpret and generate compositional instructions such as “move hand forward in one second”,
where symbolic attributes like direction and timing are explicitly encoded and aligned.

?For example, “wave right hand”. Right hand’s Direction attribute transitions M/M — R/F — M/M, while
Level transitions Lo. — Hi. — Lo., capturing the concept of hand waving. Meanwhile, Right arm’s Bend
changes from extended to flexed and back, specifying the detailed gesture.
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3.1.2 LABAN CODE & LABAN CODEBOOK

Labanotation symbols are inherently multi-dimensional: their interpretation depends on the staff
location (indicating the body-part group), the vertical axis (encoding time and action duration), and
additional attributes (e.g., direction, level, or effort). While this layout is intuitive for human, it
complicates digital encoding. To address this, we define each unique symbol assigned to a specific
body-part group as a distinct symbol instance and map it to a unique identifier, termed a Laban
code. Consequently, one Laban symbol can have multiple Laban codes across different body parts.

We collect all N = 158 codes into a Laban codebook (detail explained in Appendix [A.T)), denoted
{cn}n 1> Where each entry ¢, € R9% is a learnable embedding. The codebook defines a
dlscrete latent space where each entry is a learned embedding optimised to capture fundamental
motion patterns. By combining these embeddings linearly, the system can approximate continuous
variations, enabling the composition of complex motions from simpler symbolic building blocks.

3.2 LABAN-MOTION ENCODER-DECODER

Given a T-frame input motion: X = {x;}7_;, we propose an Automatic Symbol Detection Work-

flow F, which converts X into a symbol instance sequence S = F(X), and S = {s}’ |t €
[1,T], i € [1,A;] j € [1,G]}. Here, G is the total body-part group number, and A; is the attribute
field dimension’| for Group j. The sequence S is then encoded into an latent vector Z using the
Laban codebook C'. The process will be explained in this section.

3.2.1 AUTOMATIC LABAN CODE DETECTION WORKFLOW

The workflow processes each body-part group independently in three steps (see Appendix [A.2] for
better details). On step one, Dynamic Interval Segmentation, we divide motion into coherent time
intervals by classifying each frame as either dynamic or stationary (hold) according to the velocity
of the end-effector. Frames exceeding a velocity threshold are labelled dynamic, while the rest
are considered stationary. This step ensures that symbolic units align with natural atomic actions.
On step two, Frame-wise Symbol Extraction, we translate motion signals into symbolic attributes.
Direction and Level are measured by the 3D displacement of end-effectors from the pelvis, which
are mapped to symbolic categories. Orientation is obtained by calculating the Euler angles of the
hip vector relative to the negative y-axis in both the xy- and yz-planes and discretising them into
eight bins of 45° each. Bend is captured by discretising Euler angles between adjacent limbs into
six bins of 30°, while Moving-effort is quantified by discretising pelvis velocity in the xy- and yz-
planes into five levels. Together, these attributes provide a comprehensive symbolic account of local
body dynamics. On step three, in Interval-wise Symbol Aggregation, we assign a representative

symbol combination to each segmented interval, which appears most frequently within the last 30%
of frames in the interval, ensuring that the chosen symbol reflects the stable state of the motion.

3.2.2 CODING, DECODING, AND OPTIMISATION OF THE LABAN CODEBOOK

The Laban-Motion Encoder £ transforms the symbol sequence S = {si’j }, derived from the input
motion X = {z;} as described in the previous section, into a latent representation:

N
ztzz:vfcn, (D

which is constructed by summing the embeddmgs of all actlve codes from the codebook C' =
{ea }N 1 at each frame. The binary indicator vector v; € RV*! specifies which codes are active: an
entry vy’ is set to 1 whenever the detection workflow F identifies the corresponding attribute.

We further implement a Laban-Motion Decoder D that reconstructs motion trajectories from the la-
tent representations {z; }, using a standard transformer decoder architecture (Vaswani et al., [2017).
The Decoder parameters # and the Laban codebook C' = {c,, }N_, are jointly optimized by mini-
mizing the following reconstruction loss Le.:

N
{0 C} = argmlne Acn }N »Crec X {D Z C’ﬂa }t 1) (2)

3Because of varying motion range and function, body-part groups have different attribute field dimensions.
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Figure 3: Qualitative comparisons on HumanML3D and Locomotion test sets, with motions pro-
gressing from left to right. Misalignments between text and generated motions are highlighted.
Note how our method preserves correct sequencing, repetition, and timing of actions, while pre-
cisely controlling body parts and motion attributes, and demonstrating compositional generation
enabled by LLM-driven symbolic inference—where existing methods fail.

where L, is calculated by summing the L; distances between poses (X and X ) and velocities (X

and X) of the input and reconstructed motions: Lc.(X, X) = | X — X1 + A| X — X||1, with A
being a hyperparameter that controls the relative weight of the two terms.

3.3 LLM-GUIDED TEXT-LABAN-MOTION GENERATION

Human motion can be understood as the outcome of both conceptual intent and physical execution.
In LabanLite, conceptual symbols capture high-level motion concepts and intentions (e.g., direction,
level, or hold), whose structured patterns can be effectively modeled by large language models. De-
tail symbols, by contrast, specify execution attributes such as orientation, bend, and effort—factors
essential for realistic synthesis—which are modeled by a transformer-based architecture (Zhang
et al.| 2023a) via coding over the learned Laban Codebook. This hierarchical design naturally leads
to a two-stage generation pipeline to be introduced in this section.

3.3.1 LLM-GUIDED MOTION CONCEPT COMPOSITION

As introduced earlier, Laban symbols are both visually interpretable and structurally organized,
making them particularly well-suited for symbolic reasoning with language models. Their structured
form enables LLM:s to link textual descriptions with symbolic motion concepts in a manner that is
both interpretable and compositional.

Building on this property, the first stage of our generation framework employs an LLM to compose
motion plans at the conceptual Ievel through retrieval-augmented prompting. As shown in Fig.[2(b),
we construct a motion database annotated with paired textual descriptions and their corresponding
conceptual symbol sequences. At inference time, the user’s input text is matched to similar database
entries using CLIP-based similarity. The top- K retrieved examples, presumed to cover the full range
of movement elements expressed in the text, are then supplied to the LLM as in-context examples.
By reasoning over the alignment between textual concepts and symbolic motion patterns, the LLM
generates a new sequence of conceptual symbols based on the input text.

3.3.2 KINEMATIC DETAIL AUGMENTATION OVER LABAN CODEBOOK

While LLMs are effective at high-level planning, they lack the temporal modelling precision re-
quired for detailed motion synthesis. In the second stage, we introduce a Kinematic Detail Aug-
mentor, an autoregressive transformer, to expand the conceptual symbol sequences into temporally
coherent and complete LabanLite codes by adding detail symbols through autoregressive generation.
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Table 1: Quantitative comparisons on our Locomotion benchmark, using the proposed Labanotation-
based metrics, R-precision Top-3 (R@3) and FID. Bold and underlined values indicate the best and
the second-best performance, respectively.

SMT 1 TMP HMN 1

Method R@31 FID |

supL supR armL armR supL supR armL armR arm-arm arm-sup sup-sup
Real data - - - - - - - - - - - 0.216 0.001

MDM (Tevet et al.|2023) 0.380 0.380 0.335 0.257 0.316 0.316 0.329 0.231 0.119 0226 0258 0.180 22.81
ReMoDiff (Zhang et al.[[2023b) 0.470 0.470 0.427 0.395 0.377 0.377 0.385 0.322 0.179  0.264 0.351 0.192 7.121
MoDiff (Zhang et al.[2024a) 0.491 0.491 0.470 0.411 0.362 0.362 0.412 0.328 0.180  0.281 0.361 0.196 5.701
CoMo (Huang et al.;[2024) 0.358 0.358 0.474 0.382 0.211 0.211 0.284 0.250 0.203  0.298 0.252 0.176 21.94

Ours (Bare) 0.523 0.523 0.430 0.392 0.337 0.337 0.361 0.385 0.215  0.356 0.393 0.199 5.562

Ours (Qwen3) 0.571 0.571 0.478 0.495 0.401 0.401 0.456 0.448 0.369 0334 0450 0.212 1.903
Ours (DeepSeekV3) 0.552 0.552 0.496 0.500 0.475 0.475 0.486 0.486 0.370 0326 0463 0.206 1.859
Ours (GPT4.1) 0.583 0.583 0.493 0.476 0.507 0.507 0.501 0.492 0303  0.367 0.508 0.208 1.861
Ours (Laban) 0.648 0.648 0.592 0.616 0.619 0.619 0.643 0.632 0.379  0.449 0.558 0.211 1.769

We represent the conceptual symbol sequence from the first stage as masked binary indicator vectors
01.¢—1, where only the predicted conceptual symbol fields are activated. Conditioned on the text
input m and 01.;_1, the Augmentor predicts full binary indicator vectors v; for each frame, activating
embedding entries in the Laban codebook, which encodes both conceptual and detail attributes. The
prediction is made over estimated activation probabilities: pf = P(v}* = 1|m, 01.4—1).

