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Abstract
Equivariant graph neural networks force fields (EGRAFFs) have shown great
promise in modelling complex interactions in atomic systems by exploiting
the graphs’ inherent symmetries. Recent works have led to a surge in the
development of novel architectures that incorporate equivariance-based inductive
biases alongside architectural innovations like graph transformers and message
passing to model atomic interactions. However, thorough evaluations of these
deploying EGRAFFs for the downstream task of real-world atomistic simula-
tions, is lacking. To this end, here we perform a systematic benchmarking of 6
EGRAFF algorithms (NEQUIP, ALLEGRO, BOTNET, MACE, EQUIFORMER,
TORCHMDNET), with the aim of understanding their capabilities and limitations
for realistic atomistic simulations. In addition to our thorough evaluation and
analysis on eight existing datasets based on the benchmarking literature, we
release two new benchmark datasets, propose four new metrics, and three
challenging tasks. The new datasets and tasks evaluate the performance of
EGRAFF to out-of-distribution data, in terms of different crystal structures,
temperatures, and new molecules. Interestingly, evaluation of the EGRAFF
models based on dynamic simulations reveals that having a lower error on energy
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or force does not guarantee stable or reliable simulation or faithful replication of
the atomic structures. Moreover, we find that no model clearly outperforms other
models on all datasets and tasks. Importantly, we show that the performance of
all the models on out-of-distribution datasets is unreliable, pointing to the need
for the development of a foundation model for force fields that can be used in
real-world simulations. In summary, this work establishes a rigorous framework
for evaluating machine learning force fields in the context of atomic simulations
and points to open research challenges within this domain.

1 Introduction
Graph neural networks (GNNs) have emerged as powerful tools for learning representations of
graph-structured data, enabling breakthroughs in various domains such as social networks, mechan-
ics, drug discovery, and natural language processing (Perozzi et al., 2014; Wu et al., 2020; Zhang &
Chen, 2018; Stokes et al., 2020; Zhou et al., 2020; Miret et al., 2023; Lee et al., 2023). In the field of
atomistic simulations, GNN force fields have shown significant promise in capturing complex inter-
atomic interactions and accurately predicting the potential energy surfaces of atomic systems (Park
et al., 2021; Sanchez-Gonzalez et al., 2020; Schütt et al., 2021; Qiao et al., 2021). These force fields
can, in turn, be used to study the dynamics of atomic systems—that is, how the atomic systems
evolve with respect to time—enabling several downstream applications such as drug discovery, pro-
tein folding, stable structures of materials, and battery materials with targeted diffusion properties.

Recent work has shown that GNN force fields can be further enhanced and made data-efficient by
enforcing additional inductive biases, in terms of equivariance, leveraging the underlying symmetry
of the atomic structures. This family of GNNs, hereafter referred to as equivariant graph neural
network force fields (EGRAFFs), have demonstrated their capability to model symmetries inherent
in atomic systems, resulting in superior performance in comparison to other machine-learned force
fields. This is achieved by explicitly accounting for symmetry operations, such as rotations and
translations, and ensuring that the learned representations in EGRAFFs are consistent under these
transformations.

Traditionally, EGRAFFs are trained on the forces and energies based on first principle simulations
data, such as density functional theory. Recently work has shown that low training or test error
does not guarantee the performance of the EGRAFFs for the downstream task involving atomistic
or molecular dynamics (MD) simulations (Fu et al., 2023). Specifically, EGRAFFs can suffer from
several major issues such as (i) unstable trajectory (the simulation suddenly explodes/becomes un-
stable due to high local forces), (ii) poor structure (the structure of the atomic system including
the coordination, bond angles, bond lengths is not captured properly), (iii) poor generalization to
out-of-distribution datasets including simulations at different temperatures or pressures of the same
system, simulations of different structures having the same chemical composition—for example,
crystalline (ordered) and glassy (disordered) states of the same system, or simulations of different
compositions having the same chemical components—for example, Li4P2S6 and Li7P3S11. Note
that these are realistic tasks for which a force field that is well-trained on one system can generalize
to other similar systems. As such, an extensive evaluation and comparison of EGRAFFs is needed,
which requires standardized datasets, well-defined metrics, and comprehensive benchmarking, that
capture the diversity and complexity of atomic systems.

An initial effort to capture the performance of machine-learned force fields was carried out (Fu
et al., 2023). In this work, the authors focused on existing datasets and some metrics, such as radial
distribution functions and diffusion constants of atomic systems. However, the work did not cover
the wide range of EGRAFFs that has been newly proposed, many of which have shown superior
performance on common tasks. Moreover, the metrics in Fu et al. (2023) were limited to stability,
mean absolute error of forces radial distribution function, and diffusivity. While useful, these metrics
either do not capture the variations during the dynamic simulation (e.g., how the force or energy error
evolves during simulation) or require long simulations (such as diffusion constants, which requires
many steps to reach the diffusive regime). Further, the work does not propose any novel tasks that
can serve as a benchmark for the community developing new force fields.

With the increasing interest in EGRAFFs for atomic simulations, we aim to address the gap in bench-
marking by performing a rigorous evaluation of the quality of simulations obtained using modern
EGRAFF force fields. To this extent, we evaluate 6 EGRAFFs on 10 datasets, including two new
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challenging datasets that we contribute, and propose new metrics based on real-world simulations.
By employing a diverse set of atomic systems and benchmarking metrics, we aim to objectively
and rigorously assess the capabilities and limitations of EGRAFFs. The main contributions of this
research paper are as follows:

• EGRAFFs: We present a benchmarking package to evaluate 6 EGRAFFs for atomistic simula-
tions. As a byproduct of this benchmarking study, we release a well-curated codebase of the promi-
nent Equivariant GNNforce fields in the literature enabling easier and streamlined access to relevant
modeling pipelines https://anonymous.4open.science/status/MDBENCHGNN-BF68.
• Challenging benchmark datasets: We present 10 datasets, including two new datasets, namely
GeTe and LiPS20. The datasets cover a wide range of atomic systems, from small molecules to
bulk systems. The datasets capture several scenarios, such as compounds with the same elements
but different chemical compositions, the same composition with different crystal structures, and
the same structure at different temperatures. This includes complex scenarios such as melting
trajectories of crystals.
• Challenging downstream tasks: We propose several challenging downstream tasks that evalu-
ate the ability of EGRAFFs to model the out-of-distribution datasets described earlier.
• Improved metrics: We propose additional metrics that evaluate the quality of the atomistic
simulations regarding the structure and dynamics with respect to the ground truth.

2 Preliminaries
Every material consists of atoms that interact with each other based on the different types of bond-
ings (e.g., covalent and ionic). These bonds are approximated by force fields that model the atomic
interactions. Here, we briefly describe atomistic simulations and the equivariant GNNs used for
modeling these systems.

