
AI4X 2025, Singapore, 8–11 July 2025

Learning the deflated conjugate gradient method using gradient-basedmeta-solving

Sohei Arisaka a,b, Qianxiao Li b,c, Osamu Imazekia

a Kajima Corporation, Singapore 489690 s.arisaka@kajima.com.sg, imazeki@kajima.com
b Department of Mathematics, National University of Singapore, Singapore 119076 qianxiao@nus.edu.sg
c Institute for Functional Intelligent Materials, National University of Singapore, Singapore 117544

1. Introduction
Large-scale sparse matrices are ubiquitous in sci-

ence and engineering, such as computational fluid
dynamics and structural analysis. Solving these sys-
tems efficiently is a fundamental task in numerical
linear algebra, with iterative methods being a pop-
ular choice due to their scalability and robustness.
For symmetric positive-definite (SPD) systems, the
Conjugate Gradient (CG) method is widely used, al-
though it can experience slow convergence when
encountering difficult spectral properties [1]. The
Deflated Conjugate Gradient (D-CG) method [2] ad-
dresses this by projecting the original system onto a
deflation subspace, typically spanned by eigenvectors
associated with the smallest eigenvalues. However,
since CG convergence depends on the entire spec-
trum and right-hand side of the linear system, the
conventional choice is not always optimal [3].
In this work, we propose learning a more ef-

fective deflation subspace using a neural network
combined with the gradient-based meta-solving
(GBMS) framework [4]. GBMS generalizes gradient-
based meta-learning [5] to the domain of numer-
ical solvers. Using GBMS, we train a neural net-
work to generate a deflation subspace by directly in-
corporating the observed convergence behavior of
the D-CG method. We also investigate non-intrusive
gradient-based meta-solving (NI-GBMS) [6] for prac-
tical situationswhere the solver does not support au-
tomatic differentiation. Our experiments show that
the learned deflation subspace substantially reduces
the number of iterations compared to the conven-
tional approach.

2. Methodology
2.1 Deflated Conjugate Gradient method [2]
We consider solving a SPD linear system Ax = b

using the D-CG method. Deflation modifies the it-
erative process by introducing a deflation subspace
S ⊂ Rn, spanned by the columns of Z ∈ Rn×k. Us-
ing theA-orthogonal projection onto S, denoted by
πA(S), the solution x can be split into

x = πA(S)x+
(
I − πA(S)

)
x. (1)

The first term πA(S)x is computed by solving a re-
duced system (ZTAZ) z = ZT b, which is inexpen-
sive since k ≪ n. The remaining component is ob-
tained by solving the deflated system:(

I − πA(S)
)T

Ax̂ =
(
I − πA(S)

)T
b. (2)

Because deflation removes the impact of problem-
atic modes, the modified system converges faster
than the original system [2].
A standard choice of Z is the eigenvectors corre-

sponding to the smallest eigenvalues ofA. It aims to
reduce the effective condition number κeff , the ratio
of the largest to the smallest nonzero eigenvalues of
the deflatedmatrix (I−πA(S))TA, appearing in the
following convergence bound:

∥e(m)∥A ≤ 2

(√
κeff − 1

√
κeff + 1

)m

∥e(0)∥A, (3)

where e(m) = x− x(m) is the error at them-th D-CG
iteration. However, there are two overlooked points.
First, removing the smallest eigenvalues may not be
the best choice for reducing κeff . Second, although
the condition number gives the upper bound of the
error, it does not fully explain the convergence be-
havior of the CG method. The convergence depends
on not only κeff but also the spectrum of the matrix
and the right-hand side of the linear system [3], and
in practice, it is much faster than the bound. Thus,
there can be a choice of the deflation basis better
than the conventional one.

