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Abstract

We consider escaping saddle points of nonconvex problems where only the function
evaluations can be accessed. Although a variety of works have been proposed, the
majority of them require either second or first-order information, and only a few of
them have exploited zeroth-order methods, particularly the technique of negative
curvature finding with zeroth-order methods which has been proven to be the most
efficient method for escaping saddle points. To fill this gap, in this paper, we
propose two zeroth-order negative curvature finding frameworks that can replace
Hessian-vector product computations without increasing the iteration complexity.
We apply the proposed frameworks to ZO-GD, ZO-SGD, ZO-SCSG, ZO-SPIDER
and prove that these ZO algorithms can converge to (ϵ, δ)-approximate second-
order stationary points with less query complexity compared with prior zeroth-order
works for finding local minima.

1 Introduction

Nonconvex optimization has received wide attention in recent years due to its popularity in modern
machine learning (ML) and deep learning (DL) tasks. Specifically, in this paper, we study the
following unconstrained optimization problem:

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where both fi(·) and f(·) can be nonconvex. In general, finding the global optima of nonconvex
functions is NP-hard. Fortunately, finding local optima is an alternative because it has been shown in
theory and practice that local optima have comparable performance capabilities to global optima in
many machine learning problems [14, 15, 26, 17, 16, 19, 27]. Gradient-based methods have been
shown to be able to find an ϵ-approximate first-order stationary point (∥∇f(x)∥ ≤ ϵ) efficiently, both
in the deterministic setting (e.g., gradient descent [32]; accelerated gradient descent [8, 29]) and
stochastic setting (e.g., stochastic gradient descent [32, 37]; SCSG [28]; SPIDER [13]). However, in
nonconvex settings, first-order stationary points can be local minima, global minima, or even saddle
points. Converging to saddle points will lead to highly suboptimal solutions [20, 39] and destroy the
model’s performance. Thus, escaping saddle points has recently become an important research topic
in nonconvex optimization.

Several classical results have shown that, for ρ-Hessian Lipschitz functions (see Definition 1),
using the second-order information like computing the Hessian [33] or Hessian-vector products
[1, 9, 2], one can find an ϵ-approximate second-order stationary point (SOSP, ∥∇f(x)∥ ≤ ϵ and
∇2f(x) ⪰ −√ρϵI). However, when the dimension of x is large, even once access to the Hessian
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is computationally infeasible. A recent line of work shows that, by adding uniform random pertur-
bations, first-order (FO) methods can efficiently escape saddle points and converge to SOSP. In the
deterministic setting, [22] proposed the perturbed gradient descent (PGD) algorithm with gradient
query complexity Õ(log4 d/ϵ2) by adding uniform random perturbation into the standard gradient
descent algorithm. This complexity is later improved to Õ(log6 d/ϵ1.75) by the perturbed accelerated
gradient descent [24] which replaces the gradient descent step in PGD by Nesterov’s accelerated
gradient descent.

Table 1: A summary of the results of finding (ϵ, δ)-approximate SOSPs (see Definition 2) by the
zeroth-order algorithms. (CoordGE, GaussGE, and RandGE are abbreviations of “coordinate-wise
gradient estimator”, “Gaussian random gradient estimator” and “uniform random gradient estimator”,
respectively. RP, RS, and CR are abbreviations of “random perturbation”, “random search” and
“cubic regularization”, respectively.)

Algorithm Setting ZO Oracle Main Techniques Function Queries

ZPSGD [23] Deterministic GaussGE + Noise RP Õ
(

d2

ϵ5

)
†

PAGD [41] Deterministic CoordGE RP O
(

d log4 d
ϵ2

)
†

RSPI [30] Deterministic CoordGE RS + NCF O(d log d
ϵ8/3

) ‡

Theorem. 4 Deterministic CoordGE NCF O
(

d
ϵ2 + d log d

δ3.5

)
ZO-SCRN [5] Stochastic GaussGE CR Õ

(
d

ϵ3.5 + d4

ϵ2.5

)
†

Theorem. 3 Stochastic CoordGE NCF Õ
(

d
ϵ4 + d

ϵ2δ3 + d
δ5

)
Theorem. 5 Stochastic CoordGE + (RandGE) NCF Õ

(
d

ϵ10/3
+ d

ϵ2δ3 + d
δ5

)
Theorem. 6 Stochastic CoordGE NCF Õ

(
d
ϵ3 + d

ϵ2δ2 + d
δ5

)
† guarantees (ϵ,O(

√
ϵ))-approximate SOSP, and ‡ guarantees (ϵ, ϵ2/3)-approximate SOSP.

