
Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

RIPSNET: A GENERAL ARCHITECTURE FOR FAST AND
ROBUST ESTIMATION OF THE PERSISTENT HOMOLOGY
OF POINT CLOUDS

Thibault de Surrel∗1, Felix Hensel∗2, Mathieu Carrière∗1, Théo Lacombe3, Yuichi Ike4, Hiroaki
Kurihara5, Marc Glisse2, and Frédéric Chazal2

1Université Côte d’Azur, Inria, France
2Université Paris-Saclay, CNRS, Inria, Laboratoire de Mathématiques d’Orsay, France

3LIGM, Université Gustave Eiffel, Champs-sur-Marne, France
4The University of Tokyo, Japan

5Fujitsu Limited, Japan

ABSTRACT

The use of topological descriptors in modern machine learning applications, such
as Persistence Diagrams (PDs) arising from Topological Data Analysis (TDA), has
shown great potential in various domains. However, their practical use in appli-
cations is often hindered by two major limitations: the computational complexity
required to compute such descriptors exactly, and their sensitivity to even low-level
proportions of outliers. In this work, we propose to bypass these two burdens in
a data-driven setting by entrusting the estimation of (vectorization of) PDs built
on top of point clouds to a neural network architecture that we call RipsNet. Once
trained on a given data set, RipsNet can estimate topological descriptors on test data
very efficiently with generalization capacity. Furthermore, we prove that RipsNet
is robust to input perturbations in terms of the 1-Wasserstein distance, a major
improvement over the standard computation of PDs that only enjoys Hausdorff
stability, yielding RipsNet to substantially outperform exactly-computed PDs in
noisy settings. We showcase the use of RipsNet on both synthetic and real-world
data. Our implementation will be made freely and publicly available as part of an
open-source library.

1 INTRODUCTION

The knowledge of topological features (such as connected components, loops, and higher dimensional
cycles) that are present in data sets provides a better understanding of their structural properties at
multiple scales, and can be leveraged to improve statistical inference and prediction. Topological Data
Analysis (TDA) is the branch of data science that aims to detect and encode such topological features,
in the form of persistence diagrams (PD). A PD is a (multi-)set of pointsD in R2, in which each point
p ∈ D corresponds to a topological feature of the data whose size is encoded by its coordinates. PDs
are descriptors of a general nature and allow flexibility in their computation. As such, they have been
successfully applied to many different areas of data science, including, e.g., material science Buchet
et al. (2018), genomic data Cámara (2017), and 3D-shapes Li et al. (2014). In the present work, we
focus on PDs stemming from point cloud data, referred to as Rips PDs, which find natural use in
shape analysis Chazal et al. (2009); Gamble & Heo (2010) but also in other domains such as time
series analysis Perea & Harer (2015); Pereira & de Mello (2015); Umeda (2017), or in the study of
the behavior of deep neural networks Guss & Salakhutdinov (2018); Naitzat et al. (2020); Birdal et al.
(2021).

A drawback of Rips PDs computed on large point clouds is that they are computationally expensive.
Furthermore, even though these topological descriptors enjoy stability properties with respect to the

∗These authors contributed equally to the work.

1

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

input point cloud in the Hausdorff metric Chazal et al. (2014), they are fairly sensitive to perturbations:
moving a single point in an arbitrarily large point cloud can alter the resulting Rips PD substantially.

In addition, the lack of linear structure (such as addition and scalar multiplication) of the space of
PDs hinder the use of PDs in standard machine learning pipelines, which are typically developed to
handle inputs belonging to a finite dimensional vector space. This burden motivated the development
of vectorization methods, which allow to map PDs into a vector space while preserving their structure
and interpretability. Vectorization methods can be divided into two classes, finite-dimensional
embeddings Bubenik (2015); Adams et al. (2017); Carrière et al. (2015); Chazal et al. (2015);
Kališnik (2018), turning PDs into elements of Euclidean space Rd, and kernels Carrière et al. (2017);
Kusano et al. (2016); Le & Yamada (2018); Reininghaus et al. (2015), that implicitly map PDs to
elements of infinite-dimensional Hilbert spaces.

In this work, we propose to overcome the previous limitations of Rips PDs, by learning their
finite-dimensional embeddings directly from the input point cloud data sets with neural network
architectures. This approach allows not only for a much faster computation time, but also for increased
robustness of the topological descriptors. We refer to Appendix A for a description of related work.

Contributions. We introduce RipsNet, a DeepSets-like architecture capable of learning finite-
dimensional embeddings of Rips PDs built on top of point clouds. We experimentally showcase
how it can be trained to produce fast, accurate, and useful estimations of topological descriptors. In
particular, we observe that using RipsNet outputs instead of exact PDs yields better performances
for classification tasks based on topological properties. RipsNet also enjoys interesting stability
properties, which are presented in Appendix D for the sake of concision.

2 BACKGROUND

In TDA, persistence diagrams (PDs) are considered to be highly important descriptors of topological
features (see Appendix B for further details on PDs). The space of persistence diagrams can be
equipped with a parametrized metric ds, 1 6 s 6∞ which is rooted in algebraic considerations and
whose proper definition is not required in this work. Of importance is, that the space of persistence
diagrams D equipped with such metrics lacks linear (Hilbert; Euclidean) structure Carriere & Bauer
(2018); Bubenik & Wagner (2020).

The lack of linear structure of the metric space (D, ds) prevents a faithful use of persistence diagrams
in standard machine learning pipelines, as such techniques typically require inputs belonging to a
finite-dimensional vector space. A natural workaround is thus to seek for a vectorization of persistence
diagrams (PV), that is a map φ : (D, ds)→ (Rd, ‖ · ‖) for some dimension d. Provided the map φ
satisfies suitable properties (e.g., being Lipschitz, injective, etc.), one can turn a sample of diagrams
{D1, . . . , Dn} ⊂ D into a collection of vectors {φ(D1), . . . , φ(Dn)} ⊂ Rd which can subsequently
be used to perform any machine learning task.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

Point cloud X

0.0 0.2 0.4 0.6 0.8

Births
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

De
at

hs

Dgm(X)

0 10 20 30 40

0

10

20

30

40

PI(X)

Figure 1: Pipeline to extract PIs from point clouds.
Details in Appendix C

Various vectorization techniques, with success
in applications, have been proposed Carrière
et al. (2015); Chazal et al. (2015); Kališnik
(2018). In this work, we focus, for the sake
of concision, on two of them: the persistence
image (PI) Adams et al. (2017) and the persis-
tence landscape (PL) Bubenik (2015)—though
the approach developed in this work adapts faith-
fully to any other vectorization. We refer to
Appendix C for details on PI and PLs.

3 RIPSNET

In the pipeline illustrated in Figure 1, the computation of the persistence diagram Dgm(X) from an
input point cloud X is the most complex operation involved: it is both computationally expensive
and introduces non-differentiability in the pipeline. Moreover, as detailed in Appendix D.2 for the
specific case of persistence images, the output vectorization can be highly sensitive to perturbations

2

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

in the input point cloud X: moving a single point pi ∈ X can arbitrarily change PI(X) even when
n is large. This instability can be a major limitation when incorporating persistence vectorizations
(PVs) of diagrams in practical applications.

To overcome these difficulties, we propose to bypass this computation by designing a neural network
architecture which we call RipsNet (RN). The goal is to learn a function, denoted by RN as well,
able to reproduce persistence vectorizations for a given distribution of input point clouds X ∼ P after
being trained on a sample {Xi}ni=1 with labels being the corresponding vectorizations {PV(Xi)}ni=1.

As RN takes point cloudsX = {x1, . . . , xN} ⊂ Rd of potentially varying sizes as input, it is natural
to expect it to be permutation invariant. An efficient way to enforce this property is to rely on a
DeepSets architecture Zaheer et al. (2017). Namely, it consists of decomposing the network into a
succession of two maps φ1 : Rd → Rd′ and φ2 : Rd′ → Rd′′ and a permutation invariant operator
op—typically the sum, the mean, or the maximum

RN : X 7→ φ2 (op({φ1(x)}x∈X)) .

