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Abstract

Sampling and Variational Inference (VI) are two
large families of methods for approximate infer-
ence that have complementary strengths. Sampling
methods excel at approximating arbitrary probabil-
ity distributions, but can be inefficient. VI methods
are efficient, but may misrepresent the true dis-
tribution. Here, we develop a general framework
where approximations are stochastic mixtures of
simple component distributions. Both sampling
and VI can be seen as special cases: in sampling,
each mixture component is a delta-function and is
chosen stochastically, while in standard VI a sin-
gle component is chosen to minimize divergence.
We derive a practical method that interpolates be-
tween sampling and VI by analytically solving
an optimization problem over a mixing distribu-
tion. Intermediate inference methods then arise by
varying a single parameter. Our method provably
improves on sampling (reducing variance) and on
VI (reducing bias+variance despite increasing vari-
ance). We demonstrate our method’s bias/variance
trade-off in practice on reference problems, and
we compare outcomes to commonly used sampling
and VI methods. This work takes a step towards a
highly flexible yet simple family of inference meth-
ods that combines the complementary strengths of
sampling and VI.

1 INTRODUCTION

We are concerned with the familiar and general case of
approximating a probability distribution, such as occurs in
Bayesian inference when both the prior over latent variables
and the likelihood function connecting them to data are
known, but computing the posterior exactly is intractable.
There are two largely separate families of techniques for

approximating such intractable inference problems: Markov
Chain Monte Carlo (MCMC) sampling, and Variational
Inference (VI) [Bishop, 2006, Murphy, 2012].

Sampling-based methods, including MCMC, approximate a
distribution with a finite set of representative points. MCMC
methods are stochastic and sequential, generating a se-
quence of sample points that, given enough time, become
representative of the underlying distribution increasingly
well. MCMC sampling is (typically) asymptotically unbi-
ased, at the expense of high variance, leading to long run
times in practice. Similar to the approach we take here, sam-
pling methods are studied at different scales: both in terms
of their asymptotic limit (i.e. their bias at infinitely many
samples) and their practical behavior for finite samples or
other resource limits [Korattikara et al., 2014, Angelino
et al., 2016].

Variational Inference (VI) refers to methods that produce an
approximate distribution by minimizing some quantification
of divergence between the approximation and the desired
posterior distribution [Blei et al., 2017, Zhang et al., 2019].
For the purposes of this paper, we will use VI to refer to the
most common flavor of variational methods, namely mini-
mizing the Kullback-Leibler (KL) divergence between an
approximate distribution from a fixed family and the desired
distribution [Bishop, 2006, Wainwright and Jordan, 2008,
Murphy, 2012, Blei et al., 2017]. The best-fitting approx-
imate distribution is often used directly as a proxy for the
true posterior in subsequent calculations, which can greatly
simplify those downstream calculations if the approximate
distribution is itself easy to integrate. In contrast to MCMC,
VI is often used in cases where speed is more important
than asymptotic bias [Angelino et al., 2016, Blei et al., 2017,
Zhang et al., 2019].

Our goal is to develop an intermediate family of methods
that “interpolate” between MCMC and VI, inspired by a
simple and intuitive picture (Figure 1): we propose applying
sampling methods in the space of variational parameters
such that the resulting approximation is a stochastic mixture
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Figure 1: Conceptual introduction on a simple 2D example – the “banana” distribution. a) Sampling methods approximate
the underlying p(x) with a stochastic set of representative points, x ∼ p(x). b) Variational Inference (VI) methods begin
by selecting an approximating distribution family, q(x; θ), here a Gaussian with diagonal covariance plotted as an ellipse
at its 1σ contour. The optimal parameters θ∗ are chosen to minimize KL(q(x; θ)||p(x)). c) We propose using a stochastic
mixture of component distributions, where parameters θ are sampled from a “mixing distribution” ψ(θ), i.e. θ ∼ ψ(θ).

of variational “component” distributions [Yin and Zhou,
2018]. This extends sampling by replacing the sampled
points with extended components, and it extends VI by
replacing the single best-fitting variational distribution with
a stochastic mixture of more localized components. This
is qualitatively distinct from previous variational methods
that use stochastic optimization: rather than stochastically
optimizing a single variational approximation [Hoffman
et al., 2013, Salimans et al., 2015], we use stochasticity to
construct a random mixture of variational components that
achieves lower asymptotic bias than any one component
could. As we will show below, this framework generalizes
both sampling and VI, where sampling and VI emerge as
special cases of a single optimization problem.

