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ABSTRACT

Spatial understanding is essential for robots to perceive, reason about, and interact
with their environments. However, current visual language models often rely on
general-purpose image datasets that lack robust spatial scene understanding and
reference frame comprehension (ego-, world-, or object-centric). To address this
gap, we introduce ROBOSPATIAL, a large-scale dataset of real indoor and tabletop
environments captured via egocentric images and 3D scans. ROBOSPATIAL pro-
vides 1M images, 5k 3D scans, and 3M annotated spatial relationships, enabling
both 2D and 3D spatial reasoning. Models trained on ROBOSPATIAL outperform
baselines on tasks including spatial affordance prediction, spatial relationship pre-
diction, and robot manipulation.

1 INTRODUCTION

Task: Place the gray bowl in front of the car.

Spatial context
Point to the vacant space 

in front of the car.

Spatial compatibility
Can the gray bowl fit in 

front of the car?

Object-centric Ego-centric

Spatial configuration
Is the gray bowl in 

front of the car?

No
Yes

Manipulation

Yes!

Figure 1: ROBOSPATIAL dataset facilitates 3D spatial reasoning for robot manipulation. This il-
lustration demonstrates how a model trained on ROBOSPATIAL enables human-aligned spatial rea-
soning within the correct reference frame, supporting task grounding, planning, and detection for
manipulation tasks.

Recent advances in vision-language models (VLMs) have begun to bridge the gap between computer
vision and robotics control. VLMs trained directly on robot manipulation data now enable robots
to process both visual inputs and task descriptions in real-world settings Collaboration et al. (2023).
Similarly, generic VLMs have been used to describe robotics scenes for specific tasks Fang et al.
(2024), while large language models (LLMs) have demonstrated utility in generating robot code
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Dataset 3D scans Embodied Ref. frames Compatibility Domain #Scans #Images #Spatial QAs

EmbSpatial-Bench Du et al. (2024) ✓ ✓ ✗ ✗ Indoor 277 2k 4k
Visual Spatial Liu et al. (2023a) ✗ ✗ ✓ ✗ MSCOCO 0 10k 10k

SpatialRGPT-Bench Cheng et al. (2024) ✗ ✗ ✗ ✓ Indoor, AV 0 1.4k 1.4k
BLINK-Spatial Fu et al. (2024) ✗ ✗ ✓ ✗ Generic 0 286 286
What’s up Kamath et al. (2023) ✗ ✗ ✗ ✗ Generic 0 5k 10k
Spatial-MM Shiri et al. (2024) ✗ ✗ ✓ ✗ Generic 0 2.3k 2.3k

ROBOSPATIAL ✓ ✓ ✓ ✓ Indoor, tabletop 5k 1M 3M

Table 1: Comparison with other spatial reasoning datasets that include object-centric spatial
relationships.

and planning high-level tasks Ahn et al. (2022); Singh et al. (2023); Liang et al. (2023); Song et al.
(2023).

Despite successes in object recognition and scene description, current VLMs still lack nuanced
spatial understanding Yamada et al. (2024); Kamath et al. (2023). For example, while a model
might accurately describe a “bowl on the table,” it struggles to reason about the optimal placement
of the bowl in terms of accessibility, stability, or its fit among other objects. A significant challenge
lies in the fact that existing training datasets do not capture the varied reference frames—first-person,
object-centric, or global—required for robust real-world interactions.

Some recent works have attempted to improve spatial reasoning, such as SpatialVLM Chen et al.
(2024) and SpatialRGPT Cheng et al. (2024), which focus on conceptual spatial relationships, or
RoboPoint Yuan et al. (2024), which predicts grounded 2D coordinates. However, these models
often rely on web images or synthetic data and thus fail to generalize to robot-captured images,
which lack identifiable scale cues and real-world constraints. Similarly, although Molmo Deitke
et al. (2024) shows promise for object-centric image-space pointing, it struggles with practical con-
straints, such as determining if an object can physically fit in a designated space.

