DNA Sequence Classification: An Advanced
Machine Learning Framework For Accurate Splice
Junction Detection
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Abstract—In the context of genomic data analysis, DNA
splice junction classification is a critical task for understanding
gene expression, as these junctions are sites where introns
are removed and exons are joined. Accurate identification of
splice junctions is essential for deciphering gene functionality.
Traditional methods, such as sequence alignment, are often slow
and computationally intensive, especially when processing large-
scale DNA datasets. To address this, we developed and evaluated
multiple machine learning (ML) and deep learning (DL) models
for the accurate classification of splice junctions. Our goal
was to enhance classification accuracy, reduce computational
costs, and provide a comparative analysis of different modeling
approaches to advance research in genomic data analysis. We
employed a methodological framework that included traditional
ML algorithms, such as Random Forest, Gradient Boosting,
Decision Tree, Support Vector Machine (SVM), and XGBoost,
as well as contemporary DL architectures like Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs). The data preprocessing pipeline incorporated one-hot
encoding for optimal feature representation. Empirical results
demonstrated the superior performance of ensemble learn-
ing methods, with Gradient Boosting and XGBoost achieving
exceptional classification accuracies of 97.34% and 97.02%,
respectively. Among DL models, CNNs outperformed RNNs,
achieving 94.51% accuracy compared to 93.89% for RNNs. The
results underscore the exceptional performance of tree-based
ensemble methods for splice junction classification, highlighting
their superior discriminative power and effectiveness in genomic
sequence analysis.

Index Terms—Machine Learning, Splice Site Prediction, DNA
Sequence Classification, Machine Learning, Bioinformatics.

I. INTRODUCTION

Splicing errors in gene expression are responsible for
approximately 15-30% of all genetic disorders, including
cancer, neurodegenerative diseases, and metabolic syndromes
[1]. These errors often result in incorrect exon-intron recog-
nition, leading to dysfunctional protein synthesis and, con-
sequently, various genetic pathologies. It is estimated that
around 10% of pathogenic mutations arise due to aberrant
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splicing, making splice site identification a critical task
in genomic research [2]. Accurate classification of splice
junctions, such as exon-intron (EI), intron-exon (IE), and
non-splice (N) sites has profound implications for alternative
splicing analysis, genetic disease diagnostics, and therapeutic
target identification. However, despite the advancements in
computational biology, precisely distinguishing splice sites
remains a major challenge due to the complex dependencies
and context-sensitive nature of DNA sequences. [3] [4].
Traditional computational methods for splice site detection,
including motif-based models and sequence alignment tools,
often suffer from low predictive accuracy, lack of scalability,
and poor generalizability across large genomic datasets [5].
DNA sequences are inherently high-dimensional and exhibit
complex interdependencies, requiring robust feature extrac-
tion and advanced pattern recognition techniques for effec-
tive classification. Moreover, class imbalances in genomic
datasets often lead to high false-positive rates. Given these
challenges, there is a growing demand for automated, high-
precision predictive models that can effectively learn the
intricate patterns within genomic sequences while ensuring
generalization across different datasets [6] [7]. This study
presents an integrated machine learning (ML) and deep learn-
ing (DL) framework designed to enhance splice site classifi-
cation by leveraging the strengths of both approaches. While
ML models, such as Random Forest, Gradient Boosting, and
XGBoost, offer interpretability and computational efficiency,
DL models like CNNs and RNNs excel in capturing com-
plex sequence patterns. By combining these paradigms, this
research aims to develop a robust and scalable benchmark
framework that improves predictive accuracy while address-
ing challenges in interpretability, generalization, and scalabil-
ity. Key contributions include optimizing feature engineering
techniques such as one-hot encoding, sequence embedding,
and hyperparameter tuning to enhance classification perfor-



mance. This research enhances bioinformatics, computational
genomics, and precision medicine by delivering a high-
accuracy model for genomic sequence classification. Its find-
ings pave the way for future applications in genetic mutation
analysis, disease prediction, and bioinformatics-driven clini-
cal decision-making, ultimately supporting advancements in
personalized medicine and genomic research.