2.1 Atomistic simulation
Consider a set of N atoms represented by a point cloud corresponding to their position vectors
(r1, r2, . . . , rN ) and their types ωi. Specifically, the potential energy of a system can be written
as the summation of one-body U(ri), two-body U(ri, rj), three-body U(ri, rj , rk), up to N -body
interaction terms as

U =

N∑
i=1

U(ri) +

N∑
i,j=1;
i ̸=j

U(ri, rj) +

N∑
i,j,k=1;
i ̸=j ̸=k

U(ri, rj , rk) + · · · (1)

Since the exact computation of this potential energy is challenging, they are approximated using
empirical force fields that learn the effective potential energy surface as a function of two-, three-,
or four-body interactions. In atomistic simulations, these force fields are used to obtain the system’s
energy. The forces on each particle are then obtained as Fi = −∂U/∂ri. The acceleration of each
atom is obtained from these forces as Fi/mi where mi is the mass of each atom. Accordingly, the
updated position is computed by numerically integrating the equations of motion using a symplectic
integrator. These steps are repeated to study the dynamics of atomic systems.

2.2 Equivariant GNN force fields (EGRAFF)

Figure 1: Equivariant
transformation G on a
molecule under rotation
R.

GNNs are widely used to model the force field due to the topological sim-
ilarity with atomic systems. Specifically, nodes are considered atoms,
the edges represent interactions/bonds, and the energy or force is pre-
dicted as the output at the node or edge levels. Equivariant GNNs em-
ploy a message passing scheme that is equivariant to rotations, that is,
G(Rx) = RG(x), where R is a rotation and G is an equivariant trans-
formation (see Fig.1). This enables a rich representation of atomic envi-
ronments equivariant to rotation. Notably, while the energy of an atomic
system is invariant to rotation (that is, a molecule before and after ro-
tation would have the same energy), the force is equivariant to rotation
(that is, the forces experienced by the molecules due to the interactions
also get rotated when the molecule is rotated).

3 Models Studied
All EGRAFFs employed in this work rely on equivariance in the graph structure. All models use a
one-hot encoding of the atomic numbers Zi as the node input and the position vector ri as a node
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Figure 2: Visualisation of datasets. (a) GeTe4, (b) LiPS20, (c) 3BPA, (d) Acetylacetone, (e) MD17.

or edge input. Equivariance in these models is ensured by the use of spherical harmonics along with
radial basis functions. The convolution or message-passing implementation differs from model to
model. Further hyperparameters details for all models are tabulated in App. A.10
NEQUIP (Batzner et al., 2022), based on the tensor field networks, employs a series of self-
interaction, convolution, and concatenation with the neighboring atoms. The convolution filter
Sl
m(r⃗ij) = R(|r⃗ij |)×Y l

m(r⃗ij/|r⃗ij |) represented as a product of radial basis function R and spherical
harmonics Y l

m ensures equivariance. This was the first EGRAFF proposed for atomistic simulations
based on spherical harmonics.
ALLEGRO Musaelian et al. (2022) merges the precision of recent equivariant GNNs with stringent
locality, without message passing. Its inherent local characteristic enhances its scalability for po-
tentially more extensive systems. In contrast to other models, ALLEGRO predicts the energy as a
function of the final edge embedding rather than the node embeddings. All the pairwise energies are
summed to obtain the totatl energy of the system. ALLEGRO features remarkable adaptability to data
outside the training distribution, consistently surpassing other force fields in this aspect, especially
those employing body-ordered strategies.
BOTNET Batatia et al. (2022a) is a refined body-ordered adaptation of NEQUIP. While maintaining
the two-body interactions of NequIP in each layer, it increments the body order by one with every
iteration of message passing. Unlike NEQUIP, BOTNET uses non-linearities in the update step.
MACE Batatia et al. (2022b) offers efficient equivariant messages with high body order compu-
tation. Due to the augmented body order of the messages, merely two message-passing iterations
suffice to attain notable accuracy. This contrasts with the usual five or six iterations observed in
other GNNs, rendering MACE both scalable and amenable to parallelization.
TORCHMDNET Thölke & Fabritiis (2022) introduces a transformer-based GNN architecture, uti-
lizing a modified multi-head attention mechanism. This modification expands the traditional dot-
product attention to integrate edge data, which can enhance the learning of interatomic interactions.
EQUIFORMER (Liao & Smidt, 2023) is a transformer-based GNN architecture, introducing a new
attention mechanism named ‘equivariant graph attention’.This mechanism equips conventional at-
tention used in the transformers with equivariance.

4 Benchmarking Evaluation
In this section, we benchmark the above-mentioned architectures and distill the insights generated.
The evaluation environment is detailed in App. A.8. The codebase and datasets are made available
at https://github.com/M3RG-IITD/MDBENCHGNN.

4.1 Datasets
Since the present work focuses on evaluating EGRAFFs for molecular dynamics (MD) simulations,
we consider only datasets with included time dynamics—i.e., all the datasets represent the dynamics
of atom (see Fig. 2). We consider a total of 10 datasets (see Tab. 8 and App. A.1).

MD17 is a widely used Batzner et al. (2022); Liao & Smidt (2023); Batatia et al. (2022a,b); Thölke
& Fabritiis (2022); Fu et al. (2023) dataset for benchmarking ML force fields. It was proposed
by Chmiela et al. (2017) and constitutes a set of small organic molecules, including benzene, toluene,
naphthalene, ethanol, uracil, and aspirin, with energy and forces generated by ab initio MD simula-
tions (AIMD). Here, we select four molecules, namely aspirin, ethanol, naphthalene, and salicylic
acid, to cover a range of chemical structures and topology. Further, zero-shot evaluation is per-
formed on benzene. We train the models on 950 configurations and validate them on 50.
3BPA contains a large flexible drug-like organic molecule 3-(benzyloxy)pyridin-2-amine (3BPA)
sampled from different temperature MD trajectories Kovács et al. (2021). It has three consecutive
rotatable bonds leading to a complex dihedral potential energy surface with many local minima,
making it challenging to approximate using classical or ML force fields. The models can be trained
either on 300 K snapshots or on mixed temperature snapshots sampled from 300 K, 600 K, and 1200
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K. In the following experiments, we train models on 500 configurations sampled at 300 K and test
1669 configurations sampled at 600 K.
LiPS consists of lithium, phosphorous, and sulfur (Li6.75P3S11), which is used in similar bench-
marking analysis Fu et al. (2023), as a representative system for the MD simulations to study kinetic
properties in materials. Note that LiPS is a crystalline (ordered structure) that can potentially be used
in battery development. We have adopted this dataset from (Batzner et al., 2022)and benchmarked
all models for their force and energy errors. The training and testing datasets have 19000 and 1000
configurations, respectively.
Acetylacetone (AcAc) The dataset was generated by conducting MD simulations at both 300K and
600K using a Langevin thermostat(Batatia et al., 2022a). The uniqueness of this dataset stems from
the varying simulation temperatures and the range of sampled dihedral angles. While the training
set restricts sampling to dihedral angles below 30°, our models are tested on angles extending up
to 180°. The model must effectively generalize on the Potential Energy Surface (PES) for accurate
generalization at these higher angles. This challenge presents an excellent opportunity for bench-
marking GNNs. The dataset consists of 500 training configurations and 650 testing configurations.
GeTe is a new dataset generated by a Car-Parrinello MD (CPMD) simulations Hutter (2012) of Ge
and Te atoms, which builds on a density functional theory (DFT) based calculation of the inter-
atomic forces, prior to a classical integration of the equations of motions. It consists of 200 atoms,
of which 40 are Ge and 160 are Te, i.e., corresponding to the composition GeTe4 whose structural
properties have been investigated in detail and reproduce a certain number of experimental data in
the liquid and amorphous phase from neutron/X-ray scattering Micoulaut et al. (2014b); Gunasekera
et al. (2014) and Mössbauer spectroscopy Micoulaut et al. (2014a). As GeTe belongs to the promis-
ing class of phase-change materials Zhang et al. (2019), it is challenging to simulate using classical
force fields because of the increased accessibility in terms of time and size. Thus, an accurate force
field is essential to understand the structural changes in GeTe during the crystalline to disordered
phase transitions. Here, our dataset consists of 1,500 structures in training, 300 in test, and 300 in
validation.
LiPS20 is a new dataset generated from AIMD simulations of a series of systems containing Li,
P, and S elements, including both the crystalline and disordered structures of elementary sub-
stances and compounds, such as Li, P, S, Li2P2S6, β-Li3PS4, γ-Li3PS4, and xLi2S–(100− x)P2S5

