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Abstract

Masked Diffusion Language Models (MDLMs) have recently emerged as a strong1

class of generative models, paralleling state-of-the-art (SOTA) autoregressive (AR)2

performance across natural language modeling domains. While there have been3

advances in AR as well as both latent and discrete diffusion-based approaches4

for protein sequence design, masked diffusion language modeling with protein5

language models (pLMs) is unexplored. In this work, we introduce MeMDLM, an6

MDLM tailored for membrane protein design, harnessing the SOTA pLM ESM-27

to de novo generate realistic membrane proteins for downstream experimental ap-8

plications. Our evaluations demonstrate that MeMDLM-generated proteins exceed9

AR-based methods by generating sequences with greater transmembrane (TM)10

character. We further apply our design framework to scaffold soluble and TM mo-11

tifs in sequences, demonstrating that MeMDLM-reconstructed sequences achieve12

greater biological similarity to their original counterparts compared to SOTA in-13

painting methods. Finally, we show that MeMDLM captures physicochemical14

membrane protein properties with similar fidelity as SOTA pLMs, paving the way15

for experimental applications. In total, our pipeline motivates future exploration of16

MDLM-based pLMs for protein design.17

1 Introduction18

1.1 Background19

Membrane proteins play a crucial role in biological systems, regulating molecular transport, signal20

transduction, and cellular communication (1). Their capacity to bind specific ligands or undergo21

conformational changes renders them essential targets for drug development and therapeutics for22

various diseases (2). Even more interestingly, de novo design and engineering of membrane proteins23

offers a powerful therapeutic modality by enabling the creation of highly-specific and stable proteins24

that can precisely modulate cell signaling pathways, transport processes, and immune responses,25

making them ideal for targeting diseases such as cancer and neurological disorders (1). Current26

methods for designing new protein sequences or scaffolds rely on pre-trained structure-prediction27

networks (3; 4; 5), which remains a particularly challenging prerequisite for membrane protein28

targets. The scarcity of high-resolution structures hinders the training of high-fidelity DL structure29

prediction models for membrane proteins: only ~1% of the current PDB structures are annotated as30

membrane proteins. Further, energy functions underlying physics-based computational models are31

suboptimal for membrane proteins and often fail to accurately capture the interactions of membrane32

proteins within the lipid bilayer. As a result, current methods in de novo membrane protein design33

are limited to simple helical barrel or beta-barrel folds with low sequence complexity (6). The pitfalls34

of structure-based protein design methods and the clinical viability of membrane proteins necessitate35

a sequence-first design platform.36
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Current methods for protein sequence generation leverage protein language models (pLMs) that37

capture physicochemical, structural, and functional properties of proteins on a per-residue basis38

from their sequence alone (7; 8). Although pLMs produce rich protein sequence embeddings, they39

are trained on the masked language modeling (MLM) objective, where a backbone model learns40

to reconstruct only a minor fraction of tokens (15%) across a sequence, making complete de novo41

generation difficult (9). However, recent advancements in generative language models have displayed42

the effectiveness of leveraging diffusion and autoregressive (AR) models for protein design tasks43

(10; 11; 12) as well as span masking (13) and progressive masking rate strategies (14). Still, there44

exists a significant gap between AR and diffusion language modeling. Notably, the MDLM objective45

has recently closed this performance gap: training BERT transformer encoder-style DNA language46

models on the MDLM objective significantly outperforms AR perplexity and sampling speed (15).47

This fusion between foundational biological models and MDLM offers a promising new frontier for48

protein design.49

In this study, we introduce the first masked diffusion protein language model, MeMDLM. Specifically,50

this model uniquely leverages the MDLM framework to generate novel membrane protein sequences.51

MeMDLM introduces discrete noise to protein sequences by replacing amino acid tokens with <mask>52

tokens during the forward pass and reverses this corruption to de novo generate novel sequences or53

scaffolds. Overall, we introduce principled generative capabilities into BERT pLMs with the MDLM54

formulation by first pre-training the SOTA ESM-2 pLM on a comprehensive protein sequence space,55

then fine-tuning it on membrane protein sequences. After fine-tuning, MeMDLM is able to scaffold56

membrane protein domains and unconditionally generate diverse membrane protein sequences that57

capture the complexity of natural membrane proteins.58

1.2 Related Works59

Recent advancements in protein sequence generation have leveraged AR and diffusion-based ap-60

proaches to produce naturalistic proteins. Specifically, Ferruz, et al., demonstrated the ability of a61

decoder-only transformer architecture along with the AR modeling objective to de novo generate62

biologically plausible sequences (12). Furthermore, Alamdari, et al., highlighted the effectiveness63

