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ABSTRACT

Weak supervision widely exists in practice and shows various forms such as noisy
labels, partial labels, or pseudo labels. As a weak supervisor might provide false
training signals, most existing works focus on correcting the supervisor or ignor-
ing certain constraints. While they tackle each type separately, we propose a deep
duplex learning (DDL) method to deal with all kinds of weak supervision from a
unified perspective of supervision utilization. We exploit both the supervision and
counter-supervision signals for training and allow the network to implicitly and
adaptively balance the two signals. We describe each image using a duplex rep-
resentation composed of a superficial representation (SR) and a hypocritical rep-
resentation (HR). We then impose the supervision signal and counter-supervision
signal on SR and HR, respectively. The SR and HR collaborate to interact with
the weak supervisor to adaptively confine the effect of false supervisions on the
network. Our DDL sets new state-of-the-arts for noisy label learning, partial label
learning, and semi-supervised learning on standard benchmarks. 1

1 INTRODUCTION

The vast quantity of labeled data enables us to train high-performing deep models in various tasks,
such as image classification (He et al., 2016a; Dosovitskiy et al., 2020), object detection (Carion
et al., 2020; Zhu et al., 2020), and semantic segmentation (Li et al., 2017b; Strudel et al., 2021). With
the development of computing hardware, we can scale deep models to an enormous size (Riquelme
et al., 2021; Radford et al., 2021), which demands larger-scale data for training (Zhai et al., 2021).
However, annotating clean labels is expensive and time-consuming, rendering the use of automated
crawled noisy labels (Xiao et al., 2015; Li et al., 2017a; Radford et al., 2021), partial labels (Wang
et al., 2022), and machine-annotated labels (Li et al., 2021) a more practical choice. Weakly su-
pervised learning is thus considered a promising direction and attracts increasing attention, where
researchers have delved into specific fields to tackle different types of weak supervision, including
learning with noisy labels (Li et al., 2020; Tan et al., 2021), partial label learning (Feng et al., 2020b;
Wang et al., 2022), and semi-supervised learning (Berthelot et al., 2019b; Li et al., 2021).
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Figure 1: DDL improves the state of the art on
three main types of weakly supervised learning.

As a weak supervisor may provide false in-
formation, most existing works focus on how
to modulate the weak supervision to produce
a more accurate training signal. For example,
some works explore ways to identify false su-
pervision (Han et al., 2018; Li et al., 2020; Yu
et al., 2019; Wei et al., 2020). They use loss
distribution to differentiate clean or false super-
vision with a small loss criterion (Han et al.,
2018) or a gaussian mixture model criterion (Li
et al., 2020). Other works focus on correcting
the instructed relations provided by the weak
supervisor (Patrini et al., 2017; Tanaka et al.,
2018; Li et al., 2021; Wang et al., 2022). The
state-of-the-art methods employ an exponential
mean averaged model to generate more accurate labels for training (Li et al., 2021; Wang et al.,
2022). However, they can usually deal with only one type of weak supervision. Also, it is difficult

1Code is provided in the supplementary material.
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Figure 2: An overview of the proposed deep duplex learning for weak supervision. While existing
methods mainly focus on developing different techniques to correct a specific type of weak supervi-
sion, we tackle weakly supervised learning from a unified perspective of label utilization. We allow
the network itself to adaptively balance the effect of supervision and counter-supervision signals.

to fully identify all the false supervisions or provide completely authentic labels for training. The
learned representation still suffers from inaccurate training signals, causing degraded performance.

To further confine the effect of false supervisions on the image representation, we propose a deep
duplex learning (DDL) method to tack weakly supervised learning from a unified perspective of su-
pervision utilization, as shown in Figure 2. We assume that a carefully-designed network can more
easily learn from true supervisions, enabling the network itself to implicitly emphasize the beneficial
signals. We employ a superficial representation (SR) and a hypocritical representation (HR) to rep-
resent each image and class prototype and compute a superficial similarity (SS) and a hypocritical
similarity (HS) accordingly. We use the SR and the HR to obey and resist the supervision, respec-
tively. Still, we constrain the overall effect on the SR and HR to be consistent with the provided
supervision. To facilitate the adaptive balance of the two training signals, we further require the
learning of SR and HR to be entangled with each other. The two representations collaborate with
each other to adaptively learn from the weak supervisor and allow the network to implicitly identify
the true supervisions. We further propose a simple duplex similarity function for efficient instan-
tiation of deep duplex learning, which can be easily implemented and readily applied to existing
methods. To demonstrate the effectiveness and generality of DDL, we conduct experiments on three
types of weakly-supervised learning: learning with noisy labels (LNL), partial label learning (PLL),
and semi-supervised learning (SSL). We apply DDL to the state-of-the-art method in the respective
fields (DivideMix (Li et al., 2020) and AugDesc (Nishi et al., 2021) for LNL, PiCO (Wang et al.,
2022) for PLL, and CoMatch (Li et al., 2021) for SSL). Our DDL shows consistent improvement
and attains the best performance in all three tasks on various datasets, as shown in Figure 1.