(x = 67, 70, 75, and 80) glasses using the CP2K package Kühne et al. (2020). Details of dataset
generation, structures, and compositions in this dataset are given in App. A.2.

4.2 Evaluation metrics
Ideally, once trained, the forward simulations by EGRAFFs should be close to the ground truth
(first principle simulations) both in terms of the atomic structure and dynamics. To this extent, we
propose four metrics. Note that these metrics are evaluated based on the forward simulation, starting
from an arbitrary structure for n steps employing the force fields; a task for which it is not explicitly
trained. All the forward simulations were performed using the Atomic Simulation Environment
(ASE) package (Larsen et al., 2017). The simulations were conducted in the canonical (NV T )
ensemble, where the temperature and timesteps were set in accordance with the sampling conditions
specified in the respective datasets. See details in App. A.3

4.2.1 Structure metrics
We propose two metrics to evaluate the proximity of structures predicted by the EGRAFF to the
ground truth.
Wright’s Factor (WF), Rχ: Grimley et al. (1990) represents the relative difference between the
radial distribution function (RDF) of the ground truth atomic structure (gref (r)) and the structure
obtained from the atomistic simulations employing the EGRAFFs (g(r)) as

Rχ =

[∑n
i=1 (g(r)− gref(r))

2∑n
i=1 (gref(r))

2

]
(2)

RDF essentially represents the local time-averaged density of atoms at a distance r from a central
atom (see App. A.4). Hence, it captures the structure simulated by a force field concisely and
one-dimensionally. A force field is considered acceptable if it can provide a WF less than 9% for
bulk systems Bauchy (2014).
Jensen-Shannon Divergence(JSD) of radial distribution function: Jensen-Shannon Divergence
(JSD) Cover & Thomas (1991); Shannon (1948) is a useful tool for quantifying the difference or
similarity between two probability distributions in a way that overcomes some of the limitations
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
E F E F E F E F E F E F

Acetylacetone 1.38 4.59 0.92 4.4 2.0 10.0 2.0 8.0 4.0 4.0 1.0 5.0
3BPA 3.15 7.86 4.13 10.0 5.0 14.0 4.0 12.0 6.0 7.0 3.0 11.0
Aspirin 6.84 13.89 5.00 9.17 7.99 14.06 8.53 14.01 6.15 15.29 5.33 8.97
Ethanol 2.67 7.49 2.34 5.01 2.60 6.80 2.36 3.19 2.66 9.73 2.67 5.93 1
Naphthalene 5.70 6.20 5.14 2.64 6.67 6.07 6.26 1.98 3.88 7.01 2.55 4.03
Salicylic Acid 5.78 8.42 5.76 6.30 5.56 10.21 5.34 4.24 5.22 12.39 6.85 7.19
LiPS 165.43 5.04 31.75 2.46 28.0 13.0 30.0 15.0 83.20 51.10 67.0 61.0
LiPS20 26.80 3.04 33.17 3.31 24.59 5.51 14.05 4.64 3274.93 57.63 20.47 57.19
GeTe 1780.951 244.40 1009.4 253.45 3034.0 258.0 2670.0 247.0 666.34 363.17 2613.0 371.0

Table 1: Energy (E) and force (F) mean absolute error in meV and meV/Å, respectively, for the
trained models on different datasets. Darker colors represent the better-performing models. We use
shades of green and blue color for energy and force, respectively.

of the KL DivergenceKullback & Leibler (1951). Since the RDF is essentially a distribution of the
atomic density, JSD between two predicted RDF and ground truth RDF can be computed as:

JSD(g(r) ∥ gref (r)) =
1

2
(KL(g(r) ∥ ĝ(r)) + KL(gref (r) ∥ ĝ(r))) (3)

where ĝ(r) = 1/2(g(r) + gref (r)) is the mean of the predicted and ground-truth RDFs. (see App.
A.4)
4.2.2 Dynamics metrics
We monitor the energy and force error over the forward simulation trajectory to evaluate how close
the predicted dynamics are to the ground truth. Specifically, we use the following metrics, namely,
energy violation error, EV(t), and force violation error, FV(t), defined as:

EV (t) =
(Ê(t)− E(t))2

Ê(t)2 + E(t)2
, and FV (t) =

∥ ˆF(t)−F(t)∥2(
∥ ˆF(t)∥2 + ∥F(t)∥2

) (4)

where Ê(t) and E(t) are the predicted and ground truth energies respectively and ˆF(t) and F(t)
are the predicted and ground truth forces. Note that this metric ensures that the energy and the force
violation errors are bounded between 0 and 1, with 0 representing exact agreement with the ground
truth and 1 representing no agreement. Further, we compute the geometric mean of EV (t) and
FV (t) over the trajectory to represent the cumulative EV and FV .

4.3 Results
4.3.1 Energy and Forces
To evaluate the performance of the trained models on different datasets, we first compute the mean
absolute error in predicting the energy and force (see Table 1). First, we observe that no single
model consistently outperforms others for all datasets, highlighting the dataset-specific nature of
the models. TORCHMDNET model has notably lower energy error than other models for most
datasets, while NEQUIP has minimum force error on majority of datasets with low energy error.
On bulk systems such as LiPS and LiPS20, MACE and BOTNET show the lowest energy error.
Interestingly, GeTe, the largest dataset in terms of the number of atoms, exhibits significant energy
errors across all models, with the EQUIFORMER having the lowest energy error. EQUIFORMER also
exhibits lower force error for datasets like Acetylacetone, 3BPA, and MD17, but suffers high force
error on GeTe, LiPS, and LiPS20. Overall, ALLEGROseems to perform well in terms of both energy
and force errors for several datasets. It is also interesting to note that the models exhibiting low
energy error often exhibit high force error, suggesting that the gradient of energy is not captured
well by these models. This will potentially lead to poor simulations as the updated positions are
computed directly from the forces.