For each x ∈ X , the map φ1 provides a representation φ1(x); these point-wise representations
are gathered via the permutation invariant operator op, and the map φ2 is subsequently applied to
compute the network output. In practice, φ1 and φ2 are themselves parameterized by neural networks;
in this work, we will consider simple feed-forward fully-connected networks (see Section 4 for
the architecture hyper-parameters), though more general architectures could be considered. The
parameters characterizing φ1 and φ2 are tuned during the training phase, where we minimize the
L2-loss

n∑
i=1

‖RN(Xi)− PV(Xi)‖2, (1)

over a set of training point clouds {Xi}i with corresponding pre-computed vectorizations {PV(Xi)}i.
Once trained properly (assuming good generalization properties), when extracting topological infor-
mation of a point cloud, an important advantage of using RN instead of PV lies in the computational
efficiency: while the exact computation of persistence diagrams and vectorizations rely on expensive
combinatorial computations, running the forward pass of a trained network is significantly faster, as
showcased in Section 4. As detailed in Appendix D and Figure 3, RN also satisfies some strong
robustness properties, yielding a substantial advantage over exact PVs when the data contain some
perturbations such as noise, outliers, or adversarial attacks.

4 NUMERICAL EXPERIMENTS

In this section, we illustrate the properties of our general architecture RN pre-
sented in the previous sections. The approach we use is the following: we
first train an RN architecture on a training data set Tr1, comprised of point
clouds PC1 with their corresponding labels L1 and persistence vectorizations PV1.

PC1

PV1

PC2

L2

PC

L

P̃C̃

L

Tr1 Tr2 Te T̃e

RN Gudhi

PVRN
2 PVRN

P̃V
RN

PVGudhi
2 PVGudhi

P̃V
Gudhi

L2 L L̃ L2 L L̃

ClRN ClGudhi

ScoreRN S̃coreRN ScoreGudhi S̃coreGudhi

Train RN

Predict
with RN

Compute
with Gudhi

Train
ClRN

Train
ClGudhi

Figure 2: Scheme of our general experimental setup.

Note that this training step does not
require the labels L1 of the point
clouds since the targets are the per-
sistence vectorizations PV1. Then,
we use both RN and Gudhi to com-
pute the persistence vectorizations of
three data sets: a second training data
set Tr2 = (PC2,L2), a test data set
Te = (PC,L), and a noisy test data
set T̃e = (P̃C, L̃) (as per our noise
model explained in Section D.1.2).
All three data sets are comprised of
labeled point clouds only. At this
stage, we also measure the compu-
tation time of RN and Gudhi for
generating these persistence vectoriza-
tions.

3

https://gudhi.inria.fr/
https://gudhi.inria.fr/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

λ (%) ClNN

Gudhi ClNN

GudhiDTM ClNN

RN pointnet
0 30.4± 4.0 30.9± 2.0 53.9± 2.4 81.6± 1.1
2 30.3± 3.2 31.0± 2.7 53.2± 2.5 74.5± 1.6
5 29.9± 4.0 31.0± 2.7 55.1± 3.3 63.4± 1.6
10 25.2± 3.2 29.5± 3.1 51.0± 2.1 50.6± 1.5
15 22.9± 4.6 25.7± 3.1 46.9± 3.0 44.9± 1.7
25 14.4± 4.0 18.1± 2.6 42.6± 2.5 11.0± 0.2
50 14.0± 3.4 13.1± 1.9 31.6± 3.3 10.9± 0.0

Table 1: Accuracy scores of classifiers trained on Gudhi, GudhiDTM and RN PVs on
ModelNet10 data. The highest accuracy of the three topology-based classifiers (middle) is high-
lighted in red, and the highest accuracy over all models in bold font.

In order to obtain quantitative scores,
we finally train two machine learning classifiers: one on the labeled RN persistence diagrams from
Tr2, and the other on the labeled Gudhi persistence diagrams from Tr2, which we call ClRN and
ClGudhi, respectively. The classifiers ClRN and ClGudhi are then evaluated on the test persistence
diagrams computed with RN and Gudhi, respectively, on both Te and T̃e. See Figure 2 for a
schematic overview.

Finally, we also generate scores using AlphaDTM-based filtrations Anai et al. (2019) computed with
Gudhi and the Python package Velour with parameters m = 0.75%, p = 2, in the exact same
way as we did for Gudhi. We let GudhiDTM and ClGudhiDTM denote the corresponding model and
classifier, respectively. Note that AlphaDTM-based filtrations usually require manual tuning, which,
contrary to RN parameters, cannot be optimized during training. In our experiments, we manually
designed those parameters so that they provide reasonably-looking persistence vectorizations. Finally,
note that we also added some (non-topological) baselines in each of our experiments to provide a
sense of what other methods are capable of. However, our main purpose is to show that RN can
provide a much faster and more noise-robust alternative to Gudhi, and hence the comparison we are
most interested in is between RN and both Gudhi and GudhiDTM.

In the following, we apply our experimental setup to 3D-shape data from the ModelNet10 data
set Wu et al. (2015). For experimental results on a synthetic data set, as well as on time series data
obtained from the UCR archive Dau et al. (2018), see Appendix E. The computations were run on a
computing cluster1 on 4 Xeon SP Gold 2.6GHz CPU cores with 8GB of RAM per core.

4.1 3D-SHAPE DATA

Data set. We ran experiments on Princeton’s ModelNet10 data set, comprised of 3D-shape data of
objects in 10 classes. In order to obtain point clouds in R3, we sample 1024 points on the surfaces of
the 3D objects. They are subsequently centered and normalized to be contained in the unit sphere.
We have 2393/598 and 406/229 training and test samples at our disposal for the training of RipsNet,
and for the training of neural net classifiers, respectively. The architecture of these classifiers (NN) is
very simple, consisting of only two consecutive fully connected layers of 100 and 50 neurons and an
output layer. In addition to the neural net classifiers, we also train XGBoost classifiers, the results of
which, as well as additional results of the neural net classifiers and running times, are reported in
Tables 6, 7 and Table 8 in Appendix F.

For the sake of simplicity, we focus on persistence images of resolution 25× 25 with weight function
(y − x)2 only, and consider the combination of persistence diagrams of dimension 0 and 1. The
vectorization parameters were estimated as in Section E.1 (due to computational cost, only on a
random subset of all PDs). The final RipsNet architecture, using op = mean, was found via a 3-fold
cross-validation over several models, and again optimized with Adam optimizer. As a baseline, we
employ the pointnet model Qi et al. (2017). To showcase the robustness of RN, we introduce
noise fractions λ in {0.02, 0.05, 0.1, 0.25, 0.5}.
Results. The accuracies of the NN classifier are compiled in Table 1 and some running times can
be found in Table 3. Due to class imbalances, the accuracy of the best possible constant classifier

1The authors are grateful to the OPAL infrastructure from Université Côte d’Azur for providing resources
and support.

4

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://modelnet.cs.princeton.edu/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://pypi.org/project/velour/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://modelnet.cs.princeton.edu/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://modelnet.cs.princeton.edu/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

is 22.2%. As the sampling of the point clouds, as well as the addition of noise, are random, we
repeat this process 10 times in total. Subsequently, we train the classifiers on each of these data
sets, without retraining RipsNet, and report the mean and standard deviation. The vectorization
running time of Gudhi is clearly outperformed by RN by three orders of magnitude (see Table 8 in
Appendix E). The accuracy of ClNN

RN substantially surpasses those of ClNN

Gudhi and ClNN

GudhiDTM for all
values of λ and remains much more robust for high levels of noise. For λ ≥ 0.1, ClNN

RN surpasses
the pointnet baseline, whose accuracy decreases sharply for λ ≥ 0.25, at which point ClNN

RN
substantially outperforms pointnet.

5

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

REFERENCES

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peterson, Patrick Shipman,
Sofya Chepushtanova, Eric Hanson, Francis Motta, and Lori Ziegelmeier. Persistence images: a
stable vector representation of persistent homology. Journal of Machine Learning Research, 18(8),
2017.

Hirokazu Anai, Frédéric Chazal, Marc Glisse, Yuichi Ike, Hiroya Inakoshi, Raphaël Tinarrage, and
Yuhei Umeda. DTM-Based Filtrations. In 35th International Symposium on Computational
Geometry (SoCG 2019), volume 129, pp. 58:1–58:15. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, 2019.

Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension, persistent
homology and generalization in neural networks. Advances in Neural Information Processing
Systems, 34, 2021.

Peter Bubenik. Statistical topological data analysis using persistence landscapes. Journal of Machine
Learning Research, 16(77):77–102, 2015.

Peter Bubenik and Alexander Wagner. Embeddings of persistence diagrams into hilbert spaces.
Journal of Applied and Computational Topology, 4(3):339–351, 2020.

