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1. Introduction
Large-scale sparse matrices are ubiquitous in sci-

ence and engineering, such as computational fluid
dynamics and structural analysis. Solving these sys-
tems efficiently is a fundamental task in numerical
linear algebra, with iterative methods being a pop-
ular choice due to their scalability and robustness.
For symmetric positive-definite (SPD) systems, the
Conjugate Gradient (CG) method is widely used, al-
though it can experience slow convergence when
encountering difficult spectral properties [1]. The
Deflated Conjugate Gradient (D-CG) method [2] ad-
dresses this by projecting the original system onto a
deflation subspace, typically spanned by eigenvectors
associated with the smallest eigenvalues. However,
since CG convergence depends on the entire spec-
trum and right-hand side of the linear system, the
conventional choice is not always optimal [3].
In this work, we propose learning a more ef-

fective deflation subspace using a neural network
combined with the gradient-based meta-solving
(GBMS) framework [4]. GBMS generalizes gradient-
based meta-learning [5] to the domain of numer-
ical solvers. Using GBMS, we train a neural net-
work to generate a deflation subspace by directly in-
corporating the observed convergence behavior of
the D-CG method. We also investigate non-intrusive
gradient-based meta-solving (NI-GBMS) [6] for prac-
tical situationswhere the solver does not support au-
tomatic differentiation. Our experiments show that
the learned deflation subspace substantially reduces
the number of iterations compared to the conven-
tional approach.

2. Methodology
2.1 Deflated Conjugate Gradient method [2]
We consider solving a SPD linear system Ax = b

using the D-CG method. Deflation modifies the it-
erative process by introducing a deflation subspace
S ⊂ Rn, spanned by the columns of Z ∈ Rn×k. Us-
ing theA-orthogonal projection onto S, denoted by
πA(S), the solution x can be split into

x = πA(S)x+
(
I − πA(S)

)
x. (1)

The first term πA(S)x is computed by solving a re-
duced system (ZTAZ) z = ZT b, which is inexpen-
sive since k ≪ n. The remaining component is ob-
tained by solving the deflated system:(

I − πA(S)
)T

Ax̂ =
(
I − πA(S)

)T
b. (2)

Because deflation removes the impact of problem-
atic modes, the modified system converges faster
than the original system [2].
A standard choice of Z is the eigenvectors corre-

sponding to the smallest eigenvalues ofA. It aims to
reduce the effective condition number κeff , the ratio
of the largest to the smallest nonzero eigenvalues of
the deflatedmatrix (I−πA(S))TA, appearing in the
following convergence bound:

∥e(m)∥A ≤ 2

(√
κeff − 1

√
κeff + 1

)m

∥e(0)∥A, (3)

where e(m) = x− x(m) is the error at them-th D-CG
iteration. However, there are two overlooked points.
First, removing the smallest eigenvalues may not be
the best choice for reducing κeff . Second, although
the condition number gives the upper bound of the
error, it does not fully explain the convergence be-
havior of the CG method. The convergence depends
on not only κeff but also the spectrum of the matrix
and the right-hand side of the linear system [3], and
in practice, it is much faster than the bound. Thus,
there can be a choice of the deflation basis better
than the conventional one.

2.2 Gradient-based meta-solving [4]
Weuse theGBMS framework to learn thedeflation

basis Z. Let τ be the task of solving a linear system,
Φ(τ ;Z) denote the D-CG method that solves task τ
using the deflation basis Z, and Ψ(τ ;ω) be a neural
network, called meta-solver, with weight ω that pro-
duces Zτ for each task τ . We trainΨ to minimize

Eτ∼P

[
L
(
Φ(τ ; Ψ(τ ;ω))

)]
, (4)

where P is a task distribution andLmeasures the D-
CG performance. A key advantage of GBMS is that
it can incorporate the actual behavior of Φ, which
is missing in the solver-independent training [7].
Rather than minimizing just the residual norm or
error, we target the number of iterations needed to
reach a given tolerance δ, denoted by Lδ. Since Lδ is
discrete, we use the differentiable surrogate loss L̃δ:

