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ABSTRACT

Multimodal recommendation systems have been widely used in e-commerce and
short video platforms. Due to the large differences in data volume and data dis-
tribution in different business scenarios, cross-domain recommendation is studied
to improve the effect of target domain by using rich source domain data. Some
studies use encoders to represent domain information and design knowledge align-
ment to achieve cross-domain knowledge transfer. However, simple information
representation and alignment methods are easily affected by noisy information
and lead to negative transfer problems. The distribution of features in different
domains also has a large deviation, which affects the effective transfer of knowl-
edge. Therefore, we propose a Variational Disentangled Cross-domain Knowl-
edge Alignment Method (VDKA) for multimodal recommendation. Specifically,
we propose a variational multimodal graph attention encoder, which consists of
variational autoencoder and graph attention encoder. Variational encoder can learn
domain sharing and domain specific representations under multimodal data uti-
lization. Then we introduce variational optimization objectives and disentangled
representation objectives to improve the accuracy of domain representation. Fur-
thermore, in order to solve the problem of domain knowledge distribution drift, ad-
versarial learning is designed to realize cross-domain knowledge alignment. We
conducted comprehensive experiments on four real-world multimodal data sets,
and the experimental results show that our proposed VDKA method outperforms
other state-of-the-art models. Ablation experiments have verified the effectiveness
of our various designs.

1 INTRODUCTION

With the increasing richness of image, audio and text information, the recommendation model based
on multi-modal data has gradually achieved better results (Wang et al. (2023); Yu et al. (2022)).
Compared with the single modal information, users are more likely to be attracted by the commodity
display and function introduction in the video (Chen et al. (2022); Guo et al. (2022)). Since these
platforms have rich scenarios, the data amount and data distribution of each business scenario are
quite different. Therefore, cross-domain recommendation has been attached importance to the study
of how to use rich source domain data to improve the effect of target domain with sparse data (Kang
et al. (2019); Cao et al. (2022b)). Some methods mainly add multimodal data to the model as side
information (Chen et al. (2019); Deldjoo et al. (2021)). These models use visual and text encoders to
extract semantic features from images and text, and cross with attribute feature construction features
for prediction. The main idea of cross-domain recommendation is to transfer the source domain
knowledge with rich feature information to the target domain, so as to improve the accuracy of
matching items with users in the target domain (Zhu et al. (2021; 2022)).

Although the existing cross-domain research has achieved some results, there are still several prob-
lems in the multi-modal cross-domain recommendation. First of all, the key problem of cross-
domain recommendation is how to use the knowledge of source domain to improve the model effect
of target domain. Many methods map feature information to a semantic space directly using en-
coders and transfer knowledge by feature crossing or feature alignment on the representation of two
domains. This rough representation method is easy to be disturbed by a lot of noisy information.
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Moreover, the knowledge contained in different domains may be contradictory, and simple informa-
tion alignment is likely to cause negative transfer problems (Cao et al. (2022a); Zang et al. (2022)).
Second, although some methods design disentangled representation networks to map domain fea-
tures to the same semantic space, the distribution of knowledge in different domains is still biased.
Knowledge transfer on biased data distribution will lead to biased model learning. Thirdly, the ef-
fective utilization of different modal data is an important issue in the multi-modal recommendation,
and it is not accurate to only take modal data as side information.

Considering some of the key problems mentioned above, we propose a new solution. We propose
a Variational Disentangled Cross-domain Knowledge Alignment Method (VDKA) for Multimodal
Recommendation, which can effectively improve the multi-modal cross-domain recommendation
effect. Specifically, we propose a variational multimodal graph attention encoder, which consists of
variational autoencoder and graph attention encoder. Variational autoencoder is designed to learn
domain-shared representations and domain-specific representations. Graph attention encoder is used
to extract multi-modal feature information effectively. Then we introduce variational optimization
objectives and disentangled representation objectives to improve the accuracy of domain-shared and
domain-specific representations. Furthermore, in order to solve the problem of domain knowledge
distribution drift, adversarial learning is designed to realize cross-domain knowledge alignment.
Finally, we combine several optimization objectives as the loss function for model training. As a
summary, the main contributions of this paper are as follows:

• We propose a variational multimodal graph attention encoder. Specifically, variational au-
toencoder is designed to learn domain-shared representations and domain-specific repre-
sentations. Graph attention encoder is used to extract multi-modal feature information
effectively.

• We propose a variational disentangled cross-domain knowledge alignment method
(VDKA) for multimodal recommendation. VDKA uses variational encoders to extract
domain-shared and domain-specific representations. The cross-domain knowledge align-
ment is further realized through adversarial learning.

• We conducted comprehensive experiments on four real-world multimodal data sets. Ex-
perimental results show that our proposed VDKA method exceeds other state-of-the-art
models. The ablation experiments have also verified the effect of each module proposed by
us. We will make our data sets and code public to contribute to community development.

2 RELATED WORK

As an important research direction in the field of recommendation, multimodal recommendation has
been widely studied (Du et al. (2022); Yu et al. (2022); Han et al. (2022)). A lot of research work is
exploring the extraction and utilization of multimodal data to help models improve performance (Xu
et al. (2023); Yu et al. (2022); Han et al. (2022)). Some research methods add multimodal data as
auxiliary features to the model and achieve results (Chen et al. (2019); Deldjoo et al. (2021)). VBPR
(He & McAuley (2016)) incorporates visual features extracted from product images into matrix
decomposition to reveal the visual dimensions that most influence people’s behavior. Many work
begin to use self-supervised comparative learning to solve problems such as data sparsity (Xie et al.
(2022); Tao et al. (2022); Yu et al. (2021)). MMGCL (Yi et al. (2022)) designs two enhancement
techniques, modal edge discard and modal mask, to generate multiple views of users and projects,
and introduces a negative sampling technique to learn the correlation between modes. Many work
using graph neural network to extract multi-modal information has achieved good results (Zhao
& Wang (2021); Yu et al. (2022); Wei et al. (2020)). MMGCN (Wei et al. (2019)) constructs a
user-item dichotomous graph on each mode and enriches the representation of each node with the
topology and characteristics of its adjacent nodes. MGAT (Tao et al. (2020)) transmits information
in a single graph, and uses the gated attention mechanism to identify the different importance scores
of different patterns to user preferences.

