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Criteria-Aware Graph Filtering:
Extremely Fast Yet Accurate Multi-Criteria Recommendation

Anonymous Author(s)

ABSTRACT
Multi-criteria (MC) recommender systems, which utilize MC rating

information for recommendation, are increasingly widespread in

various e-commerce domains. However, the MC recommendation

using training-based collaborative filtering, requiring consideration

of multiple ratings compared to single-criterion counterparts, often

poses practical challenges in achieving state-of-the-art performance

along with scalable model training. To solve this problem, we pro-

pose CA-GF, a training-freeMC recommendation method, which

is built upon criteria-aware graph filtering for efficient yet accurate
MC recommendations. Specifically, first, we construct an item–item

similarity graph using an MC user-expansion graph. Next, we de-

sign CA-GF composed of the following key components, including

1) criterion-specific graph filtering where the optimal filter for each

criterion is found using various types of polynomial low-pass filters

and 2) criteria preference-infused aggregation where the smoothed

signals from each criterion are aggregated. We demonstrate that

CA-GF is (a) efficient: providing the computational efficiency, of-

fering the extremely fast runtime of less than 0.2 seconds even on

the largest benchmark dataset, (b) accurate: outperforming bench-

markMC recommendationmethods, achieving substantial accuracy

gains up to 24% compared to the best competitor, and (c) inter-
pretable: providing interpretations for the contribution of each

criterion to the model prediction based on visualizations.

KEYWORDS
Collaborative filtering; criteria preference; graph filtering; low-pass

filter; multi-criteria recommender system.
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1 INTRODUCTION
Multi-criteria (MC) recommender systems, which leverage detailed

criteria ratings for each item, have become increasingly important

across various online service areas, including travel, restaurants,

hotels, movies, and music [10, 15, 18, 20, 28, 35]. MC recommender

systems generally excel in recommending relevant items to users
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(a)
(b)

Figure 1: An illustration showing (a) four criteria ratings in a
restaurant domain and (b) a comparison of the training time
for 100 epochs between using single-criterion ratings (i.e.,
overall ratings) and MC ratings across three benchmark MC
recommendation methods on the TripAdvisor (TA) dataset.
Additionally, the processing time is measured for CA-GF that
does not need any training process.

compared to single-criterion recommender systems, as they capture

user preferences more exquisitely [5, 10, 15, 20, 28, 44]. For example,

as illustrated in Figure 1a, in a restaurant domain, a user can provide

four criteria ratings, which include an overall rating as well as other
MC ratings for food, service, and location.

Nonetheless, the inclusion of MC ratings in MC recommender

systems often significantly increases computational demands com-

pared to single-criterion counterparts, due to the complexity of pro-

cessing and analyzing multi-dimensional user feedback [16, 39]. For

instance, given 𝑁 user–item interactions with 8 criteria, training-

based collaborative filtering (CF) methods having a computational

complexity of 𝑂 (𝑁 2) increase the training time by approximately

64 times over the single-criterion case. As shown in Figure 1b, the

time required for identical epochs in training substantially escalates

when MC ratings are incorporated into three benchmark deep neu-

ral network (DNN)-based MC recommendation methods, including

AEMC [28], ExtendedSAE [32], and CPA-LGC [22]. Acknowledging

that user preferences evolve quickly due to trends, personal circum-

stances, and exposure to new content, such latency in training time

may not be desirable [1, 12, 23, 25].

Unlike earlier studies on learning models such as graph convo-

lution for recommendations in a parametric manner [7, 8, 37, 38,

43], our study is inspired by recent advances in non-parametric,

i.e., training-free, CF for single-criterion recommender systems.

More precisely, we leverage the concept of graph signal processing,

namely graph filtering [17, 29, 40], for CF. While graph filtering

offers an affordable solution to the computational challenges in

single-criterion recommender systems, it remains open how such

methodology can be seamlessly and effectively applied to MC rec-

ommender systems without causing computational demands associ-

ated with MC ratings. In our study, we aim to develop an innovative

1
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graph filtering-based MC recommendation method, which is effi-

cient yet accurate. To this end, we start by outlining three design

goals (G1–G3) to attain a successful MC recommender system.

• G1. Capability of capturing inter-criteria relations: Canoni-
cal MC recommendation methods [4, 5, 20, 28, 44], which simply

extend rather popular single-criterion recommendation methods

to MC circumstances, often fail to fully grasp the collaborative

signal in complex semantics across MC ratings (i.e., inter-criteria
relations) [22]. In this context, when MC recommender systems

are built upon graph filtering, a natural challenge lies in how to

capture inter-criteria relations.
• G2. Awareness of criterion-specific characteristics:While

inter-criteria relation information is exploited in designing MC

recommender systems, it is also crucial to preserve the unique

characteristics inherent to each criterion. This viewpoint mo-

tivates us to comprehensively grasp the distinctiveness of each
criterion, thus leading to accurate MC recommendations.

• G3. Fast runtime: Conventional DNN-based MC recommenda-

tion methods are not without the increased training cost caused

by making use of MC ratings, compared to the single-criterion

counterparts (see Figure 1b). While graph filtering-based CF

methods are known to circumvent the computational burden

to some extent, it is yet technically challenging how to maxi-

mize computational efficiency in devising a graph filtering-based

method when MC ratings are concerned.

To effectively achieve G1-G3 at once, we propose CA-GF, a
training-free MC recommendation method, which accommodates

criteria-aware graph filters for both efficient and accurate MC rec-

ommendations. Specifically, in CA-GF, we initially construct an

item–item similarity graph using an MC user-expansion graph

to capture complex contextual semantics across the MC ratings

(G1). Then, based on the item–item similarity graph, we perform

criterion-specific graph filtering where the optimal filter for each

criterion is found using various types of polynomial low-pass filters

(LPFs) (G2), which do not necessitate costly matrix decomposition

in conventional graph filtering-based CF methods [17, 29, 40] (G3).
Finally, we perform criteria preference-infused aggregation to judi-

ciously aggregate the smoothed signals from each criterion (G2).
Our main contributions are three-fold and summarized as fol-

lows:

(1) Simply understandable yet effective methodology: We

address the challenge of increased training time caused by MC

ratings. To this end, we device CA-GF built upon polynomial
graph filters. By harnessing criteria awareness using different

polynomial LPFs for different criteria, CA-GF is capable of mak-

ing full use of modern computer hardware (i.e., CPU and GPU),

achieving the extremely fast runtime of less than 0.2 seconds
even on the largest benchmark dataset (i.e., BeerAdvocate (BA)).

(2) Superior performance: Through the sophisticated integra-

tion of each intra-criterion information as well as inter-criteria

relation information into the graph filtering process, CA-GF
attains state-of-the-art performance. Our approach consistently

outperforms the best competitor by up to 24% in terms of the
NDCG@5.

(3) Comprehensive empirical studies: Extensive experiments

validate the efficacy of CA-GF, demonstrating its computa-

tional efficiency and accuracy. Moreover, unlike traditional

DNN-based recommender systems, CA-GF offers clear insights

into the model’s predictions, providing substantial interpretabil-

ity benefits.

For reproducibility, the source code of this study is available at

https://anonymous.4open.science/r/CA-GF-0D56.