Another line of work for escaping saddle points is to utilize the negative curvature finding (NCF),
which can be combined with ϵ-approximate first-order stationary point (FOSP) finding algorithms
to find an (ϵ, δ)-approximate SOSP. The main task of NCF is to calculate the approximate smallest
eigenvector of the Hessian for a given point. Classical methods for solving NCF like the power
method and Oja’s method need the computation of Hessian-vector products. Based on the fact the
Hessian-vector product can be approximated by the finite difference between two gradients, [42, 4]
proposed the FO NCF frameworks Neon+ and Neon2, respectively. In general, adding perturbations
in the negative curvature direction can escape saddle points more efficiently than adding random
perturbations by a factor of Õ(poly(log d)) in theory. Specifically, in the deterministic setting,
CDHS [9] combined with Neon2 can find an (ϵ, δ)-approximate SOSP in gradient query complexity
Õ(log d/ϵ1.75). Recently, the same result was achieved by a simple single-loop algorithm [44], which
combined the techniques of perturbed accelerated gradient descent and accelerated negative curvature
finding. In the online stochastic setting, the best gradient query complexity result Õ(1/ϵ3) is achieved
by SPIDER-SFO+ [13], which combined the near-optimal ϵ-approximate FOSP finding algorithm
SPIDER and the NCF framework Neon2 to find an (ϵ, δ)-approximate SOSP.

However, the gradient information is not always accessible. Many machine learning and deep learning
applications often encounter situations where the calculation of explicit gradients is expensive or
even infeasible, such as black-box adversarial attack on deep neural networks [36, 31, 10, 6, 40] and
policy search in reinforcement learning [38, 11, 25]. Thus, zeroth-order (ZO) optimization, which
uses function values to estimate the explicit gradients as an important gradient-based black-box
method, is one of the best options for solving this type of ML/DL problem. A considerable body
of work has shown that ZO algorithms based on gradient estimation have comparable convergence
rates to their gradient-based counterparts. Although many gradient estimation-based ZO algorithms
have been proposed in recent years, most of them focus on the performance of converging to FOSPs
[34, 18, 21, 13], and only a few of them on SOSPs [23, 41, 30, 5].

As mentioned above, although there have been several works of finding local minima via ZO
methods, they utilized the techniques of random perturbations [23, 41], random search [30], and
cubic regularization [5], as shown in Table 1, which are not the most efficient ones of escaping saddle
points as discussed before. Specifically, in the deterministic setting, [23] proposed the ZO perturbed
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stochastic gradient (ZPSGD) method, which uses a batch of Gaussian smoothing based stochastic ZO
gradient estimators and adds a random perturbation in each iteration. As a result, ZPSGD can find an
ϵ-approximate SOSP using Õ

(
d2/ϵ5

)
function queries. [41] proposed the perturbed approximate

gradient descent (PAGD) method which iteratively conducts the gradient descent steps by utilizing
the forward difference version of the coordinate-wise gradient estimators until it reaches a point with
a small gradient. Then, PAGD adds a uniform perturbation and continues the gradient descent steps.
The total function queries of PAGD to find an ϵ-approximate SOSP is Õ

(
d log4 d/ϵ2

)
. Recently,

[30] proposed the random search power iteration (RSPI) method, which alternately performs random
search steps and power iteration steps. The power iteration step contains an inexact power iteration
subroutine using only the ZO oracle to conduct the NCF, and the core idea is to use a finite difference
approach to approximate the Hessian-vector product. In the stochastic setting, [5] proposed a zeroth-
order stochastic cubic regularization newton (ZO-SCRN) method with function query complexity
Õ
(
d/ϵ7/2

)
using Gaussian sampling-based gradient estimator and Hessian estimator. Unfortunately,

each iteration of ZO-SCRN needs to solve a cubic minimization subproblem, which does not have a
closed-form solution. Typically, inexact solvers for solving the cubic minimization subproblem need
additional computations of the Hessian-vector product [1] or the gradient [7].

Thus, it is then natural to explore faster ZO negative curvature finding based algorithms to make
escaping saddle points more efficient. To the best of our knowledge, negative curvature finding
algorithms with access only to ZO oracle is still a vacancy in the stochastic setting. Inspired by
the fact that the gradient can be approximated by the finite difference of function queries with high
accuracy, a natural question is: Can we turn FO NCF methods (especially the state-of-the-art Neon2)
into ZO methods without increasing the iteration complexity and turn ZO algorithms of finding FOSPs
into the ones of finding SOSPs?

Contributions. We summarize our main contributions as follows:

• We give an affirmative answer to the above question. We propose two ZO negative curvature
finding frameworks, which use only function queries and can detect whether there is a negative
curvature direction at a given point x on a smooth, Hessian-Lipschitz function f : Rd → R in
offline deterministic and online stochastic settings, respectively.