Mickaël Buchet, Yasuaki Hiraoka, and Ippei Obayashi. Persistent homology and materials informatics.
In Nanoinformatics, pp. 75–95. 2018.

Pablo Cámara. Topological methods for genomics: present and future directions. Current Opinion in
Systems Biology, 1:95–101, feb 2017.

Mathieu Carriere and Ulrich Bauer. On the metric distortion of embedding persistence diagrams into
separable hilbert spaces. arXiv preprint arXiv:1806.06924, 2018.

Mathieu Carrière, Steve Oudot, and Maks Ovsjanikov. Stable topological signatures for points on 3d
shapes. In Computer Graphics Forum, volume 34, pp. 1–12. Wiley Online Library, 2015.

Mathieu Carrière, Marco Cuturi, and Steve Oudot. Sliced Wasserstein kernel for persistence diagrams.
In International Conference on Machine Learning, volume 70, pp. 664–673, jul 2017.

Frédéric Chazal, David Cohen-Steiner, Leonidas J Guibas, Facundo Mémoli, and Steve Y Oudot.
Gromov-hausdorff stable signatures for shapes using persistence. In Computer Graphics Forum,
volume 28, pp. 1393–1403. Wiley Online Library, 2009.

Frédéric Chazal, Vin de Silva, and Steve Oudot. Persistence stability for geometric complexes.
Geometriae Dedicata, 173(1):193–214, 2014.

Frédéric Chazal, Brittany Terese Fasy, Fabrizio Lecci, Alessandro Rinaldo, and Larry Wasserman.
Stochastic convergence of persistence landscapes and silhouettes. Journal of Computational
Geometry, 6(2):140–161, 2015.

Taco Cohen. Equivariant convolutional networks. 2021.

David Cohen-Steiner, Herbert Edelsbrunner, and John Harer. Extending persistence using Poincaré
and Lefschetz duality. Foundations of Computational Mathematics, 9(1):79–103, feb 2009.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The ucr time series classification archive,
2018. https://www.cs.ucr.edu/˜eamonn/time_series_data_2018/.

Herbert Edelsbrunner and John Harer. Computational topology: an introduction. American Mathe-
matical Society, 2010.

Jennifer Gamble and Giseon Heo. Exploring uses of persistent homology for statistical analysis of
landmark-based shape data. Journal of Multivariate Analysis, 101(9):2184–2199, 2010.

6

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

William H Guss and Ruslan Salakhutdinov. On characterizing the capacity of neural networks using
algebraic topology. arXiv preprint arXiv:1802.04443, 2018.

Sara Kališnik. Tropical coordinates on the space of persistence barcodes. Foundations of Computa-
tional Mathematics, pp. 1–29, jan 2018.

Sara Kališnik. Tropical coordinates on the space of persistence barcodes. Foundations of Computa-
tional Mathematics, 19(1):101–129, 2019.

Genki Kusano, Yasuaki Hiraoka, and Kenji Fukumizu. Persistence weighted Gaussian kernel for
topological data analysis. In International Conference on Machine Learning, volume 48, pp.
2004–2013, jun 2016.

Tam Le and Makoto Yamada. Persistence Fisher kernel: a Riemannian manifold kernel for persistence
diagrams. In Advances in Neural Information Processing Systems, pp. 10027–10038, 2018.

Chunyuan Li, Maks Ovsjanikov, and Frédéric Chazal. Persistence-based structural recognition. In
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2003–2010, jun 2014.

Guido Montúfar, Nina Otter, and Yuguang Wang. Can neural networks learn persistent homology
features? arXiv preprint arXiv:2011.14688, 2020.

Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim. Topology of deep neural networks. J. Mach.
Learn. Res., 21(184):1–40, 2020.

Steve Oudot. Persistence theory: from quiver representations to data analysis. American Mathemati-
cal Society, 2015.

Jose Perea and John Harer. Sliding windows and persistence: an application of topological methods
to signal analysis. Foundations of Computational Mathematics, 15(3):799–838, jun 2015.

Cássio MM Pereira and Rodrigo F de Mello. Persistent homology for time series and spatial data
clustering. Expert Systems with Applications, 42(15-16):6026–6038, 2015.

Charles R. Qi, Hao Su, Mo Kaichun, and Leonidas J. Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. In 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 77–85, 2017. doi: 10.1109/CVPR.2017.16.

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A stable multi-scale kernel for
topological machine learning. In IEEE Conference on Computer Vision and Pattern Recognition,
2015.

Anirudh Som, Hongjun Choi, Karthikeyan Natesan Ramamurthy, Matthew P Buman, and Pavan
Turaga. Pi-net: A deep learning approach to extract topological persistence images. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 834–835,
2020.

Yuhei Umeda. Time series classification via topological data analysis. Information and Media
Technologies, 12:228–239, 2017.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. pp. 1912–1920, 06 2015. doi:
10.1109/CVPR.2015.7298801.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhutdinov, and
Alexander Smola. Deep sets. In Advances in Neural Information Processing Systems, pp. 3391–
3401, 2017.

Chi Zhou, Zhetong Dong, and Hongwei Lin. Learning persistent homology of 3d point clouds.
Computers & Graphics, 2021.

7

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

A RELATED WORK

DeepSets. Our RipsNet architecture is directly based on DeepSets Zaheer et al. (2017), a particular
case of equivariant neural network Cohen (2021) designed to handle point clouds as inputs. Namely,
DeepSets essentially consist of processing a point cloud X = {x1, . . . , xn} ⊂ Rd via

X 7→ φ2 (op({φ1(xi)}ni=1)) , (2)

where op is a permutation invariant operator on sets (such as sum, mean, maximum, etc.) and
φ1 : Rd → Rd′ and φ2 : Rd′ → Rd′′ are parametrized maps (typically encoded by neural networks)
optimized in the training phase. Eq. equation 2 makes the output of DeepSets architectures invariant
to permutations, a property of Rips PDs that we want to reproduce in RipsNet.

Learning to estimate PDs. There exist a few works attempting to compute or estimate (vectorizations
of) PDs through the use of neural networks. In Som et al. (2020), the authors propose a convolutional
neural network (CNN) architecture to estimate persistence images (see Section 2) computed on
2D-images. Similarly, in Montúfar et al. (2020), the authors provide an experimental overview of
specific PD features (such as, e.g., their tropical coordinates Kališnik (2019)) that can be learned
using a CNN, when PDs are computed on top of 2D-images. On the other hand, RipsNet is designed
to handle the (arguably harder) situation where input data are point clouds of arbitrary cardinality
instead of 2D-images (i.e., vectors). Finally, the recent work Zhou et al. (2021) also aims at learning
to compute topological descriptors on top of point clouds via a neural network. However, note that
our methodology is quite different: while our approach based on a DeepSet architecture allows
to process point clouds directly, the approach proposed in Zhou et al. (2021) requires the user to
equip the point clouds with graph structures (that depend on hyper-parameters mimicking Rips
filtrations). Furthermore, a key difference between our approach and the aforementioned works is
that we provide a theoretical study of our model that provides insights on its behavior, particularly in
terms of robustness to noise, while the other works are mostly experimental.

B FUNDAMENTALS OF TOPOLOGICAL DATA ANALYSIS

In this section, we briefly explain some fundamentals of topological data analysis. We refer the
interested reader to Cohen-Steiner et al. (2009); Edelsbrunner & Harer (2010); Oudot (2015) for a
thorough treatment.

B.1 SIMPLICIAL COMPLEXES AND HOMOLOGY GROUPS

Let us begin by introducing the concepts of simplicial complexes and homology groups.
Definition B.1. Let V be a finite set. A subset K of the power set P (V) is said to be a (finite)
simplicial complex with vertex set V if it satisfies the following conditions.

(1) ∅ 6∈ K;

(2) for any v ∈ V , {v} ∈ K;

(3) if σ ∈ K and ∅ 6= τ ⊂ σ, then τ ∈ K.

An element σ of K with the cardinality #σ = k + 1 is called a k-simplex.