Motivated by these limitations, we introduce ROBOSPATIAL and ROBOSPATIAL-Home, a train-
ing dataset and benchmark specifically designed to enhance spatial reasoning for robotic applica-
tions. Leveraging annotated indoor scene and tabletop RGBD data, we transform these into targeted
question-answer pairs that probe critical spatial skills, including object-object relationships, object-
space interactions, and object compatibility. Each question is posed from three distinct reference
frames—ego-centric (the observer’s viewpoint), object-centric, and world-centric—to better cap-
ture the complexity of spatial instructions. ROBOSPATIAL comprises approximately 1M images, 5k
3D scans, and 3M annotated spatial relationships, making it well-suited for both 2D and 3D tasks
(see Figure 1).

We validate our dataset by training state-of-the-art 2D and 3D VLMs, which demonstrate significant
improvements in spatial reasoning over existing models. The enhanced models outperform prior
approaches on our validation split ( ROBOSPATIAL-Val) and on additional downstream tasks, in-
cluding ROBOSPATIAL-Home, BLINK-Spatial Fu et al. (2024), SpatialBench Cai et al. (2025) and
real-world robot manipulation. Our experiments further compare 2D and 3D VLM performance,
underscoring the benefits of incorporating 3D-based training for robust spatial understanding in
robotics.

2 APPROACH

Our approach centers on three core spatial relationships—configuration, context, and compatibil-
ity—that together form a nuanced framework for robotic spatial reasoning. These relationships
guide our automated data generation pipeline for constructing ROBOSPATIAL.

We define spatial configuration as the ability to interpret the relative positioning of objects; for
example, determining if one object is to the left of an anchor object. This binary relationship is
essential for navigation, manipulation, and interaction. Spatial context involves identifying specific
points (in image coordinates) relative to an anchor object, such as determining where in free space
an object may be placed. Here, we generate a top-down map from annotated 3D bounding boxes
and sample candidate points based on object size, with answers provided as lists of 2D coordinates.
Finally, spatial compatibility extends the context task by assessing whether a referenced object can
physically fit within a designated region relative to the anchor. This task simulates object placement
using bounding box sizes and yields binary answers. To enhance the model’s ability to interpret

2



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Spatial ConfigurationSpatial Context Spatial  Compatibility

Q. Pinpoint 
several points 
within the 
vacant space 
situated to the 
right of the 
table.

Q. Pinpoint 
several points 
within the 
vacant space 
situated in front 
of the frame.

Q. Pinpoint 
several points 
within the 
vacant space 
situated to the 
right of the desk.

RP       RP-FT       GT

Q. Is the frame 
in front of the 
window? No

SL
RP

SL-FT
RP-FT

Q. Is the shelf in 
front of the 
bathtub? Yes

SL
RP

SL-FT
RP-FT

Q. Is the couch 
under the truck? 
No

SL
RP

SL-FT
RP-FT

Q. Can the apple 
fit in front of the 
bowl? Yes

SL
RP

SL-FT
RP-FT

Q. Can the lamp 
fit right of the 
table? Yes

SL
RP

SL-FT
RP-FT

Q. Can the lamp 
fit left of the 
bed? Yes

SL
RP

SL-FT
RP-FT

Figure 2: In-domain (ROBOSPATIAL-Val, top) and out-of-domain (ROBOSPATIAL-Home,
BLINK Fu et al. (2024), middle and bottom) results for ROBOSPATIAL-trained models. Two models
shown: SL (SpaceLLaVA Chen et al. (2024)) and RP (RoboPoint Yuan et al. (2024)); the -FT suffix
indicates fine-tuning on ROBOSPATIAL. Correct answers in green. All images except bottom-right
in the out-of-domain rows are from ROBOSPATIAL-Home.

spatial instructions from different perspectives, each question-answer pair in ROBOSPATIAL is posed
from three distinct reference perspectives/frames: (a) Ego-centric from the observer’s perspective
at the camera pose, (b) World-centric grounded in a global world frame, and (c) Object-centric
based on a reference frame attached to the focal object.