• We apply the proposed frameworks to four ZO algorithms and prove that these ZO algorithms can
converge to (ϵ, δ)-approximate SOSPs, which are ZO-GD, ZO-SGD, ZO-SCSG, and ZO-SPIDER.

• In the deterministic setting, compared with the classical setting where δ = O(
√
ϵ) [22, 24, 23, 41],

or the special case δ = ϵ2/3 [30], our Theorem 4 is always not worse than other algorithms in
Table 1. In the online stochastic setting, all of our algorithms don’t need to solve the cubic
subproblem as in ZO-SCRN and our Theorem 6 improves the best function query complexity by
a factor of Õ(1/

√
ϵ).

2 Preliminaries

Throughout this paper, we use ∥ · ∥ to denote the Euclidean norm of a vector and the spectral
norm of a matrix. We use Õ(·) to hide the poly-logarithmic terms. For a given set S drawn from
[n] := {1, 2, . . . , n}, define fS(·) := 1

|S|
∑

i∈S fi(·).

Definition 1. For a twice differentiable nonconvex function f : Rd → R,

• f is ℓ-Lipschitz smooth if ∀x, y ∈ Rd, ∥∇f(x)−∇f(y)∥ ≤ ℓ∥x− y∥.

• f is ρ-Hessian Lipschitz if ∀x, y ∈ Rd, ∥∇2f(x)−∇2f(y)∥ ≤ ρ∥x− y∥.
Definition 2. For a twice differentiable nonconvex function f : Rd → R, we say

• x ∈ Rd is an ϵ-approximate first-order stationary point if ∥∇f(x)∥ ≤ ϵ.

• x ∈ Rd is an (ϵ, δ)-approximate second-order stationary point if ∥∇f(x)∥ ≤ ϵ,∇2f(x) ⪰ −δI.

We need the following assumptions which are standard in the literature of finding SOSPs [4, 13, 44].

Assumption 1. We assume that f(·) in (1) satisfies:
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• ∆f := f(x0)− f(x∗) <∞ where x∗ := argminx f(x).

• Each component function fi(x) is ℓ-Lipschitz smooth and ρ-Hessian Lipschitz.

• (For online case only) The variance of the stochastic gradient is bounded: ∀x ∈ Rd, E∥∇fi(x)−
∇f(x)∥2 ≤ σ2.

We’ll also need the following more stringent assumption to get high-probability convergence results
of ZO-SPIDER.

Assumption 2. We assume that Assumption 1 holds, and in addition, the gradient of each component
function fi(x) satisfies ∀i, x ∈ Rd, ∥∇fi(x)−∇f(x)∥2 ≤ σ2.

2.1 ZO Gradient Estimators

Given a smooth, Hessian Lipschitz function f , a central difference version of the deterministic
coordinate-wise gradient estimator is defined by

∇̂coordf(x) =

d∑
i=1

f(x+ µei)− f(x− µei)

2µ
ei, (CoordGradEst)

where ei denotes a standard basis vector with 1 at its i-th coordinate and 0 otherwise; µ is the
smoothing parameter, which is a sufficient small positive constant. A central difference version of the
random gradient estimator is defined by

∇̂randf(x) = d
f(x+ µu)− f(x− µu)

2µ
u, (RandGradEst)

where u ∈ Rd is a random direction drawn from a uniform distribution over the unit sphere; µ is the
smoothing parameter, which is a sufficient small positive constant.

Remark 1. Deterministic vs. Random: CoordGradEst needs d times more function queries than
RandGradEst. However, as will be discussed in section 4, it has a lower approximation error and
thus can reduce the iteration complexity. Central Difference vs. Forward Difference (please refer to
Appendix A.1): Under the assumption of Hessian Lipschitz, a smaller approximation error bound can
be obtained by the central difference version of both CoordGradEst and RandGradEst.

2.2 ZO Hessian-Vector Product Estimator

By the definition of derivative: ∇2f(x) · v = limµ→0
∇f(x+µv)−∇f(x)

µ , we have∇2f(x) · v can be
approximated by the difference of two gradients∇f(x+v)−∇f(x) for some v with small magnitude.
On the other hand, ∇f(x+ v),∇f(x) can be approximated by ∇̂coordf(x+ v), ∇̂coordf(x) with
high accuracy, respectively. Then the coordinate-wise Hessian-vector product estimator is defined by:

Hf (x)v ≜
d∑

i=1

f(x+ v + µei)− f(x+ v − µei) + f(x− µei)− f(x+ µei)

2µ
ei. (2)

Note that we do not need to know the explicit representation ofHf (x). It is merely used as a notation
for a virtual matrix and can be viewed as the Hessian∇2f(x0) with minor perturbations. As stated
in the following lemma, the approximation error is efficiently upper bounded.