L̃δ =

Lδ∑
m=0

sigmoid
(
∥r(m)∥/∥b∥ − δ

)
, (5)

where r(m) is the residual at the m-th D-CG itera-
tion. Because L̃δ is differentiable, we can trainΨ via
backpropagation, provided the solver Φ is compati-
ble with automatic differentiation.
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2.3 Non-intrusive gradient-based meta-solving [6]
We also consider the scenario where Φ is not

automatic-differentiable (e.g., a legacy solver in C++
or Fortran). In this setting, we employ the NI-GBMS
algorithm [6], in which ∇Φ is approximated using
the control variate forward gradient:

hv = (∇Φ · v)v − (∇Φ̂ · v)v +∇Φ̂ (6)

where v is a random Rademacher vector and Φ̂ is
a neural network imitating Φ. The first term is
known as the forward gradient [8], which is an un-
biased estimator of∇Φ and can be approximated by
the finite difference even when Φ is not automatic-
differentiable. The control variate forward gradient
hv reduces the variance of the forward gradient us-
ing (∇Φ̂ · v)v as a control variate, while preserving
unbiasedness. During training of the meta-solverΨ,
we simultaneously train the surrogate model Φ̂ to
match the forward gradients of the actual solver Φ.

3. Numerical experiment
3.1 Problem setting
We demonstrate the proposed method on a dam

break problem simulated by the Moving Particle
Semi-implicit (MPS) method [9]. MPS is a meshless
technique for incompressible flow simulations and
requires solving a pressure Poisson equation at each
time step. It is represented by SPD system Ax = b,
where A ∈ Rn×n encodes particle interactions and
boundary conditions, x ∈ Rn represents the pres-
sure, and b ∈ Rn is the source term from deviations
in particle number density. Here,A and b change at
every time step in response to fluid motion.
To accelerate solving the pressure Poisson equa-

tion, we apply the proposed method with a graph
neural network (GNN) as ourmeta-solverΨ. We treat
A as the graph adjacency matrix and b as the node
feature. We adopt the GNN architecture from [10],
originally developed for predicting solutions of lin-
ear systems, but modify its output dimension from
n × 1 to n × k to produce a deflation basis Z. For
the surrogatemodel Φ̂ in the NI-GBMS approach, we
employ the same GNN architecture but includeZ as
additional node features. We simulate thedambreak
problem for 1 secondwith 2,500 time steps, eachpro-
ducing one linear system of size n = 992. Although
the size of the linear system is relatively small, it has
varying spectral properties due to the evolving par-
ticle configuration. These tasks are split into train-
ing, validation, and test sets with a ratio of 8:1:1. The
meta-solverΨ is trained on the training set using the
GBMS orNI-GBMS algorithm, and its performance is
evaluated on the test set.

3.2 Results
Table 1 compares three meta-solvers: Ψ0, Ψeig,

and Ψnn. Ψ0 always outputs the zero matrix, cor-
responding to the standard CG method without de-
flation. Ψeig is a conventional non-learning base-
line that selects eigenvectors corresponding to the

smallest eigenvalues ofA. Ψnn is our proposedGNN-
based meta-solver, trained using GBMS (where Φ is
differentiable) or NI-GBMS (where Φ is not).
The proposed Ψnn significantly reduces iteration

counts compared to both the standard CGΨ0 and the
eigenvector-based baseline Ψeig. In the GBMS case,
for a tolerance of δ = 10−4,Ψnnwith k = 3 achieves a
6.3× reduction in iteration count relative toΨeig. For
δ = 10−6, the reduction is about 1.9×. These results
confirm that relying solely on the smallest eigenval-
ues may be suboptimal, and a learned deflation ba-
sis can reduce the number of iterations significantly.
In the NI-GBMS case, Ψnn with k = 2 achieves a
2.7× reduction in iterations for δ = 10−4 and 1.6×
for δ = 10−6. Although the reduction is smaller
than the GBMS case due to the approximated gra-
dient, the NI-GBMS approach still outperforms the
eigenvector-based deflation by a large margin. The
results demonstrate the effectiveness of learning the
deflation subspace in both automatic-differentiable
and non-automatic-differentiable settings.