This paper is organized as follows. In section 2, we set up
the problem and our notation, and describe how both clas-
sic sampling and classic VI can be understood as special
cases of stochastic mixtures. In section 3, we introduce an
intuitive framework for reasoning about infinite stochastic
mixtures and define an optimization problem that captures
the trade-off between sampling and VI. Section 4 intro-
duces an approximate objective and closed-form solution
and describes a simple practical algorithm. Section 5 gives
empirical and theoretical results that show how our method
interpolates the bias and variance of sampling and VI. Fi-
nally, section 6 concludes with a summary, related work,
limitations, and future directions.

2 SETUP AND NOTATION

Let p∗(x) = Zp(x) denote the unnormalized probability
distribution of interest, with unknown normalizing constant
Z. For instance, in the common case of a probabilistic model
with latent variables x, observed data D, and joint distri-
bution p(x,D), we are interested in approximations to the
posterior distribution p(x|D). This is intractable in general,

but we assume that we have access to the un-normalized
posterior p∗(x|D) = 1

Zp(D|x)p(x).1 Let q(x; θ) be any
“simple” distribution that may be used used in a classic VI
context (such as mean-field or Gaussian), and let mT (x) be
a mixture containing T of these simple distributions as com-
ponents, defined by a set of T parameters {θ(1), . . . , θ(T )}:

mT (x) ≡
1

T

T∑
t=1

q(x; θ(t)) . (1)

For example, if q is a multivariate normal with mean µ and
covariance Σ, then θ(t) = {µ(t),Σ(t)} and mT (x) would be
a mixture of T component normal distributions [Gershman
et al., 2012, Zobay, 2014].

We will study properties of mixing distributions, or distri-
butions over component parameters, which we denote ψ(θ)
[Ranganath et al., 2016]. If the set of θ(t) is drawn ran-
domly from ψ(θ), then as T → ∞, mT (x) approaches the
idealized infinite mixture,

m(x) ≡
∫
θ

q(x; θ)ψ(θ)dθ . (2)

Sampling and VI as special cases of the mixing distribu-
tion. Let θ∗ = argminθ KL(q(x; θ)||p(x)) be the param-
eters corresponding to the classic single-component varia-
tional solution. VI corresponds to the special case where
the mixing distribution ψ(θ) is a Dirac delta around θ∗, or
ψ(θ) = δ(θ − θ∗), in which case the mixture mT (x) is
equivalent to q(x; θ∗) regardless of the number of compo-
nents T . Sampling can also be seen as a special case of
ψ(θ) in which each component narrows to a Dirac delta
(ψ(θ) places negligible mass on regions of θ-space where
components have appreciable width), and the means of the
components are distributed according to p(x). This requires

1To reduce clutter, D will be dropped in the remainder of the
paper, and we will use only p(x) and p∗(x).



that the component family q(x; θ) is capable of expressing
a Dirac-delta at any point x, such as a location-scale family.
Thus, both sampling and VI can be seen as limiting cases of
stochastic mixture distributions, mT (x), defined by a distri-
bution over component parameters, ψ(θ). In what follows,
we will show how designing the mixing distribution ψ(θ) al-
lows us to create mixtures that trade-off the complementary
strengths of sampling and VI.

3 CONCEPTUAL FRAMEWORK

3.1 DECOMPOSING KL(m||p) INTO MUTUAL
INFORMATION AND EXPECTED KL

The idealized infinite mixture m(x) is fully defined by the
chosen component family q(x; θ) and the mixing distribu-
tion ψ(θ). Consider the variational objective with respect to
the entire mixture, KL(m||p):

KL(m||p) =
∫
x

m(x) log
m(x)

p∗(x)
dx+ log Z , (3)

where Z is the normalizing constant of p∗(x) and is irrel-
evant for constructing m(x). Instead of (3), one can use
the equivalent objective of maximizing the Evidence Lower
BOund or ELBO [Bishop, 2006, Murphy, 2012, Blei et al.,
2017]. Regardless, minimizing (3) or maximizing the ELBO
for mixtures is intractable in general. However, as first
shown by Jaakkola and Jordan [1998] for finite mixtures, it
admits the following useful decomposition:

KL(m||p) =
∫
θ

ψ(θ)

∫
x

q(x; θ) log
q(x; θ)

p∗(x)
dx dθ︸ ︷︷ ︸

(i) Expected KL

−
∫
θ

ψ(θ)

∫
x

q(x; θ) log
q(x; θ)

m(x)
dx dθ︸ ︷︷ ︸

(ii) Mutual Information I[x;θ]

(4)

(dropping log Z). The first term, (i), is the Expected KL
Divergence for each component when the parameters are
drawn from ψ(θ). This term quantifies, on average, how well
the mixture components match the target distribution. In iso-
lation, Expected KL is minimized when all components in-
dividually minimize KL(q||p), i.e. when ψ(θ) → δ(θ−θ∗).
This tendency to concentrate ψ(θ) to the single best varia-
tional solution is balanced by the second term, (ii), which
is the Mutual Information between x and θ, which we
will write I[x; θ], under the joint distribution q(x; θ)ψ(θ).
This term should be maximized, and, importantly, it does not
depend on p∗(x). Mutual Information is maximized when
the components are as diverse as possible, which encour-
ages the components to become narrow and to spread out
over diverse regions of x regardless of how well they agree
with p(x). This decomposition of KL(m||p) into Mutual
Information (between x and θ) and Expected KL (between

q and p) is convenient because approximations to Mutual
Information are well-studied, and minimizing Expected KL
can leverage standard tools from VI.