Lemma 1. Assume that f is ρ-Hessian Lipschitz, then for any smoothing parameter µ and x ∈ Rd,
we have

∥Hf (x)v −∇2f(x)v∥ ≤ ρ
(
∥v∥2/2 +

√
dµ2/3

)
. (3)

The ZO Hessian-vector product estimator was previously studied in [43, 30], but we provide a tighter
bound than that in Lemma 6 in [30]. This is because we utilize properties of the central difference
version of the coordinate-wise gradient estimator under the Hessian Lipschitz assumption. It is then
directly concluded that, if f(·) is quadratic, we have ρ = 0 and ∥Hf (x)v −∇2f(x)v∥ = 0.
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3 Zeroth-Order Negative Curvature Finding

In this section, we introduce how to find the negative curvature direction near the saddle point using
zeroth-order methods. Recently, based on the fact that the Hessian-vector product ∇2f(x) · v can
be approximated by ∇f(x + v) − ∇f(x) with approximation error up to O(∥v∥2), [4] proposed
a FO framework named Neon2 that can replace the Hessian-vector product computations in NCF
subroutine with gradient computations and thus can turn a FO algorithm for finding FOSPs into a FO
algorithm for finding SOSPs. Enlightened by Neon2, we propose two zeroth-order NCF frameworks
(i.e., ZO-NCF-Online and ZO-NCF-Deterministic) using only function queries to solve nonconvex
problems in the online stochastic setting and offline deterministic setting, respectively.

3.1 Stochastic Setting

In this subsection, we focus on solving the NCF problem with zeroth-order methods under the
online stochastic setting and propose ZO-NCF-Online. Before introducing ZO-NCF-Online, we first
introduce ZO-NCF-Online-Weak with weak confidence of 2/3 for solving the NCF problem.

We summarize ZO-NCF-Online-Weak in Algorithm 1. Specifically, ZO-NCF-Online-Weak consists
of at most T = O( log

2 d
δ2 ) iterations and works as follows: Given a detection point x0, add a

random perturbation with small magnitude σ as the starting point. At the t-th iteration where
t = 1, . . . , T , set µt = ∥xt − x0∥ to be the smoothing parameter µ in (2). Then we keep updating
xt+1 = xt−ηHfi(x0)(xt−x0) whereHfi(x0)(xt−x0) is the ZO Hessian-vector product estimator
and stops whenever ∥xt+1 − x0∥ ≥ r or the maximum iteration number T is reached. Thus as
long as Algorithm 1 does not terminate, we have that the approximation error ∥Hfi(x0)(xt − x0)−
∇2fi(x0)(xt − x0)∥ can be bounded by O(

√
dr2) according to Lemma 1. Note that, although

the error bound is poorer by a factor of O(
√
d) as compared to Neononline

weak in [4] which used the
difference of two gradients to approximate the Hessian-vector product and achieve an approximation
error up toO(r2), with our choice of r in Algorithm 1, the error term is still efficiently upper bounded.

Algorithm 1 ZO-NCF-Online-Weak (f , x0, δ)

1: η ← δ
C2

0ℓ
2 log(100d)

, T ← C2
0 log(100d)

ηδ , σ ← η2δ3

(100d)3C0ρ
, r ← (100d)C0σ

2: ξ ← σ ξ′

∥ξ′∥ , with ξ′ ∼ N (0, I)

3: x1 ← x0 + ξ
4: for t = 1, . . . , T do
5: µt ← ∥xt − x0∥
6: xt+1 = xt − ηHfi(x0)(xt − x0) with µ = µt and i ∈ [n]
7: if ∥xt+1 − x0∥ ≥ r then return v = xs−x0

∥xs−x0∥ for a uniformly random s ∈ [t]

Return v = ⊥

Other than the additional error term caused by ZO approximation, the motivation of ZO-NCF-Online-
Weak is almost the same as Neononline

weak . That is, under reasonable control of the approximation
error of the Hessian-vector product, using the update rule of Oja’s method [35] to approximately
calculate the eigenvector corresponding to the minimum eigenvalue of∇2f(x0) =

1
n

∑n
i=1∇2fi(x0).

Under similar analysis, we conclude that as long as the minimum eigenvalue of ∇2f(x0) satisfies
λmin(∇2f(x0)) ≤ −δ, ZO-NCF-Online-Weak will stop before T and find a negative curvature
direction that aligns well with the eigenvector corresponding to the minimum eigenvalue of∇f2(x0).
Then we have the following lemma:
Lemma 2 (ZO-NCF-Online-Weak). The output v of Algorithm 1 satisfies: If λmin(∇2f(x0)) ≤ −δ,
then with probability at least 2/3, v ̸= ⊥ and vT∇2f(x0)v ≤ − 3

4δ.