of leveraging discrete diffusion models and evolutionary information to accurately scaffold over64

functional motifs (10). These methods have showcased high novelty in protein generation while65

retaining physicochemical information.66

2 Methods67

2.1 Masked Diffusion Language Model (MDLM)68

The MDLM training task leverages the absorbing-state forward diffusion process along with specific69

reverse diffusion parameterization rules to simplify the computation of the loss function and increase70

model accuracy. The absorbing state diffusion process, q(zt,x) is a distribution parameterized by71

a time-conditioned noise schedule {αt} that determines the probability of replacing a token with a72

mask token m at each timestep:73

q(zt,x) = Cat(zt;αtx+ (1− αt)m) (1)

Noise schedules are selected such that all tokens are masked by the end of all timesteps of the forward74

diffusion process, ensuring masked tokens are not unmasked during the forward diffusion process.75

The reverse diffusion process, matching the estimated forward diffusion posterior p(zs | zt), is76

parameterized by a categorical distribution (“SUBS”) that enforces restrictions on the original discrete77

diffusion formulation specific to absorbing state diffusion methods. During the SUBS-parameterized78

reverse diffusion process, unmasked tokens are unchanged and masked tokens are guaranteed to be79

unmasked.80

pθ(zs|zt,x) =

Cat(zs; zt) zt ̸= m

Cat
(
zs;

(1− as)m+ (as − at)x

1− at

)
zt = m

(2)
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We utilize the ESM-2-150M pLM as the backbone model for learning the denoising network xθ(zt)81

that reconstructs the original sequence from its masked counterpart (7). Because SUBS “carries-over”82

unmasked tokens and masking rates are scheduled in a log-linear fashion, batches with 100% masking83

rates are problematic because xθ does not have contextual information to guide the denoising process.84

Thus, we employ a maximal masking rate of 75% to ensure our denoising network learns long-range85

sequence dependencies while still training on higher masking rates to aid with de novo generation.86

With the SUBS parameterization, we minimize a modified NELBO loss function, a Rao-Blackwellized87

form of the original D3PM loss (16) that eliminates the reconstruction loss term:88

LT = Eq,t

[
− log pθ(x|zt(0)) + T

[
at − as
1− at

log⟨xθ(zt),x⟩
]]

(3)

Figure 1: Denoising and noising processes guided by SUBS parameterization in MeMDLM. Protein
sequences are corrupted according to the noising scheduler at and denoised via xθ (ESM-2), calculat-
ing loss between the true and reconstructed sequence.

Overall, MeMDLM is a fine-tuned encoder that unconditionally generates membrane-like protein89

sequences and produces membrane-aware protein sequence embedding (Figure 1). To enable the90

ESM-2 pLM with principled generation capabilities, we first pre-train ESM-2-150M on the MDLM91

task using protein sequences that span the entire protein space. Then, we fine-tune this model using a92

MDLM head with only membrane protein sequences to facilitate de novo generation of membrane93

protein sequences.94

2.2 Data95

Pre-training data was sourced from UniRef50, sampling random sequences that span the entire protein96

space. Fine-tuning data was obtained from TM protein databases and included de novo generated97

sequences with varying sequence identity thresholds to introduce diversity; TM and soluble residues98

were also annotated within the sequences for downstream evaluations (17; 18; 19). The MMSeqs299

easy clustering module was used for homology-based sequence clustering into an 80-10-10 split of100

training, validation, and testing sequences. See Supplementary Section 5.6 for full data curation101

details.102
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2.3 Evaluation103

TM Residue Prediction TM residues in MeMDLM, ProtGPT2, and experimentally annotated mem-104

brane protein sequences (from the test set) were predicted using Phobius (https://phobius.sbc.su.se/)105

(20; 21). We normalized the TM residue counts to sequence length and reported the frequency per106

100 residues.107

ESM-2 Pseudo Perplexity The model’s generation quality was assessed using the ESM-2-650M108

pseudo-perplexity metric (7). Typically, a lower pseudo-perplexity value indicates higher confidence.109

Specifically, the pseudo-perplexity is computed as the exponential of the negative pseudo-log-110

likelihood of a sequence as in 4. This metric yields a deterministic value for each sequence but111

necessitates L forward passes for computation, where L represents the input sequence length.112

PPL(x) = exp

{
− 1

L

L∑
i=1

log p(xi|xj ̸=i)

}
(4)

Cosine Similarity To assess if sequences reconstructed from motif-scaffolding retained physic-113

ochemical properties of membrane proteins, we computed the cosine similarity, x·y
∥x∥∥y∥ , between114