Table 1: Number of iterations required by the D-CG
method to reach tolerance δ.

(a) Iterations to reach δ = 10−4.

Ψ Training k = 1 k = 2 k = 3

Ψ0 – 14.38 14.38 14.38
Ψeig – 13.28 12.62 11.94
Ψnn GBMS 3.44 3.01 1.91

NI-GBMS 4.66 4.59 6.61

(b) Iterations to reach δ = 10−6.

Ψ Training k = 1 k = 2 k = 3

Ψ0 – 21.56 21.56 21.56
Ψeig – 20.13 19.08 18.08
Ψnn GBMS 10.87 10.45 9.60

NI-GBMS 12.15 11.96 13.67

4. Conclusion
We present a novel approach for learning the de-

flation subspace of the D-CG method via gradient-
based meta-solving. By training a graph neu-
ral network using the GBMS framework, we cap-
ture both system-specific and convergence-related
characteristics, yielding substantially faster conver-
gence compared to the conventional choice of de-
flating with eigenvectors of the smallest eigenval-
ues. Our numerical experiments demonstrate the
effectiveness of this technique in both automatic-
differentiable and non-automatic-differentiable set-
tings. Future work includes more detailed perfor-
mance analysis considering wall-clock time, design-
ing more advanced network architectures, and ex-
tending the approach to larger-scale industrial sim-
ulations.
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Appendix A. Algorithms

Algorithm 1: GBMS
Input: (P, T ): task space,Ψ: meta-solver, Φ:

differentiable solver, S: stopping
criterion, α: learning rate

Result: ω: optimized meta-solver parameter
1: while S is not satisfied do
2: τ ∼ P ; // sample task τ from P
3: θτ ← Ψ(τ ;ω) ; // generate θτ byΨ with ω
4: û← Φ(τ ; θτ ) ; // solve task τ using Φ with θτ
5: ω ← ω − α∇ωLτ (û) ; // update ω using

gradient descent

Algorithm 2: NI-GBMS
Input: (P, T ): task space,Ψ: meta-solver with

weight ω, f : legacy solver, f̂ : surrogate
model with weight ϕ, L: loss function,
Opt: optimizer forΨ, Ôpt: optimizer for
f̂ , P̂ : distribution of v, ϵ: positive scalar,
S: stopping criterion

Result: ω: optimized meta-solver parameter
1: while S is not satisfied do
2: τ ∼ P , v ∼ P̂ ; // Sample task τ and random

vector v from P and P̂
/* Forward computation */

3: θ ← Ψ(τ ;ω) ; // Generate solver parameter θ
byΨ

4: y ← f(θ), y+ ← f(θ + ϵv) ; // Solve task τ
twice using θ and θ + ϵv

5: d← y+−y
ϵ

; // Compute the directional
derivative of f

6: ŷ, d̂← ForwardAD(f̂ ,θ,v) ; // Compute
output and directional derivative of f̂ using
forward mode AD

7: L← L(y), L̂← (d− d̂)2 ; // Compute main
loss L and surrogate model loss L̂
/* Backward computation */

8: h← dv − d̂v +∇θ f̂(θ) ; // Compute control
variate forward gradient

9: ∇ωL← ModifiedBackprop(L,ω,h) ;
// Compute∇ωL with modified
backpropagation

10: ∇ϕL̂← Backprop(L̂,ϕ) ; // Compute∇ϕL̂ by
backpropagation
/* Update */

11: ω ← Opt(ω,∇ωL), ϕ← Ôpt(ϕ,∇ϕL̂) ;
// Update ω and ϕ using optimizers
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