We summarize ZO-NCF-Online in Algorithm 2. Specifically, ZO-NCF-Online repeatedly calls ZO-
NCF-Online-Weak for Θ(log(1/p)) times to boost the confidence of solving the NCF problem from
2/3 to 1− p. We have the following results:

Lemma 3. In the same setting as in Algorithm 2, define z = 1
m

∑m
j=1 v

T(Hfij
(x0))v. Then, if

∥v∥ ≤ δ
16dρ and m = Θ( ℓ

2

δ2 ), with probability at least 1− p, we have
∣∣∣ z
∥v∥2 − vT∇2f(x)v

∥v∥2

∣∣∣ ≤ δ
4 .
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Algorithm 2 ZO-NCF-Online
Input: f(·) = 1

n

∑n
i=1 fi(·), x0, δ > 0, p ∈ (0, 1].

1: for j = 1, 2, · · · ,Θ(log(1/p)) do
2: vj ← ZO-NCF-Online-Weak (f, x0, δ)
3: if vj ̸= ⊥ then
4: m← Θ( ℓ

2 log(1/p)
δ2 ), v′ ← Θ( δ

dρ )vj
5: Draw i1, . . . , im uniformly randomly from [n]

6: zj =
1
m

∑m
k=1

(v′)THfik
(x0)v

′

∥v′∥2

7: if zj ≤ − 3δ
4 then return v = vj

Return v = ⊥

Theorem 1. Let f(x) = 1
n

∑n
i=1 fi(x) where each fi is ℓ-smooth and ρ-Hessian Lipschitz. For

every point x0 ∈ Rd, every δ ∈ (0, ℓ], the output of Algorithm 2 v satisfies that, with probability at
least 1− p: If v = ⊥, then∇2f(x0) ⪰ −δI; If v ̸= ⊥, then ∥v∥ = 1 and vT∇2f(x0)v ≤ − δ

2 . The
total function query complexity is

O
(
d log2(d/p)ℓ2

δ2

)
.

3.2 Deterministic Setting

In this subsection, we focus on solving the NCF problem with zeroth-order methods under the offline
deterministic setting and propose ZO-NCF-Deterministic. We summarize ZO-NCF-Deterministic in
Algorithm 3. Since we want to compute the eigenvector corresponding to the most negative eigenvalue
of ∇2f(x0) approximately, one can convert it into an approximated top eigenvector computation
problem of M := − 1

ℓ∇
2f(x0) + (1− 3δ

4ℓ )I. This is because all eigenvalues of ∇2f(x0) in [− 3δ
4 , ℓ]

will be mapped to eigenvalues of M in [−1, 1], and all eigenvalues of∇2f(x0) smaller than −δ will
be mapped to eigenvalues of M greater than 1 + δ

4ℓ .

Algorithm 3 ZO-NCF-Deterministic
Input: Function f(·), point x0, negative curvature δ > 0, confidence p ∈ (0, 1].

1: T ← C2
1 log d

p

√
ℓ

√
δ

, σ ≜ (d/p)
−2C1 δ

T 4ρ , r ≜ (d/p)C1σ

2: ξ ← σ ξ′

∥ξ′∥ , with ξ′ ∼ N (0, I)

3: x1 ← x0 + ξ, y0 ← 0, y1 ← ξ
4: for t = 1, . . . , T do
5: µt = ∥yt∥
6: yt+1 = 2M(yt)− yt−1 whereM(y) = (− 1

ℓHf (x0) + (1− 3δ
4ℓ ))y

7: xt+1 = x0 + yt+1 −M(yt)

8: if ∥xt+1 − x0∥ ≥ r then return v = xt+1−x0

∥xt+1−x0∥

Return v = ⊥.

Similar to ZO-NCF-Online-Weak, ZO-NCF-Deterministic starts by adding a random perturbation
ξ to the detection point x0. To find the negative curvature direction v of ∇2f(x0) such that
vT∇2f(x0)v ≤ − δ

2 , the classical power method which updates through xT+1 = x0 + MT ξ

[30] will take T ≥ Ω̃( ℓδ ) number of iterations since eigenvalues of M greater than 1 + δ
4ℓ grows in a

speed (1 + δ/ℓ)T . To reduce the iteration complexity T , we can replace the matrix polynomial MT

with the matrix Chebyshev polynomial TT (M) and virtually update xT+1 = x0 + TT (M)ξ.
Definition 3. Chebyshev polynomial {Tn(x)}n≥0 of the first kind is

T0(x) = 1, T1(x) = x, Tn+1(x) = 2x · Tn(x)− Tn−1(x),

then it satisfies Tt(x) =
{
cos(n arccos(x)), x ∈ [−1, 1]
1
2 [(x−

√
x2 − 1)n + (x+

√
x2 − 1)n], x > 1

.
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In the matrix case, we have the so-called matrix Chebyshev polynomial Tt(M) [3], which satisfies:
Tt+1(M)ξ = 2MTt(M)ξ − Tt−1(M)ξ. Thus, eigenvalues of M greater than 1 + δ

4ℓ will grow to(
1 + δ/4ℓ+

√
(δ/4ℓ)2 + δ/2ℓ

)T

≈
(
1 +

√
δ/ℓ

)T

, so we only need to choose T ≥
√
ℓ/δ.