2 PRELIMINARIES
2.1 Problem Definition
We formally define the top-𝐾 MC recommendation, along with

basic notations. Let 𝑢 ∈ U and 𝑖 ∈ I denote a user and an item,

respectively, where U and I denote the sets of all users and all

items, respectively. N𝑢 ⊂ I denotes a set of items interacted by

user 𝑢. Compared to single-criterion recommender systems, MC

recommender systems comprise of a number of rating criteria. We

denote 𝑅𝑐 ∈ R |U |× |I | as the rating matrix (i.e., the user–item in-

teraction matrix) for criterion 𝑐 . In particular, 𝑅0 ∈ R |U |× |I | refers
to the overall rating matrix. Then, the top-𝐾 MC recommendation

problem is formally defined as follows:

Definition 1. (Top-𝐾 MC recommendation) [22]: Given 𝑢 ∈ U
and 𝑖 ∈ I, and 𝐶 + 1 user–item rating matrices 𝑅0 × 𝑅1 × ... × 𝑅𝐶
including an overall rating matrix 𝑅0, the top-𝐾 MC recommenda-

tion aims to recommend top-𝐾 items that user 𝑢 ∈ U is most likely

to prefer among his/her non-interacted items in I \ N𝑢 w.r.t. the
overall rating by using all 𝐶 + 1 user–item MC ratings.

2.2 Graph Signal Processing
We introduce basic concepts of graph signal processing. First, we

consider a weighted undirected graph 𝐺 = (𝑉 , 𝐸), represented by

an adjacency matrix 𝐴 ∈ R |𝑉 |× |𝑉 | . A graph signal is a function 𝑓 :

𝑉 → R𝑑 that encodes the set of nodes into a 𝑑-dimensional vector

x = [𝑥1, 𝑥2, . . . , 𝑥 |𝑉 | ]𝑇 , where 𝑥𝑖 represents the signal strength

of node 𝑖 . The smoothness of x on 𝐺 is quantified by the graph

quadratic form, a measure based on the graph Laplacian 𝐿 = 𝐷 −
𝐴,1 where 𝐷 = diag(𝐴1) is the degree matrix.

2
The smoothness

measure 𝑆 (x) is formally expressed as follows [29, 30]:

𝑆 (x) =
∑︁
𝑖, 𝑗

𝐴𝑖, 𝑗 (𝑥𝑖 − 𝑥 𝑗 )2 = x𝑇 𝐿x. (1)

The smaller the value of 𝑆 (𝑥), the smoother the signal x is on the

graph. Next, we formally define the graph Fourier transform (GFT)

for a graph signal x as:

x̂ = 𝑈𝑇 x, (2)

where 𝑈 ∈ R |𝑉 |× |𝑉 | is the GFT basis whose 𝑖-th column is the

eigenvector 𝑢𝑖 of 𝐿 in the eigen-decomposition of 𝐿 = 𝑈Λ𝑈𝑇 for

Λ = diag(𝜆1, . . . , 𝜆𝑉 ) and ordered eigenvalues 𝜆1 ≤ · · · ≤ 𝜆 |𝑉 | .
Here, the signal x is considered smooth if the dot product of the

eigenvectors corresponding to smaller eigenvalues of 𝐿 is high. As

the GFT is a linear orthogonal transform, the inverse GFT is given

1
Here, we note that the graph Laplacian 𝐿 can also be defined as its normalized version

𝐿 = 𝐼 − �̃�, where �̃� = 𝐷−1/2𝐴𝐷−1/2
.

2
We denote the all-ones vector of any dimension as 1 for notational simplicity.

2
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by x = 𝑈 x̂. Finally, the graph filter and the graph convolution are

formally defined as follows:

Definition 2. (Graph filter) [21, 29, 30, 40]: Given a graph Lapla-

cian matrix 𝐿, a graph filter 𝐻 (𝐿) ∈ R |𝑉 |× |𝑉 | is defined as

𝐻 (𝐿) = 𝑈 diag(ℎ(𝜆1), . . . , ℎ(𝜆 |𝑉 | ))𝑈𝑇 , (3)

where ℎ : C → R is the frequency response function that maps

eigenvalues {𝜆1, · · · , 𝜆 |𝑉 | } of 𝐿 to {ℎ(𝜆1), · · · , ℎ(𝜆 |𝑉 | }.

Definition 3. (Graph convolution) [29, 30, 40]: The convolution

of a graph signal x and a graph filter 𝐻 (𝐿) is given by

𝐻 (𝐿)x = 𝑈 diag(ℎ(𝜆1), . . . , ℎ(𝜆 |𝑉 | ))𝑈𝑇 x, (4)

which first transforms x by the GFT and then transforms its filtered

signal with 𝐻 (𝐿) by the inverse GFT.

In signal processing, signals are typically characterized by their

smoothness and low-frequency components, whereas noise is usu-

ally non-smooth and dominates at high frequencies [29]. In this

context, a significant category of filters is LPFs, which enhance the

smoothness of graph signals, thereby aiding noise reduction. We

refer to Appendix A for the formal definition of LPFs.

2.3 Graph Filtering for Single-Criterion
Recommendation

LPFs play a crucial role in CF by promoting signal smoothness

and reducing high-frequency noise [17, 29]. This is because CF

relies on users’ ratings, which inherently exhibit low-frequency

patterns [17]. Such patterns represent consistent preferences or

trends among groups of users. By filtering out noise and smoothing

graph signals, LPFs enhance the clarity of the underlying low-

frequency patterns, thus leading to more accurate and reliable CF-

aided recommendations [17].

Conventional graph filtering-based CF methods [17, 23, 29, 40] in

single-criterion recommender systems first construct an item–item

similarity graph as in the following:

𝑃 = �̃�𝑇
0
�̃�0, (5)

where

�̃�0 = 𝐷
−1/2
𝑈

𝑅0𝐷
−1/2
𝐼

. (6)

Here, 𝑅0 ∈ R |U |× |I | is the rating matrix; �̃�0 is the normalized

rating matrix; 𝐷𝑈 = diag(𝑅01) and 𝐷𝐼 = diag(1𝑇𝑅0); and 𝑃 is the

adjacency matrix of the item–item similarity graph.

Graph filtering-based CF methods [17, 29, 40] typically employ

both linear and ideal LPFs. Representative work includes GF-CF

[29], whose graph convolution is formulated as follows:

s𝑢 = r𝑢 (𝑃 + 𝛼𝐷−1/2
𝑈

𝑈𝑈𝑇𝐷
−1/2
𝐼
), (7)

where s𝑢 ∈ R | I | is the predicted preferences for user 𝑢; r𝑢 ∈ R | I |
is the ratings of 𝑢, which serves as graph signals to be smoothed;

𝑈 ∈ R | I |×𝑘 is the top-𝑘 singular vectors of �̃�0; 𝑃 is the linear

LPF in Eq. (5); 𝐷
−1/2
𝑈

𝑈𝑈𝑇𝐷
−1/2
𝐼

is the ideal LPF of 𝑃 ; and 𝛼 is a

hyperparameter balancing between the two filters.

A primary benefit of such graph filtering-based CF methods is

their non-parametric nature. These approaches bypass the need

for intricate and time-intensive model training, relying instead

on efficient matrix operations to derive a closed-form solution

corresponding to recommendation scores (i.e., predicted preferences
of users, denoted as s𝑢 ).

3 PROPOSED METHOD: CA-GF
3.1 Overview
The objective of our study is to judiciously incorporate MC ratings

into graph filtering without losing its computational efficiency. To

this end, we propose CA-GF, a not only training-free but alsomatrix
decomposition-free graph filtering method. In particular, in CA-GF,
criteria-aware graph filters built upon an MC user-expansion graph

are accommodated to effectively capture the collaborative signal in

complex contextual semantics across MC ratings.

To achieve the aforementioned goals G1–G3, the proposed CA-
GF consists of the following components:

(1) Graph construction: To accomplish G1, CA-GF initially con-

struct an MC user-expansion graph that enables us to capture

complex contextual semantics in MC ratings. Next, we con-

struct an item—item similarity graph to design a new graph

filtering method with regulated edge weights (see Section 3.2).