4.3.2 Forward simulations
To evaluate the ability of the trained models to simulate realistic structures and dynamics, we per-
form MD simulations using the trained models, which are compared with ground truth simulations,
both employing the same initial configuration and velocities. For each model, five forward simu-
lations of 1000 timesteps are performed on each dataset. Root mean square displacement plots for
each dataset are shown in App. A.9. Tables 2 and 3 show the JSD and WF, and EV and FV, respec-
tively, of the trained models on the datasets (see App. A.5, A.6 and A.7 for figures). Both in terms
of JSD and WF, we observe that NEQUIP performs better on most datasets. Interestingly, even on
datasets where other models have lower MAE on energy and force error, NEQUIP performs better in
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF

Acetylacetone 28.24 24.55 29.63 22.17 30.61 26.04 31.07 22.90 29.86 21.78 29.34 22.49
3BPA 0.82 6.02 1.13 7.98 1.07 7.13 0.98 8.36 0.94 7.44 0.87 7.31
Aspirin 0.133 30.66 0.108 23.29 0.122 27.36 0.111 18.92 0.120 23.58 0.131 23.99
Ethanol 0.526 18.34 0.450 15.89 0.360 15.57 0.494 17.93 0.549 23.48 0.464 17.70
Naphthalene 0.089 20.96 0.082 19.44 0.093 24.65 0.095 22.89 0.090 26.72 0.081 19.25
Salicylic Acid 0.077 16.95 0.124 27.58 0.076 14.65 0.097 19.35 0.072 14.17 0.077 16.12
LiPS 0.0 3.89 0.0 3.57 0.0 3.93 0.0 3.66 0.0 1.97 0.0 1.49
LiPS20 0.001 14.92 0.001 18.32 0.001 17.08 0.001 17.70 - - 0.006 41.70
GeTe 0.0 2.78 0.0 2.06 0.0 2.03 0.0 2.02 - - 0.0 2.80

Table 2: JSD and WF for six EGRAFFs on all the datasets. The values are computed as the average
of five forward simulations for 1000 timesteps on each dataset with different initial conditions.

capturing the atomic structure. Altogether, we observe that NEQUIP followed by TORCHMDNET
performs best in capturing the atomic structure for most datasets. We now evaluate the models’
EV and FV during the forward simulation. Interestingly, we observe that NEQUIP and ALLEGRO
exhibit the least FV for most datasets, while MACE and BOTNET perform better in terms of EV.
Interestingly, TORCHMDNET, despite having the lowest MAE on energy for most datasets, does
not exhibit low EV, indicating that having low MAE during model development does not guarantee
low energy error during MD simulation.

4.3.3 Training and inference time
Table 4 shows different models’ training and inference time. MACE and TORCHMDNET have the
lowest per epoch training time. The total training time is higher for transformer models TORCH-
MDNET and EQUIFORMER because of the larger number of epochs required for training. Although
NEQUIP and ALLEGRO require more time per epoch, they get trained quickly in fewer epochs. LiPS
dataset, having the largest dataset size in training of around 20000, has the largest per epoch training
time. Since MD simulations are generally performed on CPUs, we report inference time as a mean
over five simulations for 1000 steps performed on a CPU. TORCHMDNET is significantly fast on
all the datasets while ALLEGRO and MACE show competitive performance. A visual analysis of
the models on these metrics are given in App. A.7.

4.4 Challenging tasks on EGRAFF

4.4.1 Generalizability to higher temperatures
At higher temperatures, the sampling region in the energy landscape widens; hence, the configura-
tions obtained at higher temperatures come from a broader distribution of structural configurations.
In the 3BPA molecule, at 300K, only the stable dihedral angle configurations are present, while at
600K, all configurations are sampled. Here, we evaluate the model trained at lower temperatures
for simulations at higher temperatures. Table 5 shows the obtained mean energy and force viola-
tion of the forward simulation trajectory, and Table 6 shows the corresponding JSD and WF. We
observe that the models can reasonably capture the behavior, both structure and dynamics, at higher
temperatures.

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
E F E F E F E F E F E F

Acetylacetone 0.960 0.709 0.820 0.710 0.923 0.713 0.813 0.710 0.810 0.711 0.836 0.713
(0.361) (0.042) (0.275) (0.041) (0.331) (0.041) (0.275) (0.041) (0.276) (0.043) (0.282) (0.042)

3BPA 0.810 0.711 0.729 0.710 0.680 0.711 0.760 0.710 0.803 0.709 0.814 0.710
(0.394) (0.032) (0.292) (0.033) (0.248) (0.032) (0.281) (0.032) (0.310) (0.032) (0.30) (0.032)

Aspirin 1.068 0.626 1.009 0.625 1.083 0.627 1.004 0.628 1.023 0.637 1.096 0.626
(0.351) (0.081) (0.358) (0.085) (0.337) (0.078) (0.338) (0.075) (0.36) (0.083) (0.352) (0.077)

Ethanol 3.287 0.684 3.497 0.686 3.239 0.698 3.579 0.690 3.252 0.698 3.420 0.686
(1.275) (0.071) (1.209) (0.071) (1.206) (0.078) (1.255) (0.076) (1.245) (0.072) (1.327) (0.074)

Naphthalene 2.45 0.624 2.305 0.603 2.524 0.599 2.59 0.604 2.593 0.616 2.700 0.604
(0.685) (0.073) (0.688) (0.062) (0.644) (0.063) (0.663) (0.072) (0.675) (0.075) (0.688) (0.070)

Salicylic Acid 2.135 0.625 1.955 0.604 2.042 0.621 2.14 0.610 1.996 0.616 2.146 0.594
(0.468) (0.068) (0.465) (0.064) (0.45) (0.072) (0.444) (0.063) (0.477) (0.065) (0.529) (0.062)

LiPS 87.52 0.711 97.64 0.710 100.07 0.712 100.30 0.765 78.93 0.718 160.60 0.712
(36.342) (0.054) (39.990) (0.053) (36.839) (0.053) (39.041) (0.053) (47.28) (0.050) (76.441) (0.049)

LiPS20 45.10 0.720 32.79 0.721 27.99 0.726 41.47 0.722 - - 15108.75 0.834
(14.206) (0.043) (8.09) (0.040) (8.201) (0.039) (8.613) (0.039) - - (27106.23) (0.065)

GeTe 495.30 0.800 294.39 0.756 351.86 0.764 352.46 0.765 - - 346.44 0.779
(36.945) (0.064) (23.563) (0.063) (27.139) (0.072) (27.055) (0.073) - - (25.362) (0.060)

Table 3: Geometric mean of energy (×10−5) and force violation error over the simulation trajectory.
The values are computed as the average of five forward simulations for 1000 timesteps on each
dataset with different initial conditions. Values in the parenthesis represent the standard deviation.
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
T I T I T I T I T I T I

Acetylacetone 0.66 3.18 0.17 1.94 0.11 1.90 0.04 2.66 0.52 9.98 0.11 1.79
3BPA 1.07 7.07 1.80 4.92 0.12 4.46 0.06 4.18 0.68 19.25 0.13 4.83
Aspirin 5.23 2.93 1.61 1.68 0.21 1.76 0.14 2.45 0.85 13.04 0.15 1.41
Ethanol 5.49 2.05 1.62 0.68 5.03 1.07 1.15 1.28 0.81 5.70 0.14 0.80
Naphthalene 5.26 3.75 2.11 1.07 13.47 1.27 4.728 2.28 0.85 14.67 0.14 1.37
Salicylic Acid 5.24 3.30 1.61 0.87 11.68 1.26 3.858 2.29 0.82 9.79 0.14 1.17
LiPS 89.91 35.83 20.89 13.91 4.82 10.29 3.61 6.52 18.51 46.34 3.18 6.95
LiPS20 2.78 25.51 0.76 11.42 0.36 15.187 0.18 6.75 1.86 56.59 0.21 5.12
GeTe 7.22 105.62 4.49 220.43 2.07 78.2 0.58 26.75 9.33 143.91 1.55 21.67

Table 4: Training time (T) per epoch and inference time (I) in minutes/epoch and minutes, re-
spectively, for the trained models on all the datasets. Inference time is the mean over 5 forward
simulations of 1000 steps on the CPU.