Our data generation pipeline minimizes human intervention through carefully constructed heuristics.
Starting with a source dataset, Ds, that provides RGB images, camera poses, text labels, and oriented
3D bounding boxes, we generate a new dataset D in which each datum di = ⟨Ii, qi, ai, li⟩ includes
an image, a question, an answer, and a reference frame label (ego, world, or object). The process
unfolds in two stages. First, in the spatial relation extraction stage, we automatically derive spatial
relationships of the form ⟨Ii, ai, ti, si, ri, li⟩, where Ii is the source image, ai is the anchor object,
ti is the target object or a sampled point in free space, ri ∈ {left, right, above, below, front, behind}
is the relation preposition, and li ∈ {ego,world, object} denotes the reference frame. For spatial
configuration, an anchor object is paired with all other uniquely appearing objects in the image
according to the specified direction and reference frame. For spatial context, we compute candidate
placement points in free space via a top-down map, while for spatial compatibility we simulate
placing an object using its bounding box size to determine feasibility.

In the second stage, question-answer generation, we transform these spatial relationships into
template-based pairs following the structure “{object/space} {relationship} {anchor object}
{reference frame}.” This templating ensures that questions are unambiguous and that models rely
on visual reasoning rather than linguistic commonsense. Additionally, we generate an auxiliary
object-referring dataset using 2D bounding boxes to improve object grounding. Overall, our pipeline
produces 3M spatial relationships—an order of magnitude more than previous datasets (see Ta-
ble 1)—covering a comprehensive range of spatial reasoning tasks.

3 IMPLEMENTATION AND EVALUATION

We apply our data generation process to diverse datasets, including three scene
datasets—ScanNet Dai et al. (2017), Matterport3D Chang et al. (2017), and 3RScan Wald
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Table 2: Spatial reasoning and robot manipulation results. ”R-” denotes ROBOSPATIAL. QA pairs are evaluated
by average accuracy, and robot performance is reported as success rate.

Model R-Test R-Home BLINK-Spatial SpatialBench-Position Robot
Open source – 2D
LLaVA-NeXT 30.3 46.3 71.8 55.9 23.7
+ RoboSpatial 60.5 59.6 79.0 70.6 52.6
RoboPoint 38.9 53.4 63.6 44.1 44.7
+ RoboSpatial 70.6 63.4 70.6 64.7 46.2

Open source – 3D
Embodied Generalist 42.8 29.8 N/A N/A N/A
+ RoboSpatial 71.9 43.8 N/A N/A N/A

Closed source
Molmo 50.1 25.6 67.1 55.9 43.8
GPT-4o 50.8 47.0 76.2 70.6 46.9

et al. (2019)—and two tabletop datasets—HOPE Tyree et al. (2022) and GraspNet-1B Fang et al.
(2020). Using 3D bounding boxes and embodied images from EmbodiedScan Wang et al. (2024b),
we generate a large-scale spatial reasoning dataset with approximately 3M QA pairs, 5k 3D scans,
and 1M images.

We evaluate a range of 2D and 3D vision-language models (VLMs). For 2D models, we compare
base models (VILA-1.5-8B Lin et al. (2024) and LLaVA-NeXT-8B Liu et al. (2024)), specialized
models (SpaceLLaVA-13B, RoboPoint-13B Yuan et al. (2024), and Molmo-7B Deitke et al. (2024)),
and the closed-source GPT-4o OpenAI et al. (2024) (omitting models like SpatialRGPT Cheng et al.
(2024) that rely on external object masks). For 3D models, we test 3D-LLM Hong et al. (2023)
(which reconstructs 3D point clouds from multi-view images) and LEO Huang et al. (2024b) (which
processes segmented 3D point clouds). We report both zero-shot and fine-tuned (on ROBOSPATIAL)
performance (full results and details in the Appendix).

Spatial understanding is assessed across four benchmarks: ROBOSPATIAL-Val, ROBOSPATIAL-
Test, BLINK Fu et al. (2024), and SpatialBench Cai et al. (2025), covering over 6,000 questions
across binary (yes/no) and numeric (2D coordinate prediction) formats. For binary questions, we
report accuracy; for numeric questions, we measure whether the model’s prediction lies within the
convex hull of reference points derived from scene geometry. These datasets span both in-domain
and out-of-domain settings, capturing variation in visual environments and language formulations.
To evaluate real-world grounding, we additionally deploy models on a Kinova Jaco robot tasked
with spatially grounded pick-and-place manipulation. Here, predicted answers or coordinates are
executed via a motion planning system, testing end-to-end spatial understanding in physical envi-
ronments. Table 2 presents the main results.