ESM-2-650M embeddings of the original sequence, x, and the reconstructed sequence, y. In this115

context, cosine similarity values closer to 1 indicate a strong biological similarity while values closer116

to 0 indicate dissimilarity. We utilized ESM-2-650M over ESM-2-150M to generate more expressive117

sequence embeddings, ensuring the evaluation was minimally influenced by the embedding quality.118

Physicochemical Property Evaluation To determine if MeMDLM-generated sequences encode119

the physicochemical properties of membrane proteins, we evaluated the performance of MeMDLM120

latent embeddings on predicting per-residue solubility and membrane localization (22). In each case,121

we compared the predictive performance of MeMDLM embeddings against wild-type ESM-2-150M122

embeddings and ESM-MLM (ESM-2-150M fine-tuned on an MLM task using only membrane protein123

sequences; see Supplementary Section 5.4)124

3 Results125

De Novo Generation Quality Given the limited availability of experimentally verified membrane126

structures, we focused on the overall TM character of the generated sequences by predicting TM127

residues with Phobius (21). Figure 2 represents a comparison of the TM residue frequency between128

experimentally annotated membrane proteins and de novo generated sequences. In this context,129

927 experimental sequences were derived from the MeMDLM model test set, yielding a realistic130

evaluation of TM residue density (Supplementary Section 5.6). Specifically, Table 1 shows that131

the difference in mean predicted TM residues between MeMDLM and the test set is significantly132

lower than ProtGPT2 and the test set. These results suggest that the sequences generated from133

MeMDLM exhibit a density of TM residues much closer to experimentally verified membrane134

proteins, demonstrating that MeMDLM has successfully learned the underlying distribution of these135

proteins. In contrast, ProtGPT2 tends to severely under-generate TM residues, indicating a critical136

lack of understanding of some of the fundamental characteristics of functional membrane proteins.137

We further visualized randomly selected de novo-generated MeMDLM sequences with AlphaFold 3138

(23) (Supplementary Figure 4) and observed alpha-helical bundles, the hallmark structural features of139

membrane proteins (24).140

Experimental MeMDLM ProtGPT2

Average TM Residue Frequency 29.193 25.737 15.562

Table 1: TM residue frequency (number of TM residues per 100 residues) in experimentally annotated,
MeMDLM-generated, and ProtGPT2-generated protein sequences.

4

https://phobius.sbc.su.se/


Figure 2: Distribution comparison of TM residue frequency predicted by Phobius for 100 MeMDLM-
generated, 100 ProtGPT2-generated, and 927 experimentally annotated membrane protein sequences.

Scaffolded Generation Quality As a natural extension of de novo design, we scaffolded around141

TM and soluble motifs of experimentally annotated membrane proteins. We take the entire test142

set—comprising 927 experimentally verified membrane protein sequences with annotated TM and143

soluble motifs (Supplementary Section 5.6)—and we mask out all residues except those in the TM144

or soluble motif(s). We use these partially masked sequences as input to the models to assay their145

capability to generate scaffolds conditioned on known TM or soluble motifs. For this study, we146

focused on these domains due to their distinct hydrophilic and hydrophobic regions that govern147

the folding and thus function of the overall protein. Figure 3 compares MeMDLM and EvoDiff’s148

reconstruction quality for TM and soluble domains of experimentally annotated membrane proteins.149

Transmembrane Soluble

MeMDLM EvoDiff MeMDLM EvoDiff

Pseudo Perplexity 3.819 20.554 7.029 16.991

Cosine Similarity 0.768 0.742 0.778 0.777

Table 2: Reconstruction quality comparison of models scaffolding around TM and soluble motifs of
927 experimental membrane protein sequences that reprsent the MeMDLM model test set.

This comparison considers the cosine similarity between ESM-2-650M embeddings of test set150

sequences and their reconstructed counterparts, along with the ESM-2-650M pseudo-perplexity of the151

reconstructed sequence. Table 1 shows that MeMDLM-inpainted sequences not only achieve lower152

average pseudo-perplexities but also exhibit cosine similarities closely aligned with EvoDiff-based153

scaffolds across both soluble and TM domains. These results suggest that MeMDLM scaffolds154

functional motifs with greater confidence while preserving biological relevance comparable to SOTA-155

generated scaffolds.156

Representation Quality We finally assessed if the generated sequences retain physicochemical157

information critical to membrane protein function by predicting per-residue solubility and membrane158

localization (Table 3). MeMDLM latent embeddings achieve predictive performance that closely159

parallels SOTA pLM embeddings, which are designed specifically for delivering precise representa-160
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Figure 3: Distribution comparison of reconstruction quality. Scaffolding was performed over the test
set sequences (927 experimentally annotated membrane proteins). A, B Pseudo perplexity of soluble
and TM regions scaffolded by MeMDLM and EvoDiff. C, D Cosine similarity between embeddings
of true and reconstructed sequences from MeMDLM and EvoDiff.

