
Unlearnable 3D Point Clouds: Class-wise
Transformation Is All You Need

Xianlong Wang1,2,4,5†, Minghui Li‡
∗
, Wei Liu1,2,4,5†, Hangtao Zhang4,5†,

Shengshan Hu1,2,4,5†, Yechao Zhang1,2,4,5†, Ziqi Zhou1,2,3§, Hai Jin1,2,3§

1 National Engineering Research Center for Big Data Technology and System
2 Services Computing Technology and System Lab 3 Cluster and Grid Computing Lab

4 Hubei Engineering Research Center on Big Data Security
5 Hubei Key Laboratory of Distributed System Security

† School of Cyber Science and Engineering, Huazhong University of Science and Technology
‡ School of Software Engineering, Huazhong University of Science and Technology

§ School of Computer Science and Technology, Huazhong University of Science and Technology
{wxl99,minghuili,weiliu73,hangt_zhang,hushengshan,ycz,zhouziqi,hjin}@hust.edu.cn

Abstract

Traditional unlearnable strategies have been proposed to prevent unauthorized users
from training on the 2D image data. With more 3D point cloud data containing
sensitivity information, unauthorized usage of this new type data has also become
a serious concern. To address this, we propose the first integral unlearnable frame-
work for 3D point clouds including two processes: (i) we propose an unlearnable
data protection scheme, involving a class-wise setting established by a category-
adaptive allocation strategy and multi-transformations assigned to samples; (ii) we
propose a data restoration scheme that utilizes class-wise inverse matrix transforma-
tion, thus enabling authorized-only training for unlearnable data. This restoration
process is a practical issue overlooked in most existing unlearnable literature, i.e.,
even authorized users struggle to gain knowledge from 3D unlearnable data. Both
theoretical and empirical results (including 6 datasets, 16 models, and 2 tasks)
demonstrate the effectiveness of our proposed unlearnable framework. Our code is
available at https://github.com/CGCL-codes/UnlearnablePC.

1 Introduction

Recently, 3D point cloud deep learning has been making remarkable strides in various domains, e.g.,
self-driving [6] and virtual reality [1, 46]. Specifically, numerous 3D sensors scan the surrounding
environment and synthesize massive 3D point cloud data containing sensitive information such as
pedestrian and vehicles [32] to the cloud server for deep learning analysis [12, 23]. However, the raw
point cloud data can be exploited for point cloud unauthorized deep learning if a data breach occurs,
posing a significant privacy threat. Fortunately, the privacy protection approaches for preventing
unauthorized training have been extensively studied in the 2D image domain [9, 19, 28, 29, 39, 42].
They apply elaborate perturbations on images such that trained networks over them exhibit extremely
low generalization, thus failing to learn knowledge from the protected data, known as "making
data unlearnable". Nonetheless, the stark disparity between 2D images and 3D point clouds poses
significant challenges for drawing lessons from existing 2D solutions.

Specifically, migrating 2D unlearnable schemes to 3D suffers from following challenges: (i) In-
compatibility with 3D data. Numerous model-agnostic 2D image unlearnable schemes operate

∗Minghui Li is the corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/CGCL-codes/UnlearnablePC


Rotation Scaling Shear Reflection TranslationOriginal sample

Transformations None Rotation∗ Scaling∗ Shear Twisting Tapering Reflection∗ Translation∗

Illustrations of 3D 
point cloud samples

Descriptions Clean sample Changing the 
angles

Changing the 
size

Stretching or 
compressing

Twisting the 
shape

Narrowing or 
shortening

Creating a 
mirror object

Changing the 
position

Is it reversible? 

Quantity of possible 
transformations Infinite Infinite Infinite Infinite Infinite 3 Infinite

Dimension of the  
multiplicative 

transformation matrix
ℝ𝟑𝟑×𝟑𝟑 ℝ𝟑𝟑×𝟑𝟑 ℝ𝟑𝟑×𝟑𝟑 ℝ𝟑𝟑×𝟑𝟑 ℝ𝟑𝟑×𝟑𝟑 ℝ𝟑𝟑×𝟑𝟑 ℝ𝟒𝟒×𝟒𝟒

Figure 1: An overview of existing seven types of 3D transformations. “*" denotes rigid transformations that do
not alter the shape of the point cloud samples, while the remaining transformations are non-rigid transformations.

in the pixel space, such as convolutional operations [39, 42], making them fail to be directly trans-
ferred to the 3D point space. (ii) Poor visual quality. Migrating model-dependent 2D unlearnable
methods [5, 9, 19, 28] to 3D point clouds requires perturbing substantial points, leading to irregular
three-dimensional shifts which may significantly degrade visual quality. Hence, these challenges spur
us to start directly from the characteristics of point clouds for proposing 3D unlearnable solutions.

Recent works observe that 3D transformations can alter test-time results of models [7, 17, 44]. To
explore this, we conduct an in-depth investigation into the properties of seven 3D transformations as
shown in Fig. 1 and reveal the mechanisms by which transformations employed in a certain pattern
serve as unlearnable schemes (Sec. 3.2). In light of this, we propose the first unlearnable approach in
3D point clouds via multi class-wise transformation (UMT), transforming samples to various forms
for privacy protection. Concretely, we newly propose a category-adaptive allocation strategy by
leveraging uniform distribution sampling and category constraints to establish a class-wise setting,
thereby multiplying multi-transformations to samples based on categories. To theoretically analyze
UMT, we define a binary classification setup similar to that used in [20, 33, 39]. Meanwhile, we
employ a Gaussian Mixture Model (GMM) [38] to model the clean training set and use the Bayesian
optimal decision boundary to model the point cloud classifier. Theoretically, we prove that there
exists a UMT training set follows a GMM distribution and the classification accuracy of UMT dataset
is lower than that of the clean dataset in a Bayesian classifier.

Moreover, an incompatible issue in existing unlearnable works [9, 19, 28, 29, 39, 43] is identified [54],
i.e., these approaches prevent unauthorized learning to protected data, but they also impede authorized
users from effectively learning from unlearnable data. To address this, we propose a data restora-
tion scheme that applies class-wise inverse transformations, determined by a lightweight message
received from the protector. Our proposed unlearnable framework including UMT approach and data
restoration scheme is depicted in Fig. 3.

Extensive experiments on 6 benchmark datasets (including synthetic and real-world datasets) using
16 point cloud models across CNN, MLP, Graph-based Network, and Transformer on two tasks
(classification and semantic segmentation), verified the effectiveness of our proposed unlearnable
scheme. We summarize our main contributions as follows:

• The First Integral 3D Unlearnable Framework. To the best of our knowledge, we
propose the first integral unlearnable 3D point cloud framework, utilizing class-wise multi-
transformation as its unlearnable mechanism (effectively safeguarding point cloud data
against unauthorized exploitation) and proposing a novel data restoration approach that
leverages class-wise reversible 3D transformation matrices (addressing an incompatible
issue in most existing unlearnable works, where even authorized users cannot effectively
learn knowledge from unlearnable data).

• Theoretical Analysis. We theoretically indicate the existence of an unlearnable situation
that the classification accuracy of the UMT dataset is lower than that of the clean dataset
under the decision boundary of the Bayes classifier in Gaussian Mixture Model.

• Experimental Evaluation. Extensive experiments on 3 synthetic datasets and 3 real-world
datasets using 16 widely used point cloud model architectures on classification and semantic
segmentation tasks verify the superiority of our proposed schemes.
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2 Preliminaries

Notation. Considering the raw point cloud data (X,Y) ∈ X × Y sampled from a clean distribution
D for training a point cloud network, the user’s goal is to obtain a model F : X → Y by minimizing
the loss function (e.g., cross-entropy loss) L(F(X),Y). Let T ∈ T be a 3D transformation matrix
that does not seriously damage the visual quality of point clouds. Note that X ∈ R3×p, T ∈ R3×3,
and p represents the number of points. In theoretical analysis, following [20, 33], we simplify a
training dataset Dk to a Gaussian Mixture Model (GMM) [38] N (yµ, I), where y ∈ {±1} denotes
the class labels, µ ∈ Rd denotes the mean value, and I ∈ Rd×d denotes the identity matrix. Thus the
Bayes optimal decision boundary for classifying Dk is defined by P (x) ≡ µTx = 0. The accuracy
of the decision boundary P on Dk is equal to ϕ(||µ||2), where ϕ denotes the Cumulative Distribution
Function (CDF) of the standard normal distribution.

Data protector Gp. Gp aims to protect the knowledge from the clean training set (with size of n)
Dc = {Xi,Yi}ni=1 ∼ D by compromising the unauthorized models who train on the unlearnable
point cloud data {Ti(Xi),Yi}ni=1, resulting in extremely poor generalization on the clean test
distribution Dt ⊆ D. This objective can be formalized as:

max E
(X,Y)∼Dt

L (F (X; θu) ,Y) , s.t. θu = argmin
θ

∑
(Xi,Yi)∈Dc

L (F (Ti(Xi); θ) ,Yi) (1)

where Gp assumes that training samples are all transformed into unlearnable ones while maintain-
ing normal visual effects, in line with previous unlearnable works [19, 28, 39, 42]. By the way,
solving Eq. (1) directly is infeasible for neural networks because it necessitates unrolling the entire
training procedure within the inner objective and performing backpropagation through it to execute a
single step of gradient descent on the outer objective [8].

Authorized user Ga. Ga aims to apply another transformation T′ ∈ T on the unlearnable sample,
making the protected data learnable. This is formally defined as:

min E
(X,Y)∼Dt

L (F (X; θr) ,Y) , s.t. θr = argmin
θ

∑
(Xi,Yi)∈Dc

L (F (T′
i(Ti(Xi)); θ) ,Yi) (2)

where Ga assumes that, without access to any clean training samples, T′ can be constructed by
utilizing a lightweight message M received from data protectors.

3 Our Proposed Unlearnable Schemes

3.1 Key Intuition

Several recent works [7, 13, 44] reveal employing 3D transformations can mislead the model’s
classification results. Such a phenomenon implies that there might be some defects in point cloud
classifiers when processing transformed samples, leading us to infer that 3D transformations are
probable candidates for data protection against unauthorized training. If the transformed point cloud
data are used to train unauthorized DNNs, only simple linear features inherent in 3D transformations
(at which transformations may act as shortcuts [14]) are captured by the DNNs, successfully protecting
point cloud data privacy.

⋅⋅⋅
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Figure 2: (a) Training on the transformed ModelNet10 dataset (employing sample-wise, dataset-wise, and
class-wise patterns) using PointNet classifier; (b) The high-level overview of the class-wise setting
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3.2 Exploring the Mechanism

We summarize existing 3D transformations in Fig. 1 and formally define them in Appendix A. To seek
clarity on the application and selection of transformations, we explore three aspects: (i) execution
mechanism, (ii) exclusion mechanism, and (iii) working mechanism as follows.