2 RELATED WORK

Learning with Noisy Labels. Web crawling (Xiao et al., 2015; Radford et al., 2021) and automatic
annotation (Chen et al., 2017) facilitate the collection of large-scale labeled data for supervised train-
ing, but they inevitably introduce non-negligible noise to the labels. The ability to learn from noisy
labels (LNL) thus becomes a valuable characteristic for a machine learning system. One category
of works attempt to identify the noisy data and employs a different training strategy on them (Han
et al., 2018; Li et al., 2020; Jiang et al., 2018; Yu et al., 2019; Liang et al., 2022). The widely used
small-loss criterion (Han et al., 2018) deems samples with a high loss as noisy data. The Gaussian
Mixture Model (GMM) criterion (Li et al., 2020) employs a GMM to identify noisy samples, as-
suming that the loss distributions of clean and noisy data are statistically separable. Other works
seek to correct the loss imposed by the weak supervisor. Label correction methods employ a pre-
diction network to infer the true labels to rectify noisy ones (Tanaka et al., 2018; Yi & Wu, 2019;
Liu et al., 2020). Noise transition methods estimate a label transition matrix to infer the underlying
true labels (Menon et al., 2015; Natarajan et al., 2013; Patrini et al., 2017; Xia et al., 2019). Fur-
thermore, some methods designed more noise-robust loss functions, such as mean absolute error
(MAE) (Ghosh et al., 2017), weighted MAE (Wang et al., 2019a), generalized cross-entropy (Zhang
& Sabuncu, 2018), and symmetric cross-entropy (Wang et al., 2019b).
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Partial Label Learning. Annotating each sample with an accurate label is highly expensive while
associating it with multiple label candidates can be much cheaper, avoiding the cherry-picking be-
tween several ambiguous labels. Promoted by this, partial label learning (PLL) serves as a promising
approach for a more efficient learning paradigm, where each sample is assigned a set of labels. A
straightforward way is to treat all the assigned label candidates equally, which is susceptible to
the misleading effects of false labels (Hüllermeier & Beringer, 2006; Cour et al., 2011; Zhang &
Yu, 2015). This motivates subsequent methods to learn to identify the correct label from the la-
bel candidates. They perform the label disambiguation using various strategies, such as distance
thresholding (Nguyen & Caruana, 2008; Wang et al., 2020), graph inference (Zhang et al., 2016; Xu
et al., 2019; Wang et al., 2021), and feature clustering (Liu & Dietterich, 2012). The most success-
ful way is through self-training, which employs the learning model itself to produce disambiguated
labels (Feng et al., 2020b; Lv et al., 2020; Wen et al., 2021; Wang et al., 2022). For example,
PiCO (Wang et al., 2022) employs an auxiliary contrastive objective with a momentum encoder to
produce more accurate disambiguated labels.

Semi-supervised Learning. An evident way for efficient data collection is to only annotate a small
portion of samples and leave the rest large amount of data unlabeled. Semi-supervised learning
(SSL) is a long-standing problem in machine learning to target this situation, where the key is how
to produce accurate and informative training signals from the vast unlabeled data. Pseudo-label-
based methods use the prediction model being learned to generate a pseudo label for each unlabeled
sample (Iscen et al., 2019; Berthelot et al., 2019b;a; Sohn et al., 2020). The working mechanism
is the reciprocation of the model and the pseudo labels, where the quality of the generated pseudo
labels improves as training and the prediction model can further benefit from more accurate pseudo
labels (Lee, 2013; Arazo et al., 2020). Consistency-based methods require the different augmen-
tations of the same sample to share similar representations, which produce more accurate yet less
informative training signals for unlabeled data (Chen et al., 2020; Tang et al., 2021; Jeong et al.,
2019; Tarvainen & Valpola, 2017). Recent methods (Li et al., 2021) combined the training signals
from pseudo labels and representation consistency and have achieved improved performance. They
generate pseudo labels based on weakly-augmented samples to improve accuracy and impose the
representation consistency on strongly-augmented samples to improve informativeness.