On the other hand, since we only have access to the zeroth-order information, we need to stably
compute the matrix Chebyshev polynomial. In algorithm 3, we set µt = ∥yt∥ and useM(yt) =

(− 1
ℓHf (x0) + (1− 3δ

4ℓ ))yt to approximate Myt with approximation error up to 2ρ
√
drt
ℓ ∥yt∥. With

proper choice of r, it allows us to use the inexact backward recurrence [3] to ensure a stable
computation of matrix Chebyshev polynomial:

y0 = 0, y1 = ξ, yt+1 = 2M(yt)− yt−1.

Then the output xT+1 = x0 + yT+1 −M(yT ) is close to x0 + TT (M)ξ with a small approximation
error. Finally, we have the following theorem:
Theorem 2. Let f(x) = 1

n

∑n
i=1 fi(x) where each fi is ℓ-smooth and ρ-Hessian Lipschitz. For

every point x0 ∈ Rd, every δ ∈ (0, ℓ], the output of Algorithm 3 v satisfies that, with probability at
least 1− p: If v = ⊥, then∇2f(x0) ⪰ −δI; If v ̸= ⊥, then ∥v∥ = 1 and vT∇2f(x0)v ≤ − δ

2 . The
function query complexity is

O(
d log d

p

√
ℓ

√
δ

).

4 Applications of Zeroth-Order Negative Curvature Finding

In this section, we focus on applying the zeroth-order negative curvature frameworks to the following
ZO algorithms: ZO-GD, ZO-SGD, ZO-SCSG, and ZO-SPIDER. The following result shows that one
can verify if a point x is an ϵ-approximate FOSP using CoordGradEst.

Proposition 1. In the online setting, using CoordGradEst with a batch size ofO
((

128σ2

ϵ2 + 1
)
log 1

p

)
and smoothing parameter µ ≤

√
3ϵ

4ρ
√
d

, we can verify with probability at least 1 − p, either

∥∇f(x)∥ ≥ ϵ/2 or ∥∇f(x)∥ ≤ ϵ. In the deterministic setting, using once computation of Co-
ordGradEst with smoothing parameter µ ≤

√
3ϵ

2ρ
√
d

, we can verify with probability 1, either

∥∇f(x)∥ ≥ ϵ/2 or ∥∇f(x)∥ ≤ ϵ.

4.1 Applying Zeroth-Order Negative Curvature Finding to ZO-GD and ZO-SGD

We apply ZO-NCF-Online to ZO-SGD to turn it into a local minima finding algorithm, and propose
ZO-SGD-NCF in Algorithm 4. At each iteration, we use a batch size of O

(
σ2

ϵ2 log
(

2K
p

))
Coord-

GradEst to verify if xt is an ϵ-approximate stationary point. If not, ZO-SGD-NCF either estimates
the gradient ∇fS(xt) =

1
|S|

∑
i∈S ∇fi(xt) by CoordGradEst (Option I) or RandGradEst (Option

II) with both mini-batch size O(σ
2

ϵ2 ); If so, we call the ZO-NCF-Online subroutine. Then, If we find
an approximate negative curvature direction v around xt, then we update xt+1 by moving from xt in
the direction v with step-size δ/ρ. We have the following theorem:

Theorem 3. Under Assumption 1, we set µ1 =
√

3ϵ
2ρ

√
d

and other parameters as follows,

Option I:|S| = max{32σ
2

ϵ2
, 1},K = O(ρ

2∆f

δ3
+

ℓ∆f

ϵ2
), η =

1

4ℓ
, µ2 =

√
3ϵ

4ρ
√
d
;

Option II:|S| = max{8σ
2

ϵ2
, 1},K = O(ρ

2∆f

δ3
+

dℓ∆f

ϵ2
), η =

1

32dℓ
, µ2 = min

{√
3ϵ

4ρd
,

ϵ

32
√
dℓ

}
,

where µ1 and µ2 are only used in Line 3 and Line 5 (or Line 6) of Algorithm 4, respectively. With
probability at least 1− p, Algorithm 4 outputs an (ϵ, δ)-approximate local minimum in function query
complexity

Option I:Õ(dσ
2ℓ∆f

ϵ4
+

dσ2ρ2∆f

ϵ2δ3
+

dℓ2ρ2∆f

δ5
);Option II:Õ(d

2σ2ℓ∆f

ϵ4
+

dσ2ρ2∆f

ϵ2δ3
+

dℓ2ρ2∆f

δ5
).
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Algorithm 4 ZO-SGD-NCF
Input: Function f , starting point x0, confidence p ∈ (0, 1), ϵ > 0 and δ > 0.