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
E F E F E F E F E F E F

Acetylacetone 300K 0.959 0.7092 0.817 0.7110 0.924 0.7131 0.813 0.7096 0.810 0.7113 0.836 0.7128
600K 1.806 0.7145 1.912 0.7137 1.893 0.7140 2.215 0.7127 2.169 0.7137 1.996 0.7120

3BPA 300K 0.809 0.7106 0.708 0.7102 0.677 0.7109 0.759 0.7097 0.803 0.7089 0.814 0.7097
600K 1.180 0.7095 1.603 0.7092 1.607 0.7102 1.214 0.7087 1.319 0.7104 1.160 0.7121

Table 5: Geometric mean of energy (×10−5) and force violation at 300 K and 600 K using model
trained at 300 K for acetylacetone and 3BPA dataset.

4.4.2 Out of distribution tasks on the LiPS20 dataset

Unseen crystalline structures: Crystal structures are stable low-energy structures with inherent
symmetries and periodicity. Predicting their energy accurately is an extremely challenging task and
a cornerstone in materials discovery. Here, we train the models on liquid (disordered) structures and
test them on the out-of-distribution crystalline structures to evaluate their generalizability capabili-
ties. Table 7 shows that BOTNET performs appreciably well with almost the same energy and force
error on crystal structures as the obtained training error. Both the transformer models have poor per-
formance on the LiPS20 system, in terms of both the training and testing datasets. TORCHMDNET
has significantly high energy and force errors, whereas EQUIFORMER exhibits instability during the
forward simulation.

Generalizability to unseen composition: The LiPS20 dataset consists of 20 different compositions
with varying system sizes and cell geometries (see App. A.2). In Tables 7a(a) and 7b, we show the
results on the test structures that are not present in the training datasets. The test dataset consists
of system sizes up to 260 atoms, while the models were trained on system sizes with < 100 atoms.
It tests the models’ generalization as well as inductive capability. We observe that MACE and
BOTNET have the lowest mean energy, force violation, and low WF. NEQUIP and ALLEGRO have
significantly higher test errors.

5 Concluding Insights
In this work, we present EGRAFFBench, a benchmarking suite for evaluating machine-learned force
fields. The key insights drawn from the extensive evaluation are as follows.

1. Dataset matters: There was no single model that was performing best on all the datasets
and all the metrics. Thus, the selection of the model depends highly on the nature of the
atomic system, whether it is a small molecule or a bulk system, for instance.

2. Structure is important: Low force or energy error during model development does not
guarantee faithful reproduction of the atomic structure. Conversely, models with higher
energy or force error may provide reasonable structures. Accordingly, downstream evalu-
ation of atomic structures using structural metrics is important in choosing the appropriate
model.

3. Stability during dynamics: Models exhibiting low energy or force errors during the model
development on static configurations do not guarantee low errors during forward simula-
tion. Thus, the energy and force violations during molecular dynamics should be evaluated
separately to understand the stability of the simulation.

4. Out-of-distribution is still challenging: Discovery of novel materials relies on identifying
hitherto unknown configurations with low energy. We observe that the models still do not
perform reliably on out-of-distribution datasets, leaving an open challenge in materials
modeling.
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF

Acetylacetone 300K 28.244 24.552 29.628 22.166 30.612 26.038 31.072 22.904 29.863 21.783 29.335 22.485
600K 18.868 31.480 21.068 26.178 18.332 26.620 19.295 28.708 17.938 27.414 19.054 29.626

3BPA 300K 0.821 6.024 1.130 7.986 1.069 7.129 0.976 8.358 0.923 6.991 0.874 7.309
600K 0.758 6.202 0.596 5.137 0.778 5.861 0.683 5.120 1.053 6.648 0.859 6.985

Table 6: JSD and WF at 300 K and 600 K using the model trained at 300 K for acetylacetone and
3BPA.

NEQUIP ALLEGRO BOTNET MACE TORCHMDNET

Train structures E 45.100 32.786 27.997 41.475 15108.747
F 0.719 0.721 0.726 0.722 0.834

Crystal structures E 108.842 197.276 27.159 50.380 40075.532
F 0.717 0.720 0.726 0.722 0.886

Test structures E 15439.338 16803.125 117.531 99.390 59906.813
F 0.763 0.766 0.729 0.723 0.902

(a) Geometric mean of energy (×10−5) and force
violation error over the simulation trajectory for the
LiPS20 Train structures, Crystal Structures and Test
structures.

NEQUIP ALLEGRO BOTNET MACE TORCHMDNET

Train structures JSD 0.001 0.001 0.001 0.001 0.006
WF 14.920 18.318 17.076 17.697 41.703

Crystal structures JSD 0.0 0.0 0.0 0.0 0.006
WF 7.909 8.7305 10.525 12.661 61.201

Test structures JSD 0.009 0.01 0.002 0.001 0.0159
WF 37.974 35.747 14.234 14.936 70.133

(b) JSD and WF on LiPS20 dataset for Train struc-
tures, Crystal structures, and Test structures for dif-
ferent models.

Table 7: LiPS20 test on train structures, unseen crystalline structures, and test structures: (a) Energy
and Force violation and (b) JSD and WF.

5. Fast to train and fast on inference: We observe that some models are fast on training,
while others are fast on inference. For instance, TORCHMDNET is slow to train but fast
on inference. While MACE is fast both on training and inference, it does not give the
best results in terms of structure or dynamics. Thus, in cases where larger simulations are
required, the appropriate model that balances the training/inference time and accuracy may
be chosen.

Limitations and future work: Our research clearly points to developing a foundation model trained
on large datasets. Further, improved training strategies that (i) ensure the learning of gradients of
energies and forces, (ii) take into account the dynamics during simulations, and (iii) reproduce the
structure faithfully need to be developed. This suggests moving away from the traditional training
approach only on energy and forces and rather focusing on the system’s dynamics. Further strate-
gies combining experimentally observed structures and simulated dynamics can be devised through
experiment-simulation fusion to develop reliable force fields that are faithful to both experiments
and simulations. Another interesting aspect is the empirical evaluation of which particular architec-
tural feature of a model helps in giving a superior performance for a given dataset or system (defined
by the type of bonding, number of atoms, crystalline vs disordered, etc.). Such a detailed analysis
can be a guide to designing improved architecture while also providing thumb rules toward the use
of an appropriate architecture for a given system.
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electronic structure and molecular dynamics software package-quickstep: Efficient and accurate
electronic structure calculations. The Journal of Chemical Physics, 152(19), 2020.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathe-
matical statistics, 22(1):79–86, 1951.

Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob Blomqvist, Ivano E Castelli, Rune Christensen,
Marcin Dułak, Jesper Friis, Michael N Groves, Bjørk Hammer, Cory Hargus, et al. The atomic
simulation environment—a python library for working with atoms. Journal of Physics: Con-
densed Matter, 29(27):273002, 2017.

Kin Long Kelvin Lee, Carmelo Gonzales, Marcel Nassar, Matthew Spellings, Mikhail Galkin, and
Santiago Miret. Matsciml: A broad, multi-task benchmark for solid-state materials modeling.
arXiv preprint arXiv:2309.05934, 2023.

Yi-Lun Liao and Tess Smidt. Equiformer: Equivariant graph attention transformer for 3d atom-
istic graphs. In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=KwmPfARgOTD.

M Micoulaut, K Gunasekera, S Ravindren, and P Boolchand. Quantitative measure of tetrahedral-s
p 3 geometries in amorphous phase-change alloys. Physical Review B, 90(9):094207, 2014a.

Matthieu Micoulaut, M-V Coulet, Andrea Piarristeguy, MR Johnson, Gabriel J Cuello, C Bichara,
J-Y Raty, H Flores-Ruiz, and Annie Pradel. Effect of concentration in ge-te liquids: A combined
density functional and neutron scattering study. Physical Review B, 89(17):174205, 2014b.

10

https://openreview.net/forum?id=A8pqQipwkt
https://openreview.net/forum?id=KwmPfARgOTD
https://openreview.net/forum?id=KwmPfARgOTD


Santiago Miret, Kin Long Kelvin Lee, Carmelo Gonzales, Marcel Nassar, and Matthew Spellings.
The open matsci ML toolkit: A flexible framework for machine learning in materials sci-
ence. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=QBMyDZsPMd.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai Ko-
rnbluth, and Boris Kozinsky. Learning local equivariant representations for large-scale atomistic
dynamics, 2022.
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A Appendix

A.1 Dataset details

Table 8 shows the details of which models have been evaluated on which datasets in the literature.
We note that there have been no exhaustive analysis of all the models on even one dataset.

Dataset # Atoms # Atom types NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET

MD17 9-21 2-3 ✓ ✓ - - ✓ ✓
LiPS 83 3 ✓ - - - - -
3BPA 27 4 - ✓ ✓ ✓ - -
AcAc 15 3 - - ✓ ✓ - -
LiPS20 32-260 1-3 - - - - - -
GeTe 200 2 - - - - - -

Table 8: Datasets considered in the present work. The tick represents the datasets that have been
evaluated on the respective EGRAFF model in previous work. Note that none of the datasets have
been evaluated and compared for all the models in the literature. LiPS20 and GeTe are two new
datasets in the present work.

A.2 LiPS20

Material Composition Atom number Number of configurations
β-Li3P4S4 Li24P8S32 64 1000
γ-Li3P4S4 Li48P16S64 128 1000
Li2P2S6 Li16P16S48 80 1000

Hexagonal Li2PS3 Li32P16S48 96 1000
Orthorhombic Li2PS3 Li32P16S48 96 1000

Li2S Li64S32 96 1000
Li3P Li48P16 64 1000

Li4P2S6 Li32P16S48 96 1000
Li7P3S11 Li28P12S44 84 1000
Li7PS6 Li28P4S24 56 1000

Li48P16S61 Li48P16S61 125 1000
P2S5 P8S20 28 1000
P4S3 P32S24 56 1000

67Li2S − 33P2S5 Li82P40S138 260 1000
70Li2S − 30P2S5 Li82P38S133 253 1000
75Li2S − 25P2S5 Li91P35S129 255 1000
80Li2S − 20P2S5 Li92P34S128 254 1000

Li Li54 54 1000
P P48 48 1000
S S32 32 1000

Table 9: Different compositions in LiPS20 dataset

All the ab initio calculations were carried out at the DFT level (Kohn & Sham (1965)) using the
Quickstep module of the CP2K package(Kühne et al. (2020)) with the hybrid Gaussian and plane
wave method (GPW)(VandeVondele et al. (2005)). The basis functions are mapped onto a multi-grid
system with the default number of four different grids with a plane-wave cutoff for the electronic
density to be 500 Ry, and a relative cutoff of 50 Ry to ensure the computational accuracy. The AIMD
trajectories at 3000 K were obtained in the NVT ensemble with a timestep of 0.5 fs for 2.5 ps. The
temperature selection of 3000 K can enable the sampling of the melting process within the short time
scale, which can be used for simulating both the crystal and glass structure afterward. The tempera-
ture was controlled using the Nosé–Hoover thermostat (Nosé (1984)). The exchange-correlation en-
ergy was calculated using the Perdew-Burke-Ernzerhof (PBE) approximation(Perdew et al. (1996)),
and the dispersion interactions were handled by utilizing the empirical dispersion correction (D3)
from Grimme (Grimme et al. (2010)). The pseudopotential GTH-PBE combined with the corre-
sponding basis sets were employed to describe the valence electrons of Li (DZVP-MOLOPT-SR-
GTH), P (TZVP-MOLOPT-GTH), and S (TZVP-MOLOPT-GTH), respectively(Goedecker et al.
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(1996)). In addition to the dataset from the AIMD trajectories, the expanded dataset was realized
by single energy calculation using the active machine learning method implemented in the DP-GEN
package (Zhang et al. (2020)). The active machine learning scheme was carried out based on the
glass structure of xLi2S-(100-x)P2S5 (x = 67, 70, 75, and 80) in order to strengthen the capability of
the force field in reproducing the glass structures of different lithium thiophosphates. The training
dataset consists following compositions, shuffled randomly: Li, Li2S,Li48P16S61, P4S3, Li7PS6.
Crystal structures set included beta−Li3PS4, Li2PS3−hex, gamma−Li3PS4, Li2PS3−orth,
and rest compositions were used as the test dataset.

A.3 Timestep and temperature details

Table 10 displays the temperature in Kelvin and the corresponding timestep in femtoseconds for
various datasets utilized in the forward simulations. These values remain consistent with the original
sampled datasets.

Dataset Temperature(K) Timestep(fs)
Acetylacetone 300, 600 1.0,0.5

3BPA 300, 600 1.0
MD17 500 0.5
LiPS 520 1.0

LiPS20 3000 1.0
GeTe 920 0.12

Table 10: Temperature (T) and Timestep(fs) for the forward simulation on different datasets

A.4 Radial distribution function

Figure 3 shows the reference and generated radial distribution functions(RDFs) for 3BPA, Acety-
lacetone, LiPS and GeTe. The generated RDFs are obtained after averaging over five simulations
trajectories of 1000 steps.

Figure 3: Pair distribution function(PDF) over the simulation trajectory. Reference PDF in red
and generated PDF in blue represent ground truth and predicted PDFs. The values are computed
as the average of five forward simulations for 1000 timesteps on each dataset with different initial
conditions.

A.5 Mean Energy and force violation

Figure 4 shows the obtained geometric mean of energy and force violation errors for the trained
models on all the datasets. We observe that the variation of energy error among the models is
quite large for some datasets like MD17 and LiPS20, and very small for datasets like 3BPA and
Acetylacetone.