II. LITERATURE REVIEW

Accurate classification of DNA splice junctions is fun-
damental to understanding gene expression and regulation.
Splice junctions define the precise boundaries where introns
are removed and exons are joined, ensuring the integrity of
genetic transcription. While traditional sequence alignment
and homology-based approaches have been widely used for
splice junction detection, these methods often face limitations
in scalability and computational efficiency, especially when
applied to large-scale genomic datasets [8]. With the advent
of machine learning (ML) and deep learning (DL), compu-
tational approaches to genomic sequence classification have
undergone significant transformation. Unlike conventional
techniques, ML and DL models automate feature extraction,
capturing intricate sequence patterns with higher accuracy
and efficiency. A notable example is SpliceAl, introduced
by Jaganathan et al. [9], which leverages a 32-layer resid-
ual neural network to predict splice junctions and splicing
alterations due to genetic mutations with an impressive 95%
accuracy.Building on these advancements, Chao et al. [10]
developed Splam, a deep residual convolutional neural net-
work designed specifically for splice site prediction. Unlike
SpliceAl, which analyzes an extended genomic context of
10,000 nucleotides, Splam focuses on a 400-base-pair win-
dow, providing improved accuracy in detecting non-canonical
splice junctions with a 96% classification accuracy. Further
extending deep learning applications in this domain, Dutta
et al. [11] proposed SpliceViNCI, an RNN-based model
capable of identifying both canonical and non-canonical
splice sites across multiple species. Their study underscored
the necessity of designing models with robust generalization
capabilities, ensuring adaptability to diverse genetic datasets.
In an alternative approach, Chan et al. [12] introduced the
Discrete Compositional Energy Network (DCEN), which
models splice junction energy values to predict RNA alter-
native splicing events. This hierarchical model demonstrated
enhanced predictive performance compared to conventional
deep learning architectures. Similarly, Abd-Alhalem et al.
[13] conducted a broad survey of CNNs and RNNs for DNA
sequence classification.

Generative Adversarial Networks (GANs) have recently
been explored for genomic sequence analysis, particularly
for branchpoint site prediction. BP-GAN, introduced by
[14], applies an attentive GAN framework to predict human
branchpoints (BP) with high accuracy. Unlike conventional
supervised learning models, BP-GAN employs adversarial
learning to refine feature representations, improving both pre-
dictive performance and interpretability. The study reported
a classification accuracy of 95.6%, outperforming traditional
deep learning-based approaches. The introduction of attention
mechanisms within the GAN framework enables BP-GAN to

focus on biologically relevant sequence regions, leading to
enhanced model explainability and robustness

The comparative performance of CNN and RNN models in
splice junction classification was further explored by Apara-
jita et al. [15], who found that RNNs generally outperform
CNNs when trained across multi-species datasets, partic-
ularly for detecting non-canonical splice sites. By bench-
marking our models against established approaches such as
SpliceAl, Splam, and SpliceViNCI, our study offers valuable
insights into the strengths and limitations of different ML/DL
methodologies. Our results suggest that hybrid approaches
combining tree-based ensemble learning with deep learning
architectures could provide the most effective solution for
large-scale genomic sequence analysis.
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Fig. 1. Workflow Diagram

III. METHODOLOGY

This section outlines the systematic approach employed in
developing a predictive framework. Figure 1 illustrates the
entire workflow process used in the study, showcasing data
preprocessing, model implementation, and optimization steps.

A. Data Exploration

The Molecular Biology (Splice Junction) Dataset from the
UCI Machine Learning Repository consists of approximately
3,190 labeled DNA sequences, each 60 nucleotides long. It
is designed for classification tasks, identifying Exon-Intron
(EI) and Intron-Exon (IE) boundaries, as well as Non-Splice
(N) regions. The dataset helps in understanding gene splicing
by distinguishing transition points between exons and introns
[16]. Figure 2 shows the class distribution of the target vari-
able (EL IE, and N), highlighting the imbalance in the dataset.
This supports any discussion on data preprocessing, such as



handling class imbalance using techniques like resampling or
weighting.