Many researches are exploring the use of source domain data information to improve the prediction
effect of target domain, so as to achieve effective cross-domain recommendation (Hu et al. (2018);
Zhao et al. (2019); Sheng et al. (2021)). These studies focus on the extraction of domain information
and the transfer of cross-domain knowledge. Some research work mainly uses encoders to learn do-
main representations and uses cross-transfer modules to achieve knowledge alignment (Wang et al.
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(2021); Xu et al. (2021)). DDTCDR (Li & Tuzhilin (2020)) extends ConNet by learning a po-
tential orthogonal projection function to migrate the similarity of users across domains. BiTGCF
(Liu et al. (2020)) uses LightGCN (He et al. (2020)) as an encoder to aggregate interactive infor-
mation for each domain, and further introduces a feature transfer layer to enhance the two basic
graph encoders. Some research work focuses on the disentangled of domain representation. CDRIB
(Cao et al. (2022b)) uses an information bottleneck perspective to obtain information shared between
domains. DisenCDR (Cao et al. (2022a)) proposes two mutual information based disentangled regu-
larizers to separate domain sharing and domain specific information. DDGHM (Zheng et al. (2022))
proposes dual dynamic graph modeling and mixed metric training to improve the cross-domain rec-
ommendation effect. UniCDR (Cao et al. (2023)) can model different CDR scenarios generically by
passing domain shared information.

3 PRELIMINARIES

This paper mainly studies the cross-domain scenario of multimodal recommendation. Our proposed
research method can be conveniently extended to multiple field scenarios. For simplicity, we focus
on two domains that have a common set of users in this work. We let DA = (UA, V A, IA) and
DB = (UB , V B , IA) represent the interaction data of domain A and domain B, respectively. U de-
notes the shared user set in both domains, V denotes the item set of each domain, and I represents the
interaction edge set in each domain. In addition, there are two binary matrices Y A ∈ {0, 1}|U |×|V A|

and Y B ∈ {0, 1}|U |×|V B | representing the interaction matrices of domain A and B, respectively.
Yi,j denotes whether a user ui has interacted with item vj in the edge set I . In addition, we focus
on multimodal recommendation scenarios. In this paper, we mainly consider the use of visual and
textual modal data. We represent the multimodal information as xm, where m ∈ M = {v, t, a}. v
represents visual features, t represents textual features, and a represents acoustic features.

4 METHODOLOGY

In this section, we give a detailed introduction to the proposed VDKA method. The overall archi-
tecture and components of the VDKA are shown in Fig. 1.

Figure 1: Overall architecture and components of the proposed VDKA method.

4.1 VARIATIONAL MULTIMODAL GRAPH ATTENTION ENCODER

4.1.1 VARIATIONAL AUTO-ENCODER

Variational auto-encoder (VAE) is a combination of variational inference and auto-encoder, which is
a kind of unsupervised generation model. VAE assumes that there exists an implicit variable z, and
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the marginal distribution Pθ(x) can be calculated from Pθ(x) =
∑

z Pθ(x, z). The joint distribution
Pθ(x, z) = Pθ(x|z)P (z) is satisfied between z and input x. The distribution P (z) of the implicit
variable z is assumed to satisfy a Gaussian distribution with a mean of zero and a variance of the unit
vector. If an attempt is made to build a neural network approximating Pθ(x|z) without a suitable loss
function, it will ignore z and yield the trivial solution Pθ(x|z) = Pθ(x). Therefore, this approach
does not provide a good estimate of Pθ(x). The marginal distribution can be expressed in another
form as Pθ(x) =

∑
x Pθ(z|x)P (x). However, Pθ(z|x) is also difficult to solve. The goal of VAE

is to find an estimable distribution that approximates Pθ(z|x), that is, an estimate of the conditional
distribution of a latent variable z given the input x. Therefore, based on variational inference and
Bayes’ theorem, the variational loss function can be obtained as follows:

LV AE = EQϕ(z|x)[logPθ(x|z)]−DKL(Qϕ(z|x)||P (z)) ≤ logPθ(x) (1)

The left side of the above equation is also called the evidence lower bound (ELBO). The inference
model generates implicit variables z from input x, and Qϕ(z|x) is similar to the encoder in the
autoencoder model. Pθ(x|z) is similar to a decoder that extracts a sample from the inference model
to reconstruct the input. To make the lower bound differentiable under the encoder parameter, the
reparameterization trick is used to solve:

z = µϕ(x) + σϕ(x)⊙ ϵ where ϵ ∼ N(0, 1) (2)

where ⊙ denotes the Hadamard product. µ and σ represent the mean and variance of the multivariate
Gaussian distribution corresponding to the latent variable z.

4.1.2 MULTIMODAL GRAPH ATTENTION ENCODER

In the multimodal scenario, users have different preferences for information of different modalities.
However, simple modal representation cannot accurately describe the user’s modal preference. We
represent the interaction information as a bipartite user-item graph G = {(u, i)|u ∈ U, i ∈ I},
where U denotes the user set and I denotes the item set. We represent the set of modalities as
M ∈ {v, t, a}, including visual features v, textual features t and acoustic features a. Then, we
design a multimodal graph attention encoder to learn representation vectors. The design details of
the graph attention encoder are provided in Appendix D.