3.2 TRADING OFF BETWEEN MUTUTAL
INFORMATION AND EXPECTED KL

We will refer back to this decomposition of the KL(m||p)
objective into Expected KL and Mutual Information
throughout. Figure 2 depicts a two-dimensional space with
Expected KL on the x-axis and Mutual Information on the
y-axis. Any given mixing distribution ψ(θ) can be placed as
a point in this space, but in general many ψ(θ)’s may map
to the same point.

Sampling and VI live at extreme points in this space. Classic
VI, where ψ(θ) = δ(θ − θ∗), corresponds to the blue point
(c), because by definition θ∗ achieves the minimum possible
KL, and I[x; θ] is zero. Classic sampling corresponds to
the green point (d), with ψ(θ) placing mass only on Dirac-
delta-like components, and selecting each component with
probability p(µ), where µ is the mean of q determined by θ.

Towards the goal of constructing mixtures that trade-off
properties of sampling and VI, we propose to view the two
terms in (4) as separate objectives that may be differently
weighted, and maximizing the objective

L(ψ, λ) = I[x; θ]− λEψ [KL(q||p)] (5)

for a given hyperparameter λ with respect to the mixing dis-
tribution ψ(θ). This objective may alternatively be viewed
as the Lagrangian of a constrained optimization problem
over the mixing density ψ(θ), where Mutual Information
is maximized subject to a constraint on Expected KL. This
is a concave maximization problem with linear constraints,
defining a Pareto front of solutions that each achieve a differ-
ent balance between Expected KL and Mutual Information.
Maximizing Mutual Information necessitates approxima-
tions [Poole et al., 2019], so there may be good mixture
approximations that are not found in practice, such as the
yellow point (e) in Figure 2. In section 4 below, we use an
approximation to Mutual Information that has the property,
illustrated by the orange curve (f) in Figure 2, of connecting
VI (c) to sampling (d), controlled by varying λ. As shown
on the right of Figure 2, our method produces mixtures
that behave like classic samples when λ = 1, that behave
like classic VI when λ→ ∞, and that exhibit intermediate
behavior at intermediate values of λ.

We emphasize that this frame is quite general: any stochastic
mixture can be reasoned about in terms of its Expected
KL and Mutual Information, and this is a natural space
in which to think about interpolating sampling and VI. A
similar decomposition of KL(m||p) (or the ELBO) has been
used by previous methods that optimize mixtures [Zobay,
2014, Jaakkola and Jordan, 1998, Gershman et al., 2012,



Figure 2: Left: Understanding mixtures in terms of Mutual Information and Expected KL. a) The quality of any infinite
mixture (in terms of KL(m||p)) is given by its distance from the y=x line (black diagonal line). b) Two unreachable regions
are shaded in gray: above the y=x line (because KL(m||p) ≥ 0), and to the left of the single-component variational solution,
since VI achieves the minimum KL(q||p). c) When ψ(θ) = δ(θ − θ∗) as in classic VI, Expected KL is at its minimum
and Mutual Information is zero. Increasing the expressiveness of q corresponds to moving left along the x-axis (blue
arrow). d) Because sampling is unbiased, it is a mixture that lives on the KL(m||p) = 0 or y = x line. If x is discrete,
the coordinates of the point marked (d) are (H[x],H[x]), i.e. the entropy of p(x). When x is continuous, both Mutual
Information and Expected KL grow unboundedly together as the individual components narrow. e) Any point on the y=x
line implies m(x) = p(x), and this may be possible without resorting to sampling for certain combinations of p and q.
However, such mixtures are not guaranteed to exist for all problems, and are difficult to find due to the intractability of
Mutual Information. f) We propose a family of mixture approximations, parameterized by λ, that connects VI to sampling in
a natural and principled way. Points on this curve correspond to solutions to the (approximate version of the) objective in (5).
Middle: Examples in a 1D toy problem, where p(x) is an unequal mixture of two heavy-tailed distributions (black lines),
and q(x; θ) is a single Gaussian component with parameters θ = {µ, log σ} (translucent red components). Right: Varying λ
controls the mixing distribution over θ (image). Red points correspond to the Gaussian components in the middle.