A core issue for all LNL, PLL, and SSL is the misleading false supervisions. While existing meth-
ods proposed various ways to reduce the harmful effect of false supervisions, we do not explicitly
differentiate between true and false supervision. Instead, we use both the supervision signals and
the counter-supervision signals to train the model. We assume that a neural network with certain
inductive biases can be more easily trained with the true supervision. We rely on the model itself to
implicitly and adaptively decide the training direction.

3 PROPOSED APPROACH

In this section, we first present a general framework of weakly-supervised learning to cover learning
with noisy labels, partial label learning, and semi-supervised learning. We then detail the proposed
deep duplex learning (DDL) and present an efficient instantiation of DDL using the duplex similarity.

3.1 PROBLEM FORMULATION

Given a set of N training samples {x1, ...,xN}, we define a supervisor a which assigns a label
li = a(x) ∈ 1, 2, ..., L to each image x. We assume that each image can be described with a single
correct label and focus on image classification as it is the most basic task in computer vision. The
generalization to learning with multiple labels or dense labels is beyond the scope of this paper.

Deep learning employs deep neural networks to obtain a vector y to represent each image x. They
usually employ a softmax classifier c to predict the probability that y belongs to the l-th class:

c(y, l) =
ewl·y∑L
i=1 e

wi·y
, (1)

where wi is a learnable vector with the same dimension of y. We omit the bias terms for brevity.

Generally, the learning objective is to enlarge the predicted probability for the labeled class and
reduce the probabilities for the other classes. The most commonly used loss function to train a
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Figure 3: Illustration of Parallel DDL and Serial DDL. Parallel DDL obtains SR and HR using a
parallel structure. Serial DDL first obtains SR and applies a transformation on SR to obtain HR.

network with the supervisor a can be formulated as:

L(y,W, a) = − log(c(y, a(y))) = − log(
ewa(y)·y∑L
i=1 e

wi·y
), (2)

where wi is the i-th row vector of W.

We generalize the learning objective Eq. (2) and formulate the learning process as the enforcement of
certain relations between image representations and class prototypes. We employ a class prototype
pi to represent the i-th class and then compute a similarity score s(y,p) between an image repre-
sentation y and a class prototype p. The similarity score can be computed in a various ways, such as
s(y,p) = y · p or s(y,p) = y·p

||y||2||p||2 . The enforced deviations are determined by the supervisor
a, where only the similarities between images and their corresponding class prototypes increase and
the other similarities decrease. The loss function can be then formulated as L(s, a) = L(y,W, a).

The learning process of s with a loss function L(s, a) using gradient descent can be formulated as:

s = s− λ∂L(s, a)
∂s

= s+D(s, a), (3)

where λ is the learning rate and D(s, a) = −λ∂L(s,a)
∂s is the enforced deviation.

For a weak supervisor aw, the enforced deviation D(s, aw) might be wrong and thus mislead the
training process. Therefore, weakly-supervised learning attempts to correct the enforced deviation
D(s, aw) with an amending factor A(s) to obtain the amended relation D̂(s, aw):

D̂(s, aw) = −λ∂L(s, a)
∂s

·A(s). (4)

Note that A(s) can be negative, indicating that the learning algorithm completely overturns the
weak supervisor. For example, the LNL methods with the small-loss criterion (Han et al., 2018)
employs A(s) = I(T −L(s)), where I(x) denotes the indicator function which equals 1 for x > 0.
and outputs 0 otherwise, and T is a pre-defined loss threshold. Other weakly-supervised learning
methods design various A(s) with a sharing goal to reduce the effect of false supervisions (Yi &
Wu, 2019; Tanaka et al., 2018; Wang et al., 2019a; Zhang & Sabuncu, 2018).