Based on the above graph attention method, we can obtain the representation matrix H ∈ R|U |×d of
multi-modal importance perception. Further, we bring HA belongs to domain A into the variational
autoencoder in Section 4.1.1 to generate the implicit variable Z as follows:

µA = ϕ(WA
µ HA);σA = ϕ(WA

σ HA);ZA ∼ N(µA, [diag{σA}]2) (3)

where WA
µ and WA

σ represent the parameter matrix. By performing variational graph attention
encoding for data in both domains, the representations ZA and ZB can be obtained.

4.2 DOMAIN-SHARED AND DOMAIN-SPECIFIC REPRESENTATION LEARNING

Since the source domain and the target domain often have a big distribution difference, it is neces-
sary to map the cross-domain information to the same semantic space to realize knowledge trans-
fer. However, it is difficult to ensure that encoders can accurately represent cross-domain data in
a semantic space. In addition, even if cross-domain data can be converted into lower-dimensional
semantic space, the problem of domain distribution drift still exists. Therefore, in order to carry out
cross-domain knowledge transfer accurately and effectively, we consider the disentangled learning
of domain-shared representation and domain-specific representation. Domain-shared representation
means common knowledge with the same semantic structure in multiple domains, and domain-
specific representation means specific semantic knowledge unique only in a single specific domain.
When domain representations with common semantic structure are extracted, domain knowledge
transfer will be more effective to avoid negative transfer caused by useless cross-modal information.

4.2.1 VARIATIONAL ENCODING OBJECTIVE

Variational multimodal graph attention encoders provide a latent representation of multimodal per-
ception. The latent variable z can be inferred by an encoder with an approximate distribution of
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qϕ(z|x). Based on the above analysis, we believe that there are modal shared implicit representations
zc with common semantic structure and modal specific implicit representations zs with independent
semantic structure on cross-domain data. For each variational encoder, there will be two branches to
construct hidden variables zc and zs respectively. The joint probability distribution satisfied between
variables is shown as follows:

Pθ(x, zc, zs) = Pθ(x|zc, zs)P (zc)P (zs) (4)

where P (zc) and P (zs) represent prior distributions, which satisfy the Gaussian distribution with
zero mean and unit variance. The distribution Pθ(x|zc, zs) can be seen as the generation distribution.
Further, the distribution qϕ(zc, zs|x) can be converted to:

Qϕ(zc, zs|x) = Qϕ(zc|x)Qϕ(zs|x) (5)

where Qϕ(zc|x) and qϕ(zs|x) obey the Gaussian distribution, whose parameters are derived from
the encoder output. Therefore, we rewrite VAE loss function in Section 4.2.1 to obtain the loss
function based on latent variables zc and zs as follows:

LV = EQϕ(zc,zs|x)[logPθ(x|zc, zs)]−DKL(Qϕ(zc|x)||P (zc))−DKL(Qϕ(zs|x)||P (zs)) (6)

In particular, since we focus on the representation of multiple domains, we can obtain the loss
function LA

V of domain A, and the loss function LB
V of domain B.

4.2.2 DISENTANGLED REPRESENTATION OBJECTIVE

In order to make full use of cross-domain information, we introduce information bottleneck theory to
capture the correlation between domains. Specifically, we construct intra-domain and inter-domain
information bottleneck regularizations from two different perspectives.

Intra-domain information bottleneck regularization. To ensure that the disentangled representa-
tion has the ability to recover the original feature information, we need to construct reconstruction
targets for constraint. For instance, for the data XA of domain A, we can get the corresponding
domain shared representation ZA

c and domain specific representation ZA
s . We expect representation

ZA
c and representation ZA

s to differ sufficiently to contain only domain-shared semantic information
and domain-specific semantic information, respectively. We want ZA

c and ZA
s combined to have

as little difference from XA as possible, meaning that the two representations can reconstruct the
original feature information. Therefore, the regular loss of the intra-domain information bottleneck
is defined as follows:

Lintra = I(ZA
c ;ZA

s )︸ ︷︷ ︸
Minimality

− I(ZA
c , ZA

s ;XA)︸ ︷︷ ︸
Reconstruction

(7)

where I represent the mutual information operator.

Inter-domain information bottleneck regularization. For the shared representation ZA
c extracted

from domain A, we believe that mutual information should be maximized with the shared repre-
sentation ZB

c extracted from domain B. According to the shared representation ZB
c extracted from

domain B and the specific representation ZA
s extracted from domain A, the original feature infor-

mation XA of domain A should be reconstructed. Similarly, the original feature information XB of
domain B should be reconstructed according to the shared representation ZA

c extracted from domain
A and the specific representation ZB

s extracted from domain B. Introducing these reconstruction
objectives enables the model to make full use of cross-modal information for knowledge transfer
while learning accurate domain sharing and domain specific representations. Inter-modal informa-
tion bottleneck regularization loss is defined as follows:

Linter = −I(ZA
c ;ZB

c )︸ ︷︷ ︸
Minimality

− I(ZB
c , ZA

s ;XA)− I(ZA
c , ZB

s ;XB)︸ ︷︷ ︸
Reconstruction

(8)

We combine intra-domain and inter-domain information bottleneck losses together as the disentan-
gled optimization loss LD.
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4.3 CROSS-DOMAIN KNOWLEDGE ALIGNMENT

There are great differences in data distribution and data sparsity among different domains, which
makes the information in different fields have the problem of native semantic space heterogeneity.
Therefore, we consider introducing adversarial learning to realize cross-domain learning. Instead of
learning directly based on unconstrained implicit representation, we hope to reduce the distribution
bias between zAc and zBc . According to the covariate drift hypothesis, consistent optimization of
source domain and target domain can make the predicted results of the two domains consistent. Mo-
tivated by (Long et al. (2018)), we introduce domain discriminator to optimize domain differences.
One way to estimate the difference is to look at the loss of the domain classifier Gd, provided that the
domain classifier’s parameter θd has been trained to differentiate optimally between the two feature
distributions. In order to reduce the distribution difference between zAc and zBc , we seek the domain
classifier parameter θd which minimizes the loss of the domain classifier. Optimization objectives
based on domain discrimination can be expressed as:

E(θf , θy, θd) = E(θf , θy, θ̂d) + E(θ̂f , θ̂y, θd) (9)

E(θf , θy, θd) = Ly(Gy(z
A
c , z

A
s ; θy))− λ

∑
i∈A

(Gd(z
A
c,i; θd))− λ

∑
i∈B

(Gd(z
B
c,i; θd)) (10)

where Ly represents the model prediction loss function. zAc,i denotes the domain-shared representa-
tion of sample i from domain A. θ̂f represents the optimized feature encoder parameter that gener-
ates zc. θ̂f represents the optimized predcit network parameter used to minimize the loss of model
prediction. θ̂d represents the optimized parameter of the discriminant network Gd, which is used to
maximize the domain classification loss. Since the learning objective of the discriminator is opposite
to that of the main task, gradient inversion layer (GRL) (Long et al. (2018)) is introduced to facili-
tate effective parameter updating. We let the optimization objective E(θf , θy, θd) as the knowledge
alignment loss LA.

4.4 OPTIMIZATION

In this paper, a variational multimodal graph attention encoder is introduced to extract multimodal
information and construct domain-shared and domain-specific representations. The designed varia-
tional optimization objective can guide the model to learn accurate and effective feature representa-
tion. We denote the main loss of interaction prediction classification task as Ly . The final optimized
loss function can be expressed as follows:

L = Ly + α(LA
V + LB

V ) + γLD − λLA (11)

where α, γ and λ represent hyperparameters that control the weight of different losses.

5 EXPERIMENTS

In this section, we conduct extensive experiments to answer the following questions:

• RQ1 How does our VDKA model perform compared to the cross-domain and multi-modal
state-of-the-art methods?

• RQ2 How do different designs (e.g. variational encoding, disentangled representation and
knowledge alignment) affect the performance of the VDKA model?

• RQ3 How do the hyperparameter settings in the model affect the model performance?
• RQ4 How does our approach contribute to cross-domain improvement?

5.1 EXPERIMENTAL SETUP

Datasets. We chose the Amazon dataset 1 as the experimental dataset. Amazon dataset (Lakkaraju
et al. (2013)) is the real dataset extracted from e-commerce platform. Specifically, we select data

1http://jmcauley.ucsd.edu/data/amazon/
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Table 1: Statistics of the four datasets.
Cross-domain Domain1-Items Domain2-Items Overlapped-Users Train Valid Test

Movie & Book 58,371 (Movie) 104,895 (Book) 12,746 118,779 23,756 15,838

Food & Kitchen 47,520 (Food) 53,361 (Kitchen) 8,575 50,845 10,169 6,779

sets in four domains from Amazon dataset as experimental data, including Movie, Book, Food and
Kitchen. We pair data sets to construct cross-domain data sets ”Movie & Book” and ”Food &
Kitchen”. Text semantic representation is generated by Sentence-Bert. The statistical results are
shown in Table 1.

Evaluation metrics. Following related work (Cao et al. (2022a)), we choose four widely used
evaluation metrics, including Hit Rate (HR), Normalized Discounted Cumulative Gain (NDCG) and
Mean Reciprocal Rank (MRR). We set the length of ranked list as 20. The implementation details
are provided in Appendix B.

Baseline methods. To evaluate the performance, we compared the proposed VDKA model with
three types of baselines: (1) CF-based methods, i.e., BPRMF (Rendle et al. (2012)) and NGCF
(Wang et al. (2019)). (2) Multi-modal the state-of-the-art methods, i.e., MMGCL (Yi et al. (2022)),
LATTICE (Zhang et al. (2021)) and HCGCN (Mu et al. (2022)). (3) Cross-domain the state-of-
the-art methods, i.e., DDTCDR (Li & Tuzhilin (2020)), BiTGCF (Liu et al. (2020)), DisenCDR
(Cao et al. (2022a)) and DDGHM (Zheng et al. (2022)). The details of baselines are provided in
Appendix A.

5.2 PERFORMANCE COMPARISONS (RQ1)

We conducted a comprehensive experiment on two pairs of cross-domain datasets and compared
our proposed VDKA method with other baseline methods. The experimental results are shown in
Table 2. From the observation of the experimental results, we have the following findings. (a) Our
proposed VDKA method outperforms all other SOTA cross-domain models and multi-modal mod-
els. The improvement is significant in all four experimental data sets. Experimental results verify the
effectiveness of VDKA in multimodal cross-domain recommendation. (b) Compared with DDGHM
and other cross-domain models, VDKA has significantly improved in the four data sets. The exper-
imental results show that our method of disentangled representation and knowledge alignment is
effective for cross-domain knowledge transfer. (c) Compared with cross-domain recommendation
methods such as BiTGCF, HCGCN method focusing on multi-modal information utilization has
better effect. This shows that the extraction and utilization of multi-modal features is as important
as the cross-domain module in the multi-modal recommendation.

5.3 ABLATION STUDIES (RQ2)

In order to explore the influence of each module designed by us on the model effect, we conducted
ablation experiments as follows. (a) We removed the variational multimodal graph attention encoder
from the model and directly used two MLPS to learn domain-shared and domain-specific represen-
tations, denoted as w/o VE. (b) We removed the multimodal graph attention encoder, denoted as w/o
GA. (c) We removed the disentangled optimization objective, denoted as w/o DR. (d) We removed
the knowledge alignment objective, denoted as w/o KA. The experimental results are shown in Ta-
ble 3. First, when we replaced the variational encoder with MLP, the model performance decreased
significantly. This shows that the variational multimodal graph attention encoder is effective in ex-
tracting multimodal data and constructing domain representation. Secondly, when we removed the
disentangled target and the knowledge alignment target respectively, the model effect decreases to a
certain extent. The experimental results show that these two modules are important to the model.