2.2 Gradient-based meta-solving [4]
Weuse theGBMS framework to learn thedeflation

basis Z. Let τ be the task of solving a linear system,
Φ(τ ;Z) denote the D-CG method that solves task τ
using the deflation basis Z, and Ψ(τ ;ω) be a neural
network, called meta-solver, with weight ω that pro-
duces Zτ for each task τ . We trainΨ to minimize

Eτ∼P

[
L
(
Φ(τ ; Ψ(τ ;ω))

)]
, (4)

where P is a task distribution andLmeasures the D-
CG performance. A key advantage of GBMS is that
it can incorporate the actual behavior of Φ, which
is missing in the solver-independent training [7].
Rather than minimizing just the residual norm or
error, we target the number of iterations needed to
reach a given tolerance δ, denoted by Lδ. Since Lδ is
discrete, we use the differentiable surrogate loss L̃δ:

L̃δ =

Lδ∑
m=0

sigmoid
(
∥r(m)∥/∥b∥ − δ

)
, (5)

where r(m) is the residual at the m-th D-CG itera-
tion. Because L̃δ is differentiable, we can trainΨ via
backpropagation, provided the solver Φ is compati-
ble with automatic differentiation.

https://orcid.org/0000-0002-3408-2599
https://orcid.org/0000-0002-3903-3737
mailto:s.arisaka@kajima.com.sg
mailto:imazeki@kajima.com
mailto:qianxiao@nus.edu.sg


AI4X 2025, Singapore, 8–11 July 2025

2.3 Non-intrusive gradient-based meta-solving [6]
We also consider the scenario where Φ is not

automatic-differentiable (e.g., a legacy solver in C++
or Fortran). In this setting, we employ the NI-GBMS
algorithm [6], in which ∇Φ is approximated using
the control variate forward gradient:

hv = (∇Φ · v)v − (∇Φ̂ · v)v +∇Φ̂ (6)

where v is a random Rademacher vector and Φ̂ is
a neural network imitating Φ. The first term is
known as the forward gradient [8], which is an un-
biased estimator of∇Φ and can be approximated by
the finite difference even when Φ is not automatic-
differentiable. The control variate forward gradient
hv reduces the variance of the forward gradient us-
ing (∇Φ̂ · v)v as a control variate, while preserving
unbiasedness. During training of the meta-solverΨ,
we simultaneously train the surrogate model Φ̂ to
match the forward gradients of the actual solver Φ.

3. Numerical experiment
3.1 Problem setting
We demonstrate the proposed method on a dam

break problem simulated by the Moving Particle
Semi-implicit (MPS) method [9]. MPS is a meshless
technique for incompressible flow simulations and
requires solving a pressure Poisson equation at each
time step. It is represented by SPD system Ax = b,
where A ∈ Rn×n encodes particle interactions and
boundary conditions, x ∈ Rn represents the pres-
sure, and b ∈ Rn is the source term from deviations
in particle number density. Here,A and b change at
every time step in response to fluid motion.
To accelerate solving the pressure Poisson equa-

tion, we apply the proposed method with a graph
neural network (GNN) as ourmeta-solverΨ. We treat
A as the graph adjacency matrix and b as the node
feature. We adopt the GNN architecture from [10],
originally developed for predicting solutions of lin-
ear systems, but modify its output dimension from
n × 1 to n × k to produce a deflation basis Z. For
the surrogatemodel Φ̂ in the NI-GBMS approach, we
employ the same GNN architecture but includeZ as
additional node features. We simulate thedambreak
problem for 1 secondwith 2,500 time steps, eachpro-
ducing one linear system of size n = 992. Although
the size of the linear system is relatively small, it has
varying spectral properties due to the evolving par-
ticle configuration. These tasks are split into train-
ing, validation, and test sets with a ratio of 8:1:1. The
meta-solverΨ is trained on the training set using the
GBMS orNI-GBMS algorithm, and its performance is
evaluated on the test set.