tions. In total, these results demonstrate that MeMDLM accurately captures the biological features161

underpinning functional membrane proteins.162

ESM-2-150M ESM-MLM MeMDLM

Solubility 0.966 0.897 0.949

Membrane Localization 0.576 0.584 0.541

Table 3: Performance comparison (AUROC) of embeddings in predicting physicochemical properties
of MeMDLM test set sequences.

4 Conclusion163

In this work, we introduce MeMDLM, a fine-tuned encoder that de novo generates and provides164

feature-rich representations of membrane protein sequences. By pre-training and fine-tuning the rich165

embedding space of the ESM-2-150M pLM on membrane protein sequences, we de novo generate166

membrane protein sequences with TM-character similar to experimentally annotated membrane167

proteins. We further apply our generative capabilities to scaffold soluble and TM domains of168

natural membrane protein sequences with lower pseudo perplexity compared to SOTA methods while169

maintaining the physicochemical features of membrane proteins. This indicates the potential use of170

MeMDLM-designed membrane proteins for applications in drug discovery where designing stable171

and functional membrane proteins is critical for therapeutic targets, biosensors, selective channels,172

and enzymes.173

Still, current in silico structural prediction methods such as AlphaFold3 are constrained for certain174

protein classes (23) due to the complex interactions between membrane proteins, the lipid bilayer,175
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and the bulk aqueous phase. While our model generates membrane proteins with significant TM-176

character and relevant structural features such as alpha-helical bundles, accurately assessing binding177

and docking for drug development purposes is crucial. To address this, we are building experimental178

validation platforms to quantify binding affinity and structural stability.179

In summary, MeMDLM provides a promising platform for designing novel, realistic membrane180

proteins. With MeMDLM, we introduce a new dimension to protein research by enriching encoder-181

only pLMs with powerful generative capabilities. MeMDLM further motivates future usage of182

training BERT-style models with the MDLM objective for de novo protein sequence design. Future183

work will focus on integrating experimental assays to screen de novo membrane protein sequences as184

we aim to produce scalable and effective tools to facilitate drug discovery.185
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5 Supplementary Material256

5.1 De Novo Generation Visualizations257

Figure 4: AlphaFold3-predicted structures of de novo MeMDLM-generated protein sequences.

5.2 Perplexity and Loss During pLM Training and Evaluation258

Loss Perplexity

Train Validation Test Train Validation Test

ESM-MLM 0.072 0.072 0.072 1.074 1.074 1.074

ProtGPT2 1.585 – 3.392 4.879 – 29.730

MeMDLM 0.695 2.479 2.230 2.002 7.722 9.285

Table 4: Loss and perplexity comparison across models

5.3 MeMDLM Training259

MeMDLM was pre-trained for 7 epochs and fine-tuned for 60 epochs on 4xA6000 NVIDIA GPUs260

each with 48 GB of VRAM. A batch size of 16, learning rate of 3e-4 with linear warmup of 2,500261

steps, and the AdamW optimizer with a weight decay of 0.075 was used. All model training and262

implementation was done with Python 3.10 and PyTorch 2.2.2.263

5.4 Masked Language Model (MLM)264

ESM-MLM is a fine-tuned encoder that produces membrane-aware protein sequence embedding265

used as a baseline comparison for the MDLM training task. We trained a MLM head on top of266

ESM-2-150M using membrane protein sequences to force comprehension of membrane protein267

properties. 15% of amino acid tokens were randomly masked and passed into ESM-2-150M to268

retrieve their output embeddings. The MLM loss function is defined as:269

LMLM = −
∑
i∈M

logP (xi|x\M) (5)
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where M represents the set of masked positions in the input sequence, xi is the true amino acid token270

at position i, and x\M denotes the sequence with the masked tokens excluded.271

During training, we unfroze the key, query, and value weights in the attention heads of the final three272

encoder layers. With this training recipe, we augment the pre-existing ESM-2-150M latent space273

with physicochemical properties of membrane proteins without overfitting on the new sequences.274

ESM-MLM was trained on one NVIDIA A6000 GPU with 48 GB of VRAM over 10 epochs with275

a batch size of 2 and a learning rate of 5e-5. The Adam optimizer was used with no weight decay.276

