Argumentation for Evaluative Explanations of PDDL Plans

Anna Collins
Department of Informatics, King’s College London
{anna.collins } @kcl.ac.uk

Abstract—For robotics applications, clear communication
between an Al planning system and its human user is crucial.
Depending on the level of expertise the user has, the availability
and accuracy of live sensor data, and the level of detail in
the planning model, good decision-making can be challenging.
This paper presents an approach to evaluating a plan’s causal
structure and a user’s decision to remove an action from a plan
using domain-specific argumentation schemes. The approach is
designed in a modular way and is intended to be used with
any PDDL (Planning Domain Definition Language) planning
system and easily customizable to its intended application.

I. INTRODUCTION

Explainability is crucial for human-robot systems to be
efficient in practical settings. In many scenarios (e.g. auto-
mated warehouse distribution centres) when a fault occurs in
execution, quick decisions are crucial due to tight deadlines.
If a robot fails to pick up an item from a shelf, should the
human overseer leave his work to try and fix the robot? What
impact will leaving the robot have on the remainder of the
plan’s execution?

Re-planning is a commonly cited tool to overcome
changes in the real-world model, e.g. in situated robotics
[1]. However, many instances exist where this is not possible.
Plans might have longer approval periods before they can be
used due to safety reasons, or perhaps the specific change
cannot be captured by the system’s model as it was written.
Because of the relatively high level of uncertainty in most
robotics domains, and the desire to keep planning models as
simple as possible for complexity reasons, this is a common
occurrence.

Providing a user insight into the causal structure of a plan
is a crucial component of effective communication in the
case of a fault in execution [2]. Extracting the plan’s causal
structure and implementing it in a logical way necessitates
the use of argumentation; as described in [3], argumenta-
tion frameworks and causal models are two representations
of the same idea. Recently, work using argumentation for
explanations has been done for scheduling [4]. Other work
involving causal explanations in planning had been done in
task planning [5].

Additionally, a tool from argumentation theory called an
argumentation scheme has been utilised in some areas to aid
communication between Al systems and their users, e.g. in
multi-agent problems [6]. They provide a template to capture
common arguments used to communicate decisions. As of
yet, no work has been done to provide a user decision support
with the addition of the causal repercussions of each choice

in planning. The ability to evaluate a user’s choice as good
or bad is an underappreciated tool in explainable Al [7].

In this work, we consider an ASPIC™ [8] style framework
with defeasible rules capturing the relationships between
actions in a plan. We extend the work done in [9] to include
an implementation of plan causal structure extraction with
the addition of argumentation schemes to capture common
user questions, in the style of [10].

We argue that if the common execution faults of a system
can be represented in a layer separate from the PDDL
(Planning Domain Definition Language) model, solving for
an initial plan is easier, and the planner does not need to be
specialised to deal with probabilistic modelling languages.
The information about these faults can also be updated by
non-technical users more easily due to argumentation’s close
connection with natural language.

Additionally, there is a need to tailor an explanation
system to its users and the environment, and for it to remain
flexible. Domain-independent explainable planning has been
researched extensively and has wide-reaching applications
[11][12]. However, more nuanced and flexible explanations
can be tricky without the ability to capture human user
expertise and change the types of explanations required.
To that end, a customizable set of arguments would be
beneficial.

This paper introduces the argumentation explanation sys-
tem in the context of explaining the consequences of an
execution fault, but it can be extended for more general use.

II. MOTIVATING EXAMPLE

Consider an automated warehouse with multiple robots
and a human overseer. Each robot is tasked with specific
delivery goals for which they are required to obtain packages
from shelves and bring them to the various drop-off locations
to be packed by human workers.

In such a setting, the time frames for completing the tasks
are short, and the system may not be equipped with accurate
sensors to update the current state of the system. Re-planning
in the case of a robot fault, therefore, may not be a viable
option. It is up to the human to determine what the best
course of action would be. For this, the ability to query the
system and quickly see the consequences of the fault would
be helpful. Additionally, evaluating the cost of ignoring a
fault could help determine the best course of action. Using
a domain-specific argumentation scheme could allow the
domain experts the ability to encode common issues into
the system and use them for evaluations on the fly.



0 (move r-2 loc-1 loc-3)

1 (pick-up r-1 loc-2 pac—-4 cap-2 cap-3)
2 (pick-up r-2 loc-3 pac-3 cap-1 cap-2)
3 (move r-1 loc-2 loc-5)

4 (drop r-1 loc-5 pac—-4 cap-2 cap-3)

5 (move r-2 loc-3 loc-1)

6 (drop r-2 loc-1 pac-3 cap-1 cap-2)

7 (move r-1 loc-5 loc-2)

8 (pick-up r-2 loc-1 pac-1 cap-1 cap-2)
9 (pick-up r-2 loc-1 pac-2 cap-0 cap-1)
10 (move r—-2 loc-1 loc-3)

11 (move r—-2 loc-3 loc-2)

12 (drop r-2 loc-2 pac-1 cap-0 cap-1)
13 (drop r—-2 loc-2 pac—-2 cap-1 cap-2)

Fig. 1. Example plan with start times and durations removed for simplicity.
Actions are enumerated to match vertices in causal graph found in Figure
2.