1: for t = 0, . . . ,K − 1 do
2: uniformly randomly choose a set B with batch size O(σ

2

ϵ2 log(2K/p))

3: if ∥∇̂coordfB(xt)∥ ≥ 3ϵ
4 then

4: uniformly randomly choose S ⊆ [n]

5: Option I : xt+1 ← xt − η∇̂coordfS(xt)

6: Option II : xt+1 ← xt − η∇̂randfS(xt)
7: else
8: v ← ZO-NCF-Online (f, xt, δ,

p
2K )

9: if v = ⊥ then return xt

10: else xt+1 = xt ± δ
ρv

Algorithm 5 ZO-GD-NCF
Input: Function f , starting point x0, confidence p ∈ (0, 1), ϵ > 0 and δ > 0.

1: for t = 0, . . . ,K − 1 do
2: if ∥∇̂coordf(xt)∥ ≥ 3ϵ

4 then
3: Option I : xt+1 ← xt − η∇̂coordf(xt)

4: Option II : xt+1 ← xt − η∇̂randf(xt)
5: else
6: v ← ZO-NCF-Deterministic (f, xt, δ,

p
K )

7: if v = ⊥ then return xt

8: else xt+1 = xt ± δ
ρv

Remark 2. Note that the dominant term of the function query complexity in Option I is Õ( d
ϵ4 ), while

in Option II is Õ(d
2

ϵ4 ). This is because CoordGradEst has a lower approximation error and thus can
reduce the iteration complexity by a factor of d. Then the function query complexity of Option II is
dominated by evaluating the magnitude of the gradient (Line 3 in Algorithm 4).

In the Deterministic setting, we apply ZO-NCF-Deterministic to ZO-GD to turn it into a local minima
finding algorithm and propose ZO-GD-NCF in Algorithm 5. The update rule of ZO-GD-NCF is
similar to that in ZO-SGD-NCF, the only difference is that we don’t need to use mini-batch sampling
of the stochastic gradient. Similarly, we have the following theorem:

Theorem 4. Under Assumption 1, we set µ1 =
√

3ϵ
2ρ

√
d

and other parameters as follows,

Option I: K = O(ρ
2∆f

δ3
+

ℓ∆f

ϵ2
), η =

1

4ℓ
, µ2 =

√
3ϵ

4ρ
√
d
;

Option II: K = O(ρ
2∆f

δ3
+

dℓ∆f

ϵ2
), η =

1

8dℓ
, µ2 = min

{√
3ϵ

4ρd
,

ϵ

16
√
dℓ

}
,

where µ1 and µ2 are only used in Line 2 and Line 3 (or Line 4) of Algorithm 5, respectively. With
probability at least 1− p, Algorithm 5 outputs an (ϵ, δ)-approximate local minimum in function query
complexity

Option I: Õ(dℓ∆f

ϵ2
+ d

√
ℓ√
δ

ρ2∆f

δ3
); Option II: Õ(d

2ℓ∆f

ϵ2
+ d

√
ℓ√
δ

ρ2∆f

δ3
).

4.2 Applying Zeroth-Order Negative Curvature Finding to ZO-SCSG and ZO-SPIDER

In the stochastic setting, we can also apply the zeroth-order negative curvature finding to the variance
reduction-based algorithms: SCSG [28] and SPIDER [13]. Due to space limitation, We defer the
detailed discussions of these applications to Appendix E and F.

To apply ZO-NCF-Online to SCSG, we first propose a zeroth-order variant of the SCSG [28] method
in Algorithm 6. At the beginning of the j-th epoch, we estimate the gradient ∇fIj

(x̃j−1) by

8



CoordGradEst over a batch sampling set Ij with size B. In the inner loop iterations, the stochastic
gradient estimator vjk−1 is either constructed by CoordGradEst or by RandGradEst over a mini-batch
sampling set Ijk−1 with size b. Then we apply ZO-NCF-Online to ZO-SCSG and propose the
ZO-SCSG-NCF method (see Algorithm 7).
Theorem 5 (informal, full version deferred to Appendix E). With probability at least 2

3 , for both
Option I and Option II, Algorithm 7 outputs an (ϵ, δ)-approximate local minimum in function query
complexity

Õ(d( ℓ∆f

ϵ
4
3σ

2
3

+
ρ2∆f

δ3
)(
σ2

ϵ2
+

ℓ2

δ2
) + d

ℓ∆f

ϵ2
ℓ2

δ2
).