Yin and Zhou, 2018]. The primary difference between these
previous methods is how they approximate (or lower-bound)
Mutual Information. In the next section, we introduce a new
approximation that is particularly efficient, and is the first to
our knowledge that replicates sampling-like behavior with
finitely many components.

4 APPROXIMATE OBJECTIVE

Maximizing Mutual Information, as is required by (5), is a
notoriously difficult problem that arises in many domains,
and there is a large collection of approximations and bounds
in the literature [Jaakkola and Jordan, 1998, Brunel and
Nadal, 1998, Gershman et al., 2012, Wei and Stocker, 2016,

Kolchinsky and Tracey, 2017, Poole et al., 2019]. Previous
work has optimized finite mixtures by considering how each
of T components interacts with the other T −1 components,
resulting in quadratic scaling with T [Gershman et al., 2012,
Zobay, 2014, Guo et al., 2016, Miller et al., 2017, Kolchin-
sky and Tracey, 2017, Nalisnick and Smyth, 2017, Yin and
Zhou, 2018, Poole et al., 2019]. Beginning instead with infi-
nite mixtures, we find that the local geometry of θ-space is
sufficient to provide an approximation to Mutual Informa-
tion that can be evaluated independently for each value of
θ, leading to linear scaling with T .



4.1 STAM’S INEQUALITY

Mutual Information between x and θ can be written as

I[x; θ] = H[θ]− Em(x)

[
H[θ̂|x]

]
= H[θ]− Eψ(θ)

[
Eq(x|θ)[H[θ̂|x]]︸ ︷︷ ︸

H[θ̂|θ]

]
(6)

where H[θ] is the entropy of ψ(θ) and H[θ̂|x] is the entropy
of q(θ̂|x) = q(x;θ̂)ψ(θ̂)

m(x) , i.e. the distribution of inferred θ
values for a given x. The second line follows simply from
expanding the definition of m(x) in the outer expectation.
The term H[θ̂|θ] can be thought of in terms of a statistical
estimation problem: θ̂ is the “recovered” value of θ after
passing through the “channel” x. Bounding the error of such
estimators is a well-studied problem in statistics.

From (6), a lower-bound on Mutual Information can be
derived from an upper bound on H[θ̂|θ] for each θ. For this,
we draw inspiration from Stam’s inequality [Stam, 1959,
Dembo et al., 1991, Wei and Stocker, 2016], which states

H[θ̂|θ] ≤ 1

2
log

∣∣2πeF(θ)−1
∣∣ , (7)

where | · | is a determinant, and F(θ) is the Fisher Informa-
tion Matrix, defined as

F(θ)ij = −Eq(x;θ)

[
∂2

∂θi∂θj
log q(x; θ)

]
.

The Fisher Information Matrix is also the local metric on
the statistical manifold with coordinates θ [Amari, 2016]; it
is used to quantify how “distinguishable” θ is from θ + dθ.
Note that (7) can be viewed as the entropy of a Gaussian
approximation to q(θ̂|x) with precision matrix F(θ); this
approximation is most accurate when q(x; θ) itself is narrow
and approximately Gaussian [Wei and Stocker, 2016].

Combining (6) and (7), we propose to use

IF [x; θ] ≡ H[θ] +
1

2
Eψ(θ) [log |2πeF(θ)|] (8)

as a proxy for the intractable I[x; θ] in (5), having used
log |F−1| = − log |F|.

Note that IF [x; θ] has not been proven to be a strict bound
on I[x; θ], but may be seen as an approximation to it [Wei
and Stocker, 2016]. Briefly, this is because the original
Stam’s inequality, as stated in (7), assumes θ is a scalar loca-
tion parameter, and assumes the high-precision limit where
q(θ̂|x) is well-approximated by a Gaussian. Despite this,
IF [x; θ] is well-suited for our purposes, since (i) it leads
to a remarkably simple and easy to implement expression
for ψ(θ) below; (ii) we can prove that it leads to sampling
when λ = 1 and VI when λ→ ∞; and (iii) we suspect that
the inequality in (7) is nonetheless strict, since we neglect

the prior information contained in ψ(θ) and therefore over-
estimate the conditional entropy H[θ̂|θ]. By analogy to the
Bayesian Cramér-Rao bound [Gill and Levit, 1995, Fauß
et al., 2021], a tighter variant of (7) could be derived that
takes into account the prior, though possibly at the expense
of added complexity; we leave this to future work.

4.2 CLOSED-FORM MIXING DISTRIBUTION

Substituting IF [x; θ] for I[x; θ] in (5) gives the following
approximate objective,

LF (ψ, λ) = H[θ] + Eψ
[
1

2
log |F| − λKL(q||p∗)

]
(9)

having dropped additive constants. This now resembles a
maximum-entropy problem with an expected-value con-
straint, which has the following simple closed-form solution:

logψ(θ) =
1

2
log |F(θ)| − λKL(q(x; θ)||p∗(x)) (10)

again dropping additive constants. Equation (10) is strik-
ingly simple, and amenable to many existing MCMC sam-
pling methods for drawing samples of θ from ψ(θ).