A.6 Rollout Energy and force violation

The evolution of energy violation error, EV(t), and force violation error, FV(t), obtained as average
over five forward simulations for different datasets are shown in Figure 5.
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Figure 4: Geometric mean of energy (×10−5) and force violation error over the simulation trajec-
tory. The error bar shows a 95% confidence interval. The values are computed as the average of five
forward simulations for 1000 timesteps on each dataset with different initial conditions.

Figure 5: Energy (×10−5) and force violation error over the simulation trajectory. The error bar
shows a 95% confidence interval. The values are computed as the average of five forward simula-
tions for 1000 timesteps on each dataset with different initial conditions.
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A.7 Comparative Analysis

Figure 6 shows the comparative radial plots for different metrics for all the datasets. For better
interpretability, we normalize all the metrics with respect to the its largest value in the dataset.
Figure 7 shows the comparison of different pairs of related metrics for all the datasets and models.

Figure 6: Comparative analysis of different metrics for all models across datasets. The color of
the line indicates model identity. The values are normalized by dividing their respective maximum
values and then multiplying it by 100.

Figure 7: Comparision of (a) Energy violation and Force Violation,(b) JSD and WF, (c) Training
time and Inference time, and (d) Mean absolute energy error(MAE) and Mean absolute force error
(MAF), for all dataset. The values are normalized by the largest values to scale between 0 and 1.

A.8 Hardware details

All the models are trained using A100 80GB PCI GPUs, and inference performed using AMD
EPYC 7282 16-Core Processor @ 2.80GHz with 1TB installed RAM. All the models uses PyTorch
environment, with Atomic simulation environment (ASE) package for forward simulations. Specific
versions details are given on the code repository.

A.9 Root mean square displacement plots

A.10 Hyperparameter details

The details of hyperparameters used for training each of the models are provided in the following
tables. NEQUIP in Table 11, ALLEGRO in Table 12, BOTNET in Table 13, MACE in Table 14,
EQUIFORMER in Table 15, and TORCHMDNET in Table 16
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Figure 8: Root mean square displacement plots for models on all datasets. The values are computed
as the average of five forward simulations for 1000 timesteps on each dataset with different initial
conditions.

Figure 9: Root mean square displacement plots for all the models on all datasets. The values are
computed as the average of five forward simulations for 1000 timesteps on each dataset with different
initial conditions.
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Hyper-parameter Value or description
R max 5.0
Number of Layers 6
L max 2
Number of Features 32
Nonlinearity Type Gate
Nonlinearity Scalars (e) Silu
Nonlinearity Scalars (o) Tanh
Nonlinearity Gates (e) Silu
Nonlinearity Gates (o) Tanh
Number of Basis 8
BesselBasis Trainable True
Polynomial Cutoff 6
Invariant Layers 3
Invariant Neurons 64
Learning Rate 0.005
Batch Size 1
EMA Decay 0.99
EMA Use Num Updates True
Early Stopping Patiences (Validation Loss) 50
Early Stopping Lower Bounds (LR) 1.0e-6
Early Stopping Upper Bounds (Cumulative Wall) 5 days
Loss Coeffs (Forces) 1
Loss Coeffs (Total Energy) 1
Optimizer Name Adam
LR Scheduler Name ReduceLROnPlateau
LR Scheduler Patience 5
LR Scheduler Factor 0.8

Table 11: NEQUIP Hyperparameters

A.11 Literature comparison

A.11.1 Generalizability to unseen structures

The first task focuses on evaluating the models on an unseen small molecule structure. To this extent,
we test the models, trained on four molecules of the MD17 dataset (aspirin, ethaenol, naphthalene,
and salicylic acid), on the benzene molecule, an unseen molecule from the MD17 dataset. Note
that the benzene molecule has a cyclic ring structure. Aspirin and Salicylic acid contain one ring,
naphthalene is polycyclic with two rings, while ethanol has a chain structure with no rings. Table 18
shows the EV and FV and Table 19 shows the corresponding JSD and WF. We observe that all the
models suffer very high errors in force and energy. EQUIFORMER trained on ethanol and salicylic
acid exhibits unstable simulation after the first few steps. Interestingly, non-cyclic ethanol models
perform better than aspirin and salicylic acid, although the latter structures are more similar to
benzene. Similarly, the model trained on polycyclic Naphthalene performs better than other models.
Altogether, we observe that despite having the same chemical elements, models trained on one small
molecule do not generalize to an unseen molecule with a different structure.
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Parameter Value
R Max 5.0
PolynomialCutoff 6
L Max 2
Num Layers 2
Env Embed Multiplicity 64
Embed Initial Edge True
Two Body Latent MLP Dimensions [128, 256, 512, 1024]
Two Body Latent MLP Nonlinearity Silu
Latent MLP Latent Dimensions [1024, 1024, 1024]
Latent MLP Nonlinearity Silu
Latent Resnet True
Edge Eng MLP Latent Dimensions [128]
Edge Eng MLP Nonlinearity None
Learning Rate 0.005
Batch Size 1
Max Epochs 10000
EMA Decay 0.99
Early Stopping Patiences(Validation loss) 50
Early Stopping Lower Bounds(LR) 1.0× 10−6

Early Stopping Upper Bounds(Cumulative wall) 5 days
Loss Coefficients(Forces) 1
Loss Coefficients(Total energy) 1
Optimizer Name Adam
LR Scheduler Name ReduceLROnPlateau
LR Scheduler Patience 5
LR Scheduler Factor 0.8

Table 12: ALLEGRO Hyperparameters
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Hyper-parameter Value or description
Rmax 5.0
Correlation order 1
Number of Radial basis 8
Numcber of Cutoff basis 5
Lmax 3
Number of Interactions 5
MLP Irreps 16x0e
Hidden Irreps 16x0e+16x1o+16x2e
Gate Silu
E0s {1:-13.663181292231226, 3:-216.78673811801755,

6:-1029.2809654211628, 7:-1484.1187695035828,
8:-2042.0330099956639, 15:-1537.0898574856286,
16:-1867.8202267974733}

Forces weight 10.0
SWA Forces Weight 1.0
Energy Weight 1.0
SWA Energy Weight 1000.0
Virials Weight 1.0
SWA Virials Weight 10.0
Config type Weights {”Default”:1.0}
optimizer AMSGrad Adam
Batch Size 5
Validation Batch Size 5
Learning rate 0.01
SWA learning rate 0.001
Weight decay 5e-7
EMA True
EMA Decay 0.99
Scheduler ReduceLROnPlateau
LR factor 0.8
Scheduler patience 50
LR Scheduler gamma 0.9993
SWA True
Max number of epochs 1500
Clip gradiants 10.0

Table 13: BOTNET Hyperparameters
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Hyper-parameter Value or description
Rmax 5.0
Correlation order 3
Number of Radial basis 8
Numcber of Cutoff basis 5
Lmax 3
Number of Interactions 2
MLP Irreps 16x0e
Hidden Irreps 16x0e+16x1o+16x2e
Gate Silu
E0s {1:-13.663181292231226, 3:-216.78673811801755,

6:-1029.2809654211628, 7:-1484.1187695035828,
8:-2042.0330099956639, 15:-1537.0898574856286,
16:-1867.8202267974733}