(i) Which execution mechanism successfully satisfy Eq. (1)? The extensively employed execution
patterns in 2D unlearnable approaches are sample-wise [9, 19] and class-wise [19, 39] settings. We
further complement the dataset-wise setting (using universal transformation) and implement the above
execution mechanisms for training a PointNet classifier [35] on the transformed ModelNet10 [50],
obtaining test accuracy results in Fig. 2 (a). We discover that model achieves considerably low test
accuracy under the class-wise setting, satisfying Eq. (1). Sample-wise and dataset-wise settings
do not obviously compromise model performance, which cannot serve as promising unlearnable
routes. Moreover, we note that sample-wise transformation is often considered as a data augmentation
scheme to improve generalization, which contradicts our aim of using class-wise transformation to
lower model generalization.

(ii) Which transformations need to be excluded? Not all transformations are suitable candidates.
We exclude three transformations, tapering, reflection, and translation. (1) The tapering matrix
may cause point cloud samples to become a planar projection when ηz defined in Eq. (18) equals
to -1, rendering the tapered samples meaningless; (2) The reflection matrix has only three distinct
transformation matrices, rendering it incapable of assigning class-wise transformations when the
number of categories exceeds three; (3) The translation transformation is a straightforward and simple
additive transformation that is too easily defeated by point cloud data pre-processing approaches.

(iii) Why does class-wise transformation work? We conduct experiments using class-wise trans-
formations (see Tab. 6), indicating that the model training on the class-wise transformed training
set achieves a relatively high accuracy on the class-wise transformed test set (using the same trans-
formation process as the training set). Besides, if we permute the class-wise transformation for
the test set, we obtain a significant low accuracy on the test set. Therefore, we conclude that the
reason why class-wise transformation works is that the model learns the mapping between class-wise
transformations and corresponding category labels as shown in Fig. 2 (b), which results in the model
being unable to predict the corresponding labels on a clean test set lacking transformations. This
analytical process yields conclusions that are in agreement with prior research [39, 44].

3.3 Our Design for UMT

3.3.1 Category-Adaptive Allocation Strategy

We assign transformation parameters based on categories to realize class-wise setting. For rotation
transformationR ∈ R3×3, we refer to α and β as slight angles imposed on the x and y axes, γ as the
primary angle for z axis. We generate random angles for AN times in three directions:

α, β ∼ U(0, rs), γ ∼ U(0, rp),AN =
⌈

3
√
N
⌉

(3)

where U denotes uniform distribution, N denotes the number of categories, rs is a small range that
controls α and β, while rp is a large range that controls γ. AN is computed in such a way to ensure
that the number of combinations of three angles is greater than or equal to N . Concretely, in the
rotation operation, each of the three directions has AN distinct angles, which means that the final
rotation matrix has A3

N possible combinations. To satisfy the class-wise setup, A3
N must be at least

N , requiring AN to be no less than
⌈

3
√
N
⌉

. Finally, we randomly select N combinations of angles

for the allocation. The scaling transformation S ∈ R3×3 resizes the position of each point in the
3D point cloud sample by a certain scaling factor λ, which is sampled N times from a uniform
distribution U :

λ ∼ U(bl, bu) (4)

where bl and bu represent the lower bound and upper bound of the scaling factor, respectively.
For shear H ∈ R3×3 defined in Eq. (13), twistingW ∈ R3×3 defined in Eq. (16), the process of
generating parameters within ranges (ωl, ωu) and (hl, hu) is consistent to scaling. The range of these
parameters ensures the visual effect of the sample.
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Figure 3: An overview of our proposed integral unlearnable pipeline

Property 1. Since rotation matrices Rα, Rβ , and Rγ around three directions are all orthogonal
matrices,R is also an orthogonal matrix, which can be defined as:

∀M ∈ {Rα,Rβ ,Rγ ,R}, s.t. MMT = I (5)

where we can determine the orthogonality by matrix multiplication through the definitions of Eq. (11).
SinceR = RαRβRγ andRRT = RαRβRγRT

γRT
βRT

α = I , soR is also an orthogonal matrix.

Property 2. All four transformation matrices we employ, R, S,W , and H, and the multiplicative
combinations of any these matrices are all invertible matrices, which can be formally defined as:

∀J ∈ {f(R)f(S)f(W)f(H) | f(x) ∈ {x, I}}, ∃K s.t. JK = KJ = I (6)

where the inverse matrices of R, S,W , and H are given in Appendix A. This property allows the
authorized users to normally train on the protected data due to that multiplying a matrix by its inverse
results in the identity matrix, leading us to propose a data restoration scheme in Sec. 3.4.

3.3.2 Employing Class-wise Transformations

Assuming the point cloud training set Dc is defined as {(Xc1,Yi), (Xc2,Yi), ..., (Xcni ,Yi)}Ni=1,
where n1, n2, ..., nN represent the number of samples in the 1st, 2nd, ..., N -th category, respectively.
We formally define the spectrum of transformations as k to indicate the number of transformations
involved. Thus the ultimate unlearnable transformation matrix Tk is defined as:

Tk =
∏k

i=1Vi, ∀i ̸= j, s.t. Vi,Vj ∈ {R,S,W,H},Vi ̸= Vj (7)

Once we employ the proposed category-adaptive allocation strategy to Tk, the unlearnable point
cloud dataset Du is constructed as:

Du = {(Tki(Xc1),Yi), (Tki(Xc2),Yi), ..., (Tki(Xcni),Yi)}Ni=1 (8)

Our proposed UMT scheme is described in Algorithm 1. We enumerate possible transformations
in Eq. (7) to obtain the unlearnability in Tab. 7 and select one type of class-wise transformation for
each k for more comprehensive experiments in Tab. 1. To facilitate the theoretical study of UMT2, we
opt forRS as the transformation matrix T, which achieves the best unlearnable effect as suggested
in Tabs. 1 and 7. Thus, in the GMM scenario, the class-wise transformation matrix is defined as
Ty = RySy = λyRy ∈ Rd×d, where λy ∈ R is the scaling factor.

Lemma 3. The unlearnable dataset Du generated using UMT on Dc can also be represented using a
GMM, i.e., Du ∼ N (yTyµ, λ

2
yI).

Proof: See Appendix D.1. Lemma 3 demonstrates that the unlearnable dataset Du can also be
represented as a GMM, which is derived from Property 1.

Lemma 4. The Bayes optimal decision boundary for classifying Du is given by Pu(x) ≡ Ax⊤x+

B⊤x+ C = 0, where A = λ−2
−1 − λ−2

1 , B = 2(λ−2
−1T−1 + λ−2

1 T1)µ, and C = ln
|λ2

−1I|
|λ2

1I|
.

2In the subsequent theoretical descriptions, UMT refers to UMT with k=2 using transformation matrix RS.
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Proof: See Appendix D.2. Lemma 4 reveals that the Bayesian decision boundary for classifying Du

is a quadratic surface based on the GMM expression of Du.

Lemma 5. Let z ∼ N (0, I), Z = z⊤z+ b⊤z+ c, where b = B
A , c = C

A , and ∥·∥2 denote 2-norm of
vectors. For any t ≥ 0 and γ ∈ R, we employ Chernoff bound to have:

P{Z ≥ E[Z] + γ} ≤
exp

{
t2

2(1−2t) ||b||
2
2 − t(γ + d)

}
|(1− 2t)I| 12

Proof: See Appendix D.3. Lemma 5 enables us to establish an upper bound on the accuracy of the
unlearnable decision boundary Pu applied to the clean dataset Dc, denoted as τDc

(Pu), as presented
in Theorem 6 below.

Theorem 6. For any constant t1 and t2 satisfying 0 ≤ t1 < 1
2 and 0 ≤ t2 < 1

2 , the accuracy of the
unlearnable decision boundary Pu on Dc can be upper-bounded as:

τDc(Pu) ≤
exp

{
t21

2(1−2t1)
||b+ 2µ||22 + t1(µ

⊤µ+ b⊤µ+ c)
}

2|(1− 2t1)I|
1
2

+
exp

{
t22

2(1−2t2)
||b− 2µ||22 − t2(µ

⊤µ− b⊤µ+ c+ 2d)
}

2|(1− 2t2)I|
1
2

:= p1 + p2

Furthermore, if µ⊤µ + b⊤µ + c + d < 0 and −µ⊤µ + b⊤µ − c − d < 0, we have τDc(Pu) < 1.
Moreover, for any µ ̸= 0, ∃ matrix Ti such that τDc

(Pu) < τDc
(P ), where P is the Bayes optimal

decision boundary for classifying Dc.

Proof: See Appendix D.4. The unlearnable effect takes place when τDc(Pu) < τDc(P ). To achieve

this, we elaborately choose Ty, which is formalized as µ⊤ λ−2
−1T

⊤
−1+λ−2

1 T⊤
1

λ−2
−1−λ−2

1

µ ≪ 0. Therefore,

Theorem 6 theoretically explains why UMT is effective in generating unlearnable point cloud data.

3.4 Data Restoration Scheme

To ensure that authorized users can achieve better generalization after training on unlearnable data,
i.e., satisfying Eq. (2), we exploit the inverse properties of 3D transformations, presented in Property
2, to calculate the inverse matrix of Tk as:

Tk
−1 =

∏1
i=kVi

−1, ∀i ̸= j, s.t. Vi−1,Vj−1 ∈ {R−1,S−1,W−1,H−1},Vi−1 ̸= Vj−1 (9)

In particular, we note that R−1 = RT , S−1 = 1
λI . Afterwards, the authorized user receives a

lightweight message M containing class-wise parameters from the data protector through a secure
channel, thereby assigning M to the inverse transformation matrix in Eq. (9) for multiplying the
unlearnable samples. Our proposed integral unlearnable process is illustrated in Fig. 3.