During training, conceptual vectors are constructed by masking detailed attributes in the input, with
random masking applied to improve generalisation and prevent overfitting. To mark motion termi-
nation, an end-of-sequence token <EOS> is appended, extending the codebook to N + 1 entries.
Through this process, the Augmentor enriches the frame-wise conceptual symbol plans produced
by the LLM with detailed attributes, converting them into fully specified Laban codes. The learning
objective is defined using a binary cross-entropy loss:

Lyen ==Y [vf logp} + (1 —vf) log(1 — p})]. 3)
t,n

Finally, the Laban-Motion Decoder D reconstructs the enriched codes into instruction-aligned,
detailed motion trajectories.

4 LABAN BENCHMARK

To assess the effectiveness of the proposed LaMoGen framework—particularly its ability to cap-
ture fine-grained, structured textual instructions and accurately ground them in the generated
motion—we introduce a new evaluation benchmark. This benchmark consists of a locomo-
tion—Laban—text paired dataset, together with three Labanotation-based metrics designed to measure
symbolic, temporal, and harmonious alignment. A detailed description of the dataset construction
and evaluation metrics is provided in Appendix [A.3]

Locomotion-Laban-text Paired Dataset. We select all locomotion sequences (e.g., walking, run-
ning, and jumping) from the AMASS (Mahmood et al.l [2019) dataset and decompose them into
atomic actions. Annotation of these atomic actions is carried out in a semi-automated manner: lo-
comotion details such as step count, left/right step order, and action labels are manually extracted,
after which these details are expanded into natural language descriptions with the assistance of
LLMs. LabanLite symbols are then detected using the workflow introduced in Sec.[3.2.1}

Laban-based Metrics. Given the professional rigor of Labanotation in annotating and evaluat-
ing motion, we propose three complementary metrics, i.e., Semantic Alignment (SMT), Temporal
Alignment (TMP), and Harmonious Alignment (HMN), to assess the effectiveness of text-to-motion
generation. Unlike the KP benchmark (Liu et al., 2024)), which is limited to one or two body parts,
our metrics evaluate multi-body consistency across four key body parts (right/left arms and feet).
These metrics operate by converting both ground-truth and generated motions into conceptual sym-
bol sequences, followed by intra- and inter-body-part comparisons using the Longest Common Sub-
sequence (See mathematical definition in Appendix [A.3). Specifically, SMT measures sequence
similarity within individual body parts while ignoring duration. TMP extends this by incorporating
symbol duration to enforce temporal consistency. HMN further evaluates coordination across mul-
tiple body parts by treating co-occurring symbols as joint units. For example, if the ground truth
shows the left foot stepping forward while the left arm swings backward, the generated motion is
expected to exhibit a comparable synchronised pattern.
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Table 2: Quantitative comparisons with state-of-the-art methods on the HumanML3D test and KIT-
ML test datasets, under standard protocols. Bold, underlined, and italicised values denote the best,
second-best, and third-best performance, respectively.
R-precision
Top-1 Top-2 Top-3
HumanML3D
Real data 0.511+99% 0.703%:00% 0.797+:992 0.002%:0°0 2.974+998 9 503+ 085 -

Guo et al.[(2022} 0.457%:092 0.639%°03 0.740%09% 1.067%:002 3.340F00% 9.188%:002 2,090%*0%3

MDM (Tevet et al.|2023} 0.320%09° 0.498%:001 0.611%°7 (.544%01 5566% 927 9 559+:0%6 32 799+ 072
ReMoDiff (Zhang et al.[2023b) 0.510%-°5 0.698%906 (.795%-004 0.103%:004 2,974F016 9 18F07> 1 795043
MoDiff (Zhang et al.|[2024a) 0.491F0°1 0.681+:001 .782%:001 0,630+ 001 3.113+:001 g y19*-049 1 .533%042
CoMo (Huang et al.]2024) 0.502%:992 0.692%°°7 0.790%:002 0.262%00 3 032+ 01% 9.936+0%6 1 013%016

KP (Liu et al.|[2024) 0.496% 000 - - 0.275%:000 - 9.975%:000 g 91g*:000

Ours (Bare) 0.438%90% (.591%:004 (. 755%:003 1 91013 3.999+-020 g 5554097 1 4971+:089

Ours (GPT4.1 mini) 0.453%90% 0,679%09% (.779%:004 561008 37175011 g 434115 1 963+:034
Ours (GPT4.1) 0.491F092 (.694%:99% 0.796% 0% (.252% 009 3087+003 9124058 1 131%0%7
Ours (Laban) 0.513%°0% 0.704%:°02 0.813%996 .206* %% 2.993%0% 9 635%109 (.973*+ 02

KIT-ML
Real data 0.424%09% (,649%:006 . 779%006 (,031%:006 9 788+012 17 g*097 -

Guo et al. (Guo et al.|[2022} 0.370%0%° 0.569%°7 0.693% 07 2770199 3.401%°0% 10.91F 10 1.482%0%°
MDM (Tevet et al.|2023} 0.164%:00% (.291%:904 (.396%004 (.497%021 9.191+:022 10.85%109 1 907+214
ReMoDiff (Zhang et al.|2023b} 0.427F:°14 .641%:9% 0.765% 9% 0.155%:006 2 814012 10 gp*195 1 .939+:028
MoDiff (Zhang et al.|[2024a) 0.417F°0% 0.6217091 (.739%:004 1954062 9 958+005 17 10*143 (730013
CoMo (Huang et al.]2024) 0.422%:999 0.638%0°7 (.765% 011 (.352%04° 2.878% 021 19,95+ 196 1.249% 008

Ours (Bare) 0.400%0% 0.621%00% 0.750%:09% (.685%:005 3222011 17 74%140 7 gp5+-122

Ours (GPT4.1 mini) 0.418%9°% (0,630%0% 0.761%:°%6 0.550% 0% 3274011 11.85%175 1.103%05!
Ours (GPT4.1) 0.42170%% 0.649%%%4 0.775F 012 0.415%01 3.165%007 11.30%166 1 028+ 101
Ours (Laban) 0.424%:996 0.657%005 0, 782%:009 (.954+-004 9 891%:094 17 g9+184 (.979+012

Method FID | MM-Dist | Diversity — Multi-Mod. 1

5 EXPERIMENTS

5.1 IMPLEMENTATION DETAILS

Following standard protocols (Guo et al., 2022), we evaluate our method on HumanML3D (Guo
et al., [2022) and KIT-ML (Plappert et al., |2016) datasets. Evaluation metrics include: Fréchet In-
ception Distance (FID) for distributional similarity (lower is better); R-Precision and Multimodal
Distance (MM-Dist) for text-motion correspondence (higher is better); and Diversity and Multi-
Modality (Multi-Mod.) for motion variability (Diversity closer to ground truth and higher Multi-
Mod. are preferred). For the Laban Benchmark, we evaluate models trained on HumanML3D
without fine-tuning, reporting Laban metrics, R-Precision, and FID for comprehensive assessment.
All results are averaged over 20 independent runs.

5.2 EVALUATION

Tables [T] and [2] present quantitative comparisons between our method and state-of-the-art methods
on the Locomotion, HumanML3D, and KIT-ML datasets. We evaluate our model under six con-
figurations: Bare, where motion generation is conditioned barely on text, serving as a baseline for
assessing text comprehension; GPT4.1 mini, GPT4.1, Qwen3 and DeepSeekV3, where generation
is conditioned by both text and conceptual cues composed by specific LLM versions; and Laban,
where conceptual cues are derived from ground truth, to simulate human composition.