3.2 DEEP DUPLEX LEARNING

While most existing methods focus on seeking more accurate supervision signals for training, it
is still impossible to completely eliminate the false supervisions. Therefore, we do not explicitly
differentiate between true and false supervisions and propose to employ both the supervision and
counter-supervision signals (the opposite of the supervision) to train the network, allowing the net-
work itself to adaptively balance the effects of the two signals. We assume that a carefully designed
deep neural network with certain inductive biases can more easily fit samples with true labels. So by
training the network with both the supervision and counter-supervision signals, the network tends to
emphasize the effect of true supervisions and undermine that of false supervisions.

A naive way is to impose both the loss and counter-loss on the image representation y:

L̂(y, a) = L(y, a)− γL(y, a) = (1− γ)L(y, a), (5)

4
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where γ < 1 controls the intensity of the counter-supervision signal. We see that the two signals
neutralize each other, and Eq. (5) simply equals to using a smaller learning rate or A(s) = 1− γ.

To address this, we propose to use a duplex representation yd = {ys,yh} to describe each image,
which is composed of a superficial representation (SR) ys and a hypocritical representation (HR)
yh. The two representations should be entangled to facilitate the automatic balance of the two
supervision signals. We thus propose two ways to obtain them as shown in Figure 3:

• Parallel: ys = g(f(x)) and yh = h(f(x)).
• Serial: ys = f(x) and yh = h(f(x)).

We similarly use a duplex prototype p = {ps,ph} to represent each class. We compute a superficial
similarity (SS) ss(ys,ps) and a hypocritical similarity (HS) sh(yh,ph) for each image-class pair.
We impose the supervision signal on the SR ys and the counter-supervision signal on the HR yh:

L̂(yd, a) = L(ys, a)− γL(yh, a), (6)

which equals to As(ss) = 1 and Ah(sh) = −γ. The As and As are constants and are not aware of
the current estimation of the similarity. However, we argue that the enforcements should be adapted
to different similarities. A small HS indicates a negative judgment of the actual similarity between
the image-class pair, so we should be cautious and update ss in a smaller rate, i.e., ∂|As|

sh
> 0. On

the other hand, a small SS indicates a confident estimation of the current similarity, so the intensity
of the counter-supervision signal Ah should be large as a hedge, i.e., ∂|Ah|

ss < 0..

We summarize five conditions for the proposed deep duplex learning as follows:

(1) As > 0; (2) Ah < 0; (3) As +Ah > 0; (4)
∂|As|
sh

> 0; (5)
∂|Ah|
ss

< 0. (7)

Condition (1) requires the SS to always follow the supervisor, and condition (2) requires the HS to
always overturn the supervisor. Condition (3) constrains the sum of the two amending factors to
be positive so that the overall effect on the model is still consistent with the supervisor. Conditions
(4)(5) require the learning of both similarities to be adaptive, so that the network can better learn to
balance the two training signals. We see that using Eq. (6) as the loss function follows conditions
(1)(2)(3) but not conditions (4)(5).

3.3 DUPLEX SIMILARITY FOR EFFICIENT DDL

Our DDL is based on a simple motivation to impose both the supervision and counter-supervision
signals on the network and allow the network to choose the training direction. However, the instan-
tiation of DDL is not straightforward and trivial. We provide a simple yet effective way to achieve
Eq. (7), which can act as a simple plug-and-play module to be readily applied to existing methods.

We introduce a duplex similarity function sd(ss, sh) as:

sd(ss, sh) = α− (α− ss)e−
β−sh
α−ss , (8)

where α and β are set to be the upper bond of ss and sh, respectively, i.e., ss ≤ α and sh ≤ β. For
cosine similarities, we set α = β = 1. We can directly impose the loss function L directly on sd.
The learning process of the SS ss is then:

ss = ss − λ∂L(s
d, a)

∂sd
∂sd(ss, sh)

∂ss
= s+ R̂s(ss, sh), (9)

where the amending factor for ss is:

As(ss, sh) =
∂sd(ss, sh)

∂ss
= (1 +

β − sh

α− ss
)e−

β−sh
α−ss . (10)

As ss ≤ α and sh ≤ β, we can see that As(ss, sh) > 0 and easily prove that ∂|As|
sh

> 0.