4 Experiments

4.1 Experimental Details

Datasets and Models. Three synthetic 3D point cloud datasets, ModelNet40 [50], ModelNet10 [50],
ShapeNetPart [4], and three real-world datasets including autonomous driving dataset KITTI [32]
and indoor datasets ScanObjectNN [41], S3DIS [2] are used. We choose 16 widely used 3D
point cloud models PointNet [35], PointNet++ [36], DGCNN [45], PointCNN [25], PCT [16],
PointConv [48], CurveNet [51], SimpleView [15], 3DGCN [26], LGR-Net [59], RIConv [57],
RIConv++ [58], PointMLP [31], PointNN [56], PointTransformerV3 [49], and SegNN [62] for
evaluation of classification and semantic segmentation tasks.
Experimental Setup. The training process involves Adam optimizer [22], CosineAnnealingLR
scheduler [30], initial learning rate of 0.001, weight decay of 0.0001. We empirically set rs, rp, bl, bu,
ωl, ωu, hl, and hu to 15◦, 120◦, 0.6, 0.8, 0◦, 20◦, 0, and 0.4 respectively. The main results of different
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Table 1: Main results: The average test accuracy (%) results with standard deviations from three runs (random
seeds are set to 23, 1023, and 2023) of classification models trained on the UMT datasets

Datasets Schemes PointNet PointNet++ DGCNN PointCNN PCT PointConv CurveNet SimpleView RIConv++ 3DGCN PointNN PointMLP AVG

ModelNet10

Clean 89.85±0.54 92.11±1.57 91.81±0.84 87.99±1.58 90.18±2.23 91.26±1.12 91.88±1.51 89.52±0.41 87.90±1.64 88.51±5.39 83.22±0.73 91.07±0.19 89.61±0.42

UMT(k=1) 40.64±10.69 28.73±2.00 27.41±6.71 32.82±2.70 31.58±4.27 33.64±6.63 39.78±6.80 45.31±11.85 86.72±1.46 28.01±8.72 34.47±0.29 32.85±2.35 38.50±2.01

UMT(k=2) 21.18±0.93 26.36±1.71 18.84±6.14 21.97±4.04 19.72±4.52 20.84±5.96 25.04±2.15 22.75±2.43 16.53±3.63 32.79±3.23 31.94±2.11 25.41±3.96 23.61±1.06

UMT(k=3) 22.84±1.71 23.81±8.43 29.16±4.30 27.03±9.97 29.43±9.11 18.49±7.39 25.51±9.57 32.12±12.58 19.94±1.13 36.19±13.38 30.54±1.24 32.21±5.28 27.27±6.20

UMT(k=4) 18.83±2.40 20.56±14.61 15.92±1.51 20.52±6.06 20.29±2.14 21.66±2.24 23.46±12.58 24.12±6.20 26.41±2.47 34.28±17.20 25.59±0.25 26.65±11.36 23.19±5.98

ModelNet40

Clean 86.18±0.07 90.55±0.73 89.51±0.86 81.89±5.35 87.11±1.39 88.90±0.89 87.82±0.23 85.25±0.31 84.59±1.07 86.81±1.69 74.81±0.16 87.31±0.91 85.89±0.40

UMT(k=1) 28.62±1.80 20.69±0.87 28.60±1.65 21.92±1.86 29.06±0.38 24.99±2.63 33.29±3.92 26.89±1.48 75.86±8.43 26.30±1.92 28.57±0.39 29.28±1.72 31.17±0.20

UMT(k=2) 8.30±0.87 18.71±1.65 11.60±1.97 10.85±2.61 9.21±2.31 12.99±0.99 12.71±3.70 12.05±3.88 10.48±2.01 26.17±0.35 25.05±0.06 10.90±4.74 14.09±0.78

UMT(k=3) 7.48±1.66 17.62±3.10 10.41±5.48 9.43±3.09 9.91±4.19 11.28±4.93 11.23±3.07 11.21±4.09 10.92±0.48 25.31±1.29 24.53±0.10 8.94±3.43 13.19±2.41
UMT(k=4) 7.83±2.25 15.72±4.12 10.86±2.57 8.60±2.28 9.68±1.58 10.52±2.09 10.91±3.00 14.32±0.92 18.09±3.83 17.16±5.47 24.31±0.28 12.38±1.51 13.36±0.43

ShapeNetPart

Clean 98.21±0.03 98.50±0.12 98.06±0.65 97.54±0.22 96.38±0.84 98.23±0.23 98.42±0.08 98.26±0.21 96.70±0.64 96.18±1.90 94.66±0.11 98.39±0.12 97.46±0.22

UMT(k=1) 63.85±12.71 50.30±21.71 64.71±13.44 51.95±14.13 54.39±3.36 29.34±0.14 71.38±9.34 56.22±6.48 96.93±0.09 37.90±9.67 58.44±0.61 47.32±8.26 56.89±3.00

UMT(k=2) 18.41±6.45 45.61±4.64 25.99±2.73 28.97±3.73 37.72±16.26 25.60±8.59 26.49±8.58 38.38±5.96 5.05±3.63 32.21±13.01 49.82±1.56 34.19±4.43 30.70±1.43
UMT(k=3) 32.50±10.03 39.64±12.52 37.29±11.20 46.77±19.59 43.52±22.24 31.28±4.67 37.27±10.30 41.51±2.66 6.01±6.11 47.84±7.05 50.85±0.07 47.80±21.37 38.52±6.17

UMT(k=4) 23.72±15.04 23.30±4.43 36.18±10.00 34.52±16.15 45.07±18.99 29.48±11.09 29.79±4.79 40.04±9.97 32.22±1.38 33.06±28.16 51.91±0.03 40.93±21.81 35.02±11.23

KITTI

Clean 98.04±2.23 99.49±0.50 99.33±0.34 99.23±0.25 98.93±0.54 98.04±1.68 99.10±1.05 99.38±0.33 99.64±0.09 99.67±0.24 99.49±0.50 95.72±5.46 98.84±0.87

UMT(k=1) 36.23±30.18 62.90±20.51 38.93±33.08 57.80±13.99 58.26±21.66 39.99±6.82 33.33±10.75 56.71±30.96 98.53±1.19 68.34±10.46 70.34±0.98 47.20±20.79 55.71±5.54

UMT(k=2) 31.24±7.11 51.07±20.29 27.90±10.33 49.69±11.52 51.47±17.36 25.95±11.38 20.55±4.93 51.77±8.53 99.80±0.09 70.42±27.97 47.31±10.58 39.90±10.00 47.26±5.95
UMT(k=3) 19.13±6.93 53.73±12.44 31.26±21.68 56.08±17.90 54.45±11.77 42.54±21.46 27.38±19.20 32.62±11.76 98.48±1.61 69.51±8.27 70.14±1.30 58.44±6.61 51.15±4.79

UMT(k=4) 26.84±16.26 61.79±6.65 29.89±15.72 54.27±11.99 64.21±10.76 57.29±12.05 37.70±11.60 54.63±13.07 99.34±0.23 72.33±3.47 70.49±0.76 56.25±12.33 57.09±5.97

ScanObjectNN

Clean 65.20±1.49 77.38±2.60 72.66±2.56 66.96±6.42 50.75±15.16 75.42±2.06 70.92±1.06 51.93±2.89 66.34±1.21 73.84±2.75 58.17±0.30 73.32±1.39 66.91±0.72

UMT(k=1) 56.55±0.11 63.01±2.38 57.93±3.11 51.97±11.99 47.05±7.12 56.71±3.61 65.49±3.15 38.96±2.08 62.33±10.68 52.89±1.13 54.56±0.17 62.96±4.19 55.87±0.95

UMT(k=2) 14.55±1.81 49.41±3.44 20.96±3.99 13.61±4.97 15.10±2.05 20.78±4.74 21.35±2.59 20.73±9.64 10.76±1.76 52.37±5.62 48.25±0.20 16.32±4.78 25.35±0.49

UMT(k=3) 10.92±3.87 41.96±3.84 14.62±5.56 10.62±2.35 22.02±7.83 19.96±3.13 21.43±8.67 11.79±3.96 11.69±1.41 56.32±0.83 48.94±0.70 23.05±16.32 24.44±2.46

UMT(k=4) 5.77±2.10 34.65±8.31 12.16±4.84 9.87±0.95 17.86±11.63 12.79±7.46 15.28±4.86 20.09±6.26 31.83±2.20 46.06±14.07 45.27±0.17 8.76±3.18 21.70±3.61

Table 2: Robustness results: The test accuracy (%) results on UMT-ModelNet40 against pre-process schemes
Pre-process schemes PointNet PointNet++ DGCNN PointCNN CurveNet SimpleView RIConv++ 3DGCN PointNN PointMLP AVG

Clean baseline 86.10 91.13 89.02 75.73 87.76 85.49 85.82 84.89 75.00 87.66 84.86
SOR 9.93 19.17 9.36 10.45 11.57 14.81 6.66 25.08 25.04 15.22 14.73
SRS 9.24 22.20 10.25 7.78 12.66 14.04 11.32 24.72 26.01 12.18 15.04

Random rotation 10.94 26.74 11.59 10.21 12.13 6.86 12.09 55.64 29.74 20.37 19.63
Random scaling 22.33 22.45 30.15 20.22 25.61 23.25 73.62 27.48 26.50 24.39 29.60
Random jitter 9.64 21.72 10.05 7.74 9.98 16.68 13.27 23.74 26.90 9.09 14.88

Random rotation & scaling 63.49 34.44 44.65 37.56 72.89 51.62 78.04 64.00 36.26 78.94 56.19

k on unlearnability is shown in Tab. 1. Specifically, k = 1 usesR, k = 2 usesRS , k = 3 usesRSW ,
and k = 4 usesRSWH. More results for different combinations of class-wise transformations are
provided in Tab. 7. The table values covered by gray denote the best unlearnable effect.

Evaluation Metrics. For classification, we report the test accuracy (in %) derived from the
classification accuracy on clean test set, which aligns with the metrics used in the 2D unlearnable
schemes [19, 28, 39]. For semantic segmentation, we use eval accuracy and mean Intersection over
Union (mIoU) as evaluation metrics (in %), where eval accuracy is the ratio of the number of points
classified correctly to the total number of points in the point cloud, mIoU calculates the IoU for each
class between the ground truth and the predicted segmentation [61], and then takes the average of
these ratios. The lower these metrics are, the better the effect of the unlearnable scheme.

4.2 Evaluation of Proposed Unlearnable Schemes
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Figure 4: The test accuracy (%) results obtained after
training on the clean, UMT, and restoration datasets

Effectiveness. As shown in Tab. 1, UMT results
in a significant decrease in test accuracy compared
to clean baseline, indicating the unlearnable ef-
fectiveness of UMT. Moreover, all values of k
achieve good unlearnable results. The average per-
formance of RS is the best, which is employed
as the default in the remaining experiments. We
note that rigid transformations are easily defeated
by invariance networks [10, 26, 58]. Therefore, in
practical settings, we will include non-rigid trans-
formations, using combined transformations to enhance the robustness of the UMT scheme.