(2) Graph filtering harnessing criteria awareness: To accom-

plish G2, due to the fact that the optimal filter can be found

differently for each criterion, we propose criterion-specific graph
filtering (see Section 3.3.1). Moreover, we perform criteria preference-
infused aggregation that combines the smoothed signals from

each criterion to enrich the criteria awareness (see Section

3.3.3).

(3) Polynomial graphfiltering: To accomplishG3, we propose to
use polynomial graph filtering [23], which is performed without

costly matrix decomposition to achieve extremely fast recom-

mendation when accommodating multiple graph filters (see

Section 3.3.2).

We elaborate on the technical details of the proposed CA-GF
method in the following subsections, where the schematic overview

is illustrated in Figure 2. We refer to Appendix B for the pseudocode

of CA-GF.

3.2 Graph Construction
3.2.1 MC user-expansion graph construction. As stated in Section

3.1, graph filtering-based CF methods in single-criterion recom-

mender systems [3, 17, 29, 40] typically utilize the rating matrix to

construct the item–item similarity graph. However, as long as MC

ratings are associated, it is not straightforward how to construct an

item–item similarity graph. As the primary component of our study,

the first step of CA-GF is to create an MC user-expansion graph,
where each user is expanded to 𝐶 + 1 different criterion-user nodes
to capture complex semantics inherent in MC ratings. Precisely, the

rating matrix 𝑅𝑀𝐶 ∈ R(𝐶+1) |U |× |I | for our MC user-expansion

graph is designed by concatenating the 𝐶 + 1 rating matrices as

follows:

𝑅𝑇𝑀𝐶 = 𝑅𝑇
0
| |𝑅𝑇

1
| | . . . | |𝑅𝑇𝐶 , (8)

where the operator | | denotes the concatenation of matrices, which

enables us to explore complex high-order connectivity among

criterion-user nodes and item nodes [22]. Then, we normalize 𝑅𝑀𝐶
according to the degree of nodes in the graph as in [17, 29, 40]:

�̃�𝑀𝐶 = 𝐷
−1/2
𝑈

𝑅𝑀𝐶𝐷
−1/2
𝐼

, (9)

3
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Figure 2: The schematic overview of CA-GF.

where 𝐷𝑈 and 𝐷𝐼 are the diagonal matrices of criterion-user nodes

and item nodes, respectively, defined as 𝐷𝑈 = diag(𝑅𝑀𝐶1) and
𝐷𝐼 = diag(1𝑇𝑅𝑀𝐶 ).

3.2.2 Item–item similarity graphwith adjustment. To perform graph

filtering, we construct the normalized item-item similarity graph

𝑃MC ∈ R | I |× |I | using �̃�𝑀𝐶 in Eq. (9) as follows:

𝑃MC = �̃�𝑇𝑀𝐶 �̃�𝑀𝐶 , (10)

which represents the degree of similarity between each pair of

items. Note that, compared to the case of expanding each item node

to𝐶 +1 criterion-item nodes [22], our approach effectively prevents

the high dimensionality problem of the item–item similarity graph,

while achievingG1 by constructing a unified graph structure across
MC ratings towards graph filtering. Next, according to the type of

graph filter we use based on 𝑃MC, the corresponding filtered signals

are over-smoothed or under-smoothed, depending on the intensity

of connections between nodes in 𝑃MC. For instance, using a linear

LPF (i.e., 𝑃MC) would be less prone to over-smoothing since it is

associated only with the first-order connectivities. Thus, we aim to

adjust the filtered signals differently for each graph filter 𝑓 (·). To
this end, similarly as in [23], we employ an additional adjustment

process for the graph 𝑃MC. This process utilizes the Hadamard

power 𝑃
◦𝑠𝑓
MC

by raising each edge weight of 𝑃MC to the power of 𝑠𝑓 ,

which is formulated as

(𝑃𝑓 )𝑖 𝑗 = (𝑃MC)
𝑠𝑓
𝑖 𝑗
, (11)

where (𝑃𝑓 )𝑖 𝑗 is the (𝑖, 𝑗)-th element of matrix 𝑃𝑓 and 𝑠𝑓 is the

adjustment parameter for graph filter 𝑓 (·), which will be specified

in Section 3.3.

3.3 Graph Filtering Harnessing Criteria
Awareness

We describe how to perform graph filtering based on the adjusted

item–item similarity graph 𝑃𝑓 .

3.3.1 Criterion-Specific Graph Filtering. In single-criterion recom-

mender systems, it is required to discover only a single optimal

LPF that promotes smoothness of the graph signals for denoising

[29]. In MC recommendations, however, the optimal LPF for each

criterion is often different. For instance, for relatively subjective

criteria (spec., price in a hotel domain), low-frequency components

should be utilized less than those in other criteria. In our study, to

attain G2, we propose criterion-specific graph filtering, which ap-

plies diverse LPFs for different criteria to smooth out graph signals

as shown in Figure 2. The predicted rating 𝑠𝑢,𝑐 ∈ R | I | of user 𝑢 for

criterion 𝑐 is then characterized as:

s𝑢,𝑐 = r𝑢,𝑐 𝑓 (𝑃𝑓 , 𝑐), (12)

where r𝑢,𝑐 is the𝑢-th row of 𝑅𝑐 , which will be used as graph signals

of user 𝑢 for criterion 𝑐; and 𝑓 (𝑃𝑓 , 𝑐) is the graph filter specific to
criterion 𝑐 for graph 𝑃𝑓 . Here, Eq. (12) is the signal r𝑢,𝑐 convolved
with 𝑓 (𝑃𝑓 , 𝑐) (refer to Definition 3).

3.3.2 Polynomial Graph Filtering. We now specify the criterion-

specific graph filter 𝑓 (𝑃𝑓 , 𝑐) in Eq. (12) that is decided depending

on each criterion 𝑐 . As stated in G3, using multiple filters for MC

ratings naturally produces additional computation costs caused

by a matrix decomposition process in Eq. (7). To bypass the high

computation overhead, a recent study [23] proposed to use polyno-
mial graph filters for CF. Inspired by this, we also employ multiple

polynomial graph filters, applying a distinct polynomial LPF for

each criterion. The polynomial graph filter up to the 𝐾-th order

can be expressed as

𝑓 (𝑃𝑓 , 𝑐) =
𝐾∑︁
𝑘=1

𝑎𝑐,𝑘𝑃
𝑘
𝑓
, (13)

where 𝑓 (𝑃𝑓 , 𝑐) is the polynomial graph filter specific to criterion 𝑐 ;

𝑎𝑐,𝑘 is the coefficient of a matrix polynomial; and𝐾 is the maximum

order of the matrix polynomial basis. Note that, using Eq.(13), any

LPFs can be designed by adjusting 𝑎𝑐,𝑘 . The following lemma states

that the design of universal LPFs is established.

Lemma 4. [23, 29]: The matrix polynomial
∑𝐾
𝑘=1

𝑎𝑐,𝑘𝑃
𝑘
𝑓
is a graph

filter for graph 𝑃𝑓 , with the frequency response function of ℎ(𝜆) =∑𝐾
𝑘=1

𝑎𝑐,𝑘 (1 − 𝜆)𝑘 .
According to Lemma 4, one can find the optimal polynomial

LPF by extensively searching for {𝑎𝑐,𝑘 }𝐾𝑘=1
using the validation

set, which however comes at the expensive computation costs and

thus violates our design goal G3. Alternatively, we present three
representative (i.e., predefined) polynomial LPFs, namely linear

(𝑃𝑓 ), inward (𝑃2

𝑓
), and outward (2𝑃𝑓 − 𝑃2

𝑓
) LPFs, which essentially

embrace a broad set of LPFs. These three types of graph filters are

implemented within second-order polynomials (i.e., 𝐾 = 2). As

depicted in Figure 2, the three polynomial LPFs behave differently,

affecting how much low-frequency components are exploited com-

pared to the rest of the spectrum. We note that one can use other

types of LPFs with matrix polynomials based on one’s own design

choice. Using Lemma 4, we theoretically show how each polyno-

mial LP graph filter has its unique frequency response function as

follows. All proofs are provided in Appendix C.