3.2 Results
Table 1 compares three meta-solvers: Ψ0, Ψeig,

and Ψnn. Ψ0 always outputs the zero matrix, cor-
responding to the standard CG method without de-
flation. Ψeig is a conventional non-learning base-
line that selects eigenvectors corresponding to the

smallest eigenvalues ofA. Ψnn is our proposedGNN-
based meta-solver, trained using GBMS (where Φ is
differentiable) or NI-GBMS (where Φ is not).
The proposed Ψnn significantly reduces iteration

counts compared to both the standard CGΨ0 and the
eigenvector-based baseline Ψeig. In the GBMS case,
for a tolerance of δ = 10−4,Ψnnwith k = 3 achieves a
6.3× reduction in iteration count relative toΨeig. For
δ = 10−6, the reduction is about 1.9×. These results
confirm that relying solely on the smallest eigenval-
ues may be suboptimal, and a learned deflation ba-
sis can reduce the number of iterations significantly.
In the NI-GBMS case, Ψnn with k = 2 achieves a
2.7× reduction in iterations for δ = 10−4 and 1.6×
for δ = 10−6. Although the reduction is smaller
than the GBMS case due to the approximated gra-
dient, the NI-GBMS approach still outperforms the
eigenvector-based deflation by a large margin. The
results demonstrate the effectiveness of learning the
deflation subspace in both automatic-differentiable
and non-automatic-differentiable settings.

Table 1: Number of iterations required by the D-CG
method to reach tolerance δ.

(a) Iterations to reach δ = 10−4.

Ψ Training k = 1 k = 2 k = 3

Ψ0 – 14.38 14.38 14.38
Ψeig – 13.28 12.62 11.94
Ψnn GBMS 3.44 3.01 1.91

NI-GBMS 4.66 4.59 6.61

(b) Iterations to reach δ = 10−6.

Ψ Training k = 1 k = 2 k = 3

Ψ0 – 21.56 21.56 21.56
Ψeig – 20.13 19.08 18.08
Ψnn GBMS 10.87 10.45 9.60

NI-GBMS 12.15 11.96 13.67

4. Conclusion
We present a novel approach for learning the de-

flation subspace of the D-CG method via gradient-
based meta-solving. By training a graph neu-
ral network using the GBMS framework, we cap-
ture both system-specific and convergence-related
characteristics, yielding substantially faster conver-
gence compared to the conventional choice of de-
flating with eigenvectors of the smallest eigenval-
ues. Our numerical experiments demonstrate the
effectiveness of this technique in both automatic-
differentiable and non-automatic-differentiable set-
tings. Future work includes more detailed perfor-
mance analysis considering wall-clock time, design-
ing more advanced network architectures, and ex-
tending the approach to larger-scale industrial sim-
ulations.



AI4X 2025, Singapore, 8–11 July 2025

Acknowledgments
S. Arisaka and O. Imazeki are supported by Ka-

jima Corporation, Japan. Q. Li is supported by the
National Research Foundation, Singapore, under the
NRF fellowship (NRF-NRFF13-2021-0005).

References

[1] Jörg Liesen and Zdenek Strakos. Krylov Subspace
Methods: Principles and Analysis. Oxford Univer-
sity Press, 2012.

[2] Y Saad, M Yeung, J Erhel, and F Guyomarc’h. A
Deflated Version of the Conjugate Gradient Al-
gorithm. SIAM Journal on Scientific Computing,
21(5):1909–1926, 2000.

[3] Erin Carson, Jörg Liesen, and Zdeněk Strakoš.
Towards understandingCGandGMRES through
examples. Linear algebra and its applications,
692:241–291, 1 July 2024.

[4] Sohei Arisaka and Qianxiao Li. Principled Ac-
celeration of Iterative Numerical Methods Us-
ing Machine Learning. In Andreas Krause,
Emma Brunskill, Kyunghyun Cho, Barbara En-
gelhardt, Sivan Sabato, and Jonathan Scarlett,
editors, Proceedings of the 40th International Con-
ference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pages
1041–1059. PMLR, 2023.