Results on Laban Benchmark. As shown in Table [, LaMoGen achieves the best performance
across both Laban metrics and two standard evaluation metrics, demonstrating superior text-motion
alignment compared to other methods. The LLM-assisted configurations show that LLMs can ef-
fectively interpret and compose conceptual Laban symbols as explicit guidance, resulting in higher
Laban metric scores than other baselines. In contrast, methods such as MDM and CoMo, that rely on
joint text—-motion embeddings, often fail to align text and motion under lengthy or out-of-distribution
inputs, as reflected by their higher FID scores.

Results on conventional benchmarks. As shown in Table. [2] LaMoGen consistently ranks top-3
across five standard metrics, highlighting its robust generalisation. We attribute these strong results
to the proposed LabanLite representation, which discretises motion into interpretable symbolic se-
quences. This design enhances the consistency between instructional text and motion, and enables
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the model to reason about both inter- and intra-body part relationships. However, although LaMo-
Gen excels on most metrics, its FID scores lag behind others. We believe the reason is that its high
abstraction uses identical symbols for different low-level variations that share the same high-level
semantics. For example, raising the hand from Lo. to Hi. is represented by the same symbols, but
different individuals may perform it with varying speeds. Such low-level movement variations are
inherently beyond LabanLite’s expressive capacity, resulting in higher FID scores.

Qualitative comparisons. We evaluate the motion in four aspects: Chronology, whether motions
occur in the proper sequence, such as which body part moves first; Timing control, whether motions
follow specified durations; Explainability, whether it is clear why motions happen a certain way;
and Compositionality, whether different body-part actions can be combined. Four examples are
shown in Fig. 3| with more comparisons in the Appendix Our analysis reveals that ReMoDiff
and CoMo occasionally violate chronological order and struggle to specify movement timings. For
example, CoMo ends in a T-pose in the first example, and ReMoDiff moves the hands three times
in the second. Because ReMoDiff and CoMo lack explicit control signals, their motions are less
explainable—it is unclear why ReMoDiff moves both hands forward. In contrast, LoMoGen uses
symbolic representations that make the movement logic clear, such as when to step forward and
which body part performs the step. For compositionality, in the final example, ReMoDiff raises
the arms but does not walk, CoMo walks while waving the arms, while our method combines the
actions correctly. Across all examples, our method meets all four criteria, showing the advantage of
LLM-driven symbolic inference.

5.3 ABLATION STUDY

LLM'’s capability. We compare two GPT-4.1 versions to assess the role of LLM intelligence. Ac-
cording to the handbook (OpenAl, [2025), GPT-4.1 is more capable than GPT-4.1 mini. Table
shows that higher LLM capability leads to better generation performance, confirming that stronger
LLMs are more effective at composing Laban symbols and understanding their relationships.

Number of top-matched references. For LLMs, we provide
top-matched conceptual examples to guide the composition of
new conceptual codes. We investigate how the number of ex-
amples affects performance on the HumanML3D test set, using

Table 3: Ablation study of dif-
ferent numbers of top-matched
references and masking ratios
on the HumanML3D test set.

GPT-4.1. As shown in Table [3] increasing the number of exam- Top ref. R@3 1 FID |, MM-Dist |, Multi-Mod, 1

ples from 1 to 3 consistently improves performance, indicating To7es 059 asw0 o
that the LLM benefits from having sufficient examples for accu- 3 079 0252  3.087 1131
rate imitation. But adding more (5 or 7) offers no further im- 5 0782 0371 3.191 1030

X 3 X 7 0774 0324 3225 0.971
provement, likely due to exceeding the LLM’s context window - -
Mask rat. R@3 1 FID | MM-Dist | Multi-Mod. 1

and causing it to forget the most relevant cues. Thus, we use

. : : 0.1 0.789 0.258 3.008 1.092

top-3 retrieval as the default setting for optimal results. A el N
. . . 0.5 0.787 0.299 3.211 1.011
Masking ratio on Laban codes. We also examine how the mask- 0.7 0772 0345  3.290 0.992
0.9 0.705 0.457 3.302 0.985

ing ratio on Laban codes affects performance during code gener-

ation. A higher masking ratio reduces the influence of conceptual cues, making motion generation
rely more on text and less on Laban symbols, reducing the influence of conceptual guidance. We
conduct this study on the HumanML3D test set, with GPT4.1 and top-3 retrieval settings. Comparing
results in Table[3] a masking ratio of 0.3 offers the best balance and achieves optimal performance.

6 CONCLUSION

In this work, we have introduced LabanLite, a novel, human-interpretable motion representation
rooted in Labanotation, and presented LaMoGen, a pioneering Text-to-Labanotation-to-Metion
Generation framework. By leveraging LabanLite’s concise symbolic abstraction, our approach en-
ables large language models to autonomously plan and compose motion sequences through explicit,
interpretable symbolic reasoning—moving beyond the limitations of traditional joint embedding
methods. The newly proposed Labanotation-based benchmark, together with comprehensive met-
rics, provides a rigorous, multidimensional evaluation of text-motion alignment in symbolic, tem-
poral, and harmony aspects. Experiments on both our benchmark and public datasets demonstrate
that LaMoGen achieves state-of-the-art performance in terms of interpretability and controllabil-
ity, effectively capturing fine-grained temporal structures and explicit action sequences from natural
language instructions.
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A APPENDIX

This is the supplementary material, which provides additional details that could not be included in
the main paper due to page limitations. Specifically, it covers the following points:

* Detailed description of LabanLite, as described in Sec. including a more comprehen-
sive definition and the semantic interpretation of Laban symbols.

* Further information on the Automatic Symbol Detection Workflow, as described in
Sec.[A.2] including the formulated process and the predefined threshold look-up table.

¢ Further information on the Laban Benchmark, such as the formal definition of the Laban

metric computation, the construction of the Locomotion dataset, and illustrative examples,
as detailed in Sec.

* Experiment details, as described in Sec. including the training details, implementation
details of the proposed model, and prompts utilised in large language models.

* Additional experiments and the corresponding discussions, as detailed in Sec.[A.5] includ-
ing a user study that evaluates human preferences among three text-conditioned motion

generation results and more supplementary qualitative visual examples, including failure
cases.

* Discussion of limitations and future directions, as described in Sec.[A.6]

The complete code of our framework and the related data will be released after publication.
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Figure 4: Preliminary of Labanotation. (a) Illustration of a Laban staff. (b) A segment of a Laban
score (Topaz et al.| (1996)). (c) Illustration of Conceptual symbols. “L”, “R”, “F”, “M”, “B” represent
left, right, forward, middle, backward directions. “Hi.”, “Mi.”, “Lo.” represent high, middle, low
levels. (d) Illustration of Detailed symbols.

A.1 DETAILS OF LABANLITE
A.1.1 PRELIMINARY

Labanotation employs Laban symbols arranged on a vertical Laban staff to form a Laban score,
recording the spatial positions and temporal sequences of different body parts [Topaz et al.| (1996).
As shown in Fig.fi{a), a standard Laban staff has 11 columns, each representing a specific body part.
Laban symbols are sequenced in each column to indicate the movement and its duration. Fig. 4b)
shows an example score for a waltz study. Choreographers align the staff with music using bar lines
and time signatures.

LabanLite is a curated subset of Labanotation that retains its expressive power while being explicitly
designed for digital encoding and motion modelling. Specifically, we refine the Labanotation system
according to the following principles, to facilitate both human interpretability and computational
readiness.
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Figure 5: Illustration of the relationships among Body-Part Groups, attribute fields, Laban staff
columns, and symbol instances.

Body-Part Group and Movement Attributes. We extend the original definition of the Laban
staff column from Labanotation by introducing the concept of Body-Part Groups. In LabanLite,
each column is restructured to represent a Body-Part Group, and each group is associated with a
set of movement attributes. These attributes correspond to specific sets of Laban symbols that are
placed within a given column.