Similarly, the amending factor for the HS sh can be computed as:

Ah(ss, sh) =
∂sd(ss, sh)

∂sh
= −e−

β−sh
α−ss . (11)

5
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We see that Ah(ss, sh) < 0 and thus ∂|Ah|
ss = ∂(−Ah)

ss < 0.

Finally, the sum of the two amending factors is:

As(ss, sh) +Ah(ss, sh) =
β − sh

α− ss
e−

β−sh
α−ss > 0, (12)

which indicates that the overall similarity always follows the supervisor.

Our DDL with duplex similarity can be readily applied to most existing weakly-supervised learning
methods, including learning with noisy labels, partial label learning, and semi-supervised learning
methods. For a baseline method, we regard the original representation as the SR and simply add
a fully connected layer to obtain the HR. We then compute the duplex similarity between images
and class prototypes and substitute the original similarity in the loss function. DDL only yields very
little additional computation cost compared to the original method for training. During inference, we
discard HR and use the same network as the baseline method, resulting in no additional workload.

4 EXPERIMENTS

In this section, we conducted various experiments on three types of weakly supervised learning tasks
including learning with noisy labels, partial label learning, and semi-supervised learning. We show
that the proposed deep duplex learning improves the state-of-the-art method for all three tasks.

4.1 DATASETS

We followed existing weakly supervised learning methods (Liang et al., 2022; Wang et al., 2022;
Li et al., 2020) to conduct experiments on the CIFAR-10 and CIFAR-100 datasets. The CIFAR-
10 and CIFAR-100 datasets contain the same 60,000 images classified into 10 and 100 categories,
respectively, resulting in 6,000 images per class for CIFAR-10 and 600 images per class for CIFAR-
100. Among them, we used 50,000 images for training and the rest 10,000 images for evaluation.

4.2 EXPERIMENTAL SETTINGS

Learning with Noisy Labels. We strictly followed the evaluation protocol of existing methods (Li
et al., 2020; Tan et al., 2021; Nishi et al., 2021; Liang et al., 2022; Li et al., 2021) for fair compar-
isons. We generate two types of label noise to simulate the learning process with noisy labels. In the
symmetric noisy setting, we randomly modify the labels of a certain percentage (20%, 50%, 80%,
and 90%) of training samples with uniform possibilities to all other labels. In the asymmetric noisy
setting, we modify the labels of 40% training samples only to other similar classes (e.g., automobile
to truck) to simulate the distribution of real-world noise. We use a ratio of 40% since some classes
turn theoretically indistinguishable when using ratios higher than 50% (Li et al., 2020).

We adopted an 18-layer PreAct ResNet (He et al., 2016b) as the backbone network. We used the
SGD-M optimizer with a momentum of 0.9 and a weight decay of 0.0005. We set the batch size to
128 and trained the network for a total of 300 epochs. We used an initial learning rate of 0.02 and
reduced it to 0.002 at the 150-th epoch. We also performed warm-up for 10 epochs on CIFAR-10
and 30 epochs for CIFAR-100. We reported the mean accuracy of 5 runs using random seeds.

Partial Label Learning. We strictly followed the evaluation protocol of existing methods (Feng
et al., 2020b; Lv et al., 2020; Wen et al., 2021; Wang et al., 2022) for fair comparisons. We generate a
label candidate set for each training sample by augmenting the ground-truth label with C additional
labels. The additional labels are randomly selected with a uniform probability among negative
categories. We set C to {1, 3, 5} for CIFAR-10 and {1, 5, 10} for CIFAR-100.

We adopted ResNet-18 (He et al., 2016a) as the backbone network for feature extraction. We em-
ployed the SGD-M optimizer with a momentum of 0.9 to train the model for 800 epochs. We set the
batch size to 256. We used an initial learning rate of 0.01 with the cosine learning rate scheduler.
We ran the experiments 5 times and reported the average performance with standard deviations.

Semi-Supervised Learning. We strictly followed the evaluation protocol of existing meth-
ods (Berthelot et al., 2019b;a; Sohn et al., 2020; Li et al., 2021) for fair comparisons. We randomly
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Table 1: Experimental results of learning with noisy labels methods (%) on the CIFAR-10 and
CIFAR-100 datasets with symmetric and asymmetric noise.