Robustness. (i) Data augmentations. Similar to [18, 24], we employ data augmentations like random
scaling, random jitter, random rotation, Statistic Outlier Removal (SOR) [60], and Simple Random
Sampling (SRS) [53] against UMT. Tab. 2 suggests UMT is robust to random data augmentations.
SOR detects and removes outliers or noisy points but is ineffective in countering UMT because UMT
does not introduce irregular perturbations or add outliers. SRS randomly selects a small subset from
the entire set of points with equal probability. UMT is robust to SRS as it alters the coordinates of
all points. Even if an arbitrary subset is chosen, all points within the subset have already undergone
the unlearnable transformations. (ii) Adaptive attack. We assume the unauthorized user gains
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Table 3: Semantic segmentation: Evaluation of UMT on semantic segmentation task using S3DIS dataset
Evaluation metrics Eval accuracy (%) mIoU (%)

Segmentation models PointNet++ [36] Point Transformer v3 [49] SegNN [62] AVG PointNet++ [36] Point Transformer v3 [49] SegNN [62] AVG
Clean baseline 74.76 74.72 79.00 76.16 40.06 40.57 50.27 43.63

UMT(k=2) 15.89 25.61 66.41 35.97 7.45 18.32 46.30 24.02

Table 4: Ablation study: The test accuracy (%) results derived from unlearnable data with different modules

Datasets Modules↓Models−→ PointNet PointNet++ DGCNN PointCNN CurveNet SimpleView RIConv LGR-Net 3DGCN PointNN PointMLP AVG

ModelNet40
ModuleR 27.19 20.02 28.61 21.64 36.87 28.32 88.25 40.24 24.59 28.77 27.72 33.84
Module S 9.36 48.70 15.07 7.41 13.92 20.33 32.25 12.56 88.72 65.32 18.79 30.22
UMT(k=2) 9.20 18.52 13.86 9.08 13.90 7.58 24.39 9.85 26.58 25.12 7.31 15.04

ModelNet10
ModuleR 29.85 30.51 35.13 31.17 47.25 58.70 91.38 43.72 36.50 34.58 30.47 42.66
Module S 34.80 57.05 42.62 33.81 30.36 43.75 42.24 32.60 89.40 73.79 41.29 47.43
UMT(k=2) 22.25 28.08 14.10 21.48 24.34 21.37 38.18 19.82 31.28 33.37 29.35 25.78

knowledge about the Gp’s use of RS. Thus we propose random rotation & scaling as an adaptive
scheme. In Tab. 2, the adaptive scheme exhibits a higher accuracy than other schemes, confirming its
effectiveness. Nonetheless, it remains 28.67% lower than clean baseline, revealing the robustness of
UMT against adaptive attack. More results of adaptive attacks are provided in Appendix C.3.

Visual Effect. We visualize UMT samples in Figs. 7 to 10, indicating that the unlearnable point cloud
samples still retain their normal feature structure with visual rationality.

Evaluation of Semantic Segmentation. We evaluate UMT using common metrics for point cloud
semantic segmentation tasks in Tab. 3. As can be seen, the performance of semantic segmentation of
data protected by UMT significantly decreases. The underlying reason is that the DNNs learn the
features of class-wise transformations and establish a new mapping, which leads to the inability of
test samples without transformations to be correctly segmented by the segmentation model.

Evaluation of Data Restoration. We multiply UMT samples by the transformation matrix in Eq. (9).
The data becomes learnable after the restoration process, with test accuracy reaching a level compara-
ble to the clean baseline as shown in Fig. 4. This strongly validates the effectiveness of the proposed
data restoration scheme.

(b)
Figure 5: Hyper-parameter sensitivity analysis: The impact of hyperparameters rs, rp, bl, and bu on the test
accuracy results (%) on the UMT (using RS) ModelNet10 dataset

4.3 Ablation Study and Hyper-Parameter Sensitivity Analysis

Ablation on Rotation Module. As shown in Tab. 4, the average accuracy increases by 15.18% and
21.65%, respectively, when only using S . This suggests the importance of class-wise rotation module.
The high test accuracy demonstrated by 3DGCN [26] can be attributed to its scaling invariance, which
endows it with robustness against scaling transformation.

Ablation on Scaling Module. As also shown in Tab. 4, the average accuracy increases by 18.80%
and 16.88% when only using the rotation module, respectively. The high test accuracy achieved
on RIConv [57] and LGR-Net [59] is due to the fact that both networks are rotation-invariant, thus
providing resistance against rotation transformations. These ablation results furthermore emphasize
the importance of incorporating more non-rigid transformations.

Hyper-Parameter Analysis. We analyze four hyperparameters rs, rp, bl, and bu in Fig. 5. The
influence of rs and rp on the accuracy remains relatively small, exhibiting their best unlearnable
effect when set to 15◦ and 120◦, respectively. We attribute this to the crucial role played by the
class-wise setting, while it is not highly sensitive to the size of specific values. The unlearnable effect
is the best when bl and bu are set to 0.6 and 0.8, respectively. Similarly, the variations in bl and bu do
not significantly alter the effect due to the class-wise setting.
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Figure 6: UMT in weight space. The blue arrow represents the clean training trajectory of the weights θi at
step i, while the red arrows denote the UMT training trajectory. The values for plotting this figure are provided
in Appendix C.6. (a) Testing on clean test set (blue and red ellipses); (b) Testing on UMT test set (green ellipse)

4.4 Insightful Analysis Into UMT

We formalize L(D) = E(X,Y)∼D[Lc(F (X; θ),Y)], where Lc is the cross-entropy loss, X,Y is the
point cloud data sampled from dataset D. We define Dtr, Du, and Dc as the training set, unlearnable
test set (i.e., test set transformed by UMT), and clean test set, respectively. Thus we have the training
loss Ltrain = L(Dtr), unlearnable test loss Lu = L(Du), and clean test loss Lc = L(Dc).

The models trained on both clean and UMT training sets exhibit low Ltrain as shown in Fig. 6
(yellow ellipses), indicating the models converge well during training. Furthermore, when tested on
Dc as shown in Fig. 6 (a), the clean model (trained with clean training set) achieves a low Lc (blue
ellipse), while the UMT model (trained with UMT training set) exhibits a high Lc (red ellipse), also
supporting the unlearnable effectiveness of UMT. Fig. 6 (b) reveals that the clean model and UMT
model both exhibit low Lu (green ellipse), suggesting that they can classify UMT samples. But the
mechanisms underlying the two cases of low Lu differ. The clean one is due to that the semantics of
samples can be remained by UMT and thus normally classified. The UMT one is that the UMT model
learns the mapping between transformations and labels, thereby correctly predicting the samples
containing the same transformations. We conclude that the clean model effectively classifies both
clean and UMT samples, while the UMT model successfully classifies UMT samples (the UMT
process is the same for both training and test samples) but fails to classify clean samples.

5 Related Work

5.1 2D Unlearnable Schemes

The development of 2D unlearnable schemes [19, 29, 37, 39, 42, 55] has been booming. Specifically,
model-dependent methods are initially proposed in abundance [9, 19, 29]. Afterwards, numerous
model-agnostic methods that significantly improve the generation efficiency have surfaced [39, 42, 47].
However, due to the structural disparities between 3D point cloud data and 2D images, applying
unlearnable methods directly from 2D to 3D reveals significant challenges.

5.2 Protecting 3D Point Cloud Data Privacy

Some works proposed an encryption scheme based on chaotic mapping [21] or optical chaotic
encryption [27], and a 3D object reconstruction technique was introduced [34], both achieving privacy
protection for individual 3D point cloud data. Nevertheless, no privacy-preserving solution has been
proposed specifically for the scenario of unauthorized DNN learning on abundant raw 3D point cloud
data. It is worth mentioning that both parallel works [44, 63] study availability poisoning attacks
against 3D point cloud networks, which largely reduce model accuracy, and both have the potential
to be applied as unlearnable schemes. However, the feature collision error-minimization poisoning
scheme proposed by Zhu et al. [63] overlooks the problem of effective training for authorized users,
which limits its practical use in real-world applications. The rotation-based poisoning approach
proposed by Wang et al. [44] is easily defeated by rotation-invariant networks [57, 58, 59], as revealed
in Tabs. 1 and 4.
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6 Conclusion, Limitation, and Broader Impacts

In this research, we propose the first integral unlearnable framework in 3D point clouds, which utilizes
class-wise multi transformations, preventing unauthorized deep learning while allowing authorized
training. Extensive experiments on synthetic and real-world datasets and theoretical evidence verify
the superiority of our framework. The transformations include rotation, scaling, twisting, and shear,
which are all common 3D transformation operations. If unauthorized users design a network that
is invariant to all these transformations, they could potentially defeat our proposed UMT. So far,
only networks invariant to rigid transformations like rotation and scaling have been proposed, while
networks invariant to non-rigid transformations like twisting and shear, have not yet been introduced.
Therefore, our research also contributes to the design of more transformation-invariant networks.

Our research calls for the design of more robust point cloud networks, which helps improve the
robustness and security of 3D point cloud processing systems. On the other hand, if our proposed
UMT scheme is maliciously exploited, it may have negative impacts on society, such as causing
a sharp decline in the performance of models trained on it, affecting the security and reliability
of technologies based on 3D point cloud networks. More transformation-invariant 3D point cloud
networks need to be proposed in the future to avoid potential negative impacts.
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Appendix: Unlearnable 3D Point Clouds: Class-wise Transformation Is All You
Need

A Definitions of 3D Transformations

Existing 3D transformations are summarized in Fig. 1 and formally defined in this section. The 3D
transformations are mathematical operations applied to three-dimensional objects to change their
position, orientation, and scale in space, which are often represented using transformation matrices.
We formally define the transformed point cloud sample with transformation matrix T ∈ R3×3 as:

Xt = T ·X (10)

where X ∈ R3×p is the clean point cloud sample, Xt ∈ R3×p is the transformed point cloud sample.

A.1 Rotation Transformation

The rotation transformation that alters the orientation and angle of 3D point clouds is controlled by
three angles α, β, and γ. The rotation matrices in three directions can be formally defined as:

Rα =

[
1 0 0
0 cosα − sinα
0 sinα cosα

]
,Rβ =

[
cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

]
,Rγ =

[
cos γ − sin γ 0
sin γ cos γ 0
0 0 1

]
(11)

Thus we have T = RαRβRγ while employing rotation transformation. Besides, we haveR−1
α =

RT
α ,R−1

β = RT
β , andR−1

γ = RT
γ .

A.2 Scaling Transformation

The scaling matrix S can be represented as:

S =

[
λ 0 0
0 λ 0
0 0 λ

]
= λ

[
1 0 0
0 1 0
0 0 1

]
(12)

where the scaling factor λ is used to perform a proportional scaling of the coordinates of each point
in the point cloud.