Now we introduce homology to extract topology information of simplical complexes. For σ =
{v0, . . . , vk}, we consider orderings with respect to its vertices. Two orderings of σ are said to
be equivalent if one ordering can be obtained from the other by an even permutation. In this way,
orderings consist of two equivalence classes, each of which is called an orientation of σ. A simplex
equipped with an orientation is said to be oriented, and a simplicial complex whose simplices are all
oriented is called an oriented simplicial complex. The equivalent class of the ordering (vi0 , . . . , vik)
is denoted by 〈vi0 , . . . , vik〉. We use the convention that

〈vs(0), . . . , vs(k)〉 = sgn(s)〈v0, . . . , vk〉

for any permutation s of {0, . . . , k}, where sgn(s) denotes the signature of s. For an oriented
simplicial complex K, let Ci(K) be the free abelian group consists of equivalence classes of oriented

8

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

i-simplices of K, which is called the i-th chain group of K. We now introduce a homomorphism,
which is called the boundary operator.
Definition B.2. Let K be an oriented simplicial complex and i be a positive integer. For a i-simplex
σ ∈ Ci(K), one defines the boundary operator ∂i : Ci(K)→ Ci−1(K) by

∂i(σ) =

k∑
j=0

(−1)j〈v0 . . . vj−1vj+1 . . . vn〉.

Then one linearly extends the operator for the elements of Ci(K). One also sets ∂0 = 0.

Then we can see that ∂i ◦ ∂i+1 = 0 for any non-negative integer. This implies Im(∂i+1) ⊂ Ker(∂i).
Definition B.3. For an oriented simplicial complex K, one defines

Hi(K) := Ker(∂i)/ Im(∂i+1)

and calls it the i-th homology group of K.

We note that a simplicial complex defined in Definition B.1 is sometimes called an abstract simplicial
complex. As explained in Definition B.1, a simplicial complex consists of a finite set and its power
set. We remark that the finite set V does not need to be a subset of Euclidean space. On the other
hand, we can interpret the simplicial complex from a geometric perspective. Let K be a simplicial
complex and V the vertex set of K. Set N := #V and consider the N -dimensional vector space
RN with standard basis ei := (0, . . . , 0︸ ︷︷ ︸

i−1

, 1, 0, . . . , 0). With each simplex σ = {vi0 , . . . , vik} of K,

we associate a k-simplex

|σ| := {λi0ei0 + · · ·+ λikeik | λi0 + · · ·+ λik = 1, λi ≥ 0}.

We define the geometric realization of K by |K| :=
⋃
σ∈K |σ| ⊂ RN with the subspace topology. A

fundamental theorem is that the simplicial homology K is isomorphic to the singular homology of
its geometric realization |K|: Hn(K) ' Hn(|K|) for any n ∈ Z. Hence, for a topological space X ,
if we find a simplical complex K such that its geometric realization |K| is homotopy equivalent to
X , we can compute the singular homology Hn(X) by the combinatorial object K. Below, we will
construct such a complex for a finite union of closed balls.

B.2 FILTRATIONS AND PERSISTENT HOMOLOGY

We introduce the notion of a filtration of a simplicial complex to consider the evolution of the topology
of the simplicial complex.
Definition B.4. Let K be a simplicial complex. A family of subcomplexes (Kα)α∈R of K is said to
be a filtration of K if it satisfies

(1) Kα ⊂ Kα′ for α ≤ α′;

(2)
⋃
α∈RKα = K.

Čech filtration. Let X be a finite point set in X = Rd and α ∈ R. To X , one can associate a
function dX : Rd → R, v 7→ d(v,X) := minx∈X ‖v − x‖. The sublevel filtration induced by dX is
frequently used to investigate the topology of the point set X . Indeed, for any α ≥ 0 the sublevel
set Xα = {x ∈ Rd : dX(x) ≤ α} is equal to the union of d-dimensional closed balls of radius α
centered at points in X:

⋃
x∈X B(x;α). One can compute the homology of the sublevel set in the

following combinatorial way, by constructing a simplicial complex whose geometric realization is
homotopy equivalent to the sublevel set. For α ≥ 0, we define a simplicial complex C(X;α) by

{x0, . . . , xk} ∈ C(X;α) :⇐⇒
k⋂
i=0

B(xi;α) 6= ∅.

In other words, C(X;α) is the nerve of the family of closed sets {B(x;α)}x∈X . Since each B(x;α)
is a convex closed set of Rd, the geometric realization of C(X;α) is homotopy equivalent to

9

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

⋃
x∈X B(x;α) by the nerve theorem. The family (C(X;α))α forms a filtration in the sense of

Definition B.4 for α ≥ 0. If α is negative, we regard C(X;α) as the empty set. We call this filtration
the Čech filtration.

In the above construction of filtrations, the radii of balls increase uniformly. We can give filtrations
in another way, that is, we make radii increase non-uniformly. Such a filtration is called a weighted
filtration. Let X ⊂ Rd be a finite point set, f : Rd → R≥0 a continuous function, and p ∈ [1,∞].
For p <∞, we define a function rf : X × R≥0 → R ∪ {−∞} by

rf (x, t) =

{
−∞ if t < f(x),

(tp − f(x)p)
1
p otherwise.

When p =∞, we also define a function rf : X × R≥0 → R ∪ {−∞} by

rf (x, t) =

{
−∞ if t < f(x),

t otherwise.

We replace the radius of each closed ballB(x; r) by rf (x, t). By modifying the definition of C(X;α),
we define a simplicial complex Cf (X; t) by

{x0, . . . , xk} ∈ Cf (X; t) :⇐⇒
k⋂
i=0

B(xi; rf (xi, t)) 6= ∅.

Then we have a filtration {Cf (X; t)}t, which is called the weighted Čech filtration.

Rips filtration. The Čech complex C(X;α) exactly computes the homology of the union of closed
balls

⋃
x∈X B(x;α), but it is computationally expensive in practice. Now we introduce another

simplicial complex that is less expensive than the Čech complex.

Let X be a finite point set in Rd. For any α ≥ 0, one can define a simplicial complexR(X;α) whose
vertex set is X by

{x0, . . . , xk} ∈ R(X;α) :⇐⇒ B(xi;α) ∩B(xj ;α) 6= ∅ for any i, j ∈ {0, . . . , k}
⇐⇒ ‖xi − xk‖ ≤ 2α for any i, j ∈ {0, . . . , k}.

Otherwise, we regardR(X;α) as the empty set. The family (R(X;α))α forms a filtration, which
we call the Rips filtration.

Remark that we can also construct the weighted Rips filtration similarly to the weighted Čech
filtration.

Alpha filtration. Let X be a finite subset of Rd and assume that X is in a general position. For
x ∈ X , set

Vx := {y ∈ Rd | d(x, y) ≤ d(x′, y), for any x′ ∈ X \ {x}},
which we call the Voronoi cell for x. With this notation, we set

W (x;α) := B(x;α) ∩ Vx, F (X;α) := {W (x;α)}x∈X
and define Alpha(X;α) to be the nerve of F (X;α). Then by the nerve theorem, we find that
the geometric realization of Alpha(X;α) is homotopy equivalent to

⋃
x∈X B(x;α). The family

(Alpha(X;α))α forms a filtration and is called the alpha filtration. Similarly, one can construct a
weighted version of the alpha filtration, called the weighted alpha filtration.

DTM-filtrations. To get robustness to noise and outliers, Anai et al. (2019) introduces DTM-based
filtrations. Let µ be a probability measure on Rd and m a parameter in [0, 1). We define a function
δµ,m : Rd → R by δµ,m(x) = inf{r ≥ 0, µ(B(x; r)) > m}.
Definition B.5. The distance-to-measure function (DTM for short) µ is the function dµ,m : Rd → R
defined by

dµ,m(x) =

√
1

m

∫ m

0

δ2µ,t(x)dt.

10

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Let X be a finite point cloud with n points and set µX to be a empirical measure associated with
X: µX = 1

n

∑
x∈X δx, where δx is the Dirac measure located at x. For fixed p ∈ [0,+∞] and

m ∈ [0, 1), the family of simplicial complexes CdµX,m(X; t) defines a filtration, which we call the
DTM-based filtration. By replacing the Čech filtration with the alpha filtration, we can also define the
AlphaDTM-based filtration. These filtrations are shown to be robust to noise and outliers.

Persistent homology. Given a filtration (Kα)α∈R of an n-dimensional simplicial complex K, we
have inclusion maps ια

′

α : Kα ↪→ Kα′ for any α ≤ α′. Such inclusion maps induce homomorphisms
(ια

′

α)∗ : Hi(Kα) → Hi(Kα′). Then we have a family of homomorphisms · · · → Hi(Kα) →
Hi(Kα′)→ · · · . The resulting family is called i-th persistence module, and is known to decompose
into simpler interval modules, that can be represented as a persistence diagram.

Persistence diagrams.