[5] Chelsea Finn, Pieter Abbeel, and Sergey Levine.
Model-Agnostic Meta-Learning for Fast Adapta-
tion of Deep Networks. In Doina Precup and
YeeWhye Teh, editors, Proceedings of the 34th In-
ternational Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Re-
search, pages 1126–1135. PMLR, 2017.

[6] Sohei Arisaka and Qianxiao Li. Accelerating
Legacy Numerical Solvers by Non-intrusive
Gradient-based Meta-solving. In Ruslan
Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett,
and Felix Berkenkamp, editors, Proceedings
of the 41st International Conference on Machine
Learning, volume 235 of Proceedings of Machine
Learning Research, pages 1689–1708. PMLR,
2024.

[7] Jian Luo, Jie Wang, Hong Wang, Huanshuo
Dong, Zijie Geng, Hanzhu Chen, and Yufei
Kuang. Neural Krylov Iteration for Accelerating
Linear System Solving. In The Thirty-eighth An-
nual Conference on Neural Information Processing
Systems, 6 November 2024.

[8] Atılım Güneş Baydin, Barak A Pearlmutter, Don
Syme, Frank Wood, and Philip Torr. Gradi-
ents without Backpropagation. arXiv [cs.LG],
17 February 2022.

[9] Gen Li, Guangtao Duan, Xiaoxing Liu, and Zidi
Wang. Moving particle semi-implicit method,
1 January 2023.

[10] Jie Chen. Graph neural preconditioners for it-
erative solutions of sparse linear systems. arXiv
[math.NA], 2 June 2024.

Appendix A. Algorithms

Algorithm 1: GBMS
Input: (P, T ): task space,Ψ: meta-solver, Φ:

differentiable solver, S: stopping
criterion, α: learning rate

Result: ω: optimized meta-solver parameter
1: while S is not satisfied do
2: τ ∼ P ; // sample task τ from P
3: θτ ← Ψ(τ ;ω) ; // generate θτ byΨ with ω
4: û← Φ(τ ; θτ ) ; // solve task τ using Φ with θτ
5: ω ← ω − α∇ωLτ (û) ; // update ω using

gradient descent

Algorithm 2: NI-GBMS
Input: (P, T ): task space,Ψ: meta-solver with

weight ω, f : legacy solver, f̂ : surrogate
model with weight ϕ, L: loss function,
Opt: optimizer forΨ, Ôpt: optimizer for
f̂ , P̂ : distribution of v, ϵ: positive scalar,
S: stopping criterion

Result: ω: optimized meta-solver parameter
1: while S is not satisfied do
2: τ ∼ P , v ∼ P̂ ; // Sample task τ and random

vector v from P and P̂
/* Forward computation */

3: θ ← Ψ(τ ;ω) ; // Generate solver parameter θ
byΨ

4: y ← f(θ), y+ ← f(θ + ϵv) ; // Solve task τ
twice using θ and θ + ϵv

5: d← y+−y
ϵ

; // Compute the directional
derivative of f

6: ŷ, d̂← ForwardAD(f̂ ,θ,v) ; // Compute
output and directional derivative of f̂ using
forward mode AD

7: L← L(y), L̂← (d− d̂)2 ; // Compute main
loss L and surrogate model loss L̂
/* Backward computation */

8: h← dv − d̂v +∇θ f̂(θ) ; // Compute control
variate forward gradient

9: ∇ωL← ModifiedBackprop(L,ω,h) ;
// Compute∇ωL with modified
backpropagation

10: ∇ϕL̂← Backprop(L̂,ϕ) ; // Compute∇ϕL̂ by
backpropagation
/* Update */

11: ω ← Opt(ω,∇ωL), ϕ← Ôpt(ϕ,∇ϕL̂) ;
// Update ω and ϕ using optimizers


	Introduction
	Methodology
	Deflated Conjugate Gradient method Saad2000-fd
	Gradient-based meta-solving Arisaka2023-aw
	Non-intrusive gradient-based meta-solving Arisaka2024-oc

	Numerical experiment
	Problem setting
	Results

	Conclusion
	Appendices
	Appendix Algorithms