We apply ZO-NCF-Online to ZO-SPIDER to turn it into a local minima finding algorithm and propose
ZO-SPIDER-NCF in Algorithm 8. As a by-product, we also propose a zeroth-order variant of the
SPIDER method in Appendix G that can converge to an ϵ-approximate FOSP with high probability
rather than expectation. Using the same technique as in SPIDER-SFO+ [13], that is, instead of
moving in a large single step with size δ/ρ along the approximate negative curvature direction as
in ZO-SGD-NCF and ZO-SCSG-NCF, we can split it into δ/(ρη) equal length mini-steps with size
η. As a result, we can maintain the SPIDER estimates and improve the so-called non-improvable
coupling term 1

δ3ϵ2 by a fact of δ.

Theorem 6 (informal, full version deferred to Appendix F). With probability at least 3
4 , Algorithm 8

outputs an (ϵ, δ)-approximate local minimum in function query complexity

Õ
(
d

(
σℓ∆f

ϵ3
+

σℓρ∆f

ϵ2δ2
+

ℓ2ρ∆f

δ3ϵ
+

ℓ2ρ2∆f

δ5
+

σ2

ϵ2
+

σδℓ

ρϵ2
+

ℓ2

δ2

))
.

Remark 3. We can boost the confidence the of Theorem 5 and 6 to 1− p by running log(1/p) copies
of Algorithm 7 and 8.

5 Numerical Experiments

Octopus Function. We first consider the octopus function proposed by Du et al. [12]. The octopus
function has 2d local optimum: x∗ = (±4τ, . . . ,±4τ)T and 2d − 1 saddle points:

(0, . . . , 0)T, (±4τ, 0, . . . , 0)T, . . . , (±4τ, . . . ,±4τ, 0)T.

We compare ZO-GD-NCF, ZPSGD, PAGD, and RSPI on the octopus function with growing dimen-
sions. The parameters corresponding to the octopus function are set with τ = e, L = e, γ = 1. All
algorithms are initialized at point (0, . . . , 0)T, which is a strict saddle point and the one farthest from
the optimal points among the 2d − 1 saddle points.

We set ϵ = 1e − 4, δ =
√
ρϵ for all experiments and report the function value v.s. the number of

function queries in Figure 1. For RSPI, we follow the hyperparameter update strategy as described in
([30], Appendix, Section F): We keep σ2 constant and update σ1 = ρσ1

σ1 every Tσ1
iterations. We

conduct a grid search for Tσ1
and ρσ1

.

0 10000 20000 30000 40000 50000 60000
Function Query

1400

1200

1000

800

600

400

200

0

Ob
je

ct
iv

e 
Fu

nc
tio

n

d = 10
PAGD
ZO-GD-NCF
ZPSGD
RSPI

(a) d=10

0 50000 100000 150000 200000 250000
Function Query

4000

3000

2000

1000

0

Ob
je

ct
iv

e 
Fu

nc
tio

n

d = 30
PAGD
ZO-GD-NCF
ZPSGD
RSPI

(b) d=30

0 100000 200000 300000 400000
Function Query

7000

6000

5000

4000

3000

2000

1000

0

Ob
je

ct
iv

e 
Fu

nc
tio

n

d = 50

PAGD
ZO-GD-NCF
ZPSGD
RSPI

(c) d=50

0 200000 400000 600000 800000
Function Query

12000

10000

8000

6000

4000

2000

0

Ob
je

ct
iv

e 
Fu

nc
tio

n

d = 100

PAGD
ZO-GD-NCF
ZPSGD
RSPI

(d) d=100

Figure 1: Performance of ZO-GD-NCF, ZPSGD, PAGD, and RSPI on the octopus function with
growing dimensions.

The results in Figure 1 illustrate that all algorithms are able to escape saddle points. With the increase
of the dimension of the octopus function, more function queries are needed for each algorithm to
converge to the local minimum. Note that in all experiments, RSPI performs worse than PAGD and
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ZO-GD-NCF. This is because RSPI is not a gradient based algorithm. Although it can efficiently
escape from the saddle point using the negative curvature finding, it converges very slowly when the
current point is far from the saddle point due to the random search.

We defer more experimental results to Appendix G.

6 Conclusion

In this paper, we analyse two types of ZO negative curvature finding frameworks, which can be
used to find the negative curvature directions near a saddle point in the deterministic setting and
stochastic setting, respectively. We apply the two frameworks to four ZO algorithms and analyse the
complexities for converging to (ϵ, δ)-approximate SOSPs. Finally, we conduct several numerical
experiments to verify the effectiveness of the proposed method in escaping saddle points.

As a future work, it would be interesting to study the (zeroth-order) unified negative curvature finding
frameworks with generic analysis that can be applied to any FOSPs finding algorithms.
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