5.4 SENSITIVITY ANALYSIS (RQ3)

To further explore the impact of these parameters on the model effect, we conducted sensitivity
analysis on the following key parameters. (a) Impact of γ. We set the value of γ to adjust from
[0.2, 0.4, 0.6, 0.8, 1.0] to explore the impact on the model effect. The experimental performance on
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Table 2: Overall performance comparison of all models on four data sets.
Movie-domain Book-domain

HR@20 NDCG@20 MRR@20 HR@20 NDCG@20 MRR@20

BPRMF 0.1568 0.1041 0.0974 0.1407 0.0873 0.0837
NGCF 0.2319 0.1799 0.1713 0.2167 0.1619 0.1607

MMGCL 0.2658 0.2176 0.2114 0.2687 0.2019 0.1845
LATTICE 0.2911 0.2336 0.2227 0.2793 0.2201 0.2067
HCGCN 0.3253 0.2923 0.2767 0.3003 0.2649 0.2525

DDTCDR 0.2935 0.2621 0.2385 0.2568 0.2145 0.2019
BiTGCF 0.3134 0.2902 0.2775 0.2721 0.2407 0.2337

DisenCDR 0.3265 0.2944 0.2780 0.2867 0.2577 0.2398
DDGHM 0.3308 0.3011 0.2883 0.2981 0.2721 0.2635
VDKA 0.3625 0.3246 0.2932 0.3317 0.2892 0.2764

Improvement 5.25% 4.78% 5.81% 6.16% 6.77% 6.77%

Food-domain Kitchen-domain
HR@20 NDCG@20 MRR@20 HR@20 NDCG@20 MRR@20

BPRMF 0.1383 0.0926 0.0888 0.1502 0.1178 0.0925
NGCF 0.2095 0.1914 0.1714 0.2253 0.2003 0.1848

MMGCL 0.2338 0.2085 0.1902 0.2539 0.2278 0.2049
LATTICE 0.2665 0.2407 0.2106 0.2802 0.2511 0.2306
HCGCN 0.2865 0.2611 0.2477 0.3047 0.2743 0.2639

DDTCDR 0.2396 0.2289 0.2019 0.2546 0.2352 0.2204
BiTGCF 0.2807 0.2545 0.2254 0.2937 0.2621 0.2532

DisenCDR 0.2992 0.2674 0.2558 0.3215 0.2967 0.2827
DDGHM 0.3023 0.2725 0.2537 0.3221 0.2942 0.2814
VDKA 0.3272 0.2936 0.2794 0.3438 0.3212 0.3035

Improvement 5.25% 4.78% 5.81% 6.16% 6.77% 6.77%

Table 3: Ablation experimental results. N denotes the NDCG metric.
Movie Book Food Kitchen

HR@20 N@20 HR@20 N@20 HR@20 N@20 HR@20 N@20

VDKA 0.3625 0.3246 0.3317 0.2892 0.3272 0.2936 0.3438 0.3212
w/o VE 0.2915 0.2733 0.2553 0.2172 0.2633 0.2386 0.2763 0.2463
w/o GA 0.3304 0.3001 0.2943 0.2639 0.2906 0.2729 0.3186 0.2825
w/o DR 0.3344 0.3085 0.3082 0.2759 0.3186 0.2822 0.3325 0.3097
w/o KA 0.3368 0.3096 0.3124 0.2736 0.3153 0.2774 0.3268 0.3036

the four experimental data sets is shown in Fig. 2. We can see that with the increase of γ value, the
performance of the model on multiple data sets has an upward trend, but with the continuous increase
of γ, there is basically no difference in the model effect. (b) Impact of λ. We let the parameter λ
adjust the value in [0.2, 0.4, 0.6, 0.8, 1.0]. As shown in Fig. 2, the performance of the model does
not change significantly with the increase of λ value. (c) Impact of embedding dimension d. The
experimental results and analysis are provided in Appendix C.
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Figure 2: Sensitivity study of parameters γ and λ.
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Table 4: Cross-domain distribution discrepancy. The results are calculated from the A-distance
based on the cross-domain user representations.

Model Movie-domain & Book-domain Food-domain & Kitchen-domain

DDTCDR 1.3745 1.2491
DisenCDR 1.2529 1.1672
DDGHM 1.1957 1.1328

VDKA-w/o DR 1.1151 1.0469
VDKA-w/o KA 1.1072 1.0573

VDKA 1.0815 1.0151

5.5 DISTRIBUTION ANALYSIS (RQ4)

Distribution Discrepancy. According to domain adaptation theory (Ben-David et al. (2006); Liu
et al. (2022)), a proxy A-distance can be used to measure the difference between two different
domains. The difference between the two domain distributions can be calculated by the formula
dA(S, T ) = 2(1 − 2ϵ(g)), where ϵ(g) denotes the generalization error of a linear classifier g. The
classifier g is used to distinguish the source domain S from the target domain T . The discrepancy in
user domain distribution across the two cross-domain datasets are shown in Table 4. We can see that
the distribution difference of VDKA proposed by us is significantly lower than that of DDGHM,
resulting in better cross-domain performance. When we remove the uncoupling representation and
the knowledge alignment, the distribution difference increases to a certain extent. This shows that
our design method based on decoupling knowledge transfer can indeed improve the consistency of
cross-domain distribution.