Notably, a single Body-Part Group may be represented by multiple staff columns, reflecting the fact
that a group can consist of multiple body parts, each with distinct attributes and associated Laban
symbols. The reason for this design is that, due to kinematic constraints, not every staff column (i.e.,
body part) possesses the same set of attribute fields. For example, the Level symbol is not applicable
to the Head column, as the head cannot independently move to arbitrary heights; thus, the Head does
not have the Level attribute. This design enables the simultaneous recording of both conceptual and
detailed movement information. The detailed definitions of Body-Part Groups and their attributes
are provided in Table[I3]

To be more intuitive, for example, consider the movement “wave left hand.” The relevant Body-
Part Group is “Upper-L,” which includes the staff columns for the “Left arm” and “Left hand.” The
Direction, Level, and Hold symbols are assigned to the “Left hand” column to indicate the high-level
movement concept (e.g., raising up the left arm), while the Bend symbol is placed on the “Left arm”
column to capture lower-level movement details (e.g., flexing and stretching the left arm).

Conceptual and Detailed Laban Symbols. In LabanLite, we categorise Laban symbols into two
types:

* Conceptual symbols, including Direction, Level, and Hold, which describe general move-
ment concepts and structural aspects of motion;

* Detailed symbols, including Orientation, Bend, and Moving-effort, which capture subtle
details of individual body part movements.

Tables ol and [I2] show the names, graphical appearances, and partial semantic mean-
ings of Laban symbols: Direction, Level, Hold, Orientation, Bend, and Moving-effort, respectively.
Please note that, we refer to them as “partial” semantic meanings because the full meaning of a
symbol depends on additional factors such as which Body-Part Group it belongs to, its length, and
its position on the Laban staff. Please also note that for the M/F and M/B symbols in the Direc-
tion category, each typically has two graphical forms. The specific form used depends on the body
part indicated by the staff column, e.g., if the M/F symbol is placed in the “Left hand” column, its
left-side form is used; if placed in the “Right hand” column, its right-side form is used.

A.1.2 QUICK TUTORIAL OF LABANOTATION

To facilitate readers’ understanding of Labanotation, we provide a brief tutorial as a prerequisite for
comprehending LabanLite. In this section, we explain how to read a Laban score and introduce its

13
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Figure 6: Illustration of a partial Laban score. This figure provides a visual explanation of the
annotation process for a forward walk movement.

annotation protocol, thereby helping readers quickly grasp the essentials of Labanotation and then
understand the LabanLite.

In Labanotation, certain constraints and simplifications are applied to the symbol sequence to facil-
itate human readability, resulting in a set of specific visualisation rules:

1. Columns that are not of interest can be left blank, allowing dancers to interpret and perform
these unspecified movements at their own discretion. For instance, if a choreographer
wishes to emphasise a leap, the lower body columns (Left support and Right support) would
contain relevant symbols, while the arm columns may be left empty, granting the dancer
creative freedom for upper body movement.

2. For the Left Support and Right Support columns, when a symbol appears in one column at
a particular time, the corresponding position in the opposite foot’s column is typically left
empty, as illustrated in Fig. [6(b).

3. Direction and Level symbols are often merged into a single symbol for simplicity, as illus-
trated in Fig. [6(b).

4. A new Laban symbol is only added to a column when it differs from the previous symbol;
otherwise, the symbol is omitted to maintain clarity and conciseness in the Laban score.

To be more intuitive, Fig. [6| presents a partial Laban score depicting a forward walk. As illustrated,
this version of the Laban staff consists of four columns, from left to right representing the Left hand,
Left support, Right support, and Right hand. This Laban score abstracts a relatively complex motion
into a simple Laban symbol sequence using only four types of symbols: Level Mi., Direction M/F,
M/M and M/B. Through this walk forward movement, the initial state features both feet together
and hands naturally lowered, corresponding to all four columns remaining in their initial positions:
Direction M/M with Level Mi.; the left foot then steps forward accompanied by a backward swing of
the right arm to complete the first step, which is denoted by a forward-medium symbol set (Direction
M/F and Level Mi.) in the supporting column and a backward symbol set (Direction M/B and Level
Mi.) in the hand column. The final state is characterised by the left foot stepping forward (Direction
M/F and Level Mi.) while the right foot remains behind.

In the following, we describe the proposed procedure for instantiating Laban symbols, which enables
a Laban score to be computational-ready, and the reason behind.
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(c) A computational-ready Laban symbol instance sequence

Figure 7: Visual comparison between a human-interpretable symbol sequence and a computational-
ready symbol instance sequence. The illustrated Laban staff columns correspond to Left support
and Right support.

A.1.3 SYMBOL INSTANTIATION

Laban symbols are used to describe the state of specified body-part actions. In other words, a Laban
symbol is only meaningful when its associated Body-Part Group (i.e., the relevant staff column),
the position along the staff vertical axis (indicating the action’s beginning time), and its duration
(specifying how long the action persists) are all specified.

To make the symbol sequence computational-ready, we define a symbol instance as the unique
pairing of a symbol and a Body-Part Group, representing a specific action instance in frame-wise
annotation. The relationship among Laban symbols, staff columns, symbol instances and Body-Part
Groups is illustrated in Fig. [5

Specifically, as described in the main paper, the instantiation process is formulated as follows. Given
an input motion sequence of T frames, X = {x;}._,, we propose an Automatic Symbol Detection
Workflow F, which converts X into a sequence of symbol instances S = F(X ), where:

S={s? |te[,T], i€ (1,45 j€[1,G]}. (4)

Here, G denotes the total number of Body-Part Groups, and A; represents the attribute field dimen-
sion for Group j. Note that, different Body-Part Groups may be associated with distinct sets of
motion attribute fields, due to variations in their movement ranges and functional roles.

Human-interpretable vs. Computational-ready. In Labanotation, as elaborated before, specific
constraints and simplifications are applied to the symbol sequence to enhance human readability
and ensure the Laban score remains clear and concise. In contrast, for computational purposes
(e.g., decoding Laban codes into motions, and generating Laban codes), it is necessary to instantiate
every Laban symbol so that each attribute field for every Body-Part Group has an explicit value at
every frame, without any omissions. As detailed in the main paper, we address this requirement
by introducing the concept of symbol instances. A comparison between the human-interpretable
and computational-ready Laban symbol instance sequences is illustrated in Fig. [/} which depicts
the movement of the lower body. This figure highlights the differences between a human-readable
Laban score and the proposed computational-ready Laban symbol instance sequence.
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Figure 8: Illustration of extracting Direction and Level symbols for the right hand, in a canonical
space.
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Figure 9: Illustration of extracting lower-body conceptual symbols: (a) Given a motion sequence; (b)
we segment the sequence into dynamic and hold intervals by computing foot velocity; (c) in parallel,
frame-wise Laban symbols are identified; (d) for each interval, aggregated frame-wise symbols yield
the most representative symbol for the interval.

A.2 AUTOMATIC LABAN CODE DETECTION WORKFLOW

As described in the main paper, the proposed workflow consists of three steps: (1) Dynamic Inter-
val Segmentation, which identifies dynamic and hold intervals; (2) Frame-wise Symbol Extraction,
which converts the pose of each frame into corresponding Laban symbols; and (3) Interval-wise
Symbol Aggregation, which selects the most representative Laban symbol for each interval. As il-
lustrated in Fig. [0} we demonstrate an example of the lower body symbol detection process. Here, we
provide a detailed formulation of the Frame-wise Symbol Extraction step, including the associated
predefined thresholds.

Specifically, all motion sequences are parameterised using the SMPL model (Pavlakos et al.,[2019)
without facial and finger key joints. Key joints such as the left/right hand, elbow, shoulder, hip,
knee, foot, pelvis, and spine2 are extracted to compute the corresponding Laban symbol sequences.
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A.2.1 DETAILS OF FRAME-WISE SYMBOL EXTRACTION

Direction and Level symbols. To ensure consistency, all body motions are transformed into a
canonical space. This is achieved by fixing the root (pelvis) of each pose at the origin, aligning
the triangular plane formed by the pelvis, right leg, and left leg key joints with the xz-plane, and
orienting the body to face the negative y-axis. For each key joint (left/right hand, elbow, foot,
knee), the Ly-norm distance to the pelvis is projected onto the X, y, and z planes, denoted as a,
b, and c, respectively. These projected distances are compared against predefined thresholds to
assign Direction and Level symbols for different body part groups (Support-L, Support-R, Upper-R,
Upper-L).