Forces weight 10.0
SWA Forces Weight 1.0
Energy Weight 1.0
SWA Energy Weight 1000.0
Virials Weight 1.0
SWA Virials Weight 10.0
Config type Weights {”Default”:1.0}
optimizer AMSGrad Adam
Batch Size 5
Validation Batch Size 5
Learning rate 0.01
SWA learning rate 0.001
Weight decay 5e-7
EMA Decay 0.99
Scheduler ReduceLROnPlateau
LR factor 0.8
Scheduler patience 50
LR Scheduler gamma 0.9993
SWA True
Max number of epochs 1500
Clip gradiants 10.0

Table 14: MACE Hyperparameters
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Hyper-parameters Value or description
Optimizer
Learning rate scheduling
Warmup epochs
Maximum learning rate
Batch size
Number of epochs
Weight decay
Energy weight
Force weight
Dropout rate

AdamW
Cosine learning rate with linear warmup
10
5× 10−4

8
5000
1× 10−6

1.0
1.0
0.0

Cutoff radius (Å)
Number of radial basis
Hidden size of radial function
Number of hidden layers in radial function

5
32
64
2

Equiformer
Number of Transformer blocks
Embedding dimension dembed
Spherical harmonics embedding dimension dsh
Number of attention heads h
Attention head dimension dhead
Hidden dimension in feed forward networks dffn
Output feature dimension dfeature

6
[(128, 0), (64, 1), (32, 2)]
[(1, 0), (1, 1), (1, 2)]
4
[(32, 0), (16, 1), (8, 2)]
[(384, 0), (192, 1), (96, 2)]
[(512, 0)]

Table 15: EQUIFORMER Hyperparameters
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Hyper-parameter Value or description
Activation Silu
Aggregation Add
Attention Activation Silu
Batch Size 8
Radius Cutoff Lower 0.0
Radius Cutoff Upper 5.0
Derivative True
Early Stopping Patience 300
EMA Alpha Force 1.0
EMA Alpha Energy 0.05
Embedding Dimension 128
Energy Weight 0.2
Force Weight 0.8
Inference Batch Size 64
Learning Rate 0.001
Learning Rate Factor 0.8
Minimum Learning Rate 1.0× 10−7

Learning Rate Patience 30
Learning Rate Warmup Steps 1000
Max Number of Neighbors 32
Max Z 100
Neighbor Embedding True
Number of Epochs 5000
Number of Heads 8
Number of Layers 6
Number of Nodes 1
Number of Radial basis function 32
Number of Workers 6
Output Model Scalar
Precision 32
Radial basis function Type Expnorm
Reduce Operation Add
Train Size 500
Weight Decay 0.0

Table 16: TORCHMDNET Hyperparameters

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET PaiNN DimeNET++
E F E F E F E F E F E F F F

Aspirin(Ours) 6.84 13.89 5.00 9.17 7.99 14.06 8.53 14.01 6.15 15.29 5.33 8.97 12.41 22.07
Aspirin(Liao & Smidt (2023)) 5.7 8.0 - - - - - - 5.3 7.2 5.3 11.0 - -
Aspirin(Fu et al. (2023)) - 2.3 - - - - - - - - - - 9.2 10.0
Aspirin(Thölke & Fabritiis (2022)) - 15.09 - - - - - - - - 5.33 10.97 - –

Ethanol(Ours) 2.67 7.49 2.34 5.01 2.60 6.80 2.36 3.19 2.66 9.73 2.67 5.93 11.81 17.19
Ethanol(Liao & Smidt (2023)) 2.2 3.1 - - - - - - 2.2 3.1 2.3 4.7 - -
Ethanol(Fu et al. (2023)) - 1.3 - - - - - - - - - - 5.0 4.2
Ethanol(Thölke & Fabritiis (2022)) - 9.02 - - - - - - - - 2.25 4.73 - -

Naphthalene(Ours) 5.70 6.20 5.14 2.64 6.67 6.07 6.26 1.98 3.88 7.01 2.55 4.03 4.07 19.65
NaphthaleneLiao & Smidt (2023) 4.9 1.7 - - - - - - 3.7 2.1 3.7 2.6 - -
Naphthalene(Fu et al. (2023)) - 1.10 - - - - - - - - - - 3.8 5.7
Naphthalene(Thölke & Fabritiis (2022)) - 4.21 - - - - - - - - 3.69 2.64 - -

Salicylic Acid(Ours) 5.78 8.42 5.76 6.30 5.56 10.21 5.34 4.24 5.22 12.39 6.85 7.19 11.12 25.48
Salicylic acid(Liao & Smidt (2023)) 4.6 3.9 - - - - - - 4.5 4.1 4.0 5.6 - -
Salicylic acid(Fu et al. (2023)) - 1.6 - - - - - - - - - - 6.5 9.6
Salicylic acid(Thölke & Fabritiis (2022)) - 10.32 - - - - - - - - 4.03 5.59 - -

LiPS(Ours) 165.43 5.04 31.75 2.46 28.0 13.0 30.0 15.0 83.20 51.10 67.0 61.0 112.43 42.23
LiPS(Fu et al. (2023)) - 3.7 - - - - - - - - - - 11.7 3.2

Table 17: Literature comparison
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NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
E F E F E F E F E F E F

Aspirin 22650 0.762 22676 0.765 21880 0.760 21881 0.766 47027.742 0.769 46864 0.765
(11.622) (0.060) (0.311) (0.070) (6.874) (0.061) (12.11) (0.061) (3.88) (0.065) (184.678) (0.058)

Ethanol 6154.4 0.740 6224.2 0.711 5860.5 0.935 5863.2 0.921 - - 20262 0.712
(0.402) (0.056) (12.501) (0.040) (0.325) (0.016) (0.338) (0.022) (19.401) (0.052)

Naphthalene 4783.8 0.759 4799.7 0.743 4572.4 0.970 4572.1 0.959 24546 0.761 24440 0.777
(16.411) (0.067) (-) (0.070) (0.32) (0.008) (0.324) (0.012) (6.069) (0.061) (-) (0.057)

Salicylic acid 22840 0.766 22849 0.753 22055 0.982 2205 0.965 - - 35947 0.769
(0.308) (0.067) (0.314) (0.076) (0.309) (0.005) (0.310) (0.007) (0.000) (2.907) (0.057)

Table 18: EV (E) and FV (F) on the forward simulation of benzene molecule by the models trained
on aspirin, ethanol, naphthalene, and salicylic acid.

NEQUIP ALLEGRO BOTNET MACE EQUIFORMER TORCHMDNET
JSD WF JSD WF JSD WF JSD WF JSD WF JSD WF

Aspirin 360854 73.801 573039 61.158 311916 62.842 473362 89.692 482522 75.081 494492 76.828
Ethanol 509375 63.321 1130600 51.601 1108865 57.181 1095829 41.878 - - 1163851 65.746
Naphthalene 337082 65.799 339412 51.018 673988 21.228 821416 31.497 365549 65.117 475078 110.906
Salicylic acid 495068 70.401 525441 50.78 1308028 68.034 1340236 61.483 - - 339296 71.778

Table 19: JSD and WF over simulation trajectory of benzene molecule using models trained on
aspirin, ethanol, naphthalene, and salicylic acid.
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