A.3 Shear Transformation

In the three-dimensional space, shearing 3 is represented by different matrices, and the specific form
depends on the type of shear being performed. Specifically, the shear transformation matrix Hxy

(employed in UMT) of shifting x and y by the other coordinate z, and its corresponding inverse
matrix can be expressed as:

Hxy =

[
1 0 s
0 1 t
0 0 1

]
,H−1

xy =

[
1 0 −s
0 1 −t
0 0 1

]
(13)

The shear transformation matrix Hxz of shifting x and z by the other coordinate y, and its corre-
sponding inverse matrix can be expressed as:

Hxz =

[
1 s 0
0 1 0
0 t 1

]
,H−1

xz =

[
1 −s 0
0 1 0
0 −t 1

]
(14)

The shear transformation matrix Hyz of shifting y and z by the other coordinate x, and its corre-
sponding inverse matrix can be expressed as:

Hyz =

[
1 0 0
s 1 0
t 0 1

]
,H−1

yz =

[
1 0 0
−s 1 0
−t 0 1

]
(15)

3https://www.mauriciopoppe.com/notes/computer-graphics/
transformation-matrices/shearing/
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Algorithm 1 Our proposed UMT scheme
Input: Clean 3D point cloud dataset Dc = {(Xi,Yi)}ni=1; number of categories N ; slight range rs;
primary range rp; scaling lower bound bl; scaling upper bound bu; twisting lower bound wl; twisting
upper bound wu; shear lower bound hl; shear upper bound hu; spectrum of transformations k; matrix
set Ts = {R,S,H,W}.
Output: Unlearnable 3D point cloud dataset Du = {(Xui,Yi)}ni=1.
Initialize the slight angle lists Lα=[ ], Lβ=[ ], the primary angle list Lγ=[ ], the rotation list LR=[ ],

the scaling list LS=[ ], the twisting list LW=[ ], the shear list LH=[ ], and AN =
⌈

3
√
N
⌉

;

for c = 1 to k do
Randomly sample a transformation matrix Vc ∈ Ts;
Remove transformation matrix Vc from Ts;
if Vc == R then

for i = 1 to AN do
for j = 1 to AN do

for k = 1 to AN do
LR ← LR ∪ {[Lα[i],Lβ [j],Lγ [k]]};

end
end

end
Get the LR ← random.sample(LR, N);

end
else if Vc == S then

for i = 1 to N do
Randomly sample λi ∼ U(bl, bu);
Add to the list LS ← LS ∪ {λi};

end
end
else if Vc ==W then

for i = 1 to N do
Randomly sample ωi ∼ U(wl, wu);
Add to the list LW ← LW ∪ {ωi};

end
end
else if Vc == H then

for i = 1 to N do
Randomly sample hi ∼ U(hl, hu);
Add to the list LH ← LH ∪ {hi};

end
end

end
for i = 1 to n do

Get the transformation matrix Tk =
∏k

i=1Vi by the parameter lists above;
Get the transformed data Xui = Tki ·Xi;

end
Return: Unlearnable 3D point cloud dataset Du.

A.4 Twisting Transformation

The 3D twisting transformation [7] involves a rotational deformation applied to an object in three-
dimensional space, creating a twisted or spiraled effect. Unlike simple rotations around fixed axes, a
twisting transformation introduces a variable rotation that may change based on the spatial coordinates
of the object. For instance, considering a twisting transformation along the z-axis, where the rotation
angle is a function related to the z-coordinate, it can be expressed as:

Wz(θ, z) =

[
cos(θz) − sin(θz) 0
sin(θz) cos(θz) 0

0 0 1

]
(16)
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where θ is the parameter of the twisting transformation, and z is the z-coordinate of the object. The
inverse matrix ofWz(θ, z) is:

W−1
z (θ, z) =

[
cos(θz) sin(θz) 0
− sin(θz) cos(θz) 0

0 0 1

]
(17)

A.5 Tapering Transformation

The tapering transformation [7] is a linear transformation used to alter the shape of an object, causing
it to gradually become pointed or shortened. In three-dimensional space, tapering transformation can
adjust the dimensions of an object along one or more axes, creating a tapering effect. The specific
matrix representation of tapering transformation depends on the chosen axis and the design of the
transformation. Generally, tapering transformation can be represented by a matrix that is multiplied
by the coordinates of the object to achieve the shape adjustment, which is defined as:

Az(η, z) =

[
1 + ηz 0 0

0 1 + ηz 0
0 0 1

]
(18)

where z is the z-coordinate of the object. Considering that ηz could indeed equal to -1, in such a case,
the 3D point cloud samples would be projected onto the z-plane, losing their practical significance
and the tapering matrix is also irreversible.

A.6 Reflection Transformation

Reflection transformation is a linear transformation that inverts an object along a certain plane. This
plane is commonly referred to as a reflection plane or mirror. For reflection transformations in three-
dimensional space, we can represent them through a matrix. Regarding the reflection transformation
matrices of the xy plane, yz plane, and xz plane, we have:

Rxy =

[
1 0 0
0 1 0
0 0 −1

]
,Ryz =

[−1 0 0
0 1 0
0 0 1

]
,Rxz =

[
1 0 0
0 −1 0
0 0 1

]
(19)

A.7 Translation Transformation

The 3D translation transformation4 refers to the process of moving an object in three-dimensional
space. This transformation involves moving the object along the x, y, and z axes, respectively,
smoothly transitioning it from one position to another, which is defined as:

L =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 (20)

where tx, ty, and tz represents the translation along the x, y, and z axes, respectively. This 4×4
matrix is a homogeneous coordinate matrix that describes the translation in three-dimensional space.
Additionally, the translation matrix also can be represented as a additive matrix to original point
xi ∈ R3×3, which can be defined as:

L =

[
tx tx tx
ty ty ty
tz tz tz

]
(21)

B Supplementary Experimental Settings

B.1 Experimental Platform

Our experiments are conducted on a server running a 64-bit Ubuntu 20.04.1 system with an Intel
Xeon Silver 4210R CPU @ 2.40GHz processor, 125GB memory, and four Nvidia GeForce RTX
3090 GPUs, each with 24GB memory. The experiments are performed using the Python language,
version 3.8.19, and PyTorch library version 1.12.1.

4https://www.javatpoint.com/computer-graphics-3d-transformations
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Table 5: The test accuracy (%) results on diverse types of transformations on ModelNet10 training set using
PointNet classifier

Transformations Rotation Scaling Shear Twisting Tapering Translation AVG
w/o 89.32 89.32 89.32 89.32 89.32 89.32 89.32

Sample-wise 91.52 87.78 89.10 92.62 90.31 90.31 89.80
Dataset-wise 87.89 79.41 85.79 92.18 88.22 88.22 83.45
Class-wise 29.85 20.81 67.84 63.22 52.42 36.67 45.14

Table 6: Accuracy results obtained with different test sets when training the PointNet classifier using class-wise
transformed training sets

Test sets ↓ Transformations −→ Rotation Scaling Shear Twisting Tapering Translation

Class-wise test set 99.67 93.80 97.91 94.05 96.04 98.24
Permuted class-wise test set 10.68 38.22 58.37 60.68 42.51 31.94

Clean test set 29.85 20.81 67.84 63.22 52.42 36.67

B.2 Hyper-Parameter Settings

The model training process on the unlearnable dataset and the clean dataset remains consistent, using
the Adam optimizer [22], CosineAnnealingLR scheduler [30], initial learning rate of 0.001, weight
decay of 0.0001, batch size of 16 (due to insufficient GPU memory, the batch size is set to 8 when
training 3DGCN on ModelNet40 dataset), and training for 80 epochs. Due to the longer training
process required by PCT [16], the training epochs for PCT in Tab. 1 on ModelNet10, ModelNet40,
and ScanObjectNN datasets are all set to 240.

B.3 Settings of Exploring Experiments

We initially investigate which approach yields the best unlearnable effect among sample-wise, dataset-
wise, and class-wise settings in Fig. 2 (a). Specific experimental settings are as follows:

In the dataset-wise setting, the same parameter values are applied to the entire dataset. Specifically,
we have α = β = γ = 10◦ in the rotation transformation, the scaling factor λ is set to 0.8, both
shearing factors s and t are set to 0.2. The angle θ in twisting is 25◦. The tapering angle η is set to
25◦, and the parameters in translation transformation tx, ty , and tz are set to 0.15.

In the sample-wise setting, each sample has its independent set of parameters, meaning the parameter
values for each sample are randomly generated within a certain range. In the rotation transformation,
α, β, γ are uniformly sampled from the range of 0◦ to 20◦. The scaling factor λ is uniformly sampled
from 0.6 to 0.8, shearing factors s and t are uniformly sampled from the range of 0 to 0.4. Both
the twist angle θ and tapering angle η are sampled from 0◦ to 50◦, and the parameters in translation
transformation tx, ty , and tz are sampled from 0 to 0.3.

In the class-wise setting, the parameters for transformations are associated with the point cloud’s
class. The selection of parameters for each class is also obtained by random sampling within a fixed
range. The chosen ranges are generally consistent with those described for the sample-wise setting
above. However, a difference lies in the consideration of slight angle range and primary angle range
in the case of rotation transformations, where these ranges are 20◦ and 120◦, respectively.

The specific results of test accuracy under different transformation modes, including sample-wise
(random), class-wise, and dataset-wise (universal), are provided in Tab. 5. It can be seen that under
the class-wise setting, the final unlearnable effect is the best.

B.4 Benchmark Datasets

Dataset Introduction. The ModelNet40 dataset is a point cloud dataset containing 40 categories,
comprising 9843 training and 2468 test point cloud data. ModelNet10 is a subset of ModelNet40
dataset with 10 categories. ShapeNetPart that includes 16 categories is a subset of ShapeNet,
comprising 12137 training and 2874 test point cloud samples. ScanObjectNN is a real-world point
cloud dataset with 15 categories, comprising 2309 training samples and 581 test samples. Similar
to [17, 52], we split KITTI object clouds into class “vehicle” and “human” containing 1000 training
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data and 662 test data. The input point cloud objects for the models encompass 256 points for the
KITTI dataset and 1024 points for other datasets. The Stanford 3D Indoor Scene Dataset (S3DIS)
dataset contains 6 large-scale indoor areas with 271 rooms. Each point in the scene point cloud is
annotated with one of the 13 semantic categories.

Dataset Licenses. The dataset license information is listed as:

• ModelNet10, ModelNet40 [50]: All CAD models are downloaded from the Internet and
the original authors hold the copyright of the CAD models. The label of the data is obtained
by us via Amazon Mechanical Turk service and it is provided freely. This dataset is
provided for the convenience of academic research only. Link is https://modelnet.
cs.princeton.edu/.

• ShapeNetPart [4]: We use the ShapeNet database (the "Database") at Princeton University
and Stanford University. Link is https://www.shapenet.org/.

• ScanObjectNN [41]: The license is MIT License: Copyright (c) 2019 Vision & Graphics
Group, HKUST. Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit
persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software. Link is https://hkust-vgd.github.io/
scanobjectnn/.