Method Venue
CIFAR-10 CIFAR-100

Symm. Asym. Symm.
20% 50% 80% 90% 40% 20% 50% 80% 90%

Standard CE - 86.8 79.4 62.9 42.7 85.0 62.0 46.7 19.9 10.1
Bootstrap ICLRW 15 86.8 79.8 63.3 42.9 91.2 62.1 46.6 19.9 10.2
F-correction CVPR 17 86.8 79.8 63.3 42.9 87.2 61.5 46.6 19.9 10.2
Mixup ICLR 18 95.6 87.1 71.6 52.2 - 67.8 57.3 31.1 15.3
Co-teaching+ ICML 19 89.5 85.7 67.4 47.9 - 65.6 51.8 27.9 13.7
P-correction CVPR 19 92.4 89.1 77.5 58.9 88.1 69.4 57.5 31.1 15.3
Meta-Learning CVPR 19 92.9 89.3 77.4 58.7 88.6 68.5 59.2 42.4 19.5
M-correction ICML 19 94.0 92.0 86.8 69.1 87.4 73.9 66.1 48.2 24.3
ELR+ NeurIPS 20 95.8 94.8 93.3 78.7 93.0 77.6 73.6 60.8 33.4
Co-learning MM 21 92.5 84.8 63.5 - 81.4 66.7 55.0 36.2 -
LongReMix Arxiv 21 96.2 95.0 93.9 82.0 94.7 77.8 75.6 62.9 33.8
Tripartite CVPR 22 96.3 94.9 92.6 - - 78.7 74.7 59.8 -
DivideMix ICLR 20 96.1 94.6 93.2 76.0 93.4 77.3 74.6 60.2 31.5
DDL (DivideMix) - 96.4 95.0 93.3 81.5 93.6 77.5 74.9 60.2 31.9
AugDesc CVPR 21 96.3 95.6 93.8 91.9 94.6 79.6 77.6 66.4 41.2
DDL (AugDesc) - 96.4 95.7 94.7 91.9 94.8 79.9 77.8 66.3 41.7

Table 2: Experimental results (%) of partial label learning methods on the CIFAR-10 dataset with
different numbers of candidate labels.

Method Venue 1 label 3 labels 5 labels
Fully Supervised - 94.91 ± 0.07 (0 labels)
EXP ICML 20 79.23 ± 0.10 75.79 ± 0.21 70.34 ± 1.32
MSE ICML 20 79.97 ± 0.45 75.64 ± 0.28 67.09 ± 0.66
CC NeurIPS 20 82.30 ± 0.21 79.08 ± 0.07 74.05 ± 0.35
PRODEN ICML 20 90.24 ± 0.32 89.38 ± 0.31 87.78 ± 0.07
LWS ICML 21 90.30 ± 0.60 88.99 ± 1.43 86.16 ± 0.85
PiCO ICLR 22 94.39 ± 0.18 94.18 ± 0.12 93.58 ± 0.06
DDL (PiCO) - 94.66 ± 0.16 94.45 ± 0.06 93.77 ± 0.09

selected {20, 40, 80, 250} training samples per class to provide them with labels and regard other
samples as unlabeled for CIFAR-10. Note that each class contains 5,000 samples for training, so we
only exploited a small portion (≤ 0.05) of labeled data.

We adopted a Wide ResNet-28-2 (Zagoruyko & Komodakis, 2016) as the backbone network and
used the exponential-moving-average model for evaluation following existing methods (Berthelot
et al., 2019b;a; Sohn et al., 2020; Li et al., 2021). We used the SGD-M optimizer with a momentum
of 0.9 and a weight decay of 0.0005. We trained the model for 512 epochs with an initial learning
rate of 0.03 and the cosine scheduler. We fixed the batch size to 64. We conducted all experiments
with 5 different seeds and reported both the average accuracy and standard deviations.

Deep Duplex Learning. For our DDL, we employ the serial structure with one additional fully
connected layer to obtain the HR unless otherwise stated. We empirically find that using a parallel
structure yields better performance, but we still adopt the serial structure due to its simplicity and
efficiency. We use the cosine similarity and set α = 1 and β = 2 for all the experiments.