Corollary 4.1. (Linear LPF) [17, 29]: The matrix 𝑃𝑓 is equiva-
lent to a linear LPF with the following frequency response function

ℎ(𝜆) = 1 − 𝜆. (14)

Corollary 4.2. (Inward LPF) The matrix 𝑃2

𝑓
is equivalent to an

inward LPF of the item-item similarity graph 𝑃𝑓 with the following
frequency response function

ℎ(𝜆) = 𝜆2 − 2𝜆 + 1. (15)
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Corollary 4.3. (Outward LPF) The matrix 2𝑃𝑓 − 𝑃2

𝑓
is equiva-

lent to an outward LPF of the item-item similarity graph 𝑃𝑓 with the
following frequency response function

ℎ(𝜆) = 1 − 𝜆2 . (16)

From Corollaries 4.1–4.3, we pay attention to choosing optimal

𝑓 (𝑃𝑓 , 𝑐) out of the three polynomial LPFs for each criterion 𝑐 . Here,

it is worth noting that our polynomial LPFs can be implemented

through simple matrix calculations, which thereby allows us to

more effectively leverage well-optimized machine learning and

computation frameworks such as PyTorch [24] and CUDA [27] to

enhance computational speed via parallel computation. As shown

in Figure 1b, such operation makes CA-GF immune to the com-

putational burden as the number MC ratings increases, thereby

resulting in successfully achieving G3. Moreover, thanks to such

rapid computation of polynomial graph filtering, the optimal filter

for each criterion is easily found using the validation set. For the

detailed analysis of computational complexity of CA-GF, we refer
to Appendix D.

3.3.3 Criteria Preference-Infused Aggregation. One can aggregate

the smoothed signals in Eq. (12) by simply summing up the smoothed

signals for all criteria. However, users often exhibit different criteria

preferences [22, 31]. For instance, in a hotel domain, a user tends

to make decisions based on the cleanliness aspect of a hotel, while

another user decides based on the service aspect. To accommo-

date such personalized information into our CA-GF method, we

additionally devise a novel criteria preference-infused aggregation
technique for elaborately capturing the criteria preferences of each

user. From the fact that the number of ratings often differs from

each criterion [22], we claim that, if a user gave more and/or higher

ratings on a certain criterion, then he/she tends to reveal a higher

preference for the criterion, which will be empirically validated

in Section 4.4. Based on this claim, we formalize our aggregation

technique as follows:

𝐶 = �̃�𝑇 ;𝑇𝑖 𝑗 = 𝑇
𝑠𝑓
𝑖 𝑗

;𝑇 = �̃�𝑇 �̃� ;

�̃� = 𝑋𝐷−1

𝑋 𝑋 = (𝑅01) | | (𝑅11) | | · · · | | (𝑅𝐶1);
(17)

where 𝑋 ∈ R |𝑈 |× (𝐶+1) represents the sum-rating matrix for each

criterion whose (𝑢, 𝑐)-th element refers to the sum of ratings given

by a user 𝑢 to all relevant items for criterion 𝑐 ; �̃� is the normalized

matrix of 𝑋 along 𝐷−1

𝑋
= diag(𝑋1); 𝑇 = �̃�𝑇 �̃� ∈ R(𝐶+1)×(𝐶+1) is

the criterion–criterion similarity graph; 𝑇𝑖 𝑗 is the (𝑖, 𝑗)-th element

of the adjacency matrix of criterion–criterion similarity graph 𝑇

adjusted with the parameter 𝑠𝑓 ; and 𝐶 ∈ R |𝑈 |× (𝐶+1) is the criteria
preference matrix in which �̃� serves as signals for graph filtering.

Then, the matrix𝐶 is used for weights during aggregation to infuse

the criteria preferences of users. Finally, as illustrated in Figure 2,

the predicted rating of user 𝑢 after the criteria preference-infused

aggregation is expressed as

s𝑢 =
1

𝐶 + 1

𝐶∑︁
𝑐=0

𝐶𝑢,𝑐s𝑢,𝑐 =
1

𝐶 + 1

𝐶∑︁
𝑐=0

𝐶𝑢,𝑐r𝑢,𝑐 𝑓 (𝑃𝑓 , 𝑐), (18)

where 𝐶𝑢,𝑐 is the preference of user 𝑢 on the criterion 𝑐 in 𝐶 .

Table 1: Statistics of the three datasets used in our experi-
ments.

# of
users

# of
items

# of
overall ratings

# of
MC ratings 𝐶 Density

TA 5,132 7,205 41,638 280,521 7 0.11%

YM 1,827 1,471 46,239 231,195 4 1.72%

BA 10,726 10,832 626,995 3,134,981 4 0.54%

4 EXPERIMENTAL EVALUATION
In this section, we systematically conduct extensive experiments

to address the key research questions (RQs) outlined below:

• RQ1 (Efficiency): How fast is CA-GF compared to bench-

mark MC recommendation methods in terms of runtime?

• RQ2 (Accuracy): How much does CA-GF improve top-𝐾

recommendation accuracy over benchmark recommenda-

tion methods?

• RQ3 (Ablation study): How does each component in CA-
GF contribute to the recommendation accuracy?

• RQ4 (Sensitivity): How do key parameters affect the per-

formance of CA-GF?
• RQ5 (Interpretability): How precisely does CA-GF pro-

vide interpretations relavent to the criteria?

4.1 Experimental Settings
Datasets.We carry out experiments on three public datasets, which

are widely used in studies on MC recommendation [5, 16, 20, 22,

28, 32]: TripAdvisor (TA), Yahoo!Movie (YM), and BeerAdvocate

(BA). Statistics of the three datasets are summarized in Table 1.

Competitors. To comprehensively demonstrate the superiority of

CA-GF, we present six benchmark MC recommendation methods

(including ExtandedSAE [32], AEMC [28], DMCF [20], CFM [4, 5],

CPA-LGC [22], and GF-CFMC). Additionally, to observe the poten-

tial benefits of MC ratings, we include four representative single-

criterion recommendation methods (namely NGCF [37], LightGCN

[7], GF-CF [29], and DiffRec [36]), where only overall ratings are

used due to the incapability of using MC ratings as input. In our

study, to show the results by a naïve extension of GF-CF to MC

settings, we additionally introduce a variant of GF-CF, termed

GF-CFMC. This variant employs GF-CF [29] to each of 𝐶 + 1 item–

item similarity graphs constructed from MC ratings, and then ag-

gregates the output through summation for the final prediction. We

refer to Appendix E.2 for further details of GF-CFMC.