Consider the plan in Figure 1. There are three different
actions relating to picking up and dropping off packages
as well as moving between locations. The r-1, r-2 rep-
resent two robots; loc—1, loc—-2, loc-3, loc-4,
loc-5 represent five different locations; pac-1, pac-2,
pac—3, pac-4 represent four packages the robots need to
deliver; lastly cap—n with n = 1...3 refers to the capacity
changes when packages are picked up or dropped off.

The goals that this plan satisfy are delivering all four
packages to their respective destinations.

The highlighted action in red (action 1) is used to demon-
strate a fault during execution. At this point, the user would
interact with the argumentation system to determine the
consequences of this action failing to execute, and to access
decision support.

III. BACKGROUND ON ARGUMENTATION

For capturing the causal structure of plans, we use
ASPIC* arguments. This is not the only argumentation
system applicable, and some others could be swapped for
additional functionality.
For a full description of ASPIC™ see [8]. The focus of
this approach is on constructing nested arguments, and so we
omit other aspects of ASPIC™T from this general background.
The following description is taken from [9].
We start with a language £, closed under negation. A
reasoner is then equipped with a set Rules of strict rules,
denoted ¢1,...,¢0, — ¢, and defeasible rules, denoted
@1y, 0n = @, Where ¢1,...,¢,, ¢ are all elements of
L. A knowledge base A is then a set of elements K from
L and a set Rules. From A a set of arguments A(A)
is constructed, where an argument A is made up of some
subset of K, along with a sequence of rules, that lead to
a conclusion. Given this, Prem(-) returns all the premises,
Conc(-) returns the conclusion and TopRule(-) returns the
last rule in the argument. An argument A is then:
e ¢ if ¢ € K with: Prem(A) = {¢}; Conc(4) = ¢;
Sub(A) = {A}; and TopRule(A) = undefined.

o« A1, . A, — ¢ if A, 1 < i < n, are arguments
and there exists a strict rule of the form Conc(4,), ...,
Conc(A4,) — ¢ in Rules. Prem(A) = Prem(4;) U

... UPrem(4,); Conc(A) = ¢; and TopRule(A) =
Conc(A;),...,Conc(4,) — ¢.

e« Ay,..., A, = ¢ if A;, 1 < i < n, are arguments and
there exists a defeasible rule of the form Conc(4,), ...,
Conc(A4,) = ¢ in Rules. Prem(A) = Prem(4;) U
... UPrem(A,); Conc(A) = ¢; and TopRule(A) =
Conc(A;),...,Conc(4,) = ¢.

Then, given K = {a; 8} and Rules = {a — v; 8,7 = d},
we have the following arguments:

Al

Az : B
As: A1 —
Ay A, A3 =6

When applied to planning, these arguments define a causal
structure of a plan, as will be described in Section 4.

A. Argumentation Schemes

An argumentation scheme is a structure to capture com-
mon arguments. Following [10], this includes a set of critical
questions, premises, and a conclusion. They are structured
around a particular style of inference depending on the
setting in which it is being used. For example, argumen-
tation by practical reasoning. In this way, they are easily
changed based upon the types of questions most asked and
information relevant to a certain problem.

Formally, they are defined as a tuple, (I,CQ, P,C) con-
sisting of an identifier, a set of critical questions, a set of
premises and a conclusion C. With the motivating scenario in
mind, a set of relevant critical questions may be: (CQ1) What
goal(s) does the action in question impact? (CQ2) Does the
system generally recommend an intervention for this type of
fault? (CQ3) Can the user visually confirm the fault? (CQ4)
Was a fault signal received?

Given our motivating example, an argumentation scheme
with these critical questions may be instantiated as follows,

signal_received(fault,
confirmed (user, fault),
impacts (robot, goal),
recommended (fault, intervention)

robot),

= int_req

where the int_req refers to whether or not a human
intervention is prescribed.

signal_received(arm, robotl)

A = { confirmed (user, arm)

recommended (arm, human_int)

B. Causal Chunks

In [9], the notion of causal ‘chunks’ was introduced with
respect to planning. These chunks are defined as a subset
of arguments centered around a theme. A theme can be an
object in the original problem description, a goal, or any
other component of the planning instance.

For the motivating example, the user’s interest lies with
the robot that experienced a fault. So, the themes of interest
are ‘robot 1’ and the goals of the problem.