For the lower body, the thresholds are as follows:

* Direction (x-axis): a < —0.1 is assigned ‘R’; a > 0.3 is ‘L’; otherwise, ‘M’.
¢ Direction (y-axis): b < —0.151s ‘F’; b > —0.05 is ‘B’; otherwise, ‘M’.
e Level (z-axis): 0 > ¢ > —0.81s ‘Lo.”; ¢ > 01is ‘Hi.’; otherwise, ‘Mi.’.

For the upper body:

e Direction (x-axis): a < —0.11is ‘R’; a > 0.3 is ‘L’; otherwise, ‘M’.
* Direction (y-axis): b < —0.21is ‘F’; b > 0.1 is ‘B’; otherwise, ‘M’.

e Level (z-axis): ¢ < —0.21s ‘Lo.”; ¢ > 0.1 is ‘Hi.’; otherwise, ‘Mi.’.
Figure 8| illustrates the distance calculation for the left hand as an example.

Hold symbol. The velocity magnitude of each hand and foot is analysed. Local maxima in the
X, Y, and z velocity components are identified to determine the turning points of the wrist’s three-
dimensional trajectory. Frames in which the velocity falls below a predefined threshold are labelled
as ‘hold’. The threshold is set to 0.015 for the feet and 0.0005 for the hands.

Bend symbol. Euler angles between adjacent body segments are computed and discretised into
six intervals, each spanning 30°.

Orientation symbol. The facing orientation is determined by calculating the angle between the
line connecting the hip key joints and the negative y-axis. The resulting angle is quantised into eight
discrete directions, each spanning 45°.

Moving-effort symbol. The global absolute velocity of the pelvis is computed and discretised
using predefined intervals. The velocity components on the xy- and yz-planes are assigned to one
of five speed categories: O (very slow), 1 (slow), 2 (normal), 3 (fast), and 4 (very fast), according to
the following rules: For both horizontal and vertical velocity components:

e 0.1 < v <0.5: label 1;

e 0.5 < v <1.0: label 2;

¢ 1.0 < v < 2.0: label 3;

e v > 2.0: label 4,

e v <0.1: label 0.

A.3 DETAILS OF LABAN BENCHMARK

A.3.1 LABAN METRICS

Given the ground-truth symbol instance sequence S and the generated symbol instance sequence
S, the proposed three metrics, including Semantic Alignment (SMT), Temporal Alignment (TMP)

and Harmonious Alignment (HMN), calculate the similarity between S and S using the Longest
Common Subsequence (LCS) length.
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Specifically, for SMT and TMP, we measure the Left/Right hand and foot body parts, while for
HMN, we measure the body part pairs of [Left hand, Right hand], [Left foot, Right foot], [Left
hand, Left foot], [Left hand, Right foot], [Right hand, Left foot], and [Right hand, Right foot]. In
the main paper, we report the average HMN scores of [Left hand, Left foot], [Left hand, Right foot],
[Right hand, Left foot], and [Right hand, Right foot] pairs due to the table scale limit.

Based on Eq. |4} a symbol instance sequence is defined by S = {sij } where t, 7, j denote the frame
index, attribute index and Body-Part Group index, respectively. We combine the same attribute from

each Body-Part Group across frames to form a duration-ignored symbol instance sequence S:
S={5nel,N;;], i€[l,4] je1,G]} (5)

where n denote the duration-ignored symbol instance index and N; ; represents the total instance

number of ¢-th attribute and j-th Body-Part Group.

To calculate the selected body part’s Laban metric, we fix the attribute index and Body-Part Group

index, considering the subset S;« j» = {sf’j ' | € [1, 7]} and the duration-ignored subset S j» =
{57 Ine[l,Ni;l}

Semantic Alignment (SMT) evaluates the similarity of inter-body part symbol instances while
disregarding their durations. Given an attribute index-fixed, Body-Part Group-fixed duration-ignored

subset S’i*, 4+ and its generation 5’1-*7 j+» we formulate the LCS, computing under dynamic program-
ming as follows:
0 ifu=0o0rv=0,
flu,v) =9 flu—1,v—1)+1 if3 7" =5"7" (6)
max(f(u—1,v), f(u,v — 1)) otherwise,
where u and v denote the index of the duration-ignored symbol instance sequence, i.e., u, v € Ny» ;.

Such that, the SMT between S’i* 4+ and S’,;* _j* 1s calculated by the normalised length of the LCS:

: 5 2 F(Ni jo, Niw )
Simgnr(Sisj+, Six j+) = e
’ max(Ngs jx, Nix j+)

)

Temporal Alignment (TMP) evaluates the similarity of each inter-body-part symbol instance
while considering each symbol’s duration, to ensure that not only the types but also the temporal
extents of the motions are consistent between the ground truth and the generated sequence. To
account for the duration of each symbol, the inputs are changed to symbol instance sequences S;x ;«

and Si*’j*, and we modify Eq. |§Ias:

0 ifu=0orv :O7
g(u,v) =19 glu—TLw—1)+1 ifsid" =g ®)
max(g(u — 1,v), g(u,v — 1)) otherwise,
where v and v denote the frame index, i.e., u, v € T'. The Temporal Alignment score is then:

, . T,T
SlmTMP(Si*J‘*, 1‘*7j*) = g(i)A
max (T, T)

€))

Harmonious Alignment (HMN) evaluates the synchronous occurrence of Laban symbols across
pairs of body parts. Given a body part pair specified by [(1, j1), (42, j2)], and their corresponding
duration-ignored symbol instance sequences S;, j, , Si,,j, for the ground truth, and S;, ;, and S, j,
for the generated motion, we proceed as follows. For each instance 521 g e Si1jr» Where 1 <
u < Nj, j,» we identify the instance 52272 € S;, ., where 1 < v < N, ;,, whose temporal span
overlaps with 52171, If the intersection over union of their durations exceeds 50%, we consider 5171
and 322 to occur synchronously. These synchronously occurring symbol pairs are collected into
a sequence of combined symbol tuples, denoted by S;, ;, = {(5491, 5i272)}, and similarly for the

generated sequence S;, ;,. Finally, the HMN similarity is computed as:

SimumN (Sjy 25 Sjy52) = SImsmT(S), 525 Sjy g )- (10)
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Figure 10: WordCloud of the most frequent words in the Locomotion descriptions, generated using
the Python package wordcloud (Mueller, [2015).
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Figure 11: Distribution of the number of frames per motion sequence in the Locomotion dataset.

A.3.2 LOCOMOTION DATASET

This section presents the construction and characteristics of our Locomotion dataset, including
statistics on motion lengths, instructional text descriptions, and examples of text-motion pairs. Lo-
comotion sequences were selected from the AMASS (Mahmood et all, 2019) dataset, covering
common locomotion such as walking, running, stepping, and jumping. Following the annotation
approach of BABEL-TEACH (Athanasiou et all,[2022)), these actions were further decomposed into
atomic actions and annotated accordingly.

Semi-automatic Annotation. The annotation process was conducted in a semi-automatic manner.
Initially, we manually inspected rendered AMASS motion sequences to extract detailed locomotion
information, such as the number of steps, their body part sequence and the action label (e.g., Walk
forward: a three-step walk with the order: right, left, right). These details were stored in a JSON for-
mat with keys including “step number,” “step order,” and “action label.” Subsequently, we utilised
GPT-4.1 (Achiam et al 2023) to generate natural language descriptions by integrating the loco-
motion details. The prompt used for this step is shown in the second entry of Table [] Finally,
we paired the rephrased instructional text descriptions with their corresponding motions, forming
the text-motion pairs of the Locomotion dataset. In accordance with the HumanML3D
[2022) evaluation protocol, we restricted the motion sequence lengths to between 40 and 200 frames.

Examples of locomotion details and text-locomotion pairs. In the supplementary materials, we
provide the complete set of instructional text descriptions that have been rephrased by a LLM.
Specifically, within the “annotations” folder, each text file corresponds to a single locomotion in-
stance and contains its associated instructional text description. For each locomotion instance, we
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Figure 12: Distribution of action classes in the Locomotion dataset.

Table 4: The detailed structure of the Decoder in the Laban-Motion Encoder-Decoder module.