Evaluation protocols.We randomly select 80% of the interactions

of each user for the training set and the remaining 20% as the test

set. From the training set, we randomly select 10% of interactions

as the validation set for hyperparameter tuning. To evaluate the

accuracy of top-𝐾 MC recommendation, we use benchmark metrics

that are widely used in literature [6–8, 33, 37, 38, 42, 43], such as

recall and normalized discounted cumulative gain (NDCG), where 𝐾
is set to 5 and 10 by default. In the test phase, we treat user–item

interactions with overall ratings that are higher than the median

rating in the test set as positive, following the protocols in other

studies on the MC recommendation [20, 22, 28, 32]. For each metric,

we report the average taken over 10 independent runs except for

deterministic methods (i.e., GF-CF, GF-CFMC, and CA-GF).
Implementation details. We use the best hyperparameters of

competitors obtained by extensive hyperparameter tuning on the
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Table 2: Runtime (in seconds) and recommendation accuracy
(in NDCG@10) on the largest dataset (BA).

Method Training NDCG@10 Runtime (s)
ExtendedSAE ✓ 0.0052 11,520

AEMC ✓ 0.0752 1,022

CPA-LGC ✓ 0.1396 10,020

GF-CFMC ✗ 0.1344 274

CA-GF ✗ 0.1477 0.2

validation set. Due to space limitation, we specify default hyper-

parameters of CA-GF in Appendix E.3. Unless otherwise stated,

for all training-based methods, we set the dimensionality of the

embedding to 64 and use the Adam optimizer [13], where the batch

size is set to 128. All experiments are carried out with the same

device for a fair comparison: Intel (R) 12-Core (TM) i7-9700K CPUs

@ 3.60 GHz and GPU of NVIDIA GeForce RTX A6000.

4.2 RQ1: Efficiency Analysis
Table 2 showcases the computational efficiency on the BA dataset,

the largest dataset with more than 3𝑀 MC ratings.
3
Moreover, to

validate the scalability of CA-GF, we present a runtime comparison

on different device configurations, i.e., cases without GPU (i.e., CPU
only) and with GPU, using various synthetic datasets with 𝐶 = 4

in Figure 3;
4
in this experiment, we generated seven synthetic

datasets whose sparsity level is controlled to 98.5%, where the

numbers of (users, items, MC ratings) are set to {(1.5𝐾, 3𝐾, 0.3𝑀),
(2.5𝐾, 5.5𝐾, 1𝑀), (4𝐾, 6𝐾, 1.8𝑀), (5𝐾, 9𝐾, 3.4𝑀), (8𝐾, 10𝐾, 6𝑀),
(10𝐾, 15𝐾, 11𝑀), (25𝐾, 20𝐾, 38𝑀)}. Our findings are as follows:
(i) Notably, Table 2 demonstrates that training-free methods,

GF-CFMC and CA-GF, outperform training-based methods

such as ExtendedSAE, AEMC, and CPA-LGC in terms of run-

time efficiency. Specifically, CA-GF achieves the runtime of
0.2 seconds, whereas other training-based methods require

over 1, 000 seconds for the model convergence.

(ii) Furthermore, Table 2 shows that, although GF-CFMC allevi-

ates the computational demands of matrix decomposition

using the generalized power method [11, 29], CA-GF is over

2, 160× faster than GF-CFMC on the BA dataset. This is owing

to the use of matrix decomposition-free polynomial filters in

CA-GF, which efficiently utilize GPU resources for achieving

G3. Moreover, Figure 3 demonstrates that, while GF-CFMC

is a training-free solution, CA-GF consistently and signifi-

cantly outperforms GF-CFMC in terms of runtime across the

datasets of various sizes.

(iii) Figure 3 reveals the scalability of CA-GF. By fully utilizing the
parallel computing capabilities of GPU, CA-GF runs consis-

tently within 2 seconds for datasets containing up to 6𝑀 MC

ratings. Even when the size of the loaded data exceeds GPU

memory limits, CA-GF demonstrates robust performance

on CPU, maintaining runtime below 2 minutes for datasets

exceeding 38𝑀 MC ratings. This highlights the computa-

tional efficiency of CA-GF, especially in handling large-scale

datasets.

3
We refer to Appendix E.4 for the empirical analysis of efficiency on other datasets.

4
GF-CFMC was not implemented on GPU as utilizing GPU for calculating ideal LPFs

is not straightforward.
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Figure 3: Log-scaled runtime comparison of CA-GF (with and
without GPU) and GF-CFMC (CPU) using various synthetic
datasets, where OOM (GPU) indicates out-of-memory issues
on GPU.

Table 3: Performance comparison among CA-GF and all com-
petitors for the three benchmark datasets. Here, MC repre-
sents themethods usingMC ratings. The best and second-best
performers are highlighted in bold and underline, respec-
tively.

Method MC Metric K TA YM BA

NGCF -

Recall@K

5 0.0370 0.0855 0.0551

10 0.0513 0.1352 0.0925

NDCG@K

5 0.0310 0.1056 0.1255

10 0.0363 0.1183 0.1275

LightGCN -

Recall@K

5 0.0550 0.0970 0.0566

10 0.0724 0.1502 0.0937

NDCG@K

5 0.0512 0.1154 0.1320

10 0.0586 0.1325 0.1298

GF-CF -

Recall@K

5 0.0596 0.1217 0.0645

10 0.0728 0.1753 0.1034

NDCG@K

5 0.0570 0.1440 0.1333

10 0.0612 0.1574 0.1344

DiffRec -

Recall@K

5 0.0574 0.0834 0.0695

10 0.0637 0.1003 0.1030

NDCG@K

5 0.0527 0.1123 0.1230

10 0.0637 0.1420 0.1392

ExtendedSAE ✓
Recall@K

5 0.0024 0.0766 0.0018

10 0.0048 0.1150 0.0044

NDCG@K

5 0.0012 0.0912 0.0026

10 0.0025 0.1001 0.0052

AEMC ✓
Recall@K

5 0.0538 0.0802 0.0353

10 0.0664 0.1112 0.0588

NDCG@K

5 0.0530 0.0909 0.0737

10 0.0574 0.0990 0.0752

DMCF ✓
Recall@K

5 0.0312 0.0333 0.0307

10 0.0388 0.0470 0.0411

NDCG@K

5 0.0334 0.0541 0.0312

10 0.0401 0.0614 0.0401

CFM ✓
Recall@K

5 0.0411 0.0420 0.0375

10 0.0501 0.0613 0.0531

NDCG@K

5 0.0357 0.0392 0.0891

10 0.0398 0.0538 0.0920

CPA-LGC ✓
Recall@K

5 0.0630 0.1211 0.0625

10 0.0830 0.1725 0.0966

NDCG@K

5 0.0550 0.1392 0.1388

10 0.0650 0.1532 0.1396

GF-CFMC ✓
Recall@K

5 0.0617 0.1223 0.0643

10 0.0753 0.1755 0.1038

NDCG@K

5 0.0595 0.1457 0.1329

10 0.0645 0.1588 0.1344

CA-GF ✓
Recall@K

5 0.0750 0.1224 0.0704
10 0.0854 0.1765 0.1144

NDCG@K

5 0.0738 0.1476 0.1464
10 0.0774 0.1608 0.1477

4.3 RQ2: Recommendation Accuracy
We compare the accuracy of CA-GF against competitors specified

in Section 4.1. For the methods that were originally designed for
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Table 4: The performance comparison among CA-GF and
its four variants in terms of the Recall@10. Here, the best
performer is highlighted in bold.

TA YM BA
CA-GF 0.0854 0.1765 0.1147
CA-GF-m 0.0718 0.1751 0.1031

CA-GF-s 0.0713 0.1698 0.1076

CA-GF-f 0.0725 0.1751 0.1077

CA-GF-p 0.0840 0.1760 0.1143

single-criterion recommender systems (NGCF, LightGCN, GF-CF,

and DiffRec), we use single ratings (i.e., overall ratings). Table 3
shows the results of all the competitors and CA-GF. Our findings
are as follows:

(i) CA-GF consistently outperforms all the competitors regard-

less of the performance metrics and datasets. In particular,

CA-GF achieves state-of-the-art performance with significant

gains up to 24% in terms of the NDCG@5 on TA.