Membrane protein sequences were padded to match the length of the sequence.277

5.5 Physicochemical Property Prediction278

Solubility Prediction We first predicted TM and soluble residues, a hallmark characteristic of279

membrane protein sequences. We utilized each embedding type as inputs to train a two-layer280

perceptron classifier in PyTorch that minimized the standard binary cross-entropy (BCE) loss to281

compute the probability that each residue in the sequence is either soluble (probability < 0.5, class 0)282

or TM (probability > 0.5, class 1). The BCE loss is formally defined as: BCE(y, ŷ) = −(y log(ŷ) +283

(1− y) log(1− ŷ))284

Membrane Localization Prediction Proteins originating from the endomembrane system and285

localizing in the plasma membrane differ in conformation and function from those in the cytosol and286

other cellular organelles. We predicted the subcellular localization of protein sequences by using287

each embedding type to train a XGBoost classifier that minimized the standard BCE loss (above) to288

compute the probability that a protein sequence localizes in the plasma membrane (probability > 0.5,289

class 1) or in other regions (probability < 0.5, class 0).290

5.6 Data Curation291

Pre-training We queried the UniRef50 database for a random set of 100,000 unique protein292

sequences containing only the 20 natural amino acids; we only considered sequences shorter than293

1,024 residues due to GPU memory limits, and shorter sequences were padded to this maximal length.294

Sequences were split using the MMSeqs2 easy clustering module with a minimum sequence identity295

of 30% and a coverage threshold of 50%. The resulting clusters were split to a 80-10-10 ratio into the296

training set (80,231 sequences, 80.23%), validation set (9,904 sequences, 9.90%), and the testing set297

(9,865 sequences, 9.87%).298

Fine-tuning Bioassembly structures from X-ray scattering or electron microscopy with better than299

3.5 Å resolution, annotated by PDBTM1, mpstruc2, OPM3, or MemProtMD4, were used to curate300

membrane protein sequences for fine-tuning. de novo designed membrane proteins were added301

manually to the database. The proteins were culled at 100% sequence identity and 30% sequence302

identity to result in a non-redundant set and a sequence-diverse set, respectively. Integral membrane303

residues, defined as residues with at least one atom within the bilayer, were parsed from the resulting304

bioassembly structures using the membrane boundaries predicted by PPM 3.05. From the dataset of305

integral membrane residues, only structures with at least one TM chain spanning the entire membrane306

bilayer were included in the dataset. Additionally, chains without integral membrane residues were307

removed from the structure. All peripheral membrane proteins, defined as proteins with no TM308

chain, were filtered out. The remaining 9,329 TM sequences were then split using the MMSeqs2309

easy clustering module with a minimum sequence identity of 80% and a coverage threshold of 50%.310

The resulting clusters were split to an 80-10-10 ratio into the training set (7,632 sequences, 81.81%),311

validation set (770 sequences, 8.25%), and the testing set (927 sequences, 9.94%).312

5.7 Benchmarking Data Curation313

Solubility We leveraged the same set of 9,329 membrane sequences from the MeMDLM training314

dataset to develop a binary classifier that predicts the solubility of each amino acid within a protein315

sequence. Each sequence was annotated on a per-residue basis, with TM (class 1) and soluble (class316

0) labels assigned according to the sequence’s uppercase and lowercase residues, respectively. The317

same training, testing, and validation data splits used to train MeMDLM were also utilized to train318

and evaluate this classifier.319
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Membrane Localization We collected 30,020 protein sequences from DeepLoc 2.0 to build a320

binary classifier that predicts a protein sequence’s cellular localization. The authors of the dataset321

provided a multi-label label for each sequence indicating its localization(s). We used the authors’322

provided data splits, with training sequences having 11 labels and testing sequences having 8 labels.323

5.8 Protein Sequence Generation324

ProtGPT2 Prepared sequences—split to contain 60 amino acids per line with beginning- and end-325

of-sequence tags—were passed into the run_clm.py script (https://huggingface.co/nferruz/ProtGPT2)326

to fine-tune the pre-trained ProtGPT2 pLM. Fine-tuning was performed over 100 epochs with a327

learning rate of 3e-4 and batch size of 2, calculating training loss at every step as the negative328

log-likelihood loss between logits and labels. The fine-tuned model was used to generate 100 de novo329

membrane protein sequences.330

MeMDLM We generated 100 de novo protein sequences of random lengths by inputting sequences331

consisting of only <mask> tokens into the forward pass of MeMDLM. Next, we scaffolded around332

TM or soluble motifs by masking specific residues; partially masked sequences were passed through333

the model for generation. We evaluated MeMDLM against EvoDiff’s reconstruction quality.334
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