Let X be a topological space, and f : X → R a real-valued continuous function. The α-sublevel
set of (X , f) is defined as Xα = {x ∈ X : f(x) ≤ α}. Increasing α from −∞ to +∞ yields an
increasing nested sequence of sublevel sets, called the filtration induced by f . It starts with the empty
set and ends with the entire space X . Ordinary persistence keeps track of the times of appearance and
disappearance of topological features (connected components, loops, cavities, etc.) in this sequence.
For instance, one can store the value αb, called the birth time, for which a new connected component
appears in Xαb . This connected component eventually merges with another one for some value
αd ≥ αb, which is stored as well and called the death time. One says that the component persists
on the corresponding interval [αb, αd]. Similarly, we save the [αb, αd] values of each loop, cavity,
etc. that appears in a specific sublevel set Xαb and disappears (gets “filled”) in Xαd . This family
of intervals is called the barcode, or persistence diagram, of (X , f), and can be represented as a
multiset (i.e., elements are counted with multiplicity) of points supported on the open half-plane
{(αb, αd) ∈ R2 : αb < αd} ⊂ R2. The information of connected components, loops, and cavities is
represented in persistence diagrams of dimension 0, 1, and 2, respectively.

C RELEVANT VECTORIZATION METHODS OF PERSISTENCE DIAGRAMS

Persistence images (PI). Given a persistence diagram D, computing its persistence image essentially
boils down to putting a Gaussian

gu(z) :=
1

2πσ2
exp

(
−‖z − u‖

2

2σ2

)
,

with fixed variance σ2, on each of its points u and weighing it by a piecewise differentiable function
w : R2 → R≥0 (typically a function of the distance of u to the diagonal {(t, t)} ⊂ R2) and then
discretizing the resulting surface on a fixed grid to obtain an image. Formally, one starts by rotating
the diagramD via the map T : R2 → R2, (b, d) 7→ (b, d−b). The persistence surface of D is defined
as

ρD(z) :=
∑

u∈T (D)

w(u)gu(z),

where w satisfies w(x, 0) = 0. Now, given a compact subset A ⊂ R2 partitioned into domains
A =

⊔k
i=1 Pi—in practice a rectangular grid regularly partitioned in (n × n) pixels—we set

I(ρD)P :=
∫
P
ρDdz. The vector (I(ρD)Pi)

n
i=1 is the persistence image of D. The transformation

PI: X 7→ Dgm(X) 7→ I(ρDgm(X)) defines a finite-dimensional vectorization as illustrated in
Figure 1.

Persistence landscapes (PL). Bubenik (2015) Given a persistence diagram D = {(bi, di)}ni=1, we
define a function λk(D) : R→ R≥0 by

λk(D)(t) = k -max
i

min{t− bi, di − t}+,

for each k ∈ Z≥1, where k -max denotes the k-th largest value in the set or 0 if the set contains less
than k points, and a+ = max{0, a} for a real number a. The sequence of functions (λk(D))∞k=1 is
called the persistence landscape of the persistence diagram D. In practice, these landscape functions
are evaluated on a 1-D grid, and the corresponding values are concatenated into a vector.

11

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

D STABILITY RESULTS FOR RIPSNET

D.1 WASSERSTEIN STABILITY OF RIPSNET

In this subsection, we show that RipsNet satisfies robustness properties. A convenient formalism
to demonstrate these properties is to represent a point cloud X = {x1, . . . , xN} by a probability
measure mX := 1

N

∑N
i=1 δxi , where δxi denotes the Dirac mass located at xi ∈ Rd. Let µ(f) denote∫

fdµ for a map f and a probability measure µ. Such measures can be compared by Wasserstein
distances Wp, p ≥ 1, which are defined for any two probability measures µ, ν supported on a
compact subset Ω ⊂ Rd as

Wp(µ, ν) :=

(
inf
π

∫∫
‖x− y‖pdπ(x, y)

) 1
p

,

where the infimum is taken over measures π, supported on Rd × Rd, with marginals µ and ν. We
also mention the so-called Kantorovich–Rubinstein duality formula that occurs when p = 1:

W1(µ, ν) = sup
f :1-Lip

(∫
fdµ−

∫
fdν

)
. (3)

Throughout this section, we fix op as the mean operator: op({y1, . . . , yN}) = 1
N

∑N
i=1 yi, and

let RN = φ2 ◦ op ◦φ1, where φ1, φ2 are two Lipschitz-continuous maps with Lipschitz constant
C1, C2, respectively.

D.1.1 POINTWISE STABILITY

If X = {x1, . . . , xN−1, xN} ⊂ Ω and X ′ = {x1, . . . , xN−1, x′N} ⊂ Ω, it is worth noting that
W1(mX ,mX′) ≤ 1

N ‖xN − x
′
N‖. Therefore, moving a single point xN of X to another location x′N

changes the W1 distance between the two measures by at most O(1/N). More generally, moving
a fraction λ ∈ (0, 1) of the points in X affects the Wasserstein distance in O(λ). RN satisfies the
following stability result.
Proposition D.1. For any two point clouds X,Y , and any p ≥ 1, one has

‖RN(X)−RN(Y)‖ ≤ C1C2 ·W1(mX ,mY)

≤ C1C2 ·Wp(mX ,mY).

Proof. We have

‖RN(X)−RN(Y)‖ = ‖φ2(mX(φ1))− φ2(mY (φ1))‖
≤ C2‖mX(φ1)−mY (φ1)‖
≤ C2C1 sup

f :1-Lip
‖mX(f)−mY (f)‖

≤ C2C1W1(mX ,mY),

where we used equation 3 and we conclude W1 ≤Wp using Jensen’s inequality.

In particular, this result implies that moving a small proportion of points λ in Ω in a point cloud X
does not affect the output of RN by much. We refer to it as a “pointwise stability” result in the sense
that it describes how RN is affected by perturbations of a fixed point cloud X .

Note that in contrast, Rips PDs, as well as their vectorizations, are not robust to such perturbations:
moving a single point of X , even in the regime λ→ 0, may change the resulting persistence diagram
by a fixed positive amount, preventing a similar result to hold for PVs. A concrete example of this
phenomenon is given in Appendix D.2 for the case of persistence images.

D.1.2 PROBABILISTIC STABILITY

The pointwise stability result of Proposition D.1 can be used to obtain a good theoretical understanding
on how RipsNet behaves in practical learning settings. For this, we consider the following model: let

12

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

P be a law on some compact set Ω ⊂ Rd, fix N ∈ N, and let P denote P⊗N , that is, X ∼ P is a
random point cloud X = {x1, . . . , xN} where the xi’s are i.i.d. ∼ P .

In practice, given a training sample X1, . . . , Xn ∼ P, RipsNet is trained to minimize the empirical
risk

R̂n :=
1

n

n∑
i=1

‖RN(Xi)− PV(Xi)‖,

which, hopefully, yields a small theoretical risk:

R :=

∫
‖RN(X)− PV(X)‖dP(X).

Remark D.2. The question to know whether “R̂n small⇒ R small” is related to the capacity of
RipsNet to generalize properly. Providing a theoretical setting where such an implication should hold
is out of the scope of this work, but can be checked empirically by looking at the performances of
RipsNet on validation sets.

We now consider the following noise model: given a point cloud X ∼ P, we randomly replace a
fraction λ = N−K

N ∈ (0, 1) of its points2 by corrupted observations distributed with respect to some
law Q. Let Y ∼ Q⊗N−K =: Q and F (X,Y) denote this corrupted point cloud.

Lemma D.3. Let C(P,Q) := EP⊗Q[‖x− y‖]. Then,

EP⊗Q[W1(F (X,Y), X)] ≤ λC(P,Q).

In particular, if P,Q are supported on a compact set Ω ⊂ Rd with diameter ≤ L, the bound becomes
λL.

Proof. Set X = {x1, . . . , xN} and Y = {yK+1, . . . , yN}. Assume without loss of generality that
F (X,Y) = {x1, . . . , xK , yK+1, . . . , yN}, where K = (1 − λ)N . Let us consider the transport
plan that does not move the first K points, and transports V = {yK+1, . . . , yN} toward U =
{xK+1, . . . , xN} using the coupling xi ↔ yi. As this transport plan is sub-optimal, we have

W1(F (X,Y), X) ≤ 1

N

N∑
i=K+1

‖xi − yi‖.