Despite being derived from an approximation to our original
objective, (10) nonetheless contains both sampling and VI as
special cases. As λ→ ∞, the KL term dominates and ψ(θ)
concentrates to δ(θ−θ∗), reproducing VI. When λ = 1, the
resulting mixture recovers the behavior of “sampling” in the
following sense:

Definition 1 (Sampling) A stochastic mixture, defined by
the component family q(x; θ) and mixing distribution ψ(θ),
is considered to be “sampling” if it is unbiased and it con-
sists of non-overlapping components. An unbiased mixture
is one where m(x) = p(x). A mixture consists of T non-
overlapping components if

∑T
t=1 q(x; θt) ≈ maxt q(x; θt)

with high probability.

Lemma 4 in Appendix A.2 establishes that ψ(θ) with λ = 1
leads to sampling as defined here, assuming mixture com-
ponents q are Gaussian. However, we conjecture that sam-
pling arises from a broader class of q components as well,
though computing and differentiating through F(θ) for non-
Gaussian component families poses additional challenges.

4.3 IMPLEMENTATION

Equation (10) provides a closed-form unnormalized log
probability density, which is straightforward to sample from
using any of a large number of existing sampling methods.
For example, discrete Langevin dynamics are

θ(t+1) = θ(t) − γλ∇θKL(q||p)︸ ︷︷ ︸
(i)

+
γ

2
∇θ log |F|︸ ︷︷ ︸

(ii)

+
√

2γηt︸ ︷︷ ︸
(iii)



where γ is the step size and ηt is unit isotropic Gaussian
noise. This update rule is remarkably simple: (i) is equiv-
alent to gradient descent of KL(q||p), as done in ADVI
[Kucukelbir et al., 2017], (ii) biases the updates towards
regions where |F(θ)| is large (i.e. narrower components),
and (iii) adds noise.

For our experiments below, we implemented sampling from
(10) in Stan [Carpenter et al., 2017], an open-source frame-
work for probabilistic models and approximate inference
algorithms. We set q to be a multivariate Gaussian with di-
agonal (axis-aligned) covariance, and sampled θ from ψ(θ)
using Stan’s default implementation of the No U-Turn Sam-
pler (NUTS) [Hoffman and Gelman, 2014], but we empha-
size that samples can be drawn from (10) using a variety of
off-the-shelf sampling methods. We computed the KL(q||p)
term using 200 random samples from q per evaluation, us-
ing the reparameterization trick to compute the gradient
∇θKL(q||p) and resampling the reparameterization noise
only once per NUTS trajectory. This incurred a high cost
in terms of number of function evaluations per sample of
θ, but this cost can in principle be significantly reduced by
using a sampler that accepts stochastic function evaluations
[Korattikara et al., 2014, Ma et al., 2015]. All comparisons
to existing methods were with Stan’s built-in NUTS sam-
pler (over x) and its built-in Automatic-Differentiation VI
(ADVI) [Kucukelbir et al., 2017].

5 NAVIGATING BIAS/VARIANCE
TRADE-OFFS FOR FINITE T

5.1 REDUCING MEAN SQUARED ERROR (MSE)

In this section, we expound the sense in which our method
“interpolates” sampling and VI in terms of bias and variance.
In our experiments, we quantify bias and variance in terms
of the Mean Squared Error (MSE) of the expectation of an
arbitrary f(x) using a random mixture of T components,
mT (x). For ADVI, we measured variance across runs with
different random initializations. In Figure 3, we show empir-
ically that by increasing λ one can interpolate between the
low bias but high variance solution, equivalent to sampling,
and the low variance but high bias solution, equivalent to VI.
Between these extremes, our method smoothly interpolates
both bias and variance. Further implementation details can
be found in Appendix B.

Computing bias and variance requires choosing a class of
functions f(x). We construct random smooth functions by
discrete Fourier synthesis. Specifically, we select a series
of sinusoid plane waves in the space of x with increasing
frequency ω, random directions t and phase ϕ, such that
f(x) =

∑N
ω=1 aω sin(ωt

⊤x+ ϕω). The amplitudes aω are
set according to a power law: aω = ω−α. Note that by
choosing a random direction t for each frequency, it is easy

to apply this definition of a random function to arbitrarily
high-dimensional inference problems. An example of a 2-
dimensional f(x) is shown in Figure 3b with α = −1.5.
We vary the smoothness of the integrated function in Figure
4 by varying α [Stein and Shakarchi, 2011].

