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Abstract

Modern service systems are increasingly adopting new modalities enabled by
emerging technologies, such as AI-assisted services, to better balance quality and
efficiency. Motivated by this trend, we study dynamic service mode control in a
single-server queue with two switchable modes, each with a distinct service rate
and an unknown reward distribution. The objective is to maximize the long-run
average of expected cumulative rewards minus holding costs achievable under
non-anticipating, state-dependent policies. To address the problem, we first es-
tablish the optimality of a threshold policy under full information of the problem
primitives. When reward distributions are unknown but samples are observable,
we propose an online learning algorithm that uses Upper Confidence Bound (UCB)
estimates of the unknown parameters to adaptively learn the optimal threshold. Our
algorithm achieves statistically near-optimal regret of Õ(

√
T ) and demonstrates

strong numerical performance. Additionally, when additional partial information
about the optimal policy is available ex ante (specifically, a non-trivial lower bound
on the optimal threshold), we show that an episodic greedy policy achieves constant
regret by leveraging a free-exploration property intrinsic to this special setting.
Methodologically, we develop a novel regret decomposition and regenerative cycle-
based analysis, offering general tools for learning-based queueing control. Lastly,
we conduct a healthcare case study on AI-assisted patient messaging demonstrating
the practical utility of our approach.

1 Introduction
Service rate control is a fundamental problem in service, manufacturing, and telecommunication
systems, where providers adjust service speeds or modes to balance rewards, costs, and congestion.
Classical models emphasize cost minimization, with faster service typically reducing congestion
as well as operational costs. In contrast, we consider customer-intensive services, e.g., call centers,
restaurants, and retail banks, with speed-quality trade-offs where longer service can improve customer
satisfaction [23, 27, 14, 5, 3, 16]. More recently, advances in AI-assisted workflows have introduced
newer complexities into this landscape: the potential impact of service modes on performance is
often unknown and must be learned through experimentation. Examples include hospitals testing
generative AI for patient messages and radiology studies on AI-assisted diagnostics, which show
higher quality but increased workload [9, 24, 22, 29, 2]. In a similar vein, effective social media
content moderation necessitates carefully calibrating AI-based approaches—offering speed and
scalability but uncertain efficacy—against slower yet more reliable human review [7]. More broadly,
AI-augmented systems exhibit uncertain and noisy payoff structures—such as satisfaction, ratings,
and reliability metrics—that complicate the management of speed-quality trade-offs. These challenges
call for online learning approaches that dynamically balance exploration of new service modalities to
gain valuable information, with exploitation of existing knowledge to optimize performance.
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Motivated by this, we study a service mode control problem in a Markovian single-server queue
where the server can dynamically choose between two service modes: a base service mode with faster
service rate and a premium service mode with slower service rate but potentially higher rewards.
Rewards under each mode follow unknown distributions that must be learned through experimentation,
and the objective is to maximize the long-run average expected reward (net of holding costs). To
address this problem, we first characterize the optimal policy under full information and show that it
takes the form of a queue-length-based threshold rule. We then consider the online learning setting
where reward distributions are initially unknown but samples are observable, and propose an episodic
UCB-based algorithm that learns the optimal threshold policy, adapting to different stability regimes
and achieving rate-optimal Õ(

√
T ) regret. Our analysis relies on a novel regret decomposition using

regenerative cycles into transient regret, learning regret, residual error, and approximation error,
which aggregate to produce the Õ(

√
T ) bound. We further establish that an episodic greedy algorithm

achieves O(1) regret under a free-exploration property that holds when some side information about
the optimal threshold (specifically, a non-trivial lower bound) is available ex ante. Finally, via a
healthcare case study calibrated with real-world data, we show that our approach reduces regret by
12%–25% relative to baselines, highlighting its practical value.