• S3DIS [2]: The copyright is from Stanford University, Patent Pending, copyright 2016.
Link is http://buildingparser.stanford.edu/dataset.html.

B.5 Settings of Robustness Experiments

The scaling factor in random scaling augmentation is set to a minimum of 0.8 and a maximum of 1.25.
In the random rotation operation, the three directional rotation angles are identical and uniformly
sampled from [0, 2π). The perturbations in the random jitter are sampled from a normal distribution
with a standard deviation of 0.05, and the perturbation magnitude is constrained within 0.1. The
parameters k and α in SOR are set to 2 and 1.1, respectively. The number of dropped points in SRS
is 500.

C Supplementary Experimental Results

C.1 Results for Execution Mechanism

We present the specific experimental results of Fig. 2 (a) in Tab. 5. It can be observed that under the
class-wise setting, the average test accuracy is the lowest, while the unlearnable condition yields the
best performance. Furthermore, we conduct investigations into training the PointNet classifier with
class-wise transformed training sets (ModelNet10 dataset), analyzing accuracy results across different
test sets, as shown in Tab. 6. It is noteworthy that the accuracy on class-wise test sets (using consistent
transformation parameters with class-wise transformed training set) is consistently above 90%,
indicating that the model has learned the mapping between transformations and labels. This leads to
correct classification on test samples with the same transformations. However, when the class-wise
test set undergoes permutation, the accuracy drops to a level similar to that of the clean test set. This
clearly demonstrates that the model can correctly classify samples only when they have corresponding
transformations, and samples without transformations or with mismatched transformations cannot be
correctly classified. This further validates that the model learns a one-to-one mapping between class
transformations and labels.

C.2 Results of Diverse Combinations of Transformations

We investigate combinations of four transformations, i.e., rotation, scaling, shear, and twisting, and
create unlearnable datasets using the class-wise setting. The test accuracy results across five point
cloud models are presented in Tab. 7. It can be observed that the combination of rotation and scaling,
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Table 7: The test accuracy (%) results obtained from training the point cloud classifiers PointNet, PointNet++,
DGCNN, PointCNN, PCT using a ModelNet10 dataset generated with diverse combinations of transformations
under a class-wise setting, where R, S , H, and W correspond to rotation, scaling, shear, and twisting respectively

Transformations PointNet PointNet++ DGCNN PointCNN PCT AVG
R 46.70 38.99 49.67 64.87 27.53 45.55
S 34.80 57.05 42.62 33.81 29.63 39.58
H 64.10 66.41 71.15 60.68 60.13 64.49
W 76.98 54.19 78.63 86.69 38.55 67.05
RS 22.25 28.08 14.10 21.48 11.89 19.56
RH 30.51 39.98 45.93 36.23 33.81 37.29
RW 34.91 44.27 29.52 46.92 32.16 37.56
SH 20.26 44.93 38.66 43.50 34.80 36.43
SW 18.28 44.27 31.39 34.25 19.93 29.62
HW 63.33 62.56 61.89 64.76 51.43 60.79
RSH 15.97 29.19 36.56 21.81 31.28 26.96
RSW 25.22 31.50 23.57 31.83 38.55 30.13
SHW 21.70 46.37 55.29 37.11 38.77 39.85
RSHW 16.52 33.37 30.51 30.73 32.49 28.72

Table 8: The test accuracy (%) results with standard deviations from three runs (random seeds are set to 23, 1023,
and 2023) obtained from training the point cloud classifiers PointNet, PointNet++, DGCNN, and PointCNN
using a ModelNet10 dataset generated with diverse two class-wise transformations

ModelNet10 dataset PointNet PointNet++ DGCNN PointCNN AVG
RS 15.12±6.20 26.62±5.11 25.22±10.20 17.26±3.68 21.05±0.73

RH 33.70±11.09 30.65±17.12 36.67±15.64 34.99±13.48 34.00±13.66

RW 39.83±6.71 30.18±12.22 36.71±8.10 43.47±9.20 37.55±5.07

SH 21.22±0.84 46.15±8.82 31.87±6.52 30.87±10.94 32.53±4.81

SW 23.50±6.08 51.28±6.69 38.33±6.10 28.27±5.25 35.34±2.88

HW 54.41±7.99 54.22±14.34 55.14±9.42 57.75±6.09 55.38±6.98

two types of rigid transformations, achieves the most effective unlearnable effect. The transformation
parameters used in this section are consistent with Appendix B.3.

To ensure the reliability of the experimental results, we combine two different transformations and
obtain the results from three runs using random seeds with 23, 1023, and 2023, then average them.
The results are shown in Tab. 8. From the results on four popular point cloud models, it can be seen
that when all transformations are rigid, the test accuracy is still the lowest.

C.3 More Results of UMT Against Adaptive Attacks

To further explore the performance of UMT against adaptive attacks, we supplement the experimental
results using four types of random augmentationsRSHW in Tab. 10, and find that the conclusion is
consistent with Tab. 2, i.e., UMT exhibits a certain degree of robustness against the adaptive attack
random transformations.

C.4 More Results of UMT Against Semantic Segmentation

To further evaluate the UMT performance against semantic segmentation, we employ the semantic
scene understanding dataset SemanticKITTI [3] in Tab. 11. It can be observed that UMT is still
effective against this real-world segmentation dataset.

C.5 Results of UMT Against SE(3) Equivariant Models

In the main text, we have discussed the robustness of UMT against rotation/scaling invariant models.
The results for RIConv++ [58] (rotation invariant) and 3DGCN [26] (scaling invariant) networks
in Tab. 1, as well as RIConv [57], LGR-Net [59] (rotation invariant), and 3DGCN in Tab. 4, demon-
strating that these invariant networks can indeed defend against class-wise rotation and scaling. It
is worth noting that these networks, which are invariant to a single transformation, cannot defend
against UMT formed by a combination of multiple transformations. Thus, it appears that networks
like SE(3) equivariant model, which are invariant to multiple transformations in space, can poten-

19



Table 9: The accuracy (%) results on clean and UMT ModelNet10 training set and test set using four point cloud
classifiers. Higher accuracy values correspond to lower cross-entropy loss values.

Training and test sets PointNet PointNet++ DGCNN PointCNN AVG
Clean training set, clean test set 89.32 92.95 92.73 89.54 91.14
Clean training set, UMT test set 55.51 70.93 74.78 69.71 67.73
UMT training set, clean test set 22.25 28.08 14.10 21.48 21.48
UMT training set, UMT test set 98.79 99.23 99.01 96.26 98.32

Table 10: Test accuracy (%) results using UMT training data and UMT data employing random augmentations

ModelNet10 PointNet PointNet++ DGCNN PointCNN AVG
Clean baseline 89.32 92.95 92.73 89.54 91.14

UMT(k=4) 16.19 36.56 17.62 27.42 24.45
UMT(k=4) + randomRSHW 25.99 61.78 61.89 44.16 48.46

tially overcome UMT. Therefore, we include experimental results for the SE(3) equivariant network
SE(3)-Transformer [11] in Tab. 12.

However, it can be seen that SE(3)-Transformer cannot defend against UMT (k=3, RSW) and
UMT(k=4, RSWH). This is because existing transformation-invariant networks, even including
SE(3) invariant networks, are designed only for rigid transformations (rotation, scaling, reflection,
and translation). There are currently no invariant networks proposed for non-rigid transformations
like shear and twisting. Therefore, if a data protector wants UMT to be more robust, they can include
non-rigid class-wise transformations to defeat existing rigid transformation-invariant networks.

C.6 Results of Insightful Analysis

We train on clean training set and test on clean test set, train on clean training set and test on UMT
test set, train on UMT training set and test on clean test set, and train on UMT training set and test
on UMT test set to obtain the test accuracy results in Tab. 9 (we ensure that the UMT parameters
for the UMT test set and UMT training set are consistent). Higher accuracy values indicate lower
cross-entropy loss values, while lower accuracy values represent higher cross-entropy loss values.
It can be observed that only when trained with the UMT training set, the loss after testing with the
clean test set is high (i.e., low accuracy).

C.7 Boarder Hyper-Parameter Analysis

Additionally, we investigate the unlearnable effects across a wider range of hype-parameters
rs, rp, bl, bu in UMT (k = 2 with RS), as shown in Tab. 13. It can be observed that our UMT
scheme still exhibits a good unlearnable effect, and its key lies in the crucial role played by the
class-wise setting.

C.8 Supplementary Ablation Results

In this section, we conduct ablation experiments on the UMT scheme on the ShapeNetPart dataset
(keeping experimental parameters consistent with the main experiments), as shown in Tab. 14. It
can be observed that whether using only the rotation module or only the scaling module, the final
unlearnable effect is not as good as UMT. This clearly demonstrates that each module contributes to
the overall UMT effectiveness.

C.9 Results of Mixture of Class-wise and Sample-wise Samples

In this section, we investigate the test accuracy results when using a mixture of different ratios of class-
wise samples and sample-wise (random) samples in the dataset, as shown in Tab. 15 (experiments are
conducted on the ModelNet10 dataset with 10 categories, where “2 class-wise 8 sample-wise" denotes
that samples from 2 categories undergo class-wise transformations, while the remaining 8 categories
undergo random transformations, and so on). We can clearly observe from the experimental results
that as the proportion of class-wise transformations gradually increases, the test accuracy gradually
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Table 11: Semantic segmentation: Evaluation of UMT on semantic segmentation task using SemanticKITTI
dataset

Evaluation metrics Eval accuracy (%) mIoU(%)
Segmentation models PointNet++ Point Transformer V2 PointNet++ Point Transformer V2

Clean baseline 29.89 72.92 14.16 54.78
UMT (k = 2,RS) 4.69 19.40 0.80 13.39

Table 12: Test accuracy (%) results using UMT training data to train the SE(3)-Transformer

Clean baseline 49.07
UMT(k=3,RSW) 17.51
UMT(k=4,RSWH) 13.55

decreases, indicating that the unlearnable effect becomes more pronounced. This strongly suggests
that the class-wise setting is more effective than the sample-wise setting.
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Figure 7: Clean and UMT samples from ModelNet10 dataset
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Figure 8: Clean and UMT samples from ModelNet40 dataset
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Figure 9: Clean and UMT samples from ScanObjectNN dataset

C.10 Additional Visual Presentations for 3D Point Cloud Samples

We visualize clean point cloud samples and UMT (k = 2 using RS) point cloud samples on four
benchmark datasets ModelNet10 [50], ModelNet40 [50], ScanObjectNN [41], and ShapeNetPart [4],
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Table 13: The test accuracy (%) results on ModelNet10 dataset with a boarder range of hype-parameters
rs, rp, bl, bu

rs, rp, bl, bu PointNet DGCNN PointCNN AVG rs, rp, bl, bu PointNet DGCNN PointCNN AVG
25, 120, 0.6, 0.8 24.78 23.35 28.19 25.44 15, 120, 0.75, 0.8 154 38.66 40.09 31.10
25, 180, 0.6, 0.8 26.65 25.99 20.37 234 15, 120, 0.6, 0.7 20.59 27.53 23.68 23.93
15, 90, 0.6, 0.8 18.39 20.59 22.03 20.34 15, 120, 0.6, 0.8 22.25 14.10 21.48 19.28