4 RESULTS AND DISCUSSION

Our experiments demonstrate that training on ROBOSPATIAL substantially improves spatial reason-
ing across models. Models trained on ROBOSPATIAL more accurately align their predictions with
intended reference frames, exhibiting a better understanding of spatial relations such as directional-
ity and relative positioning. While existing models often struggle with ambiguous or underspecified
spatial cues, ROBOSPATIAL-trained models infer appropriate placements by leveraging object ge-
ometry and contextual cues. Although the dataset is built on templated spatial relationships, the
models generalize to novel prepositions by mapping principal 3D directions to corresponding lin-
guistic terms. This training also enhances the ability to interpret nuanced, context-dependent ref-
erence frames-an essential capability for real-world spatial understanding. Additionally, while 3D
VLMs tend to outperform 2D models due to access to depth information, 2D models remain highly
sensitive to minor pixel-level inaccuracies, which can lead to significant misalignments when trans-
lated into 3D space for robot manipulation.
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Booher, Jonathan Tompson, Jonathan Yang, Jordi Salvador, Joseph J. Lim, Junhyek Han, Kaiyuan
Wang, Kanishka Rao, Karl Pertsch, Karol Hausman, Keegan Go, Keerthana Gopalakrishnan, Ken
Goldberg, Kendra Byrne, Kenneth Oslund, Kento Kawaharazuka, Kevin Black, Kevin Lin, Kevin
Zhang, Kiana Ehsani, Kiran Lekkala, Kirsty Ellis, Krishan Rana, Krishnan Srinivasan, Kuan
Fang, Kunal Pratap Singh, Kuo-Hao Zeng, Kyle Hatch, Kyle Hsu, Laurent Itti, Lawrence Yun-
liang Chen, Lerrel Pinto, Li Fei-Fei, Liam Tan, Linxi ”Jim” Fan, Lionel Ott, Lisa Lee, Luca
Weihs, Magnum Chen, Marion Lepert, Marius Memmel, Masayoshi Tomizuka, Masha Itkina,
Mateo Guaman Castro, Max Spero, Maximilian Du, Michael Ahn, Michael C. Yip, Mingtong
Zhang, Mingyu Ding, Minho Heo, Mohan Kumar Srirama, Mohit Sharma, Moo Jin Kim, Naoaki