(ii) The use of MC ratings remarkably boosts the performance,

with CPA-LGC and CA-GF surpassing their single-criterion

counterparts, namely LightGCN and GF-CF, respectively.

(iii) MC recommendation methods that are built upon DNNs or

matrix factorization (ExtendedSAE, AEMC, DMCF, and CFM)

show comparatively inferior performance to that of GCN

(CPA-LGC) or graph filtering (GF-CFMC and CA-GF). This
implies that explicitly exploiting the complex structural in-

formation for MC recommendations is indeed beneficial for

accurate recommendations.

(iv) Meanwhile, performance comparison between CA-GF and

GF-CFMC reveals that, while graph filtering-based methods

generally yield superior results, the gain of CA-GF over

GF-CFMC is also significant. This underscores that the mere

adoption of graph filtering for MC recommendations is insuf-

ficient to achieve optimal accuracy.

4.4 RQ3: Ablation Studies
To analyze the contribution of each component in CA-GF, we con-
duct an ablation study in comparison with four variants depending

on which components are taken into account for designing the

end-to-end CA-GF method. The performance comparison among

the four methods is presented in Table 4 w.r.t. the Recall@10 using

three datasets.

• CA-GF: corresponds to the original CA-GF method without re-

moving any components;

• CA-GF-m: removes the MC user-expansion graph. That is, only

a single criterion (i.e., overall ratings) is used for graph construc-

tion;

• CA-GF-s: replaces all 𝑠𝑓 ’s by 1. That is, the adjustment parameter

is ablated;

• CA-GF-f: sets all 𝑓 (𝑃𝑓 , 𝑐)’s to the linear LPF in Eq. (14). That is,

only a single polynomial LPF is used;

• CA-GF-p: removes criteria preference-infused aggregation. In-

stead, all the smoothed signals from each criterion are evenly

aggregated by simple summation.

Our observations are as follows:
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Figure 4: The effect of three polynomial LPFs 𝑓 (𝑃𝑓 , 𝑐) (L, I,
and O) for each criterion on the Recall@10.

(i) All four modules in CA-GF plays a crucial role in the success

of the proposed CA-GF method.

(ii) The performance gap between CA-GF and CA-GF-f reveals
that using diverse polynomial LPFs is important for accurate

MC recommendation.

(iii) The performance gap between CA-GF and CA-GF-s tends to
be much higher than that between CA-GF and other variants

except for the BA dataset. This finding indicates that the use

of proper adjustment parameters for graph filter 𝑓 (𝑃𝑓 , 𝑐) is
crucial for accurate recommendations.

(iv) Albeit slightly, the gain of CA-GF over CA-GF-p manifests a

positive impact of criteria preference-infused aggregation on

the recommendation accuracy for all the datasets.

4.5 RQ4: Sensitivity Analysis
We investigate the impact of key parameters in CA-GF on the

recommendation accuracy, which include the selection of graph

filters 𝑓 (𝑃𝑓 , 𝑐) for criterion 𝑐 and the adjustment parameter 𝑠𝑓

for each 𝑓 (𝑃𝑓 , 𝑐). For notational simplicity, we denote the three

polynomial LPFs (i.e., linear, inward, and outward LPFs) as L, I, and

O, respectively. When each parameter varies so that its effect is

revealed, other parameters are set to the pivot values specified in

Appendix E.3.

(Effect of 𝑓 (𝑃𝑓 , 𝑐)) From Figure 4, it is seen that using differ-

ent filters for each criterion 𝑐 produces different recommendation

accuracies, which confirms that each criterion needs its specific

optimal graph filter (see Section 3.3.1). Here, we again note that the

optimal filter for each criterion is found quite promptly, thanks to

the minimal computation time required for CA-GF.
(Effect of 𝑠𝑓 ) Figure 5 shows how the Recall@10 behaves ac-

cording to different values of 𝑠𝑓 for each of three polynomial LPFs

(L,I, and O). Our findings are as follows:

(i) The performance is not uniformly sensitive across different

𝑠𝑓 ’s. Some regimes of 𝑠𝑓 exhibit high sensitivity, whereas

others show low sensitivity.

(ii) For L, the optimal 𝑠𝑓 is found in 𝑠𝑓 < 1 except for YM, which

is the densest dataset. For I and O, the opposite pattern is

observedwhile the optimum liesmostly in the range of 𝑠𝑓 > 1.

This is because I and O, implemented using the second-order

polynomial of 𝑃 , are more prone to either over-smoothing,

where predicted ratings become overly similar by exploring

the collaborative signal in higher-order connectivities. On the

other hand, since L employs only the first-order polynomial

of 𝑃 , it is less prone to over-smoothing.
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Figure 5: The effect of adjustment parameter 𝑠𝑓 for three
polynomial LPFs (L, I, and O) on the Recall@10.

(a) (user 1, item 7)

(b) (user 1844, item 1)

Figure 6: Attribution maps that visualize the contribution of
each criterion to CA-GF’s predictions for the TA dataset.

(iii) This variation is partly due to the use of different orders of 𝑃

for each polynomial LPF. Hence, in performance optimization,

it is of utmost importance to select an appropriate value of

𝑠𝑓 for each 𝑓 (𝑃𝑓 , 𝑐). For example, for I and O, it is desirable

to use 𝑠𝑓 > 1 to effectively mitigate the over-smoothing

problem by enhancing value distinctions.

4.6 RQ5: Interpretability
Unlike canonical black-box recommendation methods based on

DNNs, CA-GF offers significant advantages in model interpretabil-

ity, allowing an in-depth understanding of each prediction process.

For instance, we generate an attribution map that quantifies the in-

fluence of MC on the model predictions, Specifically, the attribution

map of the user–item interaction (𝑢, 𝑖) visualizes the 𝑖-th compo-

nent of 𝐶𝑢,𝑐s𝑢,𝑐 ∈ R | I | in Eq. (18) for different 𝑐’s. It represents

each user’s criteria preferences for certain items, which provides

insight into the importance of each criterion. For instance, Figure 6

illustrates two attribution maps for the two different interactions

of (user, item), including (1, 7) and (1844, 1) on the TA dataset. The

following observations are made.

(i) These two instances display different patterns, which verifies

that each criterionmakes a different contribution to themodel

prediction.

(ii) It is likely that the two criteria check-in and rooms contribute
less to the prediction of CA-GF, compared to the other crite-

ria.

This level of interpretability is invaluable, not just for comprehend-

ing the model’s functionality but also for guiding strategic business

decisions, thus enabling model refinement and enhancement. We

refer to Appendix E.4 for further visualization results on other

datasets.

5 RELATEDWORK
Graph filtering-based approaches.Within the realm of graph

signal processing, GCN is regarded as a parameterized graph con-

volutional filter [14, 29]. As a representative approach, NGCF [37]

was introduced by learning appropriate LPFs while capturing high-

order collaborative signals inherent in user–item interactions [29].

LightGCN [7] achieved convincing performance by eliminating

linear transformation and non-linear activation from the GCN lay-

ers in NGCF. By closing the gap between LightGCN and graph

filtering methods alongside a closed-form solution for the infinite-

dimensional LightGCN, GF-CF [29] stood out for achieving accu-

rate recommendation performance while significantly reducing

time consumption with its parameter-free nature. FIRE [40] was

introduced by improving this approach to an incremental recom-

mendation method. Additionally, PGSP [17] made use of a mixed-

frequency filter that combines a linear LPF with an ideal LPF.