Related work. First, our work relates to the literature on dynamic service rate control, which largely
focuses on optimizing service speeds under known system parameters, often in conjunction with
arrival rate control [5] or admission control [1]. In this context, threshold-type policies are generally
known to be optimal in M/M/1 queues with finitely many service rates [14], with extensions to
general arrival processes [19, 28], and Markov-modulated primitives [4]. Our modified M/M/1 setting,
on the other hand, is differentiated by unknown system parameters that must be learned through
interaction with the environment. Second, there is growing literature integrating statistical learning
with queueing control, e.g., scheduling, admission, and pricing under unknown system parameters
[26]. For scheduling, results include constant regret for empirical cµ rules in stable queues [17],
optimal learn-then-schedule methods in overloaded queues [32], and UCB-based algorithms for
multi-server networks [18, 30, 13]. For routing and admission control, there are studies on static
policy learning informed by linear program relaxations [31, 25], with recent work on threshold-based
admission policies [11]. For pricing and capacity sizing, [10, 15] learn optimal fixed prices and/or
service rates. Our work contributes to this body of literature by incorporating learning from service
mode-dependent stochastic rewards to optimize a weighted sum of competing objectives (rewards vs.
congestion). Third, in the reinforcement learning literature, prior work establishes regret guarantees
for finite state and action spaces [6], with extensions to countable spaces [21, 20]. Our algorithm
achieves rate-optimal regret in a countably infinite state space by leveraging structural properties of
the problem, complementing other model-based approaches [12].

2 Model and Problem Formulation

We consider a Markovian single-server queue with Poisson arrivals at rate λ. Customers are served on
a first-in-first-out basis and incur a holding cost c ⩾ 0 per unit time spent in the system. (Throughout,
when c = 0, we restrict attention to the regime λ < µp ⩽ µb, which maintains the optimality of
threshold policies under full information; see §3.)

Service modalities. At any time, the server can operate in a base mode with exponential service
times of rate µb, or a premium mode with exponential service times of rate µp ⩽ µb; the two modes
can be switched preemptively. Upon service completion, the system receives a stochastic reward
depending on the chosen mode, with mean rb (base) or rp (premium). Rewards are σ-sub-Gaussian
with mean upper bounded by R > 0, and independent across jobs and modes. We are interested in
the setting where rb and rp are unknown initially and must be estimated online.

Reward-congestion trade-off. Although we do not impose any restriction on the ordering between
rb and rp, it is natural in many applications to expect rb ⩽ rp. That is, the base mode reduces
congestion but yields lower rewards, while the premium mode offers higher rewards at the cost of
slower service. To ensure stabilizability of the system, we assume µb > λ.

Policies. The horizon of the control problem is T > 0. For t ∈ [0, T ], we use Ht to denote
the filtration representing the complete system history up to time t. A policy is a non-anticipatory,
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deterministic‡ mapping π : Ht → {b, p} that at any time selects a mode (base b or premium p) based
on current history. We denote the set of all admissible policies by Π.

Objective. We use Rπ(t) to denote the expected cumulative reward up to time t, and Qπ(t) to
denote the number in system at time t (which we interchangeably refer to as the queue length in this
single-server system) under policy π. Our goal is to design a policy that maximizes the long-run
average expected reward (net of holding cost), i.e.,

sup
π∈Π

lim inf
T→∞

1

T

(
Rπ(T )− E

[∫ T

0

cQπ(t) dt

])
. (1)

We benchmark the performance of π against the optimal value of (1) when the reward parameters are
known ex ante, denoted by OPT. The regret of policy π up to time t is then defined as

Regretπ(t) = tOPT−
(
Rπ(t)− E

[∫ t

0

cQπ(s) ds

])
. (2)

3 Full Information Setting
We begin by studying the full-information setting where all model parameters are known a priori. We
refer to a policy as a threshold policy with threshold Q ∈ N, denoted by πQ, if the server deploys the
base service when Q(t) ⩾ Q and the premium service otherwise. Building on Theorem 4 in [23], we
show that a threshold policy is optimal for (1) when the reward parameters are known. We further
establish that for a fixed Q ∈ N, the long-run average value of πQ satisfies