Hence

EP⊗Q[W1(F (X,Y), X)]

=

∫
W1(F (X,Y), X)dP(X)dQ(Y)

≤ 1

N

∫ N∑
i=K+1

‖xi − yi‖dP (xi)dQ(yi)

≤ 1

N

N∑
i=K+1

∫
‖xi − yi‖dP (xi)dQ(yi)

≤ 1

N

N∑
i=K+1

EP⊗Q‖x− y‖

≤ λ · C(P,Q),

as claimed.

We can now state the main result of this section.

2As the xi’s are i.i.d., we may assume without loss of generality that the last N −K points are replaced.

13

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Proposition D.4. One has ∫
‖RN(F (X,Y))− PV(X)‖dP(X)dQ(Y)

≤ λC1C2 · C(P,Q) +R.

In particular, if P,Q are supported on a compact subset of Rd with diameter ≤ L, one has∫
‖RN(F (X,Y))− PV(X)‖dP(X)dQ(Y) ≤ O(λ+R).

Proof. By Proposition D.1, we have∫
‖RN(F (X,Y))− PV(X)‖dP(X)dQ(Y)

≤
∫
‖RN(F (X,Y))−RN(X)‖dP(X)dQ(Y)

+

∫
‖RN(X)− PV(X)‖dP(X)

≤ C1C2

∫
W1(F (X,Y), X)dP(X)dQ(Y) +R

≤ C1C2EP⊗Q[W1(F (X,Y), X)] +R

and we conclude using Lemma D.3.

Therefore, if RipsNet achieves a low theoretical test risk (R small) and only a small proportion
λ of points is corrupted, RipsNet will produce outputs similar, in expectation, to the persistence
vectorizations PV(X) of the clean point cloud.

D.2 INSTABILITY OF STANDARD RIPS PERSISTENCE IMAGES

Here we show that persistence images built on Rips diagrams do not satisfy a similar stability result.
Namely, the idea is to replace the “estimator” RN in the above section by the exact oracle PI, for
whichR = 0, and to prove that∫

‖PI(F (X,Y))− PI(X)‖dPdQ 6→ 0

in the regime λ→ 0 for some choice of underlying measures P,Q.

We consider the following setting:

• Let P be the uniform distribution on a circle in R2 centered at 0 with radius 1.
• Let Q be the Dirac mass on 0.
• Fix K = N − 1, that is, we move a single point of X ∼ P = P⊗N to Q = Q = δ0, hence
λ = 1/N .

• We consider persistence diagrams of dimension 1, which represent loops in point clouds,
and fix the variance σ2 of the Gaussian used for the PI construction.

In the regime λ→ 0, that is, N →∞, we have

PI(X)→ N ((0, 1), σ2) =: g1

almost surely. On the other hand, we have

PI(F (X,Y))→ N
(
(0, 1/2) , σ2

)
=: g2

almost surely, hence ∫
‖PI(F (X,Y))− PI(X)‖dPdQ→ ‖g1 − g2‖1 > 0,

which proves the claim.

14

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Figure 3: Point clouds (left), Gudhi vectorizations (2nd and 4th columns) and RNsynth vectoriza-
tions (3rd and 5th columns) on clean data (1st row) and noisy data (2nd row) for PLs (4th and 5th
columns) and PIs (2nd and 3rd columns). For a larger version, see Figure 4.

E ADDITIONAL NUMERICAL EXPERIMENTS

E.1 SYNTHETIC DATA

Dataset. Our synthetic data set consists of samplings of unions of circles in the Euclidean plane R2.
These unions are made of either one, two, or three circles, and we use the number of circles as the
labels of the point clouds. Each point cloud has N = 600 points, and N −K = 200 corrupted points,
i.e., λ = 1/3, when noise is added.

We train a RipsNet architecture RNsynth on a data set Tr1 of 3300 point clouds, using 3000 point
clouds for training and 300 as a validation set. The persistence diagrams PD1 were computed with
Alpha filtration in dimension 1 with Gudhi, and then vectorized into either the first 5 normalized per-
sistence landscapes of resolution 300 each, leading to 1500-dimensional vectors, or into normalized
persistence images of resolution 50× 50, leading to 2500-dimensional vectors. The hyperparameters
of these vectorizations were estimated from the corresponding persistence diagrams: the landscape
limits were computed as the min and max of the x and y coordinates of the persistence diagrams
points, while the image limits were computed as the min and max of the x and y − x coordinates,
respectively. Moreover, the image bandwidth was estimated as the 0.2-quantile of all pairwise
distances between the birth-persistence transforms of the persistence diagram points, and the image
weight was defined as 10 · tanh(y − x).

Our architecture RNsynth is structured as follows. The permutation invariant operator is op = sum,
φ1 is made up of three fully connected layers of 30, 20, and 10 neurons with ReLU activations, φ2
consists of three fully connected layers of 50, 100, and 200 neurons with ReLU activations, and a last
layer with sigmoid activation. We used the mean squared error (MSE) loss with Adamax optimizer
with ε = 5 · 10−4, and early stopping after 200 epochs with less than 10−5 improvement.

Finally, we evaluate RNsynth and Gudhi using default XGBoost classifiers ClXGB
RNsynth

and ClXGB
Gudhi

from Scikit-Learn, trained on a data set Tr2 of 3000 point clouds and tested on a clean test set
Te and a noisy test set T̃e of 300 point clouds each. In addition, we compare it against two DeepSets
architecture baselines trained directly on the point clouds: one (DS1) with four fully connected layers
of 50, 30, 10, and 3 neurons, and a simpler one (DS2) with just two fully connected layers of 50
and 3 neurons. Both the architectures have ReLU activations, except for the last layer, permutation
invariant operator op = sum, default Adam optimizer, and cross entropy loss from TensorFlow,
and early stopping after 200 epochs with less than 10−4 improvement.

Results. We show some point clouds of Te and T̃e, as well as their corresponding vectorized
persistence diagrams and estimated vectorizations with RNsynth, in Figure 3. Accuracies and
running times (averaged over 10 runs) are given in Tables 2 and 3.

15

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://scikit-learn.org/stable/
https://www.tensorflow.org/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Synth. Data ClXGB
Gudhi ClXGB

GudhiDTM ClXGB
RN DS1 DS2

LS 99.9± 0.1 99.9± 0.1 80.7± 3.0 66.4± 2.3 66.0± 2.4
PI 100.0± 0.0 100.0± 0.1 81.6± 5.3 - -
L̃S 66.7± 0.0 66.7± 0.0 76.3± 2.3 66.8± 1.0 66.6± 2.3
P̃I 33.3± 0.0 65.0± 1.3 77.4± 4.4 - -

UCR Data ClXGB
Gudhi ClXGB

GudhiDTM ClXGB
RN kNND kNNE

P 70.5± 0.0 56.2± 0.0 88.4± 4.1 82.9± 0.0 78.1± 0.0
P̃ 22.5± 2.6 53.9± 2.5 43.0± 7.9 82.9± 0.0 78.1± 0.6

SAIBORS2 63.6± 0.0 66.2± 0.0 80.2± 5.2 73.8± 0.0 72.4± 0.0
˜SAIBORS2 56.8± 0.8 60.0± 1.2 75.6± 6.6 73.7± 0.9 72.4± 0.4

ECG5000 84.2± 0.0 86.2± 0.0 90.2± 0.2 93.0± 0.0 92.8± 0.0
˜ECG5000 68.9± 0.8 71.6± 1.0 75.8± 4.7 93.1± 0.3 92.8± 0.1
UMD 55.6± 0.0 54.2± 0.0 71.1± 6.5 68.8± 0.0 61.1± 0.0
ŨMD 51.8± 1.9 48.9± 1.6 69.2± 6.4 68.3± 1.7 61.1± 0.4

GPOVY 98.4± 0.0 97.8± 0.0 90.4± 19.0 100.0± 0.0 100.0± 0.0

G̃POVY 54.8± 0.7 54.3± 0.6 82.4± 20.7 100.0± 0.0 100.0± 0.0

Table 2: Accuracy scores of classifiers trained on Gudhi, GudhiDTM and RN PVs generated from
several data sets. The highest accuracy of the three topology-based classifiers (middle) is highlighted
in red, and the highest accuracy over all models in bold font.

Data Gudhi (s) GudhiDTM (s) RN (s)
LS 56.3 ± 1.5 155.9 ± 8.1 0.3± 0.0
PI 69.5 ± 3.1 173.7 ± 13.3 0.4± 0.0
P 5.3± 1.4 44.7± 6.6 0.2± 0.0
UMD 8.0± 1.4 55.7± 3.6 0.2± 0.0

λ = 2% 118.4± 4.7 178.5± 8.1 0.2± 0.0
λ = 5% 117.8± 4.5 180.0± 9.2 0.2± 0.0

Table 3: Running times for Gudhi, GudhiDTM and RN. The bottom two rows refer to the 3D-shape
experiments.