Encoder Num.
In Dim. 512
Feat. Dim. 512
Depth 8
Head 8

Head Dim. 64
FFN Dim. 1024
Out Dim. 512

used GPT-4.1 to generate five distinct rephrasings of the description, resulting in five different an-
notations per text file.

Statistics. Following the procedure in (2022), all AMASS motion sequences were
downsampled from 120 FPS to 20 FPS. We further filtered out locomotion sequences with fewer
than 40 or more than 200 frames. As a result, the final dataset comprises 2,748 text-motion pairs,
corresponding to approximately 18 hours of human motion data. Fig[I2]illustrates the distribution
of action labels, while Fig. [[T|shows the distribution of frame lengths. Fig.[T0]provides an overview
of the most frequent words in the instructional text descriptions, drawn from a vocabulary of 1,220
unique words.

A.4 EXPERIMENT DETAILS
A.4.1 IMPLEMENTATION DETAILS

Network Architecture. For the Laban-Motion Encoder-Decoder, the Encoder operates as a rule-
based, non-learning process, while the Decoder is implemented as a conventional Transformer-based
decoder. The Decoder incorporates standard Attention modules (Vaswani et al) 2017), including
Multiheaded Self-Attention blocks (MSAs), and Feed-Forward Network blocks (FFNs), with Lay-
ernorm (LN) applied before each module. The detailed architecture of the Decoder is summarised
in Table ] where “Head” and “Head Dim.” refer to the number of attention heads and the dimen-
sionality of the features in the MSA blocks, respectively. For the Motion Generator, we adopt the
configuration from[Zhang et al.| (2023a)); [Huang et al.| (2024) for the Motion Generator. Specifically,
a linear layer first projects the Laban code sequences, after which positional encoding is applied. The
resulting sequence is then processed by a decoder-only Transformer comprising causal self-attention
blocks.

Training settings. The Decoder and Generator are trained with AdamW optimiser (learning rate
1x 10~%, batch size 512). The Decoder is trained for 200k iterations, and the Generator is trained for
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100k iterations. All experiments are conducted on 1 NVIDIA L40S GPU. We select the checkpoint
with the lowest FID on validation for final evaluation.

Hyperparameters. We adopt the motion feature extractor (Guo et al.,[2022) to convert Locomo-
tion, HumanML3D and KIT-ML motions into features of dimensions 263, 263, and 261. Loco-
motion and HumanML3D share the same evaluator to get text and motion embeddings. Following
(Zhang et al., |2023a), we set A = 0.5. Laban codebook contains 37 Laban categories and 158
distinct codes, with a size of 158 x 512. We employ two commercial LLM models named GPT-
4 mini (gpt-4.1-mini-2025-04-14) and GPT-4 (gpt-4.1-2025-04-14) from |Achiam
et al.| (2023), two open-source LLM models named Qwen3 (gwen3-32b) from Yang et al. (2025)
and DeepSeekV3 (deepseek-v3) from DeepSeek-All (2024) for composition. We use CLIP (Radford
et al.l 2021) (ViT-B/32) for text encoding.

A.4.2 RELATED TO LARGE LANGUAGE MODELS

In the main paper, LLMs are utilised to: (1) autonomously plan and compose Laban code sequences
through explicit and interpretable symbolic reasoning; and (2) semi-automatically generate instruc-
tional text descriptions for the locomotion dataset during annotation. Here, we provide a detailed
explanation of the procedures for using LLMs in Laban code sequences composition.

Prompts for high-level Laban symbolic planning.  As illustrated in Table[6](Prompt #1), we first
provide the LLM with the following information: (1) the set of Laban symbols that may be used in
the composition process, (2) the expected input format from the user, and (3) the expected output
format from the LLM.

The available Laban symbols are defined using a format such as: “For the support movements, the
details must be selected from these 54 categories: 1: ...”, where each index corresponds to a specific
Laban symbol. These indices and their semantic mappings are referenced from Tables [14]and [T5]for
both lower and upper body movements.

The user input format is specified as a tuple, e.g., “(index, duration)”, indicating the duration (in
seconds) of the movement associated with a given index. The LLM is instructed to generate outputs
that mimic this input format, such that each output is also represented as “(index, duration)”. Finally,
the indices and durations produced by the LLM are mapped back to their corresponding Laban
symbols to yield Laban code sequences, which are subsequently refined temporally by the Motion
Generator.

Prompts for generating instructional text descriptions. To construct motion—instructional text
pairs, we annotate the locomotion details by manually reviewing the rendered SMPL motion videos.
Specifically, we record information including the step count, step sequence, and action labels for
each motion. These locomotion details are then provided to an LLM, which assists in generating
instructional natural language descriptions for each motion instance. As shown in Table [6] (Prompt
#2), the annotated locomotion details are translated into instructional text descriptions using the
LLM. Furthermore, we include all LLM-generated instructional natural language descriptions from
the locomotion dataset in the supplementary material.

A.5 ADDITIONAL EXPERIMENTS
A.5.1 USER STUDY

We conducted a user study to evaluate the motion generation quality of LaMoGen (configured with
GPT-4.1) in comparison with two state-of-the-art models for fine-grained text-to-motion generation:
ReMoDiff (Zhang et al., [2023b) and CoMo (Huang et al |2024). Fifteen examples were randomly
selected from the HumanML3D test set and rendered into video sequences. For each example, the
results from LaMoGen, CoMo, and ReMoDiff were arranged side by side in a randomly determined
order, forming a video triplet.

A total of 35 graduate students participated in the evaluation. Each participant was presented with all
15 video triplets and was asked to rank the three generated motions in each triplet as best, second-
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Figure 13: Illustration of the user study form.

ReMoDiff
21%

LaMoGen
48%

CoMo
31%

= | aMoGen = CoMo ReMoDiff

Figure 14: Tllustration of the user study result.

best, and worst, based on how well they matched the provided instructions, as shown in Fig. @
Each ranking position was assigned to exactly one method, ensuring mutual exclusivity.

Statistical Analysis. For quantitative analysis, we assigned scores of 3, 2, and 1 to the best,
second-best, and worst rankings, respectively. The average scores for each method across all motion
sequences are presented in Fig. [I4] Higher scores indicate stronger user preference. As shown in
Fig[T4] LaMoGen achieves the highest average user preference, followed by CoMo and ReMoDiff.
Nearly half of the participants favoured motions generated by LaMoGen, indicating that our method
provides superior text-motion alignment.

To determine whether the observed differences in user preferences among the three methods are
statistically significant, we performed a Friedman test. The results indicate a significant difference
in user preference (x? = 387.380, p < 0.05). Further analysis of the mean ranks demonstrates
that LaMoGen achieves the highest mean rank (mean rank = 2.80), followed by CoMo (mean rank
= 1.733), and ReMoDiff (mean rank = 1.457). These results suggest that participants consistently
preferred LaMoGen over the other methods, with CoMo ranked second and ReMoDiff ranked last.
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Table 5: Quantitative comparisons on the HumanML3D test set, using the proposed Labanotation-
based metrics: Semantic Alignment (SMT), Temporal Alignment (TMP), and Harmonious Align-
ment (HMN), along with Text-to-Motion metrics: R-precision Top-3 (R@3) and FID. Bold and
underlined values indicate the best and the second-best performance, respectively.

SMT 1 TMP 1 HMN 1

Method R@31 FID |

supL  supR armL armR supL supR armL armR arm-arm arm-sup sup-sup

Real data - - - - - - - - - - - 0.797  0.002
Ours (Decoder) 0.843 0.843 0.745 0.731 0.848 0.848 0.779 0.765  0.537 0.631 0.842 0793  0.095

MDM Tevet et al.|(2023) 0.413 0.413 0276 0315 0372 0372 0.369 0.308 0.177 0.284 0502  0.611 0.544
ReMoDiff|Zhang et al.[(2023b) 0.455 0.455 0.348 0.405 0.335 0.405 0367 0320 0.179 0.275 0.501 0.795  0.103
MoDiff|Zhang et al.|(2024a) 0.482 0.482 0.386 0.360 0.401 0.401 0.388 0.334  0.190 0.299 0513  0.782  0.630
CoMo|Huang et al.[(2024) 0.463 0.463 0.369 0.401 0.372 0.372 0.393 0.346 0.222 0.321 0.535  0.790 0.262

Ours (Bare) 0.467 0.467 0.353 0.381 0.374 0.374 0.338 0363 0.218 0.313 0.529  0.755 1.091
Ours (GPT4.1 mini) 0.437 0.437 0331 0.354 0.517 0.517 0.463 0.445 0.270 0.371 0.561 0.779  0.561
Ours (GPT4.1) 0.563 0.563 0.433 0.456 0.615 0.615 0.527 0.544 0.302 0.411 0.588  0.796  0.252

Ours (Laban) 0.690 0.690 0.554 0.534 0.712 0.712 0.623 0.608 0.332 0.451 0.617 0.813 0.206

) )
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€2 Take one step () Reach down
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Figure 15: Qualitative comparisons on HumanML3D test sets, with motions progressing from left
to right. Misalignments between text and generated motions are highlighted.