4.3 LEARNING WITH NOISY LABELS

For learning with noisy labels, we applied the proposed DDL method to two state-of-the-art meth-
ods: DivideMix (Li et al., 2020) and AugDesc (Nishi et al., 2021). DivideMix (Li et al., 2020)
dynamically partitions the training data into a labeled set with clean labels and an unlabeled set with
noisy labels and then performs semi-supervised learning on them. AugDesc (Nishi et al., 2021) fur-
ther improves DivideMix by using different data augmentation strategies for loss modeling and rep-
resentation learning. For deep duplex learning, we replaced the similarity computing in the classifier
of the original methods with the proposed duplex similarity. We adopted the same hyperparameters
with the original methods without further tuning.
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Table 3: Experimental results (%) of partial label learning methods on the CIFAR-100 dataset with
different numbers of candidate labels.

Method Venue 1 label 5 labels 10 labels
Fully Supervised - 73.56 ± 0.10 (0 labels)
EXP ICML 20 44.45 ± 1.50 41.05 ± 1.40 29.27 ± 2.81
MSE ICML 20 49.17 ± 0.05 46.02 ± 1.82 43.81 ± 0.49
CC NeurIPS 20 49.76 ± 0.45 47.62 ± 0.08 35.72 ± 0.47
PRODEN ICML 20 62.60 ± 0.02 60.73 ± 0.03 56.80 ± 0.29
LWS ICML 21 65.78 ± 0.02 59.56 ± 0.33 53.53 ± 0.08
PiCO ICLR 22 73.09 ± 0.34 72.74 ± 0.30 69.91 ± 0.24
DDL (PiCO) - 73.21 ± 0.15 73.04 ± 0.11 70.20 ± 0.16

Table 4: Experimental results (%) of semi-supervised learning methods on the CIFAR-10 dataset
with different numbers of labeled samples per class.

Method Venue 20 labels 40 labels 80 labels 250 labels
MixMatch NeurIPS 19 27.84±10.63 51.90±11.76 80.79±1.28 88.97±0.85
ReMixMatch ICLR 19 - 80.90±9.64 - 94.56±0.05
FixMatch NeurIPS 20 82.32±9.77 86.12±3.53 92.06±0.88 94.90±0.67
FixMatch w. DA NeurIPS 20 83.81±9.35 86.98±3.40 92.29±0.86 94.95±0.66
CCSSL (FixMatch) CVPR 22 - 90.83±2.78 - 94.86±0.55
CoMatch ICCV 21 87.67±8.47 93.09±1.39 93.97±0.62 95.09±0.33
DDL (CoMatch) - 91.01±3.22 93.55±1.39 94.28±0.69 95.21±0.34

In addition to the two baseline methods, we also compared the proposed DDL with other meth-
ods including the standard cross-entropy loss, Bootstrap (Reed et al., 2015), F-correction (Patrini
et al., 2017), Mixup (Zhang et al., 2018), Co-teaching (Han et al., 2018), P-correction (Yi & Wu,
2019), Meta-Learning (Li et al., 2019), M-correction (Arazo et al., 2019), JoCoR (Wei et al.,
2020), DivideMix (Li et al., 2020), ELR+ (Liu et al., 2020), Co-learning (Tan et al., 2021), Lon-
gReMix (Cordeiro et al., 2021), and Tripartite (Liang et al., 2022).

Table 1 shows the results on the CIFAR-10 and CIFAR-100 datasets with different noisy types and
noise ratios. We use red numbers to denote the best results and bold numbers to represent improved
results. We see that DivideMix (Li et al., 2020) and AugDesc (Nishi et al., 2021) demonstrates
strong performance for learning with noisy labels, and the DDL further boosts the performance on
nearly all the noise levels. Specifically, we observe a large performance improvement (5.5%) over
DivideMix on CIFAR-10 for a large noise ratio of 90%, demonstrating the effectiveness of DDL.

4.4 PARTIAL LABEL LEARNING

For partial label learning, we applied DDL to the best-performing method PiCO (Wang et al., 2022)
to demonstrate the effectiveness of our method. PiCO (Wang et al., 2022) employs a prototype-
based label disambiguation method based on a contrastive learning module to produce accurate
disambiguated labels for training. For deep duplex learning with PiCO, we substitute the origi-
nal representation and prototypes with the duplex ones and compute the duplex similarity for loss
computation. We used the same hyperparameters with PiCO without tuning.