We also tested our algorithm on three reference problems
from posteriordb [Magnusson et al., 2021], as well as on
a 32-dimensional regression problem with synthetic data
and known ground-truth parameters, shown in Supplemental
Figure B.1. The conclusion is similar: across many random
fs, our algorithm performs on average as well as or bet-
ter than both sampling (by reducing variance) and VI (by
reducing bias).

5.2 CONSIDERATIONS FOR SELECTING λ

A first practical consideration for the choice of λ is the
particular function f(x) to be integrated. Since MSE can be
decomposed into the sum of squared bias and variance, the
value of λ that minimizes MSE occurs when ∂bias2

∂λ = −∂var
∂λ .

Any factor that increases the variance but not the bias for
a fixed number of components T will push the optimal λ
towards higher values (closer to VI).

One such factor is the smoothness of f(x). Classic sam-
pling can have problematically high variance when f(x) is
very jagged, as single points are not very representative of
the surrounding function. Intuitively, then, higher λ (more
VI-like mixtures) is preferred when f(x) is more “wiggly.”
To show this, we generated a random function with varying
smoothness and computed their expectations them over ran-
dom mixtures. The resulting MSE, bias, and variance are
shown in Figure 4. We adjusted smoothness by varying the
power law decay, α, for a fixed set of phases and wave di-
rections. At any value of λ, variance can be seen to increase
as f is made more wiggly (α → −1). With all else held
equal, it is better to trade some variance for bias when the
integrand changes quickly with x.

In Figures 3 and 4, we evaluated bias and variance on the
“banana” distribution. Similar results on higher-dimensional
problems can be found in Supplemental Figure B.1. For
illustration purposes, we chose T so that the variance of
NUTS was the same order of magnitude as the bias of ADVI,
and estimated bias and variance by randomly subsampling
sets of size T from much longer chains. This approach
provides theoretical insights on bias/variance trade-offs for
T independent samples, but in practice bias will be higher
due to burn-in time, variance will be higher due to sampler
autocorrelations, and each of these may depend nontrivially
on λ. Because MCMC samplers are most effective when
they have been tuned to the problem at hand, a challenge for
future work will be to adapt the sampler parameters on the
fly as λ changes.

Another factor that affects the optimal λ is the computational



Figure 3: λ controls a bias/variance tradeoff, interpolating between sampling and VI. a-c) Behavior of our method on the
“banana” distribution for low, medium, and high values of λ. b) Example f(x) with α = −1.5, constructed using a random
mixture of sinusoids of different frequencies and directions. Green points are values of x sampled using NUTS, shown for
reference. c) The expected value of f(x) from (b) using our method, compared with NUTS and ADVI. Error bars for NUTS
and ours indicate standard deviation across runs with T = 30 samples each. At low λ, our method provides an unbiased but
high variance estimate of E[f(x)], matching NUTS, while at high λ it provides a bias near that of ADVI and a vanishing
variance. Variance of ADVI is across 10 runs with random initializations. d-f) We repeated the analysis in (c) across many
random fs (all α = −1.5) and report the mean ± standard error of bias2, variance, and MSE. MSE for our method is
minimal around λ ≈ 1.3 (for T = 30, α = −1.5).

Figure 4: Interactions between λ and integrand wiggliness for the “banana” distribution with T = 30. a) Example random
integrands, f(x), of varying degrees of wiggliness, as in Figure 3b. b) Wiggliness of f is governed by α, the slope of
amplitude versus frequency of its component sinusoids in a log-log plot. c) The λ with the smallest MSE for a fixed number
samples depends on the integrand’s smoothness. d) Bias vanishes near λ = 1. e) Variance is higher for smaller λ and more
wiggly integrands. f) MSE is the sum of bias2 and variance. Overlaid lines correspond to slices shown in panel (c).

budget. In our experiments we set a fixed T to demonstrate
our algorithm’s properties. However, if the time budget is
not known in advance, a practitioner may wish to decrease
λ adaptively over time. Since variance is O(T−1), for suf-
ficiently large T error is dominated by bias, and so the
optimal λ will decay towards 1. This would result in VI-like
behavior for small T and sampling-like behavior for large T .
How quickly λ should decay will depend on the particular
problem, specifically, on ∂Bias2

∂λ , and on how efficiently one

can produce T independent samples of θ.

5.3 ANALYTICAL RESULTS

While the MSE of the expected value of some f(x) is a
useful way to compare approximate inference methods, it
depends on the somewhat arbitrary choice of f , and in prac-
tice, the f ’s of interest are often not known at the time of



inference. This motivates using the following alternative def-
inition of error that is independent of f and closely related
to the variational objective of minimizing KL divergence:

KL error = E[KL(mT (x)||p(x))] =
KL(m(x)||p(x))︸ ︷︷ ︸

KL bias

+E [KL(mT (x)||m(x))]︸ ︷︷ ︸
KL variance

. (11)

That is, we define KL bias as the KL divergence from the
infinite mixture m(x) to the true distribution, and KL vari-
ance as the average KL, over realizations of T independent
mixture components, from mT (x) to the infinite mixture
m(x). Note that KL bias is identical to the infinite-mixture
objective we started with in (4).