@

® ® @ @
® ® ® @ @

Fig. 2. Causal structure of the example plan given in Figure 1.

Other themes could be included, for example those pertain-
ing to state variable information. An argumentation scheme
surrounding the capacities of a robot could be created,
necessitating a causal structure to be created which holds
capacity information.

IV. PARSING PLANS

Given a plan, problem, and domain, an argumentation
framework is constructed using a PDDL parsing system.
This system reads the files into a framework, extracting the
relevant information about the causal structure of the plan
and the goals of that specific problem. The causal structure
of the plan is instantiated as a series of arguments with
defeasible rules indicating precedence. Figure 2 shows the
causal structure of the example plan given in Figure 1. Note
that there are two distinct graphs corresponding to two causal
‘chunks’. These reflect the two robots in the problem; the red
subgraph represents r—2 and the pink subgraph represents
r—1. The vertices with no incoming edges correspond to
actions whose preconditions were met in the initial state
description.

From this graph representation, the nested arguments
are extracted. The argument structure for this plan is the
following:

A1 :
Az :
A3 :
Ay
As 1 10

A@ 1A =2

A7 : A5 =11

Ag 1 A3 =7

Ag: A1, As =6

Aot Az, Az =4

A11 : Al,Aﬁ,Ag,Azl =8

A12 : Al, A@, Ag, A4,A11 =9

A13 : A1, Aa, Ag, A4, Au, A12 =12

A1q 1 Av, As, Ag, Ag, Arr, Arz, Arg = 13

[SARGC I )

From this, we can model the improper execution of action
1 by setting this argument to false. Note the red colored
arguments A, and Ajg. These are the two arguments made
false by action 1 not executing. Even though the action
appears early in the plan, it doesn’t affect many of the
subsequent actions. This is because r—1 only delivers one
package, with the other three being delivered by r—-2.

V. IMPLEMENTING ARGUMENTATION SCHEMES

Given the argumentation scheme described in section 3.1,
we can instantiate an argument based upon some knowledge
base and plan from Figure 1.

Consider the knowledge base from Section 3.A. After
the plan is parsed, the goals affected by the fault can be
extracted. As seen from the nested arguments, only one goal-
adding action is affected, action 4. This action involves the
delivery of pac-4, which we label g—4 for ‘goal 4’. These
facts are then imported into the knowledge base as shown
below:

signal_received (arm, robotl)

confirmed (user, arm)
impacts (r-1, goald)
—impacts(r-1, goall)
—impacts (r-1, goal2)

—impacts (r-1, goal3)

recommended (arm, human_int)

The scheme can also be tailored to the number of goals;
for instance, perhaps the user wishes to specify that an
intervention is only warranted if either g — 1 and g — 2 or
g — 3 and g — 4 are impacted. Using the running example,
if action 1 fails, the following argument can be extracted:

signal_received(fault, r-1),

confirmed (user, fault),

(—impacts (r-1, g-1) V —impacts(r-1, g-2)),
(mimpacts (r-1, g-3) V impacts(r-1, g-4)),

recommended (fault, intervention), =

—intervention

The premises which were found false are highlighted in
red. By the implication in this scheme, it is concluded that
no intervention should be taken. This is because r—1 doesn’t
impact either g—1 or g—2.

A. Presenting the Argument

In order to effectively communicate the argument to
the user, the argument is parsed to natural language. A
simple algorithm is used which parses the propositional
logic formula to a preset list of natural language statements
substituting the truth values of premises and conclusion.
These equivalences are also easily customised at the point
when the argumentation schemes are created, making it easy
to tailor the language to the user’s preferences. With the
premises ordered based upon their truth-values, this argument
corresponds to the following natural language argument:

“A signal is received indicating a fault with robot 1. The
user confirms this fault to be accurate. The plan indicates
robot 1 does impact goal 4. The system recommends an



Select a scheme:

When to Intervene -

Selected Scheme::

signal_received(fault, r-1),

confirmed(user, fault),
(=impacts (r-1, g-1) V =impactsir-1, g-2)),
(—imp s(r-1, g-3) V impacts(r-1, g-4)),
recommended (fault, intervention), =
interventicn
Select specificity:
Concise -

The plan indicates robot 1 does not impact goal 1, goal 2 or goal 3. Itis

concluded that an intervention is not to be taken.

Fig. 3. Portion of the system’s UL

intervention for this fault. However, The plan indicates robot
1 does not impact goal 1, goal 2 or goal 3. It is concluded
that an intervention is not to be taken.”

If a more concise explanation is required, the true-valued
premises can be removed, leaving the ‘deciding’ premise
only:

“The plan indicates robot 1 does not impact goal 1, goal
2 or goal 3. It is concluded that an intervention is not to be
taken.”