Distribution Visualization. To better show the difference in the distribution of the user embedding
learned by different cross-domain methods, we use t-SNE representation for visualization. The visu-
alization results are shown in Fig. 3. We can see that the difference in embedding distribution learned
separately in the two domains is quite significant. This difference in distribution makes it difficult to
transfer the knowledge of the model in the source domain to the target domain. Through the design
of DDGHM model, the difference of embedding distribution can be alleviated to a certain extent.
However, there is still a certain bias, and there may be a negative transfer problem. Our VDKA
model solves the problem of distribution difference well and realizes accurate cross-domain repre-
sentation learning through effective knowledge transfer. On the visualization of embedding, it can
be seen that the method we propose indeed improves the consistency of cross-domain distribution,
so as to provide stronger cross-domain recommendation capability.
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(a) Base
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(b) DDGHM
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Figure 3: The t-SNE visualization of user embeddings on the Movie & Book cross-domain dataset.

6 CONCLUSION

In this paper, we propose a variational disentangled cross-domain knowledge alignment method for
multimodal recommendation. Specifically, we propose a variational multimodal graph attention en-
coder that can effectively learn domain-sharing and domain-specific representations. Furthermore,
adversarial learning is designed to realize cross-domain knowledge alignment. We conducted com-
prehensive experiments on multiple real-world data sets, and the experimental results show that our
proposed VDKA method outperforms all other models. In the future, we will further explore the
effective knowledge transfer method such as adversarial knowledge distillation.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

Jiangxia Cao, Xixun Lin, Xin Cong, Jing Ya, Tingwen Liu, and Bin Wang. Disencdr: Learning
disentangled representations for cross-domain recommendation. In Proceedings of the 45th In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval, pp.
267–277, 2022a.

Jiangxia Cao, Jiawei Sheng, Xin Cong, Tingwen Liu, and Bin Wang. Cross-domain recommenda-
tion to cold-start users via variational information bottleneck. In 2022 IEEE 38th International
Conference on Data Engineering (ICDE), pp. 2209–2223. IEEE, 2022b.

Jiangxia Cao, Shaoshuai Li, Bowen Yu, Xiaobo Guo, Tingwen Liu, and Bin Wang. Towards univer-
sal cross-domain recommendation. In Proceedings of the Sixteenth ACM International Confer-
ence on Web Search and Data Mining, pp. 78–86, 2023.

Xu Chen, Hanxiong Chen, Hongteng Xu, Yongfeng Zhang, Yixin Cao, Zheng Qin, and Hongyuan
Zha. Personalized fashion recommendation with visual explanations based on multimodal at-
tention network: Towards visually explainable recommendation. In Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Information Retrieval,
pp. 765–774, 2019.

Yongjun Chen, Zhiwei Liu, Jia Li, Julian McAuley, and Caiming Xiong. Intent contrastive learning
for sequential recommendation. In Proceedings of the ACM Web Conference 2022, pp. 2172–
2182, 2022.

Yashar Deldjoo, Markus Schedl, and Peter Knees. Content-driven music recommendation: Evolu-
tion, state of the art, and challenges. arXiv preprint arXiv:2107.11803, 2021.

Xiaoyu Du, Zike Wu, Fuli Feng, Xiangnan He, and Jinhui Tang. Invariant representation learning
for multimedia recommendation. In Proceedings of the 30th ACM International Conference on
Multimedia, pp. 619–628, 2022.

Zhiqiang Guo, Guohui Li, Jianjun Li, and Huaicong Chen. Topicvae: Topic-aware disentangle-
ment representation learning for enhanced recommendation. In Proceedings of the 30th ACM
International Conference on Multimedia, pp. 511–520, 2022.

Tengyue Han, Pengfei Wang, Shaozhang Niu, and Chenliang Li. Modality matches modality: Pre-
training modality-disentangled item representations for recommendation. In Proceedings of the
ACM Web Conference 2022, pp. 2058–2066, 2022.

Ruining He and Julian McAuley. Vbpr: visual bayesian personalized ranking from implicit feed-
back. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of the
43rd International ACM SIGIR conference on research and development in Information Retrieval,
pp. 639–648, 2020.

Guangneng Hu, Yu Zhang, and Qiang Yang. Conet: Collaborative cross networks for cross-domain
recommendation. In Proceedings of the 27th ACM international conference on information and
knowledge management, pp. 667–676, 2018.

Tongwen Huang, Zhiqi Zhang, and Junlin Zhang. Fibinet: combining feature importance and bilin-
ear feature interaction for click-through rate prediction. In Proceedings of the 13th ACM Confer-
ence on Recommender Systems, pp. 169–177, 2019.

SeongKu Kang, Junyoung Hwang, Dongha Lee, and Hwanjo Yu. Semi-supervised learning for
cross-domain recommendation to cold-start users. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pp. 1563–1572, 2019.

10



Under review as a conference paper at ICLR 2024

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Himabindu Lakkaraju, Julian McAuley, and Jure Leskovec. What’s in a name? understanding
the interplay between titles, content, and communities in social media. In Proceedings of the
International AAAI Conference on Web and Social Media, volume 7, 2013.

Pan Li and Alexander Tuzhilin. Ddtcdr: Deep dual transfer cross domain recommendation. In
Proceedings of the 13th International Conference on Web Search and Data Mining, pp. 331–339,
2020.

Meng Liu, Jianjun Li, Guohui Li, and Peng Pan. Cross domain recommendation via bi-directional
transfer graph collaborative filtering networks. In Proceedings of the 29th ACM international
conference on information & knowledge management, pp. 885–894, 2020.

Weiming Liu, Xiaolin Zheng, Mengling Hu, and Chaochao Chen. Collaborative filtering with attri-
bution alignment for review-based non-overlapped cross domain recommendation. In Proceed-
ings of the ACM Web Conference 2022, pp. 1181–1190, 2022.

Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I Jordan. Conditional adversarial
domain adaptation. Advances in neural information processing systems, 31, 2018.

Zongshen Mu, Yueting Zhuang, Jie Tan, Jun Xiao, and Siliang Tang. Learning hybrid behavior pat-
terns for multimedia recommendation. In Proceedings of the 30th ACM International Conference
on Multimedia, pp. 376–384, 2022.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. Bpr: Bayesian
personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.

Xiang-Rong Sheng, Liqin Zhao, Guorui Zhou, Xinyao Ding, Binding Dai, Qiang Luo, Siran Yang,
Jingshan Lv, Chi Zhang, Hongbo Deng, et al. One model to serve all: Star topology adaptive
recommender for multi-domain ctr prediction. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Management, pp. 4104–4113, 2021.

Zhulin Tao, Yinwei Wei, Xiang Wang, Xiangnan He, Xianglin Huang, and Tat-Seng Chua. Mgat:
Multimodal graph attention network for recommendation. Information Processing & Manage-
ment, 57(5):102277, 2020.

Zhulin Tao, Xiaohao Liu, Yewei Xia, Xiang Wang, Lifang Yang, Xianglin Huang, and Tat-Seng
Chua. Self-supervised learning for multimedia recommendation. IEEE Transactions on Multime-
dia, 2022.

Chen Wang, Yueqing Liang, Zhiwei Liu, Tao Zhang, and S Yu Philip. Pre-training graph neural
network for cross domain recommendation. In 2021 IEEE Third International Conference on
Cognitive Machine Intelligence (CogMI), pp. 140–145. IEEE, 2021.

Fangye Wang, Yingxu Wang, Dongsheng Li, Hansu Gu, Tun Lu, Peng Zhang, and Ning Gu. Cl4ctr:
A contrastive learning framework for ctr prediction. In Proceedings of the Sixteenth ACM Inter-
national Conference on Web Search and Data Mining, pp. 805–813, 2023.

Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. Neural graph collaborative
filtering. In Proceedings of the 42nd international ACM SIGIR conference on Research and
development in Information Retrieval, pp. 165–174, 2019.

Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, Richang Hong, and Tat-Seng Chua. Mmgcn:
Multi-modal graph convolution network for personalized recommendation of micro-video. In
Proceedings of the 27th ACM international conference on multimedia, pp. 1437–1445, 2019.

Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, and Tat-Seng Chua. Graph-refined convo-
lutional network for multimedia recommendation with implicit feedback. In Proceedings of the
28th ACM international conference on multimedia, pp. 3541–3549, 2020.

11



Under review as a conference paper at ICLR 2024

Xu Xie, Fei Sun, Zhaoyang Liu, Shiwen Wu, Jinyang Gao, Jiandong Zhang, Bolin Ding, and Bin
Cui. Contrastive learning for sequential recommendation. In 2022 IEEE 38th international con-
ference on data engineering (ICDE), pp. 1259–1273. IEEE, 2022.

Kun Xu, Yuanzhen Xie, Liang Chen, and Zibin Zheng. Expanding relationship for cross domain
recommendation. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pp. 2251–2260, 2021.

Senrong Xu, Liangyue Li, Yuan Yao, Zulong Chen, Han Wu, Quan Lu, and Hanghang Tong.
Musenet: Multi-scenario learning for repeat-aware personalized recommendation. In Proceedings
of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 517–525,
2023.

Zixuan Yi, Xi Wang, Iadh Ounis, and Craig Macdonald. Multi-modal graph contrastive learning for
micro-video recommendation. In Proceedings of the 45th International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 1807–1811, 2022.

Junliang Yu, Hongzhi Yin, Jundong Li, Qinyong Wang, Nguyen Quoc Viet Hung, and Xiangliang
Zhang. Self-supervised multi-channel hypergraph convolutional network for social recommenda-
tion. In Proceedings of the web conference 2021, pp. 413–424, 2021.

Junliang Yu, Hongzhi Yin, Xin Xia, Tong Chen, Lizhen Cui, and Quoc Viet Hung Nguyen. Are
graph augmentations necessary? simple graph contrastive learning for recommendation. In Pro-
ceedings of the 45th International ACM SIGIR Conference on Research and Development in In-
formation Retrieval, pp. 1294–1303, 2022.

Tianzi Zang, Yanmin Zhu, Haobing Liu, Ruohan Zhang, and Jiadi Yu. A survey on cross-domain
recommendation: taxonomies, methods, and future directions. ACM Transactions on Information
Systems, 41(2):1–39, 2022.

Jinghao Zhang, Yanqiao Zhu, Qiang Liu, Shu Wu, Shuhui Wang, and Liang Wang. Mining la-
tent structures for multimedia recommendation. In Proceedings of the 29th ACM International
Conference on Multimedia, pp. 3872–3880, 2021.

Cheng Zhao, Chenliang Li, and Cong Fu. Cross-domain recommendation via preference propa-
gation graphnet. In Proceedings of the 28th ACM international conference on information and
knowledge management, pp. 2165–2168, 2019.

Feng Zhao and Donglin Wang. Multimodal graph meta contrastive learning. In Proceedings of the
30th ACM International Conference on Information & Knowledge Management, pp. 3657–3661,
2021.

Xiaolin Zheng, Jiajie Su, Weiming Liu, and Chaochao Chen. Ddghm: Dual dynamic graph with
hybrid metric training for cross-domain sequential recommendation. In Proceedings of the 30th
ACM International Conference on Multimedia, pp. 471–481, 2022.

Yongchun Zhu, Kaikai Ge, Fuzhen Zhuang, Ruobing Xie, Dongbo Xi, Xu Zhang, Leyu Lin, and
Qing He. Transfer-meta framework for cross-domain recommendation to cold-start users. In
Proceedings of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 1813–1817, 2021.