5



Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Kanazawa, Nicklas Hansen, Nicolas Heess, Nikhil J Joshi, Niko Suenderhauf, Ning Liu, Nor-
man Di Palo, Nur Muhammad Mahi Shafiullah, Oier Mees, Oliver Kroemer, Osbert Bastani,
Pannag R Sanketi, Patrick ”Tree” Miller, Patrick Yin, Paul Wohlhart, Peng Xu, Peter David
Fagan, Peter Mitrano, Pierre Sermanet, Pieter Abbeel, Priya Sundaresan, Qiuyu Chen, Quan
Vuong, Rafael Rafailov, Ran Tian, Ria Doshi, Roberto Mart’in-Mart’in, Rohan Baijal, Rosario
Scalise, Rose Hendrix, Roy Lin, Runjia Qian, Ruohan Zhang, Russell Mendonca, Rutav Shah,
Ryan Hoque, Ryan Julian, Samuel Bustamante, Sean Kirmani, Sergey Levine, Shan Lin, Sherry
Moore, Shikhar Bahl, Shivin Dass, Shubham Sonawani, Shubham Tulsiani, Shuran Song, Sichun
Xu, Siddhant Haldar, Siddharth Karamcheti, Simeon Adebola, Simon Guist, Soroush Nasiriany,
Stefan Schaal, Stefan Welker, Stephen Tian, Subramanian Ramamoorthy, Sudeep Dasari, Suneel
Belkhale, Sungjae Park, Suraj Nair, Suvir Mirchandani, Takayuki Osa, Tanmay Gupta, Tatsuya
Harada, Tatsuya Matsushima, Ted Xiao, Thomas Kollar, Tianhe Yu, Tianli Ding, Todor Davchev,
Tony Z. Zhao, Travis Armstrong, Trevor Darrell, Trinity Chung, Vidhi Jain, Vikash Kumar, Vin-
cent Vanhoucke, Wei Zhan, Wenxuan Zhou, Wolfram Burgard, Xi Chen, Xiangyu Chen, Xiaolong
Wang, Xinghao Zhu, Xinyang Geng, Xiyuan Liu, Xu Liangwei, Xuanlin Li, Yansong Pang, Yao
Lu, Yecheng Jason Ma, Yejin Kim, Yevgen Chebotar, Yifan Zhou, Yifeng Zhu, Yilin Wu, Ying
Xu, Yixuan Wang, Yonatan Bisk, Yongqiang Dou, Yoonyoung Cho, Youngwoon Lee, Yuchen
Cui, Yue Cao, Yueh-Hua Wu, Yujin Tang, Yuke Zhu, Yunchu Zhang, Yunfan Jiang, Yunshuang
Li, Yunzhu Li, Yusuke Iwasawa, Yutaka Matsuo, Zehan Ma, Zhuo Xu, Zichen Jeff Cui, Zichen
Zhang, Zipeng Fu, and Zipeng Lin. Open X-Embodiment: Robotic learning datasets and RT-X
models. https://arxiv.org/abs/2310.08864, 2023.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, Jiasen Lu, Taira Anderson, Erin
Bransom, Kiana Ehsani, Huong Ngo, YenSung Chen, Ajay Patel, Mark Yatskar, Chris Callison-
Burch, Andrew Head, Rose Hendrix, Favyen Bastani, Eli VanderBilt, Nathan Lambert, Yvonne
Chou, Arnavi Chheda, Jenna Sparks, Sam Skjonsberg, Michael Schmitz, Aaron Sarnat, Byron
Bischoff, Pete Walsh, Chris Newell, Piper Wolters, Tanmay Gupta, Kuo-Hao Zeng, Jon Bor-
chardt, Dirk Groeneveld, Jen Dumas, Crystal Nam, Sophie Lebrecht, Caitlin Wittlif, Carissa
Schoenick, Oscar Michel, Ranjay Krishna, Luca Weihs, Noah A. Smith, Hannaneh Hajishirzi,
Ross Girshick, Ali Farhadi, and Aniruddha Kembhavi. Molmo and pixmo: Open weights and
open data for state-of-the-art multimodal models. arXiv preprint arXiv:2409.17146, 2024.

Mengfei Du, Binhao Wu, Zejun Li, Xuanjing Huang, and Zhongyu Wei. EmbSpatial-bench: Bench-
marking spatial understanding for embodied tasks with large vision-language models. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2: Short Papers), pp. 346–355, Bangkok, Thai-
land, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-short.
33. URL https://aclanthology.org/2024.acl-short.33.

Jiafei Duan, Wilbert Pumacay, Nishanth Kumar, Yi Ru Wang, Shulin Tian, Wentao Yuan, Ranjay
Krishna, Dieter Fox, Ajay Mandlekar, and Yijie Guo. AHA: A vision-language-model for detect-
ing and reasoning over failures in robotic manipulation. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
JVkdSi7Ekg.

Hao-Shu Fang, Chenxi Wang, Minghao Gou, and Cewu Lu. Graspnet-1billion: A large-scale bench-
mark for general object grasping. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 11444–11453, 2020.

Kuan Fang, Fangchen Liu, Pieter Abbeel, and Sergey Levine. Moka: Open-world robotic manipu-
lation through mark-based visual prompting. Robotics: Science and Systems (RSS), 2024.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu Wang, Xudong Lin, Dan Roth, Noah A.
Smith, Wei-Chiu Ma, and Ranjay Krishna. Blink: Multimodal large language models can see
but not perceive. In Proceedings of the European Conference on Computer Vision (ECCV), pp.
148–166. Springer, 2024. doi: 10.1007/978-3-031-73337-6 9. URL https://doi.org/10.
1007/978-3-031-73337-6_9.

6

https://arxiv.org/abs/2310.08864
https://aclanthology.org/2024.acl-short.33
https://openreview.net/forum?id=JVkdSi7Ekg
https://openreview.net/forum?id=JVkdSi7Ekg
https://doi.org/10.1007/978-3-031-73337-6_9
https://doi.org/10.1007/978-3-031-73337-6_9


Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. In Advances in Neural Informa-
tion Processing Systems, 2023. NeurIPS.