The following theorem establishes that, for all finite T , we
can reduce the KL error relative to sampling using some
λ > 1.

Theorem 1 (Improve on sampling) If a mixture is sam-
pling as in Definition 1, then d

dλKL bias = 0 and
d
dλKL variance < 0. Thus, d

dλKL error < 0. Proof: see
Appendix A.2.

This theorem establishes the intuitive result that the variance
of sampling can be reduced, minimally impacting its bias,
by replacing samples with narrow mixture components. Im-
portantly, Theorem 1 is based on how ψ(θ) changes with λ
when using the closed-form expression for ψ(θ) we derived
based on the approximate LF objective. For this theorem to
apply, we must further show that both conditions of “sam-
pling” (Definition 1) are met by ψ(θ) when λ = 1. This
is proved in Lemma 4 in Appendix A.2 for Gaussian com-
ponents, though we suspect it holds for other component
families as well.

We can also improve on VI using our method. However, this
result is slightly more subtle, as there are three cases where
one should expect VI to be (locally) optimal. First, if q is
in the same family as p, then q(x; θ∗) = p(x), then is no
benefit to increasing T , and reducing λ only adds variance.
Similarly, if q is not in the same family but the VI solution is
sufficiently close to p, then a mixture of nearby qs will add
variance to m [Lindsay, 1983], potentially making the match
to p worse. Third, if T is small – in the most extreme case,
if T = 1 – then reducing λ will again only add variance
without reducing bias. With these three cases in mind, the
following theorem establishes conditions where we expect
to reduce KL error relative to VI by using a large but finite
λ <∞.

Theorem 2 (Improve on VI) Assume that q(x; θ∗)
is poorly matched to p(x), in the sense that
Tr

(
(∇2

θKL(q||p))−1F
)

> |θ|, and that λ is suffi-
ciently large to use a Laplace approximation to ψ(θ)
around θ∗. Then, there exists some finite T0 > 1 such that
for all T ≥ T0, d

dλKL error > 0. Proof: see Appendix A.3.

Here, |θ| is the dimensionality of θ. The requirement that
“q(x; θ∗) is poorly matched to p(x)” is expressed in terms
of the curvature of KL(q||p) around θ∗; if this curvature
is small, then many “nearby” qs will also fit p well, and a
mixture of them can improve on VI despite adding variance.
On the other hand, the case where this curvature is not
small corresponds to the earlier intuition that VI cannot be
improved upon if the VI solution is already close to p. For
further details, see the full proof in Appendix A.3.

6 DISCUSSION

Summary: Our work provides a new perspective on the
relationship between the two dominant frameworks for ap-
proximate inference – sampling and VI – by viewing both as
special cases of inference using a broader class of stochastic
mixtures. Our main theoretical contribution is the frame-
work shown in Figure 2, where mixtures that “interpolate”
sampling and VI are analyzed in terms of how they trade off
Mutual Information and Expected KL. We then derived an
easy-to-use method based on an approximation to Mutual
Information that uses the local geometry of the space of
variational parameters. To demonstrate the ease and effec-
tiveness of our method, we implemented it in the popular
Stan language and demonstrated using a small set of refer-
ence problems how we “interpolate” sampling and VI by
varying a single parameter, λ. Finally, we showed why such
an intermediate inference scheme is useful in practice in
terms of trading off bias and variance. On one hand, we
proved that it is always possible to improve on classic sam-
pling (λ = 1) by increasing λ: our method provably reduces
the variance of sampling while minimally impacting its bias.
Our method also provably reduces the bias of VI under
certain intuitive conditions.

Time and space complexity: By approximating Mutual
Information using only local geometric information in (8), in
our method each component can be selected independently
of the others. This means we can select and evaluate T
components in O(T ) time and either O(T ) space (if all are
stored) or O(1) space (if components are evaluated online) –
identical to traditional MCMC sampling algorithms. Further,
we can run independent chains sampling θ ∼ ψ(θ) for a
constant factor speedup. This improves on past work using
mixture approximations, which incurred O(T 2) time and
O(T ) space complexity, since the optimization problem for
the T th component depends on the location of the other
T − 1 components, all of which must be in memory at once
[Jaakkola and Jordan, 1998, Gershman et al., 2012, Zobay,
2014, Guo et al., 2016, Nalisnick and Smyth, 2017, Miller
et al., 2017, Acerbi, 2018, Yin and Zhou, 2018] (but the
O(T 2) complexity may be hardware-accelerated).