Yongchun Zhu, Zhenwei Tang, Yudan Liu, Fuzhen Zhuang, Ruobing Xie, Xu Zhang, Leyu Lin,
and Qing He. Personalized transfer of user preferences for cross-domain recommendation. In
Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp.
1507–1515, 2022.

12



Under review as a conference paper at ICLR 2024

A DETAILS OF THE BASELINES

The details of the baseline methods are as follows:

CF-based methods:

• BPRMF (Rendle et al. (2012)) mainly uses implicit feedback from users to sort items by
the maximum posterior probability obtained from Bayesian analysis of problems.

• NGCF (Wang et al. (2019)) models the higher-order connection information in the embed-
ding function and designs a neural network method to recursively propagate the embedding
in the graph.

Multimodal-based methods:

• MMGCL (Yi et al. (2022)) carries out graph convolution on each modal bipartite graph and
designs self-supervised optimization targets to improve the modal representation effect.

• LATTICE (Zhang et al. (2021)) designs a new modal-aware structure that learns the item
structure of each modal and aggregates multiple modalities to obtain potential item dia-
grams.

• HCGCN (Mu et al. (2022)) designs graph convolutional networks and corresponding
clustering losses to enhance user-item preference feedback and multimodal representation
learning to make more accurate recommendations.

Cross-domain methods:

• DDTCDR (Li & Tuzhilin (2020)) develops a new potential orthogonal mapping to extract
user preferences in multiple domains and constructs cross-domain dual knowledge transfer
based on autoencoders.

• BiTGCF (Liu et al. (2020)) utilizes the high order connectivity of single domain user item
graph through a feature propagation layer, and realizes the bidirectional transfer of cross-
domain knowledge with common users as the bridge.

• DisenCDR (Cao et al. (2022a)) proposes a new domain-shared and domain-specific infor-
mation decoupling method. Based on two decoupling regularizers with mutual information,
DisenCDR can realize effective learning of sparse target domain.

• DDGHM (Zheng et al. (2022)) consists of dual dynamic graph modeling and mixed metric
training. The former captures both intra-domain and inter-domain sequential transitions
by constructing a two-level graph. The latter enhances user and item representation by
adopting mixed metric learning.

B IMPLEMENTATION DETAILS

Following the data processing method adopted by (Zheng et al. (2022)), we select users who interact
in both domains, and then filter users and items that interact less than 10 times. The visual features
are provided by the data set and represented as 4096-dimensional embedding. Following (Mu et al.
(2022)), we connect the item title, description and brand together to extract text features.

Following (Zheng et al. (2022)), We take the last item of the user interaction as a real sample of the
prediction. We randomly selected 80% of the samples as the training set, 10% as the valiadation
set, and 10% as the test set. For all baseline methods, we set the parameters according to the
optimal overparameter mentioned in the original paper. For cross-domain recommendation methods
that do not utilize multimodalities, we add uniformly extracted visual and textual representations
to the model as side information. For fair comparison, the common hyperparameter settings for all
methods are as follows. The implicit representation vector dimension is set to 64. Batch size is set
to 1024 and the learning rate is set to 0.001. We use Adam (Kingma & Ba (2014)) as the training
optimizer for all methods. The slope of LeakyReLU is set as 0.1. For our proposed VDKA method,
the hyperparameters α and L are set to 1.0. For simplicity, the hyperparameters γ and λ are set to
1.0. For all experiments, we repeated three times with different random seeds and reported average
results.
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C SENSITIVITY ANALYSIS

Impact of embedding dimension d. We let parameter d adjust in [16,32,64,128,256,512]. The ex-
perimental results are shown in Fig. 4. We can see that the model’s performance on all data sets
gradually improves as the embedding dimension increases. As the dimension continues to increase,
the performance of the model decreases. This is because the effect of the model is limited by the
information of the data set, and too large vector dimension may lead to overfitting of the model.
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Figure 4: Effect study of embedding dimension d.

D MULTIMODAL GRAPH ATTENTION ENCODER

For a node e in a bipartite interaction graph, we use the aggregation function to calculate the in-
formation propagation of the neighbors Ne = t|(e, t) ∈ E, which is defined hNe

m = fagg(Ne).
Considering the different importance of neighbors to the central node, we introduce attention net-
work to control the different importance of information transmission from neighbors. The fagg is
defined as follows:

fagg(h
e
m,t) = LeakyReLU(

1

|Ne|
∑
t∈Ne

gatt(e, t)W
1
mhe

m,t) (12)

where he
m,t represents the node representation of item in modal m. Wm denotes a learnable parame-

ter matrix for aggregating valid information. Simply, we use a classic SENET (Huang et al. (2019))
attention network to calculate the importance of each neighbor, which is defined as follows:

gatt = gex(gsq(h)) = σ2(W2σ1(W1(
1

K

K∑
k=1

he
m,k))) (13)

where he
m,k ∈ Rd denotes the k-th neighbor embedding. W1 ∈ Rd× d

r and W2 ∈ R
d
r×d represent

the parameter matirx. As the relevant research analysis, id information plays an important role in
the recommendation system. Therefore, the aggregate information can be obtained as follows:

hm,e = LeakyReLU(W 3
mhm,Ne

+ LeakyReLU(W 2
mhe

m + he
ID)) (14)

where W 2
m and W 3

m represent parameter matrix. he
ID denotes the ID embedding of node e. Further,

we can obtain the following new representations through the fusion of multiple modal representa-
tions that have explored the high-level connectivity information he = 1

|M |
∑

m∈M he
L,m. Therefore,

based on the above graph attention method, we can obtain the representation matrix H ∈ R|U |×d of
multi-modal importance perception.
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