16

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

As one can see from the figure and the tables, RNsynth manages to learn features that look like
reasonable PD vectorizations, and that perform reasonably well on clean data. However, features
generated by RNsynth are much more robust; even though ClXGB

Gudhi and ClXGB
GudhiDTM see their accu-

racies largely decrease when noise is added, ClXGB
RNsynth

accuracy only decreases slightly. Note that
the decrease of accuracy is more moderate for ClXGB

GudhiDTM since GudhiDTM is designed to be more
robust to outliers. Running times are much more favorable for RNsynth, with an improvement of
2 (resp. 3) orders of magnitude over Gudhi (resp. GudhiDTM) both for persistence images and
landscapes.

E.2 TIME SERIES DATA

Data set. We apply our experimental setup on several data sets from the UCR archive, which contains
data sets of time series separated into train and test sets. We first converted the time series into point
clouds in R3 using time-delay embedding with skip 1 and delay 1 with Gudhi, and used the first half
of the train set for training RipsNet architectures RN, while the second half was used for training
XGBoost classifiers. The amount of corrupted points was set up as 2%, i.e. λ = 0.02.

The hyperparameters were estimated exactly like for the synthetic data (see Section E.1), except that
the final RipsNet architecture RNucr was found with 10-fold cross-validation across several models
similar to the one used in Section E.1 and that persistence diagrams were computed in dimensions 0
and 1. They were optimized with Adam optimizer with ε = 5 · 10−4 and early stopping after 200
epochs with less than 10−5 improvement. We also focused on the first five persistence landscapes
of resolution 50 only. The baseline is made of two default k-nearest neighbors classifiers from
Scikit-Learn, trained directly on the time series: one (named kNNE) computed with Euclidean
distance, and one (named kNND) computed with dynamic time warping.

Results. Accuracies and running times (averaged over 10 runs) are given in Tables 2 and 3, and a
more complete set of results (as well as the full data set names) can be found in Appendix F. As in the
synthetic experiment, RNucr learns valuable topological features, which often perform better than
Gudhi and GudhiDTM on clean data, is more robust than Gudhi and GudhiDTM on noisy data,
and is much faster to compute. The fact that RNucr often achieves better scores than Gudhi and
GudhiDTM on clean data comes from the fact that the features learned by RNucr are more robust
and less complex; while Gudhi encodes all the topological patterns in the data, some of which are
potentially due to noise, RNucr only retains the most salient patterns when minimizing the MSE
during training. Note however that when the training data set is too small for RN to train properly,
robustness can be harder to reach, as is the case for the Plane data set.

F ADDITIONAL EXPERIMENTAL RESULTS AND FIGURES

17

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://gudhi.inria.fr/
https://scikit-learn.org/stable/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Data ClXGB
Gudhi ClXGB

GudhiDTM ClXGB
RN kNND kNNE

CC 53.4± 0.0 52.0± 0.0 55.8± 1.3 55.2± 0.0 53.2± 0.0
C̃C 52.9± 0.6 53.7± 0.2 45.3± 2.0 54.5± 0.7 51.7± 0.5
PPTW 76.1± 0.0 71.2± 0.0 76.5± 1.1 78.5± 0.0 76.1± 0.0

P̃PTW 70.7± 2.3 68.0± 2.1 62.0± 7.6 78.2± 1.0 73.1± 1.6
P 70.5± 0.0 56.2± 0.0 88.4± 4.1 82.9± 0.0 78.1± 0.0
P̃ 22.5± 2.6 53.9± 2.5 43.0± 7.9 82.9± 0.0 78.1± 0.6
GP 80.7± 0.0 84.0± 0.0 75.7± 6.6 66.7± 0.0 72.7± 0.0
G̃P 50.0± 0.7 50.5± 0.5 68.1± 5.3 66.8± 0.3 72.8± 0.5
POC 68.2± 0.0 64.2± 0.0 71.6± 2.8 72.6± 0.0 74.6± 0.0
P̃OC 58.6± 0.0 57.4± 0.0 53.2± 0.0 71.8± 0.0 74.2± 0.0

SAIBORS2 63.6± 0.0 66.2± 0.0 80.2± 5.2 73.8± 0.0 72.4± 0.0
˜SAIBORS2 56.8± 0.8 60.0± 1.2 75.6± 6.6 73.7± 0.9 72.4± 0.4
PPOAG 78.5± 0.0 79.5± 0.0 81.1± 2.8 82.9± 0.0 82.9± 0.0

P̃POAG 74.6± 1.9 72.7± 1.5 73.9± 3.6 82.0± 0.4 83.1± 1.3
ECG5000 84.2± 0.0 86.2± 0.0 90.2± 0.2 93.0± 0.0 92.8± 0.0
˜ECG5000 68.9± 0.8 71.6± 1.0 75.8± 4.7 93.1± 0.3 92.8± 0.1

ECG200 77.0± 0.0 70.0± 0.0 76.2± 1.6 78.0± 0.0 85.0± 0.0
˜ECG200 73.0± 2.9 70.2± 4.0 72.8± 2.7 78.4± 0.5 85.0± 0.6
MI 47.2± 0.0 46.8± 0.0 56.4± 2.2 63.4± 0.0 52.6± 0.0
M̃I 35.1± 2.2 36.6± 2.0 44.3± 3.4 63.6± 0.3 53.6± 0.5
PC 69.4± 0.0 74.4± 0.0 87.6± 6.0 82.8± 0.0 97.8± 0.0
P̃C 70.0± 2.7 72.7± 2.4 84.8± 5.3 84.2± 1.4 97.9± 0.2
DPOC 68.5± 0.0 69.2± 0.0 74.0± 2.0 73.9± 0.0 68.8± 0.0

D̃POC 57.8± 2.1 58.7± 1.7 61.5± 3.6 73.9± 0.5 72.0± 0.9
IPD 70.4± 0.0 70.6± 0.0 79.0± 0.8 87.6± 0.0 96.4± 0.0
ĨPD 70.4± 0.0 70.6± 0.0 79.0± 0.8 87.6± 0.0 96.4± 0.0
MPOAG 54.5± 0.0 50.0± 0.0 55.6± 1.9 56.5± 0.0 52.0± 0.0

M̃POAG 35.3± 4.6 33.0± 2.8 49.7± 7.4 56.0± 0.5 53.2± 2.5
SAIBORS1 53.0± 0.0 49.8± 0.0 69.5± 3.1 50.2± 0.0 45.0± 0.0

˜SAIBORS1 53.1± 0.8 49.5± 0.7 67.9± 5.8 50.2± 0.2 44.9± 0.2
UMD 55.6± 0.0 54.2± 0.0 71.1± 6.5 68.8± 0.0 61.1± 0.0
ŨMD 51.8± 1.9 48.9± 1.6 69.2± 6.4 68.3± 1.7 61.1± 0.4
TLECG 67.6± 0.0 71.8± 0.0 78.6± 11.0 75.8± 0.0 54.0± 0.0

T̃LECG 66.6± 1.0 69.6± 0.9 69.5± 6.6 74.7± 0.4 54.2± 0.3
MPOC 68.7± 0.0 66.7± 0.0 73.2± 2.0 74.2± 0.0 77.7± 0.0

M̃POC 64.7± 1.4 64.2± 1.7 65.0± 2.6 73.3± 0.8 76.7± 0.9
GPOVY 98.4± 0.0 97.8± 0.0 90.4± 19.0 100.0± 0.0 100.0± 0.0

G̃POVY 54.8± 0.7 54.3± 0.6 82.4± 20.7 100.0± 0.0 100.0± 0.0
MPTW 52.0± 0.0 52.6± 0.0 51.7± 1.3 50.6± 0.0 52.0± 0.0

M̃PTW 36.5± 1.6 35.2± 3.5 46.5± 4.5 51.0± 1.3 51.2± 1.8
CBF 64.4± 0.0 63.8± 0.0 61.6± 10.9 78.2± 0.0 58.4± 0.0
C̃BF 63.8± 1.1 62.5± 1.6 55.0± 9.3 79.0± 0.4 57.7± 0.3

Table 4: Accuracy scores of XGBoost and k-NN classifiers on UCR data sets.