Target Variable Distribution
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Fig. 2. Target Variable Distribution

B. Data Cleaning and Preprocessing

A series of preprocessing implementation were carried out
to refine the data and enhance model performance. The first
step involved handling missing or redundant data. To check
that, the dataset contain any missing values, which eliminated
the need for imputation. However, to prevent overfitting and
ensure that the models learned from diverse data points
rather than redundant patterns, duplicate sequences were
identified and removed. Figure 3 visualizes the proportion
of each nucleotide (A, T, G, C), which helps justify the
selection of feature encoding techniques (one-hot encoding
vs. embedding) for model input.Since DNA sequences are
inherently categorical and sequential, they cannot be directly
processed by ML and DL models in their raw form. To
transform them into a format suitable for computational
analysis, two primary encoding strategies were implemented.
The first approach, One-Hot Encoding, involved representing
each nucleotide (A, C, G, T), along with ambiguous bases
such as R, S, and N, as binary vectors. This method allowed
for an explicit representation of nucleotide variations while
maintaining the positional integrity of the sequences. The
second approach, Integer Encoding, was specifically used for
deep learning models. In this method, each nucleotide was
assigned a unique integer value, which was then used as input
for an embedding layer in deep learning architectures such
as Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs). Integer encoding was beneficial
for capturing long-range dependencies in sequences, making
it particularly suitable for models that leverage sequence
learning capabilities. This step was crucial in maintaining
the integrity of the dataset and improving model generaliza-
tion. Figures 4 and 5 analyze the length variation of DNA
sequences, helping to decide whether padding, truncation, or
other preprocessing steps are required.

C. Feature Engineering and Dimensionality Reduction

Feature engineering was essential for transforming DNA
sequences into a format suitable for machine learning (ML)
and deep learning (DL) models. For ML models like Random
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Forest and XGBoost, we used One-Hot Encoding, converting
nucleotide bases (A, T, G, C, and ambiguous bases) into bi-
nary vectors, preserving positional information but increasing
memory usage. For DL models like CNNs and RNNs, we
applied sequence embedding using TensorFlow’s Embedding
Layer, capturing sequential dependencies for improved splice
site prediction.

To ensure consistent scaling, we applied z-score normaliza-
tion to ML features, aiding models like SVM, while DL mod-
els learned optimal feature distributions dynamically. Addi-
tionally, we explored dimensionality reduction with PCA and
t-SNE to visualize feature space structure. PCA (Figure 6)
was tested for dimensionality reduction but led to information
loss, so it wasn’t applied in training. Instead, t-SNE (Figure
7) provided insights into class separability by mapping high-
dimensional features into a lower-dimensional space. These
techniques helped ML models handle structured data while
enabling DL models to learn hierarchical sequence patterns,
improving classification accuracy and generalization.

D. Model Implementation

Our study implemented and optimized multiple machine
learning (ML) and deep learning (DL) models for splice
site classification. Each model was carefully fine-tuned, with
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hyperparameters optimized through Grid Search and Random
Search, while model performance was validated using cross-
validation and separate test sets.

1) Random Forest: We employed Random Forest for its
ability to handle complex, non-linear sequence relationships
using an ensemble of decision trees. Hyperparameters such as
the number of trees (100), max depth (None), and minimum
samples per split were fine-tuned. Its robustness against
overfitting and ability to capture important sequence-based
predictors made it a strong candidate for classification.

2) Gradient Boosting: Gradient Boosting was imple-
mented to improve prediction performance by iteratively
refining weak learners. Key hyperparameters such as learning
rate (0.1), number of estimators (100), and maximum depth
were optimized. GB’s ability to correct errors at each stage
contributed to its strong generalization on unseen splice site
data.

3) Decision Tree: A Decision Tree was used as a base-
line classifier for comparison. By adjusting tree depth and
minimum sample splits, we ensured the model was neither
too simplistic nor prone to overfitting. While it provided
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clear interpretability, its performance was generally lower
than ensemble models.

4) SVM: To handle high-dimensional sequence represen-
tations, we implemented an SVM with an RBF kernel. Key
parameters such as C, gamma, and kernel type were opti-
mized using Grid Search. Additionally, StandardScaler was
applied to normalize input data, ensuring effective separation
of splice site classes.