A.5.2 QUANTITATIVE COMPARISONS

Table [5] reports the Laban metrics on the HumanML3D and KIT-ML test sets. Although the pro-
vided text descriptions are not strictly instructional—meaning they do not precisely describe the
target motions and thus the calculation of Laban metrics may be of limited interpretative value—we
include these results for completeness. As shown in the table, LaMoGen achieves comparable or
superior performance on Laban metrics relative to other methods. This demonstrates the advantage
of our approach.

A.5.3 QUALITATIVE EXAMPLES

Additional qualitative examples are shown in Fig.[T5] From this figure, we can observe that ReMoD-
iff and CoMo occasionally violate chronological order and struggle to specify movement timings,
while our method generates text-aligned motions. Comprehensive video results, including both suc-
cessful examples and failure cases, are provided in the supplementary materials. These video results
were also utilised in the user study.
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A.6 LIMITATIONS AND FUTURE WORK
A.6.1 NEED FOR A USER INTERFACE

Due to constraints in research funding and computational resources, the development of a user inter-
face for editing Laban symbol sequences was beyond the scope of the present work. Nevertheless,
we recognise that such an interface would be highly beneficial for promoting the broader adoption
of the proposed LaMoGen framework and the LabanLite motion representation. As part of our fu-
ture work, we plan to design and implement a user-friendly LaMoGen interface, which could be
integrated as an add-on for 3D creation tools such as Blender.

A.6.2 LEARNING COST OF LABANOTATION

Learning Labanotation does entail a certain learning cost. While incorporating a larger number
of Laban symbols allows for the expression of more complex motions, it also inevitably intro-
duces more intricate notation rules. In the main paper, we address this challenge by proposing a
two-stage LLM-Guided Text-Laban-Motion Generation Module: in the first stage, either human
users or LLMs compose conceptual symbol instances to represent high-level motion; in the sec-
ond stage, a Kinematic Detail Augmentor further refines these conceptual instances into detailed
low-level motion. This two-stage approach simplifies the notation by requiring only conceptual
symbols—approximately one-fifth of the full symbol set—and thus helps to reduce the learning ef-
fort. Although a certain amount of learning is still necessary, we believe that our approach is more
accessible and convenient for human editing compared to existing methods based on key frames (Liu
et al.| 2023 Wang et al., |2025) or key points (Wan et al.,|[2024).

A.6.3 LIMITED REPRESENTATIONAL CAPACITY FOR INDIVIDUAL DIFFERENCES

As discussed in the experimental section of the main paper, the high-level abstraction provided by
LabanLite may limit its ability to capture certain fine-grained semantics, such as the acceleration or
deceleration of hand movements. However, if such low-level details are regarded as “personalised
interpretations” of high-level semantics, LabanLite offers the advantage of disentangling motion
content from style. In future work, we hope to further explore this property by treating LabanLite-
based motion descriptions as representations of neutral movements, and subsequently predicting
style-specific residuals for motion restyling.

A.6.4 LIMITED REPRESENTATIONAL CAPACITY FOR HAND INTERACTION AND DANCING
MOVEMENT

Currently, LabanLite defines a codebook with 158 distinct Laban codes, representing movements
across the major body parts. In other words, LabanLite does not encode gestures of the fingers or
toes, for now. This omission does not imply that these body parts are unimportant; finger movements
are essential for human—object interaction, and toe movements are crucial for accurately recording
dance motions. Presently, LabanLite is primarily designed to capture daily locomotion, but it can
be readily extended to include finger and toe gestures by incorporating their corresponding Laban
symbols. In fact, prior work has demonstrated that Laban symbols can facilitate fine-grained recon-
struction of such motions, including finger gesture estimation(Li et al.,[2024a) and dance movement
reconstruction(Li et al.,[2023). Therefore, as part of our future work, we plan to further extend La-
banLite to facilitate applications in various domains—for example, expanding from daily movement
capture to the detailed analysis of human—object interactions.
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Table 6: Prompts used in our LaMoGen to process natural language via Large Language Models.

Prompt #1: Conceptual cues composer

There are five digit collections describing movements, where each line con-
sists of: [number] [Caption] - a general description of the motion sequence.
[Support] - detailed descriptions of the movements of the supporting body
parts, specifically the left and right feet, using a series of triplets. [Left hand]
- detailed descriptions of the movements of the left hand, using a series of
tuples. [Right hand] - detailed descriptions of the movements of the right
hand, using a series of tuples. In the detailed descriptions, we specify the
movement details for each body part and their duration in seconds. For the
support movements, the details must be selected from these 54 categories:
[1: steps to rest position, ..., 54: holds in knee-flexed backward diagonally
to left position]. For the hand movements, the details must be selected from
these 81 categories: [1: moves close to shoulder, ..., 81: moves relatively low
backward diagonally to left]. For example, for the [Support] line, the triplet
list would be like: (left, 1, 0.25), (right, 2, 0.25), (left, 1, 0.25) while (right,
2,0.25). This means that the first movement is “left foot steps to rest position
in 0.25 seconds”. The second movement is “right foot steps forward in 0.25
seconds”. The third movement is “left foot steps to rest position in 0.25 sec-
onds while right foot steps forward in 0.25 seconds”. For the [Left hand] line,
the tuple list would be like: (1, 0.5), (2, 0.2). This means that the first move-
ment is “left hand moves close to shoulder in 0.5 seconds” and the second
movement is “left hand moves forward in 0.2 seconds”. For the [Right hand]
line, the structure and definition are similar to [Left hand] lines. Below is
the main body of the digit collection describing the movements. You should
strictly imitate the following content and create only one digit collection of
YOUR_INPUT. Reply without explanation.

Prompt #2: Rephraser for generating locomotion descriptions

Rephrase the sentence creatively YOUR_INPUT. the step number is
YOUR_INPUT, with the step order: YOUR_INPUT.

Table 7: Illustration of the Direction symbols and their corresponding partial semantics.

Name Appearance Semantics

Direction L/F D Move body part left forward

Direction M/F ﬂﬁ Move body part to front
Direction R/F ﬂ Move body part right forward
Direction L/'M <] Move body part to left
Direction M/M I:I Move body part to middle
Direction R/'M [> Move body part to right
Direction L/B D Move body part left backward
Direction M/B qg Move body part to back
Direction R/B I:I Move body part right backward
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Table 8: Illustration of the Level symbols and their corresponding partial semantics.

Name Appearance Semantics

. V .
Level Hi. Move body part to high level
Level Mi. H Move body part to mid-level

Level Lo. I Move body part to low level

Table 9: Illustration of the Hold symbols and their corresponding partial semantics. Note that if the
attribute field for a symbol is left empty, it indicates that this body part is dynamic.

Name Appearance Semantics

Hold O  Body part is stationary

Table 10: Ilustration of the Orientation symbols and their corresponding partial semantics. Note that
according to Labanotation, each symbol does not have a specific name. In LabanLite, we simply
assign them sequential names for convenience.

Name Appearance Semantics

Orient 0 B Body part orients at around 0°

Orient 1 [X]  Body part orients at around 45°

Orient2 [H  Body part orients at around 90°

Orient3 [£]  Body part orients at around 135°
Orient 4 E Body part orients at around 180°
Orient5 [ Body part orients at around 225°
Orient 6 H] Body part orients at around 270°
Orient7 Body part orients at around 315°
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Table 11: Illustration of the Bend symbols and their corresponding partial semantics. Note that
according to Labanotation, each symbol does not have a specific name. In LabanLite, we simply
assign them sequential names for convenience.