We also provide comparisons with other state-of-the-art methods: MSE and EXP (Feng et al., 2020a)
simply adopt mean square error and exponential loss for training, respectively; CC (Feng et al.,
2020b) learns a partially labeled data generation process for classifier-consistent learning; PRODEN
(Lv et al., 2020) employs self-training with iterative representation training and label disambigua-
tion; LWS (Wen et al., 2021) adopts leveraged weighted loss to consider the trade-off between losses
on the candidate labels and other labels.

We present the experimental results on CIFAR-10 and CIFAR-100 with different numbers of can-
didate labels on Tables 2 and 3, respectively. We use red numbers to denote the best results and
bold numbers to represent improved results when applying our method. We observe a consistent
performance boost across all numbers of candidate labels on both datasets. Note that the standard
deviations tend to decrease when equipped with the proposed DDL, which demonstrates the stabil-
ity of our method. Particularly, we see that DDL (PiCO) with 3 additional candidate labels even
outperforms all the other methods with only 1 additional candidate label on CIFAR-10.
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Table 5: Effect of different formulations of the duplex similarity.

sd ss ss − 0.5sh α− α−ss
β−sh α− (α− ss)e−

β−sh
2 α− (α− ss)e−

β−sh
α−ss

Conditions (1) (1)(2)(3) (1)(2)(4) (1)(2)(3)(4) (1)(2)(3)(4)(5)
Accuracy 93.8 94.2 94.2 94.5 94.7

4.5 SEMI-SUPERVISED LEARNING

For semi-supervised learning, we applied DDL to the state-of-the-art CoMatch (Li et al., 2021),
which unifies training signals from both pseudo-labels and instance consistency for more robust
training. For DDL with CoMatch, we replace the embeddings with duplex ones and compute the
duplex similarities accordingly. We fix the other settings and hyperparameters the same as CoMatch.

We also compare DDL with other state-of-the-art methods. MixMatch (Berthelot et al., 2019b)
produces low-entropy pseudo labels for augmented unlabeled samples and employs mixup (Zhang
et al., 2018) to mix labeled and unlabeled data. ReMixMatch (Berthelot et al., 2019a) improves
MixMatch with distribution alignment and augmentation anchoring. FixMatch (Sohn et al., 2020)
generates pseudo labels on weakly-augmented data and employs them to perform training on strong-
augmented data. CCSSL (Yang et al., 2022) further improves FixMatch by performing class-wise
clustering and instance-wise contrasting on in-distribution data and out-of-distribution data.

Table 4 shows the results on CIFAR-10 with different numbers of labeled samples per class. We
see that the proposed DDL uniformly improves CoMatch and achieves the best performance on all
four levels of label scarcity. The performance improvement is particularly large with only 20 labeled
samples (0.4%) per class, where the generated pseudo labels can be less accurate. The model benefits
more from the further adaptive balance of true and false supervision signals by our DDL.

4.6 ANALYSIS

For efficiency, we only conducted experiments on the learning with noisy labels task (80% noisy
ratio) on the CIFAR-10 dataset to analyze the effect of different components of our method.

Effect of Different Formulations of the Duplex Similarity. We adopted different formulations to
compute the duplex similarity and present the results in Table 5. We also show the satisfied condi-
tions in Eq. (7) for different formulations. We see that the performance improves when satisfying
more conditions and the proposed formulation attains the best result.
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Effect of Hyperparameters. We fixed α = 1
and evaluate the effect of different values of βs,
as shown in Figure 4. We see that the proposed
method is not sensitive to the choice of β. We
observe a similar phenomenon on different αs.

Effect of Different Structures. Figure 5 shows
the effect of different structures of the proposed
DDL. P-1 denotes the parallel structure with a
parallel convolution layer to obtain each repre-
sentation. S-n denotes the serial structure with n fully connected layers following the superficial rep-
resentation to obtain the hypocritical representation. We observe that the parallel structure achieves
the best results. Still, due to its simplicity, we adopted S-1 as default for the main experiments.

5 CONCLUSION

In this paper, we have presented a deep duplex learning method for weak supervision. Unlike ex-
isting weakly-supervised learning methods, we exploit both supervision and counter-supervision
signals and rely on the network itself to adaptively balance the two training signals. We have ap-
plied our DDL method to the best-performing methods of learning with noisy labels, partial label
learning, and semi-supervised learning and set new state-of-the-arts on the respective tasks. Still,
we only conducted experiments with synthetic weak supervision. The generalization of our method
to real-world weak supervision remains unknown and is an interesting future work.
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