5) XGBoost: We selected XGBoost for its efficiency and
performance improvements over standard gradient boosting.
Tree depth (max depth = 6), learning rate (0.1), and the num-
ber of trees (100) were optimized. The model’s regularization
techniques (L1 & L2 penalties) and parallelized execution im-
proved training speed and classification accuracy. XGBoost’s
feature importance scores also provided insights into the most
informative sequence features.

6) Convolutional Neural Network (CNN): Neural net-
works were designed to identify spatial patterns within DNA
sequences using a structured approach. The model included
Conv1D layers with 64 filters and a kernel size of 3 to extract
meaningful local features, followed by MaxPooling1D, which
helped reduce dimensionality and improve computational
efficiency. The extracted features were then flattened and
passed through fully connected dense layers, leading to the
final classification using a softmax activation function. To
ensure stable training, the model was optimized using Adam
(learning rate = 0.001) and Sparse Categorical Crossentropy
as the loss function.

7) Recurrent Neural Network (RNN) with LSTM: To
capture long-range dependencies in DNA sequences, we built
an LSTM-based recurrent neural network (RNN) designed to
learn sequential patterns in splice sites. The model began with
an embedding layer, which transformed nucleotide sequences
into dense vector representations, making them more suitable
for learning. This was followed by LSTM layers with 64
units, allowing the model to recognize important sequential
dependencies. Finally, fully connected dense layers with a
softmax activation function were used for classification. The
model was trained using the Adam optimizer (learning rate
= 0.001) for 10-20 epochs with a batch size of 32, ensuring
stable learning and efficient processing of DNA sequences.



E. Model Training

The dataset was split into 80% training and 20% testing,
allowing the models to learn patterns while retaining a
separate portion for evaluation. For deep learning models
(CNN, RNN-LSTM), we used a batch size of 32, ensuring
efficient training while maintaining memory optimization.
The models were trained for 10-20 epochs, striking a balance
between learning convergence and avoiding overfitting. [17].
For machine learning models (Random Forest, XGBoost,
SVM, etc.), cross-validation was applied to fine-tune hy-
perparameters. A k-fold cross-validation approach (typically
k=5) was used, ensuring that each data subset contributed
to both training and validation. This strategy helped improve
generalization and reduced model variance across different
runs [18].

F. Model Evaluation

The evaluation of the proposed model was conducted using
comprehensive metrics to ensure diagnostic reliability.

Accuracy measures the proportion of correctly classified
instances (true positives and true negatives) among all sam-
ples. Precision indicates the fraction of true positive pre-
dictions out of all positive predictions. Recall measures the
model’s ability to correctly identify all true positive cases.
F1 Score provides a harmonic mean of precision and recall
[19]. These metrics collectively demonstrate the robustness
and clinical applicability of the model.

G. Hyperparameter Tuning

To ensure optimal model performance, we implemented
systematic hyperparameter tuning techniques for both ma-
chine learning (ML) and deep learning (DL) models. For ML
models such as Random Forest, XGBoost, Gradient Boosting,
and SVM, we applied Random Search and Grid Search to
explore the best combination of parameters. Random Search
helped quickly identify promising hyperparameter ranges,
while Grid Search fine-tuned parameters such as the number
of estimators (trees), learning rate, max depth, and minimum
samples per split for tree-based models. In SVM, we tuned
kernel types (linear, RBF), regularization parameter (C), and
gamma values [20].

For deep learning models (CNN, RNN-LSTM), we opti-
mized hyperparameters through controlled experiments. We
adjusted the learning rate dynamically using the Adam op-
timizer, selecting values from 0.0001 to 0.01 to balance
training speed and model convergence. To prevent overfitting,
Dropout Regularization was applied at rates between 0.2 and
0.5 in fully connected layers. Additionally, batch sizes (32,
64, 128) and the number of epochs (10-50) were tuned
to achieve the best model generalization. These techniques
significantly improved classification accuracy and model sta-
bility across different splice site categories.