1

T

(
RπQ

(T )− E

[∫ T

0

cQπQ
(t) dt

])
→ VAL(Q,λ, µp, µb, c, rp, rb) as T →∞,

where VAL(Q,λ, µp, µb, c, rp, rb) := µprpPQ∼FQ
(1 ⩽ Q ⩽ Q− 1) + µbrbPQ∼FQ

(Q ⩾ Q) −
cEQ∼FQ

[Q]. Here, PQ∼FQ
(·) and EQ∼FQ

(·) denote the probability and expectation, respectively,
under the stationary distribution FQ induced by πQ. The optimal value of (1) under full information
is therefore OPT := supQ∈N VAL(Q,λ, µp, µb, c, rp, rb), achieved at some Q∗ (potentially infinite).

4 Online Learning Setting: Towards a Rate-Optimal Adaptive Policy
We now pivot to the case of unknown mean rewards rp and rb (and hence Q∗) that must be learned
through online experimentation. We begin by establishing a lower bound on achievable regret in (2).

Theorem 1 (Lower bound on achievable regret) For every policy π ∈ Π, there exists a problem
instance νπ such that Regretπ(T ; νπ) = O(

√
λT ) for sufficiently large T .

We next introduce Algorithm 1 for minimizing regret in (2). The algorithm searches for the optimal
threshold (within the class of threshold policies) over a candidate range from 1 up to a pre-specified
upper bound Q̄. It operates in episodes defined by busy cycles of the queue length process and
updates the threshold estimates using the data collected in each cycle. To guide the specification of
Q̄, we distinguish between degenerate and non-degenerate cases based on system parameters. In the
degenerate case, either the holding cost is zero (c = 0) or the two service modes have identical service
rates (µp = µb); in both scenarios, the trade-off between rewards and congestion disappears. In the
non-degenerate case, where c > 0 and µp ̸= µb, the system falls into one of three regimes depending
on which service modes can stabilize the system: (i) Bi-stable: λ < µp < µb; (ii) Critically bi-stable:
λ = µp < µb; (iii) Uni-stable: µp < λ < µb.

In the degenerate case, the problem, in fact, reduces to a simple two-armed bandit (albeit in continuous-
time) with unknown means rp and rb, and we omit its discussion for brevity. In the non-degenerate
case, we show that Q∗ ⩽ Q̄ <∞, where Q̄ is independent of T and in the bi-stable regime given by

Q̄ =

⌈
µb(µp − λ)R

c(µb − µp)
+

λ(µb − µp)

(µb − λ)(µp − λ)

⌉
, (3)

whereas in the critically bi-stable and uni-stable regimes, by

Q̄ =

⌈
−(1−A) +

√
(1−A)2 + 4Ay

2

⌉
+ 1, y =

µb

µb − λ
, A =

2R(µp + µb)

c
+

2λ

µb − λ
. (4)
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Algorithm 1 [UCB] An episodic UCB algorithm for threshold-triggered service mode control
• Input: Arrival/service rates λ, µp, µb, Holding cost c, Horizon T , Exploration coefficient α,

sub-Gaussian parameter σ, Mean reward upper bound R.
• Compute: Upper bound Q̄ ∈ N on the optimal threshold Q∗ as per (3) or (4).
• Initialize: Q(0) = 0, Threshold Q̂1 = 1.
• For k = 1, 2, · · ·

Deploy πQ̂k
until the end of episode k. (episode ends when queue empties again)

At the end of episode k, do the following:
r̂pk ← Empirical mean reward from all premium service completions by the end of episode k.
r̂bk ← Empirical mean reward from all base service completions by the end of episode k.

Q̂k+1 ← min
(
argmaxQ∈[Q̄] VAL

(
Q,λ, µp, µb, c, r̂pk +

√
ασ2 log T
2+Np

k
, r̂bk +

√
ασ2 log T
2+Nb

k

))
.