15, 240, 0.6, 0.8 21.26 30.51 20.70 24.16 15, 120, 0.6, 0.9 23.90 23.90 23.35 23.72
15, 120, 0.6, 1.2 31.50 28.63 36.78 32.30 15, 120, 0.6, 1.0 22.58 26.54 31.61 26.91

Table 14: Ablation modules: The test accuracy (%) results achieved by training on unlearnable data created by
different modules on the ShapeNetPart dataset

Benchmark datasets Modules↓Models−→ PointNet PointNet++ DGCNN PointCNN PCT AVG

ShapeNetPart [4]
Rotation module 53.51 44.05 57.69 49.48 43.84 49.71
Scaling module 28.74 77.21 37.93 44.02 51.84 47.95

UMT(k=2) 15.14 41.16 26.17 32.36 44.05 31.78
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Figure 10: Clean and UMT samples from ShapeNetPart dataset

as depicted in Figs. 7 to 10, respectively. The UMT parameters consist of rotation and scaling
parameters [α, β, γ, λ]. It can be observed that these unlearnable samples exhibit similar feature
information to normal samples, presenting good visual effects and making it difficult to be detected
as abnormalities.

D Proofs for Theories

D.1 Proof for Lemma 3

Lemma 3. The unlearnable dataset Du generated using UMT on Dc can also be represented using a
GMM, i.e., Du ∼ N (yTyµ, λ

2
yI).

Proof: Assuming y = 1, then Dc1 ∼ N (µ, I), and we have

E(x,y)∼Dc1
T1x = T1E(x,y)∼Dc1

x = T1µ,

E(x,y)∼Dc1
(T1x−T1µ)(T1x−T1µ)

⊤

= T1E(x,y)∼Dc1
(x− µ)(x− µ)⊤T1

⊤

= T1IT1
⊤ = λ1

2R1R1
⊤I = λ1

2I

Similarly, assuming y = −1, we can obtain

E(x,y)∼Dc−1
T−1x = −T−1µ,

E(x,y)∼Dc−1
(T−1x−T−1µ)(T−1x−T−1µ)

⊤ = λ−1
2I.

Thus we have: Du ∼ N (yTyµ, λ
2
yI).
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Table 15: Mixture results: The test accuracy (%) results achieved by training on the mixture data consisting of
class-wise UMT samples and sample-wise UMT samples

ModelNet10 [50] PointNet PointNet++ DGCNN PointCNN AVG
100% sample-wise data 72.69 79.52 85.79 75.66 78.42

20% class-wise data, 80% sample-wise data 65.64 69.05 78.19 58.04 67.73
40% class-wise data, 60% sample-wise data 58.04 59.91 60.57 58.59 59.28
60% class-wise data, 80% sample-wise data 50.11 48.13 60.35 46.48 51.27
80% class-wise data, 20% sample-wise data 31.83 29.19 44.09 50.55 39.02

100% class-wise data 22.25 28.08 14.10 21.48 21.48

D.2 Proof for Lemma 4

Lemma 4. The Bayes optimal decision boundary for classifying Du is given by Pu(x) ≡ Ax⊤x+

B⊤x+ C = 0, where A = λ−2
−1 − λ−2

1 , B = 2(λ−2
−1T−1 + λ−2

1 T1)µ, and C = ln
|λ2

−1I|
|λ2

1I|
.

Proof: At the optimal decision boundary the probabilities of any point x ∈ Rd belonging to class
y = 1 and y = −1 modeled by Du are the same. Similar to the optimal decision boundary of the
clean dataset Dc, we have:

exp[− 1
2 (x−T−1µ−1)

⊤(λ2
−1I)

−1(x−T−1µ−1)]√
(2π)d|λ2

−1I|

=
exp[− 1

2 (x−T1µ1)
⊤(λ2

1I)
−1(x−T1µ1)]√

(2π)d|λ2
1I|

⇒ (x−T−1µ−1)
⊤λ−2

−1(x−T−1µ−1) + ln |λ2
−1I|

= (x−T1µ1)
⊤λ−2

1 (x−T1µ1) + ln |λ2
1I|

⇒ λ−2
−1(x

⊤x− x⊤T−1µ−1 − µ⊤
−1T

⊤
−1x+ µ⊤

−1T
⊤
−1T−1µ−1)

− λ−2
1 (x⊤x− x⊤T1µ1 − µ⊤

1 T
⊤
1 x+ µ⊤

1 T
⊤
1 T1µ1) + ln

|λ2
−1I|
|λ2

1I|
= 0

⇒ (λ−2
−1 − λ−2

1 )x⊤x− 2(λ−2
−1µ

⊤
−1T

⊤
−1 − λ−2

1 µ⊤
1 T

⊤
1 )x

+ µ⊤
−1µ−1 − µ⊤

1 µ1 + ln
|λ2

−1I|
|λ2

1I|
= 0

⇒ Pu(x) ≡ Ax⊤x+ 2[(λ−2
−1T−1 + λ−2

1 T1)µ]
⊤x+ ln

|λ2
−1I|
|λ2

1I|
= 0

⇒ Pu(x) ≡ Ax⊤x+ B⊤x+ C = 0

whereA = λ−2
−1− λ−2

1 , B = 2(λ−2
−1T−1 + λ−2

1 T1)µ, and C = ln
|λ2

−1I|
|λ2

1I|
. Besides, note that if Pu(x)

is less than 0, the category of the Bayesian optimal classification is -1; otherwise, it is 1.

D.3 Proof for Lemma 5

Lemma 5. Let z ∼ N (0, I), Z = z⊤z + b⊤z + c, and ∥·∥2 denote 2-norm of vectors. For any
t ≥ 0 and γ ∈ R, we use Chernoff bound to have:

P{Z ≥ E[Z] + γ} ≤
exp

{
t2

2(1−2t) ||b||
2
2 − t(γ + d)

}
|(1− 2t)I| 12

Proof: Since A is a constant, we have:

Pu(x) ≡ x⊤x+ (
B
A
)⊤x+

C
A

= 0

⇒ Pu(x) ≡ x⊤x+ b⊤x+ c = 0
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where b = B
A , c = C

A . Let Z = z⊤z + b⊤z + c and z ∼ N (0, I) ⊂ Rd. Thus we have:

Z = z⊤z + b⊤z + c = (z⊤ +
1

2
b⊤)(z +

1

2
b) + c− 1

4
b⊤b

= (z +
1

2
b)⊤(z +

1

2
b) + c− 1

4
b⊤b

For any t ≥ 0 and x ∼ N (0, I), we write the moment generating function for a quadratic random
variable Y = x⊤x as5:

E[exp(tY )] =
1

(2π)d/2

∫
Rd

exp
{
tx⊤x

}
exp

{
−1

2
(x− µ)⊤(x− µ)

}
dx

=
exp

{
−µ⊤µ/2

}
(2π)d/2

∫
Rd

exp

{
2t− 1

2
x⊤x+ µ⊤x

}
dx

=
exp

{
−µ⊤µ/2

}
(2π)d/2

(2π)d/2 exp
{

1
2(1−2t)µ

⊤µ
}

|I − 2tI| 12

=
exp

{
t

1−2tµ
⊤µ

}
|I − 2tI| 12

=⇒ E[exp(tZ)] =
exp

{
t

4(1−2t)b
⊤b+ t(c− 1

4b
⊤b)

}
|(1− 2t)I| 12

=
exp{ t2

2(1−2t)b
⊤b+ tc}

|(1− 2t)I| 12

After that, we employ Chernoff bound, for some γ, we have:

P{Z ≥ E[Z] + γ} ≤ E[exp(tZ)]

exp{t[γ + E(Z)]}

=
exp

{
t2

2(1−2t)b
⊤b+ tc

}
exp{t(γ + E[z⊤z] + c)}|(1− 2t)I| 12

=
exp

{
t2

2(1−2t)b
⊤b+ tc

}
exp{t(γ + Tr(I) + E(b⊤z) + c)}|(1− 2t)I| 12

=
exp

{
t2

2(1−2t)b
⊤b+ tc

}
exp{t(γ + d+ c)}|(1− 2t)I| 12

=
exp

{
t2

2(1−2t) ||b||
2
2 − t(γ + d)

}
|(1− 2t)I| 12

D.4 Proof for Theorem 6

Theorem 6. For any constant t1 and t2 satisfying 0 ≤ t1 < 1
2 and 0 ≤ t2 < 1

2 , the accuracy of the
unlearnable decision boundary Pu on the dataset Dc can be upper-bounded as:

τDc
(Pu) ≤

exp
{

t21
2(1−2t1)

||b+ 2µ||22 + t1(µ
⊤µ+ b⊤µ+ c)

}
2|(1− 2t1)I|

1
2

+
exp

{
t22

2(1−2t2)
||b− 2µ||22 − t2(µ

⊤µ− b⊤µ+ c+ 2d)
}

2|(1− 2t2)I|
1
2

:= p1 + p2

5[40]
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Furthermore, if µ⊤µ + b⊤µ + c + d < 0 and −µ⊤µ + b⊤µ − c − d < 0, we have τDc(Pu) < 1.
Moreover, for any µ ̸= 0 ∃ transformation matrix Ti such that τDc(Pu) < τDc(P ).

Proof: We note that if Pu(x) is less than 0, the category of the Bayesian optimal classification is -1;
otherwise, it is 1. Here, x = yµ+ z where z ∼ N (0, I) and y ∈ {±1} since (x, y) ∼ Dc.