18

https://gudhi.inria.fr/
https://gudhi.inria.fr/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Data Name Gudhi (s) GudhiDTM (s) RN (s)
CC ChlorineConcentration 33.6± 9.3 310.0± 36.1 0.2± 0.0
C̃C - 25.3± 2.5 298.2± 43.6 0.2± 0.0
PPTW ProximalPhalanxTW 5.8± 1.3 25.3± 4.5 0.2± 0.0

P̃PTW - 5.9± 1.3 25.6± 4.6 0.2± 0.0
P Plane 5.3± 1.4 44.7± 6.6 0.2± 0.0
P̃ - 5.3± 1.5 44.8± 6.2 0.2± 0.0
GP GunPoint 6.6± 1.5 53.7± 7.9 0.2± 0.0
G̃P - 6.6± 1.5 55.1± 8.0 0.2± 0.0
POC PhalangesOutlineCorrect 22.0± 5.1 91.6± 19.5 0.2± 0.0
P̃OC - 11.9± 0.0 56.2± 0.0 0.2± 0.0

SAIBORS2 SonyAIBORobotSurface2 10.0± 0.2 26.3± 0.6 0.2± 0.0
˜SAIBORS2 - 10.2± 0.2 26.9± 0.6 0.2± 0.0
PPOAG ProximalPhalanxOutlineAgeGroup 6.8± 0.2 28.9± 0.8 0.2± 0.0

P̃POAG - 6.9± 0.2 29.4± 0.9 0.2± 0.0
ECG5000 ECG5000 27.6± 8.0 187.1± 29.2 0.2± 0.0
˜ECG5000 - 27.2± 8.6 185.5± 32.3 0.2± 0.0

ECG200 ECG200 3.8± 1.2 14.9± 4.3 0.1± 0.0
˜ECG200 - 3.8± 1.1 15.1± 3.9 0.2± 0.0
MI MedicalImages 16.8± 2.5 79.8± 9.4 0.3± 0.1
M̃I - 16.5± 2.4 80.1± 8.1 0.3± 0.0
PC PowerCons 11.2± 2.6 77.1± 10.0 0.2± 0.0
P̃C - 11.3± 2.8 76.9± 11.4 0.2± 0.0
DPOC DistalPhalanxOutlineCorrect 9.4± 1.6 39.2± 5.3 0.2± 0.0

D̃POC - 9.4± 1.5 39.4± 5.1 0.2± 0.0
IPD ItalyPowerDemand 2.7± 0.5 3.9± 0.6 0.2± 0.0
ĨPD - 2.7± 0.5 3.9± 0.6 0.2± 0.0

MPOAG MiddlePhalanxOutlineAgeGroup 5.8± 1.0 24.1± 3.3 0.2± 0.0

M̃POAG - 5.8± 0.9 24.1± 3.2 0.2± 0.0
SAIBORS1 SonyAIBORobotSurface2 10.4± 1.5 28.4± 4.2 0.2± 0.0

˜SAIBORS1 - 10.5± 1.5 28.6± 4.2 0.2± 0.0
UMD UMD 8.0± 1.4 55.7± 3.6 0.2± 0.0
ŨMD - 8.0± 1.3 55.6± 2.6 0.2± 0.0

TLECG TwoLeadECG 11.0± 0.4 40.8± 1.5 0.2± 0.0

T̃LECG - 11.1± 0.3 41.2± 0.9 0.2± 0.0
MPOC MiddlePhalanxOutlineCorrect 9.6± 2.1 39.3± 8.1 0.2± 0.0

M̃POC - 9.6± 2.1 39.4± 7.9 0.2± 0.0
GPOVY GunPointOldVersusYoung 12.1± 3.8 108.1± 21.5 0.2± 0.0

G̃POVY - 12.3± 3.8 108.8± 19.6 0.2± 0.0
MPTW MiddlePhalanxTW 6.3± 0.2 26.3± 1.0 0.2± 0.0

M̃PTW - 6.4± 0.2 26.1± 0.8 0.2± 0.0
CBF CBF 25.2± 4.5 120.4± 10.1 0.2± 0.0
C̃BF - 25.0± 4.4 120.5± 10.2 0.3± 0.1

Table 5: Data set names and running times for Gudhi, GudhiDTM and RNucr on UCR data sets.

19

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

λ (%) ClNN

Gudhi ClNN

GudhiDTM ClNN

RN pointnet
0 30.4± 4.0 30.9± 2.0 53.9± 2.4 81.6± 1.1
2 30.3± 3.2 31.0± 2.7 53.2± 2.5 74.5± 1.6
5 29.9± 4.0 31.0± 2.7 55.1± 3.3 63.4± 1.6

10 25.2± 3.2 29.5± 3.1 51.0± 2.1 50.6± 1.5
15 22.9± 4.6 25.7± 3.1 46.9± 3.0 44.9± 1.7
25 14.4± 4.0 18.1± 2.6 42.6± 2.5 11.0± 0.2
50 14.0± 3.4 13.1± 1.9 31.6± 3.3 10.9± 0.0
75 11.3± 1.5 11.2± 2.0 17.0± 2.3 10.9± 0.0
90 11.0± 2.4 10.8± 3.1 12.8± 2.8 10.9± 0.0

Table 6: Accuracy scores of simple neural net classifiers of Gudhi and RN on ModelNet10. λ is
the noise fraction and (y − x)2 was used as persistence image weight function. The highest accuracy
of the three topology based models ClNN

Gudhi, ClNN

GudhiDTM and ClNN

RN is highlighted in red, and the
highest accuracy over all models, including the pointnet baseline, is highlighted in bold font.

λ (%) ClXGB

Gudhi ClXGB

GudhiDTM ClXGB

RN pointnet
0 32.2± 2.8 31.6± 2.0 49.1± 2.2 81.6± 1.1
2 31.0± 4.9 30.9± 2.8 48.3± 3.0 74.5± 1.6
5 30.4± 2.6 30.9± 3.0 48.0± 3.2 63.4± 1.6

10 28.3± 2.0 27.6± 2.0 46.0± 2.2 50.6± 1.5
15 26.6± 2.8 28.2± 2.6 43.3± 2.7 44.9± 1.7
25 21.6± 2.9 25.6± 2.0 40.7± 2.8 11.0± 0.2
50 15.3± 2.0 15.7± 1.9 27.8± 2.7 10.9± 0.0
75 12.8± 1.5 11.9± 1.1 19.4± 1.6 10.9± 0.0
90 13.0± 2.1 11.1± 0.9 13.1± 2.4 10.9± 0.0

Table 7: Accuracy scores of XGBoost classifiers of Gudhi and RN on ModelNet10. λ is the
noise fraction and (y − x)2 was used as persistence image weight function. The highest accuracy
of the three topology based models ClXGB

Gudhi, ClXGB

GudhiDTM and ClXGB

RN is highlighted in red, and the
highest accuracy over all models, including the pointnet baseline, is highlighted in bold font.

λ (%) Gudhi (s) GudhiDTM (s) RN (s)
2 118.4± 4.7 178.5± 8.1 0.2± 0.0
5 117.8± 4.5 180.0± 9.2 0.2± 0.0

10 117.5± 4.6 181.9± 8.1 0.2± 0.0
15 120.0± 4.7 178.7± 8.4 0.3± 0.0
25 121.2± 4.4 179.8± 7.8 0.2± 0.0
50 127.0± 6.4 196.5± 10.7 0.2± 0.0

Table 8: Running times on ModelNet10 data in seconds, for Gudhi, GudhiDTM and RN,
respectively.

20

https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://modelnet.cs.princeton.edu/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://modelnet.cs.princeton.edu/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://gudhi.inria.fr/
https://modelnet.cs.princeton.edu/
https://gudhi.inria.fr/
https://gudhi.inria.fr/

Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

Fi
gu

re
4:

L
ar

ge
rv

er
si

on
of

Fi
gu

re
3

21

	Introduction
	Background
	RipsNet
	Numerical experiments
	3D-shape data

	Related Work
	Fundamentals of Topological Data Analysis
	Simplicial complexes and homology groups
	Filtrations and persistent homology

	Relevant vectorization methods of persistence diagrams
	Stability results for RipsNet
	Wasserstein stability of RipsNet
	Pointwise stability
	Probabilistic stability

	Instability of standard Rips persistence images

	Additional numerical experiments
	Synthetic data
	Time series data

	Additional Experimental Results and Figures