IV. RESULTS AND DISCUSSION

Table I highlights the performance of different machine
learning (ML) and deep learning (DL) models based on
accuracy, precision, recall, Fl1-score, and ROC AUC scores.
The results show that Gradient Boosting and XGBoost were
the top performers, achieving the highest accuracy and F1-
scores. Random Forest also delivered strong results, while

TABLE 1
PERFORMANCE METRICS OF MODELS ON DNA SEQUENCE
CLASSIFICATION

Model Precision | Recall | F1-Score | Accuracy
Random Forest 0.96 0.96 0.96 0.9639
Gradient Boosting 0.97 0.98 0.97 0.9734
Decision Tree 0.93 0.93 0.93 0.9373
SVM 0.91 0.92 0.92 0.9248
XGBoost 0.96 0.97 0.97 0.9702
CNN 0.94 0.94 0.94 0.9451
RNN 0.93 0.94 0.94 0.9389

SVM and Decision Tree had slightly lower performance,
likely due to challenges in handling complex sequence varia-
tions. Among ML models, Gradient Boosting had the highest
accuracy at 97%, closely followed by XGBoost (97%) and
Random Forest (96%). These models demonstrated strong
precision and recall, making them highly reliable for splice
site classification.Decision Tree (94%) and SVM (92%) had
lower accuracy. SVM, in particular, faced challenges in
clearly separating the different classes. For deep learning
models, the CNN model achieved a high ROC AUC score
of 0.9907, indicating its strong predictive power. The RNN
model had a slightly lower AUC score of 0.9888, possibly
due to its reliance on long-sequence dependencies and the
need for further optimization.

Figure 8illustrates critical metrics such as ROC AUC,
Precision, Recall, F1 Score, and accuracy were analyzed to
comprehensively assess diagnostic reliability. ROC AUC is a
key measure of how well a model can distinguish between
different splice site classes. A higher score means better
classification performance. Gradient Boosting and XGBoost
had the best ROC AUC scores (0.9961), showing they are
highly effective in distinguishing exon-intron (EI), intron-
exon (IE), and non-splice (N) junctions. Random Forest
followed closely with 0.9960, confirming its ability to capture
complex patterns in DNA sequences. SVM achieved a solid
0.9868 AUC score, proving it can effectively separate splice
site classes despite its lower accuracy. Decision Tree had the
lowest AUC score at 0.9500, reflecting its struggle with more
complex classification tasks. CNN and RNN had AUC scores
of 0.9907 and 0.9888, respectively, showing their capability
in learning sequence patterns but suggesting the need for
further fine-tuning. Overall, Gradient Boosting and XGBoost
were the most effective models, delivering high accuracy,
Fl1-scores, and AUC scores, making them the best choice
for splice site prediction. Deep learning models like CNN
and RNN showed great potential but would benefit from
additional training and fine-tuning to reach the performance
level of tree-based models. Table II compares splice junc-
tion classification accuracy among state-of-the-art models.
SpliceAl [9] achieved 95.00%, and Splam [10] improved to
96.00%. Our Gradient Boosting model outperformed both
with 97.34%, demonstrating the superior effectiveness of
tree-based ensemble learning for genomic sequence classi-
fication.

V. CONCLUSION AND FUTURE WORKS

This study developed a hybrid ML-DL framework for
splice site prediction, combining XGBoost, Random Forest,
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TABLE II articles initially published in Gene: X 5, 2020. [Online]. Available:

COMPARISON OF SPLICE JUNCTION CLASSIFICATION PERFORMANCE

Model Study Accuracy
SpliceAl [9] Jaganathan et al. (2019) 95.00%
Splam [10] Chao et al. (2024) 96.00%
Gradient Boosting (Our Model) This Study 97.34%

CNN, and LSTM to improve classification accuracy. The
approach effectively captured sequence patterns and long-
range dependencies, while feature importance analysis pro-
vided interpretability. Future work will focus on expanding
the dataset for better generalization and exploring SHAP
and LIME for model explainability. The goal is to integrate
this framework into bioinformatics tools, making splice site
prediction more accurate and useful for genetic research and
disease diagnostics.
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