τDc(Pu) = E{I(y(x⊤x+ b⊤x+ c) > 0)}
= P{y(µ⊤µ+ z⊤z + 2yµ⊤z + yb⊤µ+ b⊤z + c) > 0}
= P(y = 1)P{y(µ⊤µ+ z⊤z + 2yµ⊤z + yb⊤µ+ b⊤z

+ c) > 0|y = 1}+ P(y = −1)P{y(µ⊤µ+ z⊤z

+ 2yµ⊤z + yb⊤µ+ b⊤z + c) > 0|y = −1}

=
1

2
P{z⊤z + (b+ 2µ)⊤z + µ⊤µ+ b⊤µ+ c > 0}

+
1

2
P{−z⊤z − (b− 2µ)⊤z − µ⊤µ+ b⊤µ− c > 0}

:= p1 + p2

We can see that:

−γ1 := E{z⊤z + (b+ 2µ)⊤z + µ⊤µ+ b⊤µ+ c}
= Tr(I) + µ⊤µ+ b⊤µ+ c

−γ2 := E{−z⊤z − (b− 2µ)⊤z − µ⊤µ+ b⊤µ− c}
= −Tr(I)− µ⊤µ+ b⊤µ− c

Applying Lemma 5, with γ = γ1, t = t1 for the computation of p1, as well as γ = γ2 and t = t2 for
the computation of p2, where t1 and t2 are specific non-negative constants, we obtain:

p1 =
exp

{
t21

2(1−2t1)
||b+ 2µ||22 + t1(µ

⊤µ+ b⊤µ+ c)
}

2|(1− 2t1)I|
1
2

p2 =
exp

{
t22

2(1−2t2)
||b− 2µ||22 − t2(µ

⊤µ− b⊤µ+ c+ 2d)
}

2|(1− 2t2)I|
1
2

This provides us with the upper bound for τDc
(Pu). Nonetheless, to ensure that this upper bound is

less than 1, additional conditions need to be affirmed. As γ1 and γ2 increase, the values of p1 and
p2 diminish (p1 > 0, p2 > 0), and as γ1 increases, γ2 decreases (since γ1 + γ2 = −2b⊤µ). We let
||b+2µ||22

2 equal to α1 ≥ 0, µ⊤µ+ b⊤µ+ c (also equals to ||µ||22 + c− γ1+γ2

2 ) equal to β1, resulting
in:

dp1
dt1

=
1

2

d[exp{ α1t
2
1

1−2t1
+ β1t1}/(1− 2t1)

d
2 ]

dt1

=
exp{ α1t

2
1

1−2t1
+ β1t1}

2
[(1− 2t1)

− d
2−1d

+ (1− 2t1)
− d

2 (
2α1t1(1− t1)

(1− 2t1)2
+ β1)]

=
exp{ α1t

2
1

1−2t1
+ β1t1}

2(1− 2t1)
d
2

[
d

1− 2t1
+

2α1t1(1− t1)

(1− 2t1)2
+ β1]

= p1(
d

1− 2t1
+

2α1t1(1− t1)

(1− 2t1)2
+ β1)

=
2(2β1 − α1)t

2
1 + 2(α1 − 2β1 − d)t1 + β1 + d

(1− 2t1)2
p1
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Making |(1− 2t1)I|
1
2 meaningful requires satisfying the following condition:

1− 2t1 > 0 =⇒ 0 ≤ t1 <
1

2

We note that p1(t1 = 0) = 1
2 , p1(t1 → 1

2 ) = +∞. When we set dp1

dt1
= 0, we obtain that:

2(2β1 − α1)t
2
1 + 2(α1 − 2β1 − d)t1 + d+ β1 = 0

=⇒ t1 =
2β1 − α1 + d±

√
α2
1 − 2α1β1 + d2

2(2β1 − α1)

=⇒ α2
1 − 2β1α1 + d2 ≥ 0

=⇒ β1 ≤
d2 + α2

1

2α1
=

d2

2α1
+

α1

2

=⇒ β1 ≤ (
d2

2α1
+

α1

2
)min = d

Explanation of the Last Inequality. Assuming we define s(α1) =
d2

2α1
+ α1

2 . The minimum value
of this function can be obtained using the Arithmetic Mean-Geometric Mean Inequality (AM-GM

Inequality), which states that a + b ≥ 2
√
ab for a, b ≥ 0. Thus, s(α1) ≥ 2

√
d2

2α1
· α1

2 = d. Since
β1 ≤ s(α1), we can infer that β1 ≤ s(α1)min, which means β1 ≤ d.

The product of the roots of the equation is: t11t12 = d+β1

2(2β1−α1)
(we assume that t11 < t12). We let

f(t1) = 2(2β1−α1)t
2
1+2(α1−2β1−d)t1+d+β1. Thus we have f(0) = d+β1, f( 12 ) =

α1

2 > 0.

Situation (i): β1 < −d. At this time, f(0) < 0, t11t12 > 0, based on the trend of quadratic functions
and the distribution of roots, we can infer that 0 < t11 < 1

2 , t12 > 1
2 , and 2β1 < α1. Thus we

conclude that there exists t11 such that p1(t1 = t11) <
1
2 .

Situation (ii): −d < β1 < 0. At this time, f(0) > 0, t11t12 < 0, based on the trend of quadratic
functions and the distribution of roots, we also can infer that t11 < 0, t12 > 1

2 , and 2β1 < α1. Thus
we have that p1 ≥ 1

2 .

Situation (iii): 0 < β1 < d. At this time, f(0) > 0, the sign of t11t12 simultaneously determines the
direction of the opening of the quadratic function f(t1). When t11t12 < 0, t11 < 0, t12 > 1

2 , thus we
have p1 ≥ 1

2 ; when t11t12 > 0, 0 < t11 < t12 < 1
2 , the minimum point of p1 is at p1(t12). However,

it is challenging to compare p1(t12) and 1
2 to determine which is greater or smaller.

Similarly for p2, we let ||b−2µ||22
2 equal to α2 > 0, −µ⊤µ+ b⊤µ− c− 2d equal to β2, resulting in:

dp2
dt2

=
2(2β2 − α2)t

2
2 + 2(α2 − 2β2 − d)t2 + β2 + d

(1− 2t2)2
p2

Thus we have the similar situation, i.e., β2 < −d. At this time, f(0) < 0, t21t22 > 0, based on the
trend of quadratic functions and the distribution of roots, we can infer that 0 < t21 < 1

2 , t22 > 1
2 ,

and 2β2 < α2. Thus we conclude that there exists t21 such that p2(t2 = t21) <
1
2 .

Taking into account the above situations, we have that: when β1 < −d, β2 < −d (i.e., µ⊤µ+ b⊤µ+
c + d < 0 and −µ⊤µ + b⊤µ − c − d < 0), there exists t11 and t21 respectively, making p1 < 1

2 ,

p2 < 1
2 , i.e., p1 + p2 < 1, where t11 = 1

2 +
d−
√

α2
1−2α1β1+d2

2(2β1−α1)
, t21 = 1

2 +
d−
√

α2
2−2α2β2+d2

2(2β2−α2)
.

We know that for µ ̸= 0, τDc
(P ) = ϕ(µ) > 1

2 . Therefore, we need to introduce additional conditions
to further ensure that p1 < 1

4 , and p2 < 1
4 , and consequently τDc

(Pu) = p1 + p2 < 1
2 < τDc

(P ).
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To let p1 satisfy p1 < 1
4 (α1 > 0, β1 < −d, and 0 ≤ t1 < 1

2 ), that is,

exp{ α1t
2
1

1− 2t1
+ β1t1} <

(1− 2t1)
d
2

2

⇒ α1t
2
1

1− 2t1
+ β1t1 <

d

2
ln(1− 2t1)− ln2

⇒ α1t
2
1

1− 2t1
+ β1t1 −

d

2
ln(1− 2t1) < −ln2 = −0.693

We assume that g(t) = α1t
2

1−2t + β1t− d
2 ln(1− 2t). Let us assume α1 = 1

2 and d = 3 for 3D point
cloud data, then β1 < −3. Upon analyzing the function g(t), we observe that as β1 decreases, the
minimum value of g(t) also decreases. We utilize various β1 values and their corresponding function
value to provide a more intuitive understanding as shown in Tab. 16.

Table 16: Different β1 values and corresponding g(t) with t = 0.3 and t = 0.4. The bold values represent
cases where p1 < 1

4
is satisfied.

β1 -4 -6 -8 -10 -12 -14
g(0.3) 0.287 -0.313 -0.913 -1.513 -2.113 -2.713
g(0.4) 1.214 0.414 -0.386 -1.186 -1.986 -2.786

As for p2, since α2 ̸= α1 , we need to reselect appropriate values to demonstrate the existence of
p2 < 1

4 . Similarly, to let p2 satisfy p2 < 1
4 (α2 > 0, β2 < −d, and 0 ≤ t2 < 1

2 ), that is,

exp{ α2t
2
2

1− 2t2
+ β2t2} <

(1− 2t2)
d
2

2

⇒ α2t
2
2

1− 2t2
+ β2t2 −

d

2
ln(1− 2t2) < −ln2 = −0.693

We assume that h(t) = α2t
2

1−2t + β2t − d
2 ln(1 − 2t). Let us assume α2 = 1

3 and d = 3, similarly,
we utilize various β2 values and their corresponding function value to provide a more intuitive
understanding as shown in Tab. 17.

Table 17: Different β2 values and corresponding h(t) with t = 0.3 and t = 0.4. The bold values represent
cases where p2 < 1

4
is satisfied.

β2 -4 -6 -8 -10 -12 -14
h(0.3) 0.249 -0.351 -0.951 -1.551 -2.151 -2.751
h(0.4) 1.081 0.281 -0.519 -1.319 -2.119 -2.919

Therefore, we conclude that there exist α1, β1, t1 such that p1 < 1
4 , α2, β2, t2 such that p2 < 1

4 , i.e.,
p1+p2 < 1

2 . At the same time, we observe that a smaller value of β makes it easier to satisfy the above
conditions, i.e., the more negative β1 and β2 are, the more likely it is to satisfy the above conditions.

We formally combine and assert these conditions as, b⊤µ≪ 0, i.e., µ⊤ λ−2
−1T

⊤
−1+λ−2

1 T⊤
1

λ−2
−1−λ−2

1

µ≪ 0 (we

sufficiently support this condition in the empirical results from Tabs. 16 and 17). Thus we conclude
that for any µ ̸= 0 ∃ transformation parameters Ti such that τDc(Pu) < τDc(P ).
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the scope of the contributions
made in the paper regarding the first proposed unlearnable scheme UMT and the data
restoration scheme, as well as the theoretical and experimental evaluations.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discussed the limitations of the work in Sec. 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper clearly and accurately provides the assumptions and proofs for each
theory.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The formulas in the methods section, the schematic diagrams of the schemes,
Algorithm 1, as well as the details of the training process and descriptions of the datasets
and models together support the reproducibility of the experimental results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper has open-sourced code, which are sufficient to reproduce the
experimental results.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides sufficient training and testing details, which are adequate
for understanding the experimental results.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper conducted experiments with three different random seeds, studying
the results in terms of statistical significance.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper clearly specifies the parameters of the server used for the experiment
and the code execution environment.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: After a thorough review of the paper, no violations of the NeurIPS Code of
Ethics are found.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work in Sec. 6.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: The paper described safeguards that have been put in place for responsible
release of data in Sec. 6.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The data used in the paper are properly credited, and the license and terms of
use are explicitly mentioned and properly respected.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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