We now present our main regret bound for Algorithm 1. Combined with the lower bound in Theorem 1,
Theorem 2 shows that Algorithm 1 achieves the statistically optimal

√
T rate (up to polylog factors).

Theorem 2 (Upper bound on the regret of Algorithm 1) The regret of Algorithm 1 initialized with
α ⩾ 30, remains bounded as RegretUCB(t) = Õ

(√
t
)

at all times t ⩽ T , where Õ(·) hides poly-
logarithmic factors in T as well as dependencies on

(
λ, µp, µb, σ, R, c

)
.

Free exploration under the greedy policy. We show that if some side information about the
optimal threshold Q∗ is available ex ante, greedy policies can leverage the free-exploration property
of the underlying queueing system to achieve O(1) regret. Specifically, in the non-degenerate case, if
Q∗ > 1 is known, an episodic greedy policy, obtained by removing the UCB factors in Algorithm 1
and restricting Q̂k ⩾ 2 for all k, achieves constant regret. The key observation is that with this
modification, there is a positive probability of observing both base and premium service completions
in each episode, which eliminates the need for explicit UCB-based exploration.
Theorem 3 (Constant regret under the greedy policy) In the non-degenerate case, if Q∗ > 1 is
known a priori, then the episodic greedy algorithm achieves O(1), regret.

Case study on AI-assisted patient message replies. We conduct a numerical case study inspired by
recent pilots on AI-assisted patient message replies in healthcare [24, 22, 8, 9, 29]. In this setting, the
base service corresponds to providers drafting replies to patient messages independently, while the
premium service corresponds to providers collaborating with GenAI chatbots to generate and refine
drafts. Rewards and service rates are calibrated using existing studies [22, 24], which find statistically
significant evidence of higher ratings for AI-assisted replies (rb = 3.38, rp = 3.70) but slower
response speeds (µb = 0.769, µp = 0.659 per minute). We set the holding cost rate at c = 0.01, and
vary the arrival rate to mimic different parameter regimes. In Figure 1, we compare the performance
of the episodic UCB algorithm and the episodic greedy algorithm against two baseline policies:
1) event-based UCB, which updates estimates upon each service completion, and 2) static policy
UCB, which learns the optimal static policy (among “always premium” and “always base”). Our
results show that the proposed policies reduce regret by approximately 12%–25% at time T = 600
(comparable to the message volume in the pilot study of [22]) relative to static policy UCB.

0 250 500 750 1000 1250 1500 1750 2000
Time

0

20

40

60

80

100

120

140

Cu
m

ul
at

iv
e 

Re
gr

et

Episodic UCB
Event-based UCB
Static Policy UCB
Episodic Greedy

(a) Bi-stable

0 250 500 750 1000 1250 1500 1750 2000
Time

0

20

40

60

80

100

120

140

Cu
m

ul
at

iv
e 

Re
gr

et

Episodic UCB
Event-based UCB
Static Policy UCB
Episodic Greedy

(b) Critically bi-stable
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Figure 1: Case study results under different regimes

‡Remarkably, a threshold policy may no longer be optimal if the feasible set is expanded to include
randomized policies (and it is unclear what an optimal policy may look like); we leave this case to future work.

4



References
[1] Kranthi Mitra Adusumilli and John J Hasenbein. Dynamic admission and service rate control

of a queue. Queueing Systems, 66(2):131–154, 2010.

[2] Nikhil Agarwal, Alex Moehring, Pranav Rajpurkar, and Tobias Salz. Combining human
expertise with artificial intelligence: Experimental evidence from radiology. Technical report,
National Bureau of Economic Research, 2023.

[3] Krishnan S Anand, M Fazıl Paç, and Senthil Veeraraghavan. Quality–speed conundrum:
Trade-offs in customer-intensive services. Management Science, 57(1):40–56, 2011.

[4] Ari Arapostathis, Anirban Das, Guodong Pang, and Yi Zheng. Optimal control of markov-
modulated multiclass many-server queues. Stochastic Systems, 9(2):155–181, 2019.
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