MC recommender systems. Efforts have consistently been made

to incorporate MC ratings to enhance the accuracy of recommen-

dations. In one of the initial endeavors, a support vector regression-

based approach [9] was introduced to assess the relative impor-

tance of individual criteria ratings. CFM [5] was formulated by

collectively employing matrix factorization for MC rating matrices.

DTTD [2] was developed by integrating cross-domain knowledge

alongside side information. Moreover, in light of the extensive

adoption of deep learning, there has been a continuous endeavor

to develop DNN-based MC recommender systems. For instance,

ExtendedSAE [32] was introduced to capture the relationship be-

tween MC ratings using stacked autoencoders. LatentMC [15] was

designed with variational autoencoders to map user reviews into

latent vectors, constituting latent MC ratings. DMCF [20] was de-

vised for predicting MC ratings using a DNN, with the predicted

ratings being aggregated by another DNN. AEMC [28] employed

deep autoencoders, capturing non-linear relationships between

users’ preferences for criteria. As pioneer work on integrating light

graph convolution into MC recommender systems, CPA-LGC [22]

was devised to capture complex semantics in MC ratings.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we explored how fast and accurate graph filtering

can be developed in MC recommender systems. To this end, we

introduced CA-GF, the first attempt to design a graph filtering-

based MC recommendation method that is not only training-free

but also decomposition-free, thereby circumventing the problem of

the computational burden thatMC ratings entail. Through extensive

experiments on three benchmark datasets, we demonstrated the

impact and benefits of CF-GF from various perspectives, including

(a) the extraordinarily computational efficiency with the runtime

of less than 1 second on BA, the largest dataset, (b) the superior

accuracy over other competing MC recommendation methods, (c)

the impact of using different optimal LPFs for each criterion, (d)

the effectiveness of each component, and (e) the interpretability

via visualizing each user’s criteria preferences for certain items.

Potential avenues of our future research include the design of an

adaptive graph filter such that the optimal LPF for each criterion is

found more effectively.
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A DEFINITION OF LPF
We formally define the LPF as follows:

Definition 5. (LPF) [26, 29, 34]: For 𝑘 = 1, · · · , |𝑉 | and 𝜆1 ≤ · · · ≤
𝜆 |𝑉 | , the graph filter 𝐻 (𝐿) is 𝑘-low-pass if and only if 𝜂𝑘 ∈ [0, 1],
where

𝜂𝑘 :=
𝑚𝑎𝑥{|ℎ(𝜆𝑘+1) |, · · · , |ℎ(𝜆 |𝑉 | ) |}
𝑚𝑖𝑛{|ℎ(𝜆1) |, · · · , |ℎ(𝜆𝑘 ) |}

. (19)

B PSEUDOCODE OF CA-GF
We summarize the end-to-end process of CA-GF in Algorithm 1.

Algorithm 1 CA-GF

Input: MC ratings 𝑅0 ×𝑅1 × ...×𝑅𝐶 , set of usersU, set of items I
Output: s𝑢 for 𝑢 ∈ U
1: 𝑅𝑇

𝑀𝐶
= 𝑅𝑇

0
| |𝑅𝑇

1
| | . . . | |𝑅𝑇

𝐶

2: �̃�𝑀𝐶 = 𝐷
−1/2
𝑈

𝑅𝑀𝐶𝐷
−1/2
𝐼

3: 𝑃 = �̃�𝑇
𝑀𝐶

�̃�𝑀𝐶

4: Calculate 𝑃𝑓 for each 𝑓 (·) using Eq. (11)
5: Calculate 𝐶 using Eq. (17)

6: for 𝑢 ← 0 to |U| do
7: for 𝑐 ← 0 to 𝐶 do
8: s𝑢,𝑐 = r𝑢,𝑐 𝑓 (𝑃𝑓 , 𝑐)
9: end for
10: s𝑢 = 1

𝐶+1
∑𝐶
𝑐=0

𝐶𝑢,𝑐s𝑢,𝑐
11: end for
12: return s𝑢 for 𝑢 ∈ U

C PROOFS OF COROLLARIES
Proof of Corollary 4.1. Although the proof of Corollary 4.1 is

presented in [17], we provide the full proof for completeness. First,

the Laplacian matrix 𝐿 can be decomposed as

𝐿 = 𝑈Λ𝑈𝑇 = 𝑈 diag(𝜆1, 𝜆2, . . . , 𝜆𝑚)𝑈𝑇 , (20)

which indicates that 𝐿 is a graph filter with the frequency response

function of ℎ(𝜆) = 𝜆. Then, we have
𝐿 = 𝐼 − 𝑃𝑓 . (21)

Suppose that𝑈𝑖 is the eigenvector of 𝐿 corresponding to the eigen-

value 𝜆𝑖 , Then, using Eq. (21), it follows that

𝐿𝑈𝑖 = 𝜆𝑖𝑈𝑖 = (𝐼 − 𝑃𝑓 )𝑈𝑖 , (22)

resulting in

𝑃𝑓𝑈𝑖 = (1 − 𝜆𝑖 )𝑈𝑖 . (23)

This means that 𝐿 and 𝑃𝑓 have the same eigenvectors and the

corresponding eigenvalues have the following relationship:

(𝜆𝑃𝑓 )𝑖 = 1 − 𝜆𝑖 , (24)

where (𝜆𝑃𝑓 )𝑖 is the 𝑖-th largest eigenvalue of 𝑃𝑓 . Suppose

Λ𝑃𝑓 = diag((𝜆𝑃𝑓 )1, (𝜆𝑃𝑓 )2, . . . , (𝜆𝑃𝑓 )𝑚) . (25)

Then, we have

𝑃𝑓 = 𝑈Λ𝑃𝑓 𝑈
𝑇 = 𝑈 diag(1 − 𝜆1, 1 − 𝜆2, . . . , 1 − 𝜆𝑛)𝑈𝑇 , (26)

which means that 𝑃𝑓 is the polynomial LPF with the frequency

response function of

ℎ(𝜆) = 1 − 𝜆, (27)

which completes the proof of the Corollary 4.1.

Proof of Corollary 4.2. The symmetric matrix 𝑃𝑓 can be decom-

posed as 𝑃𝑓 = 𝑈Λ𝑃𝑓 𝑈
𝑇
, where Λ𝑃𝑓 is a diagonal matrix of the

eigenvalues of 𝑃𝑓 . Now, due to the fact that𝑈
𝑇 = 𝑈 −1

, 𝑃2

𝑓
becomes

𝑃2

𝑓
= (𝑈Λ𝑃𝑓 𝑈

𝑇 ) (𝑈Λ𝑃𝑓 𝑈
𝑇 ) = 𝑈Λ2

𝑃𝑓
𝑈𝑇 . (28)

Using the relation Λ𝑃𝑓 = 𝐼 − Λ from Corollary 4.1, we have

𝑃2

𝑓
= 𝑈 (𝐼 − Λ)2𝑈𝑇 . (29)

Using the expansion

(𝐼 − Λ)2 = 𝐼 − 2Λ + Λ2, (30)

Eq. (29) can be rewritten as

𝑃2

𝑓
= 𝑈 (𝐼 − 2Λ + Λ2)𝑈𝑇 , (31)

which indicates that 𝑃2

𝑓
plays a role of mapping each eigenvalue 𝜆𝑖

of 𝑃𝑓 to 𝜆2

𝑖
− 2𝜆𝑖 + 1. Hence, the frequency response function of 𝑃2

𝑓

is given by

ℎ(𝜆) = 𝜆2 − 2𝜆 + 1, (32)

which completes the proof of Corollary 4.2.