Related Work: The trade-offs between sampling and VI
are well-studied, and many methods have been proposed to



“close the gap” between them (see [Angelino et al., 2016,
Zhang et al., 2019] for general reviews). Like these other
methods, we aim to provide good approximations with high
computational efficiency and low variance.

There are many methods that use mixture models to re-
duce the bias of variational inference. Theorem 2 shows
that our method only “beats” classic VI when T > T0 for
some finite but potentially large T0. This is the price we
pay for drawing mixture components stochastically [Sali-
mans et al., 2015, Yin and Zhou, 2018]. When a mixture
of T components is optimized rather than sampled, bias
is reduced and variance remains near zero, as in previous
work [Jaakkola and Jordan, 1998, Gershman et al., 2012,
Zobay, 2014, Guo et al., 2016, Miller et al., 2017], but in
previous work this optimization has incurred a O(T 2) cost
while our method is O(T ) and can be further parallelized.
Further, with some notable exceptions [Anaya-Izquierdo
and Marriott, 2007, Salimans et al., 2015], most mixture
VI methods make strong assumptions about the family of
components [Jaakkola and Jordan, 1998, Gershman et al.,
2012, Acerbi, 2018, Miller et al., 2017]. Our framework and
method is somewhat agnostic to the family of q, though we
have only rigorously proved that is asymptotically unbiased
when using Gaussian components.

Many methods use sampling in the service of variational
inference, or vice versa, but do not provide a unifying ap-
proach to both. These typically use the samples to compute
expectations used to update a variational approximation
[Acerbi, 2018, Miller et al., 2017, Kucukelbir et al., 2017],
rather than to generate the mixture components themselves.

There is also a large number of sampling approaches that
aim to improve the efficiency of sampling by reducing its
variance at the cost of some bias. Some of these use varia-
tional approaches as proposal distributions, but ultimately
the posterior is approximated by a set of (possibly weighted)
samples of the latent variables [de Freitas et al., 2001, Ko-
rattikara et al., 2014, Ma et al., 2015, Zhang et al., 2021].
By expanding each sample from a point to a distribution,
our approach allows each sample to cover more space with
less variance and greater efficiency.

Despite some high-level similarities to other approaches,
our framework is unusual in approximating the posterior
by a sampled mixture of variational approximations. The
Mixture Kalman filter [Chen and Liu, 2000] is a special
case of this, which uses a sampled mixture of Gaussians,
each constructed as a Kalman filter. A related approach is
to optimize a parameterized function that generates mixture
components [Salimans et al., 2015, Wolf et al., 2016, Yin
and Zhou, 2018], and generative diffusion models can also
be seen as a case of such mixtures [Sohl-Dickstein et al.,
2015, Ho et al., 2020]. Our work differs in that we derived a
closed-form mixing distribution that requires no additional
learning or optimization and that is readily implemented in

existing inference software (Stan, [Carpenter et al., 2017]).

The trade-offs described in this section are summarized in
Table C.1 in the Appendix.

Limitations and future work: Using IF [x; θ] to approx-
imate I[x; θ] reduces the generality of our method, since
the former is most appropriate for narrow and Gaussian-
like components [Wei and Stocker, 2016]. Incorporating
prior information from ψ(θ) into this bound, generalizing
to other kinds of components, or even starting with alterna-
tive bounds on I[x; θ] are all interesting avenues for future
work. Our proof of Theorem 2 requires an assumption about
the curvature of KL(q||p) near the VI solution; identifying
cases where this assumption holds may also be an interesting
future direction.

We currently only study mixtures with T independent mix-
ture components without taking into account the cost of
producing independent samples of θ. In reality, this cost
depends on the quality of the sampler, warm-up and burn-in
time, and a potentially large number of calls to log p(x)
[Zhang et al., 2021]. Further, λ dramatically changes the
shape of logψ(θ), which may affect the efficiency of the
sampler – we mitigated this slightly by scaling the mass pa-
rameter of NUTS with λ. Other sampling algorithms besides
NUTS may also be beneficial, such as ULA, which is known
to have favorable scaling properties in higher dimensions
[Durmus and Moulines, 2017].

We have so far considered λ to be constant for a run of our
algorithm, and this can lead to asymptotic bias even when
T is large. A simple adjustment to make our method effec-
tive at both small and large T would be to decay λ as T
grows, but note that this may require adapting the sampler
parameters on the fly. Our method also requires evaluating
KL(q||p) many times per sample of θ. This could be made
more efficient by adapting the number of Monte Carlo eval-
uations (fewer samples from q are sufficient when λ is low
and components are narrow), by accounting for stochastic
likelihood evaluations [Ma et al., 2015], or by extending our
method to mean-field message-passing [Jaakkola and Jor-
dan, 1998], where ∇θKL(q||p) can be computed in closed
form [Hoffman et al., 2013].
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