Name Appearance Semantics

Bend0 X Body part bends at around 0°
Bend1 X Body part bends at around 30°
Bend2 > Body part bends at around 60°
Bend3 X  Body part bends at around 90°
Bend 4 X Body part bends at around 120°
Bend5 X  Body part bends at around 150°

Table 12: Illustration of the Moving-effort symbols and their corresponding partial semantics. Note
that according to Labanotation, each symbol does not have a specific name. In LabanLite, we simply
assign them sequential names for convenience. If the attribute field for a symbol is left empty, it

indicates “Moving-effort 1”.

Name

Appearance Semantics

Moving-effort 0 X Body part moves very slow

Moving-effort I None Body part moves in normal speed

Moving-effort 2

Moving-effort 3

[/] Body part moves fast

M Body part moves very fast
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Table 13: Definition of the Laban codebook. Each codebook entry is described by its index (Code
Idx.), associated Body-Part Group, corresponding SMPL key joint name (SMPL Joint), relevant
attribute (Attribute), a marker indicating whether the attribute is conceptual (is Concpt.), and the
Laban staff column name (Staff Col.).

Code Idx. Body-Part SMPL Joint Attribute is Con-  Staff Col.
Group cpt.
1~3 Left foot Direction (L/M/R) v Left support
4~6 Left foot Direction (B/M/F) v Left support
7~9 S L Left foot Level (Lo./Mi./Hi.) v Left support
10 ~ 15 uppor Left knee Bend X Left leg gesture
16 ~ 21 Left hip Bend X Left leg gesture
22 ~ 23 Left foot & knee & Hold v Left support
hip
23 ~ 26 Right foot Direction (L/M/R) v Right support
27 ~ 29 Right foot Direction (B/M/F) v Right support
30 ~ 32 Support-R Right foot Level (Lo./Mi./Hi.) v Right support
33 ~ 38 pp Right knee Bend X Right leg gesture
39 ~ 44 Right hip Bend X Right leg gesture
45 ~ 46 Right foot & knee & Hold v Right support
hip
47 ~ 54 Pelvis Orient. Horiz. X Body (Whole)
55 ~ 62 Support-Both Pelvis Orient. Vert. X Body (Whole)
63 ~ 67 pp Pelvis Moving effort Horiz. X Body (Whole)
68 ~ 72 Pelvis Moving effort Vert. X Body (Whole)
73~ 75 Left hand Direction (L/M/R) v Left hand
76 ~ 78 Left hand Direction (B/M/F) v Left hand
79 ~ 81 Upper-L Left hand Level (Lo./Mi./Hi.) v Left hand
82 ~ 87 pper Left elbow Elbow Bend X Left arm
88 ~ 93 Left shoulder Shoulder Bend X Left arm
94 ~ 95 Left hand & elbow Hold v Left hand
& shoulder
96 ~ 98 Right hand Direction (L/M/R) v Right hand
99 ~ 101 Right hand Direction (B/M/F) v Right hand
102 ~ 104 Upper-R Right hand Level (Lo./Mi./Hi.) v Right hand
105 ~ 110  ~PPer Right elbow Elbow Bend X Right arm
111 ~ 116 Right shoulder Shoulder Bend X Right arm
117 ~ 118 Right hand & elbow  Hold v Right hand
& shoulder
119 ~ 126 Head Orient. Horiz. X Head
127 ~ 134  Torso Head Orient. Vert. X Head
135 ~ 140 Spine2 Bend X Body (Whole)
141 ~ 143 Left elbow Direction (L/M/R) X Left arm
144 ~ 146 Upper-L Left elbow Direction (B/M/F) X Left arm
147 ~ 149 Left elbow Level (Lo./Mi./Hi.) X Left arm
150 ~ 152 Right elbow Direction (L/M/R) X Right arm
153 ~ 155  Upper-R Right elbow Direction (B/M/F) X Right arm
156 ~ 158 Right elbow Level (Lo./Mi./Hi.) X Right arm
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Table 14: Support semantic lookup table.

Index Semantics

Index Semantics

O 001NN K W —

steps to rest position

steps forward

steps backward

steps to right

steps to left

steps forward diagonally to right
steps forward diagonally to left
steps backward diagonally to right
steps backward diagonally to left
rises

rises to forward

rises to backward

rises to right

rises to left

rises forward diagonally to right

rises forward diagonally to left
rises backward diagonally to right
rises backward diagonally to left
knee flex

knee flex forward

knee flex backward

knee flex right
knee flex left

knee flex forward diagonally to right

knee flex forward diagonally to left

knee flex backward diagonally to right

knee flex backward diagonally to left

54

holds in rest position

holds in forward position

holds in backward position

holds in right position

holds in left position

holds in forward diagonally to right position
holds in forward diagonally to left position
holds in backward diagonally to right position
holds in backward diagonally to left position
holds in the raised position

holds in the raised forward position

holds in the raised backward position

holds in the raised right position

holds in the raised left position

holds in the raised forward diagonally to right
position

holds in the raised forward diagonally to left
position

holds in the raised backward diagonally to
right position

holds in the raised backward diagonally to left
position

holds in knee-flexed position

holds in knee-flexed forward position

holds in knee-flexed backward position

holds in knee-flexed right position

holds in knee-flexed left position

holds in knee-flexed forward diagonally to
right position

holds in knee-flexed forward diagonally to left
position

holds in knee-flexed backward diagonally to
right position

holds in knee-flexed backward diagonally to
left position
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Table 15: Arm semantic lookup table.

Index Semantics

Index Semantics

Index Semantics

1

W N

AN N A

18

19

20

21

22

23

25

26

27

moves close to shoulder

moves forward
moves backward

moves to right

moves to left

moves forward diago-
nally to right

moves forward diago-
nally to left

moves backward diago-
nally to right

moves backward diago-
nally to left

rises up

rises to up forward

rises to up backward

rises to up right

rises to up left

rises up forward diago-
nally to right

rises up forward diago-
nally to left

rises up backward diago-
nally to right

rises up backward diago-
nally to left

lowers down
lowers to down forward

lowers to down back-
ward
lowers to down right

lowers to down left
lowers down forward di-
agonally to right

lowers down forward di-
agonally to left

lowers down backward
diagonally to right

lowers down backward
diagonally to left
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29
30

31
32
33
34
35

36

48

49

50

52

53

54

holds close to shoulder
position

holds forward position
holds backward position

holds right position
holds left position

holds forward diago-
nally to right position
holds forward diago-
nally to left position
holds backward diago-
nally to right position
holds backward diago-
nally to left position
holds up position

holds up forward posi-
tion

holds up backward posi-
tion

holds up right position
holds up left position
holds up forward diago-
nally to right position
holds up forward diago-
nally to left position
holds up backward diag-
onally to right position

holds up backward diag-
onally to left position

holds low position

holds low forward posi-
tion

holds low backward po-
sition

holds low right position

holds low left position
holds low forward diag-
onally to right position
holds low forward diag-
onally to left position
holds low backward di-
agonally to right posi-
tion

holds low backward di-
agonally to left position
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56
57

58
59
60
61
62
63

64
65

66
67
68
69

70

73
74

75

76

71
78

79

80

81

moves relatively to pre-
vious position

moves relatively forward
moves relatively back-
ward

moves to relatively right
moves to relatively left
moves relatively forward
diagonally to right
moves relatively forward
diagonally to left

moves relatively back-
ward diagonally to right
moves relatively back-
ward diagonally to left
moves relatively up
moves relatively up for-
ward

moves relatively up
backward

moves relatively up right
moves relatively up left
moves relatively up for-
ward diagonally to right
moves relatively up for-
ward diagonally to left
moves relatively up
backward diagonally to
right

moves relatively up
backward diagonally to
left

moves relatively low
moves relatively low for-
ward

moves relatively low
backward
moves relatively low

right

moves relatively low left
moves relatively low for-
ward diagonally to right
moves relatively low for-
ward diagonally to left
moves relatively low
backward diagonally to
right

moves relatively low
backward diagonally to
left
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