Proof of Corollary 4.3. Given 𝑃𝑓 = 𝑈Λ𝑃𝑓 𝑈
𝑇
, we have

2𝑃𝑓 − 𝑃2

𝑓
= 2𝑈Λ𝑃𝑓 𝑈

𝑇 −𝑈Λ2

𝑃𝑓
𝑈𝑇

= 𝑈 (2Λ𝑃𝑓 − Λ
2

𝑃𝑓
)𝑈𝑇 .

(33)

Using the relation Λ𝑃𝑓 = 𝐼 − Λ from Collorary 4.1, we have

2Λ𝑃𝑓 − Λ
2

𝑃𝑓
= 2(𝐼 − Λ) − (𝐼 − Λ)2 = 𝐼 − Λ2 . (34)

Thus, Eq. (33) can be rewritten as

2𝑃𝑓 − 𝑃2

𝑓
= 𝑈 (𝐼 − Λ2)𝑈𝑇 , (35)

which indicates that 2𝑃𝑓 − 𝑃2

𝑓
contributes to mapping each eigen-

value 𝜆𝑖 of 𝐿 to 1 − 𝜆2

𝑖
. Hence, 2𝑃𝑓 − 𝑃2

𝑓
is the polynomial LPF of

𝑃𝑓 with the frequency response function of

ℎ(𝜆) = 1 − 𝜆2, (36)

which completes the proof of Corollary 4.3.
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Table 5: Runtime on the three benchmark datasets.

ExtendedSAE AEMC CPA-LGC GF-CFMC CA-GF
TA 2,657 871 2,345 316 0.2
YM 45 27 731 34 0.03
BA 11,520 1,022 10,020 274 0.2
Training ✓ ✓ ✓ ✗ ✗

…

𝑅0

𝑅1

𝑅C

GF-CF Ƹ𝑠𝑢,0

GF-CF Ƹ𝑠𝑢,1

GF-CF Ƹ𝑠𝑢,C

… …

Ƹ𝑠𝑢

Figure 7: The schematic overview of GF-CFMC.

(a) (user 1, item 125) and (user 165, item 1855) on YM

(b) (user 10, item 1544) and (user 4895, item 1382) on BA

Figure 8: Attribution maps that visualize the contribution of
each criterion to CA-GF’s predictions for the (a) YM and (b)
BA datasets.

D COMPLEXITY ANALYSIS
We provide a theoretical analysis of CA-GF’s computational com-

plexity. Although the complexities of sparse matrix multiplication

can vary, we base our analysis on the complexity of 𝑂 (nnz) [41],
where nnz represents the non-zero components. CA-GF comprises

two primary steps: graph construction and filtering. First, for the

graph construction step 𝑃 = 𝑅𝑇
𝑀𝐶

𝑅𝑀𝐶 , the nnz of 𝑅𝑀𝐶 is equal to

the number of MC ratings (, denoted as 𝑛𝑚𝑐 , hence 𝑂 (𝑛𝑚𝑐 ). Next,
in the graph filtering stage 𝑅𝑀𝐶𝑃 , the nnz of 𝑅𝑀𝐶 is 𝑛𝑚𝑐 , and while

the nnz of 𝑃 = 𝑅𝑇
𝑀𝐶

𝑅𝑀𝐶 is not explicitly expressible to 𝑛𝑚𝑐 , it is

equivalent to the total number of user pairs sharing common items,

denoted as 𝑛𝑃 . Typically, 𝑛𝑚𝑐 < 𝑛𝑃 and 𝑛𝑃 are not significantly

large in scale compared to 𝑛𝑚𝑐 ; therefore, we assert that the final

computational complexity for graph filtering is 𝑂 (𝑛𝑃 ).
In consequence, the computational complexity of CA-GF is

linear in nnz in the polynomial graph filter used, which is generally

not large due to the high sparsity characteristic of recommendation

datasets. Additionally, using parallel GPU computation for matrix

multiplication, CA-GF achieves constant runtime regardless of the

dataset size, provided sufficient GPU VRAM is available.

E DETAILS OF EXPERIMENTS
E.1 Dataset Description
We describe the details of the datasets used in our experiments.

TripAdvisor (TA): The TA dataset, released by [35], comprises

hotel rating information, including an overall rating as well as

ratings for seven comprehensive criteria: business, check-in quality,
cleanliness, location, rooms, service, and value. The ratings are on a

scale of 1 to 5 for all criteria.

Yahoo!Movie (YM): The YM dataset, first introduced by [10], com-

prises movie rating information, including an overall rating as well

as ratings for four specific criteria: story, acting, direction, and visu-
als. The ratings are on a scale of 1 to 5 for all criteria.

BeerAdvocate (BA): The BA dataset, released by [18, 19], com-

prises beer rating information, including an overall rating as well

as ratings for four specific criteria: appearance, aroma, taste, and
palate. The ratings range from 1 to 5 for all criteria.

E.2 Details of GF-CFMC
Figure 7 illustrates the schematic overview of GF-CFMC. Given

MC rating matrices 𝑅𝑐 for criterion 𝑐 ∈ {0, 1, · · · ,𝐶}, GF-CFMC

first separately construct 𝐶 + 1 bipartite graphs, and performs GF-

CF [29] on each of 𝐶 + 1 different criteria. Then, the predicted

ratings 𝑠𝑢,𝑐 for each criterion are aggregated by simple summation

for the final prediction. This approach differs from CA-GF, which
uses an integrated graph, called the MC user-expansion graph, for

graph filtering. Moreover, while GF-CFMC uses the same graph filter

across the criteria, CA-GF leverages a different optimal graph filter

depending on the criterion, which effectively harnesses criteria

awareness.

E.3 Default Hyperparameters of CA-GF
We describe default hyperparameters of CA-GF, each of which is

tuned on the validation set. The hyperparameters of CA-GF are

listed as follows: 1) the polynomial LPF 𝑓 (𝑃𝑓 , 𝑐); 2) the adjustment

parameter 𝑠𝑓 used for the item–item similarity graph 𝑃MC; and 3)

the adjustment parameter 𝑠 used for the criterion–criterion similar-

ity graph 𝑇 . First, the polynomial LPF 𝑓 (𝑃𝑓 , 𝑐) optimally found for

all criteria on each dataset is as follows:

• TA: {overall: O, business: L, check-in: I, cleanliness: L, location:
L, rooms: I, service: L, value: L};

• YM: {overall: O, acting: I, direction: I, story: O, visuals: L };

• BA: {overall: L, appearance:O, aroma: I, palate: I, taste: L}.
Second, the adjustment parameter 𝑠𝑓 for each graph filter is set as

• TA: {L: 0.1, I: 1, O: 1.2};

• YM: {L: 1, I: 1, O: 1.8};

• BA: {L: 0.6, I: 0.85, O: 1.5}.

Lastly, the adjustment parameter 𝑠𝑓 for the criterion–criterion simi-

larity graph is set as {TA: 2, YM: 4, BA: 2}. For the graph construction

of each dataset in GNN-based competitors (NGCF, LightGCN, and

CPA-LGC), edges are included if their ratings are higher than the

median value.
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E.4 Experimental Results on Other Datasets
First, Table 5 showcases the (average) runtime on all the datasets

including BA. Here, the runtime of training-based methods (Ex-

tendedSAE, AEMC, and CPA-LGC) refers to the total time spent on

model training for 100 epochs, whose duration is empirically deter-

mined to be sufficient for model convergence. Second, in Figure 8,

we show the experimental results corresponding to RQ5 on the YM

and BA datasets, along with the attribution maps visualizing the

contribution of each criterion to the model prediction.
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