The UI created for initial testing is shown in Figure 3.

VI. ALTERNATE SCHEMES

Many different iterations of the “When to Intervene’ argu-
mentation scheme can be made to fit different critical ques-
tions a user might have. The user may require more or fewer
premises to support the recommendation. For example, one
could break this scheme down into three different schemes:
(1) “When to Intervene’, (2)‘When to Intervene (with goals)’,
and (3) ‘“When to Intervene’ (with goals and actions). These

correspond to an increasing number of premises:
signal_received(fault, robot),
confirmed (user, fault),
recommended (fault, intervention) = int_req
signal_received(fault, robot),
confirmed (user, fault),
impacts (robot, goal),
recommended (fault, intervention) = int_req
signal_received(fault,
confirmed (user, fault),
impacts (robot, goal),
enables (robot, action),
recommended (fault, intervention)

robot),

= int_req

VII. INITIAL TESTING AND DISCUSSION

This argumentation explanation system has been imple-
mented into a web app with Streamlit (see Figure 3). Along
with the warehouse domain, initial testing using IPC plan-
ning domains was conducted to determine the performance
of the plan causal graph extraction. The domains ‘driverlog’,

‘tidybot’, and ‘zeno_travel’ were selected, and the benchmark
instances from the competition used for testing. There was
no significant difference in performance between the smallest
and largest instances, supporting our motivation to have
a modular system which acts independently of planners.
For these domains, argumentation schemes in the style of
the ‘When to Intervene’ scheme were tested. The time to
extracting a conclusion from these schemes, which did not
include chained arguments, was also negligible, as expected.
One perceived drawback of incorporating the causal structure
of the entire plan in the user interface is its unwieldy size
as the instances grow larger. This can be remedied by only
showing the relevant subgraphs to the user’s question.

VIII. CONCLUSIONS AND FUTURE WORK

We claim the benefits of using an argumentation layer on
top of a planning system for robotics are threefold: (1) it
enables the underlying planning model to remain simple(r);
(2) it is easier to obtain inputs from domain experts based on
their observations of common faults; (3) it allows for easier
parsing to natural language for wider use. In future work,
careful testing will be required to confirm these benefits,
including user studies in a human-robot setting. Also, more
complicated argumentation schemes including chained argu-
ments could be considered. Argumentation schemes based
upon different forms of inference could be studied, along
with the ability of mixing schemes for more robust explana-
tions.

REFERENCES

[1] M. Cashmore, A. Coles, B. Cserna, E. Karpas, D. Magazzeni, and

W. Ruml, “Replanning for situated robots,” in Proceedings of the

International Conference on Automated Planning and Scheduling,

vol. 29, 2019, pp. 665-673.

T. Miller, “Contrastive explanation: A structural-model approach,” The

Knowledge Engineering Review, vol. 36, p. el4, 2021.

[3] A. Bochman, “Propositional argumentation and causal reasoning.” in
1JCAL, 2005.

[4] K. Cyras, D. Letsios, R. Misener, and F. Toni, “Argumentation for
explainable scheduling,” 2019, https://arxiv.org/abs/1811.05437.

[5] G. Canal, S. Krivic, P. Luff, and A. Coles, “Task plan verbalizations
with causal justifications,” in ICAPS 2021 Workshop on Explainable
Al Planning (XAIP), 2021.

[6] A. R. Panisson, P. McBurney, and R. H. Bordini, “A computational
model of argumentation schemes for multi-agent systems,” Argument
& Computation, vol. 12, no. 3, pp. 357-395, 2021.

[7]1 T. Miller, “Explainable ai is dead, long live explainable ai! hypothesis-
driven decision support,” 2023, https://arxiv.org/abs/2302.12389.

[8] S. Modgil and H. Prakken, “A general account of argumentation with
preferences,” Artificial Intelligence, vol. 195, pp. 361-397, 2013.

[9]1 A. Collins, D. Magazzeni, and S. Parsons, “Towards an argumentation-
based approach to explainable planning,” in ICAPS 2019 Workshop
XAIP Program Chairs, 2019.

[10] D. Walton, C. Reed, and F. Macagno, Argumentation schemes.
bridge University Press, 2008.

[11] J. Hoffmann and D. Magazzeni, “Explainable ai planning (xaip):
overview and the case of contrastive explanation,” Reasoning Web.
Explainable Artificial Intelligence: 15th International Summer School
2019, Bolzano, Italy, September 20-24, 2019, Tutorial Lectures, pp.
277-282, 2019.

[12] T. Chakraborti, S. Sreedharan, and S. Kambhampati, “The emerging
landscape of explainable ai planning and decision making,” arXiv
preprint arXiv:2002.11697, 2020.

[2

—

Cam-