Haoxu Huang, Fanqi Lin, Yingdong Hu, Shengjie Wang, and Yang Gao. Copa: General robotic
manipulation through spatial constraints of parts with foundation models. In IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 9488–9495, 2024a. doi:
10.1109/IROS58592.2024.10801352.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In
Proceedings of the International Conference on Machine Learning (ICML), 2024b.

Wenlong Huang, Chen Wang, Yunzhu Li, Ruohan Zhang, and Li Fei-Fei. Rekep: Spatio-temporal
reasoning of relational keypoint constraints for robotic manipulation. In 8th Annual Conference
on Robot Learning, 2024c. URL https://openreview.net/forum?id=9iG3SEbMnL.

Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 6700–6709, 2019.

Baoxiong Jia, Yixin Chen, Huangyue Yu, Yan Wang, Xuesong Niu, Tengyu Liu, Qing Li, and Siyuan
Huang. Sceneverse: Scaling 3d vision-language learning for grounded scene understanding. In
Proceedings of the European Conference on Computer Vision (ECCV), 2024.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Amita Kamath, Jack Hessel, and Kai-Wei Chang. What’s “up” with vision-language models? in-
vestigating their struggle with spatial reasoning. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2023.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, Thomas Kollar, Benjamin
Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla:
An open-source vision-language-action model. In Pulkit Agrawal, Oliver Kroemer, and Wolfram
Burgard (eds.), Proceedings of the 8th Conference on Robot Learning (CoRL), volume 270 of
Proceedings of Machine Learning Research, pp. 2679–2713. PMLR, 06–09 Nov 2025. URL
https://proceedings.mlr.press/v270/kim25c.html.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome: Connecting lan-
guage and vision using crowdsourced dense image annotations. International journal of computer
vision, 123:32–73, 2017.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence,
and Andy Zeng. Code as policies: Language model programs for embodied control. In IEEE
International Conference on Robotics and Automation (ICRA), pp. 9493–9500, 2023. doi: 10.
1109/ICRA48891.2023.10160591.

Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. VILA:
On Pre-training for Visual Language Models . In IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp. 26679–26689, Los Alamitos, CA, USA, June 2024.
IEEE Computer Society. doi: 10.1109/CVPR52733.2024.02520. URL https://doi.
ieeecomputersociety.org/10.1109/CVPR52733.2024.02520.

Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir Bourdev, Ross Girshick, James Hays, Pietro
Perona, Deva Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft COCO: Common
objects in context. In Proceedings of the European Conference on Computer Vision (ECCV),
2014.

7

https://openreview.net/forum?id=9iG3SEbMnL
https://proceedings.mlr.press/v270/kim25c.html
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.02520
https://doi.ieeecomputersociety.org/10.1109/CVPR52733.2024.02520


Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Xiongkun Linghu, Jiangyong Huang, Xuesong Niu, Xiaojian Ma, Baoxiong Jia, and Siyuan Huang.
Multi-modal situated reasoning in 3d scenes. In Advances in Neural Information Processing
Systems, 2024. NeurIPS.

Fangyu Liu, Guy Emerson, and Nigel Collier. Visual spatial reasoning. Transactions of the As-
sociation for Computational Linguistics, 11:635–651, 2023a. doi: 10.1162/tacl a 00566. URL
https://aclanthology.org/2023.tacl-1.37.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Advances
in Neural Information Processing Systems, 2023b.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 26296–26306, June 2024.

Xiaojian Ma, Silong Yong, Zilong Zheng, Qing Li, Yitao Liang, Song-Chun Zhu, and Siyuan Huang.
Sqa3d: Situated question answering in 3d scenes. In International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=IDJx97BC38.

Yunze Man, Liang-Yan Gui, and Yu-Xiong Wang. Situational awareness matters in 3d vision lan-
guage reasoning. In CVPR, 2024.

Soroush Nasiriany, Fei Xia, Wenhao Yu, Ted Xiao, Jacky Liang, Ishita Dasgupta, Annie Xie, Danny
Driess, Ayzaan Wahid, Zhuo Xu, Quan Vuong, Tingnan Zhang, Tsang-Wei Edward Lee, Kuang-
Huei Lee, Peng Xu, Sean Kirmani, Yuke Zhu, Andy Zeng, Karol Hausman, Nicolas Heess,
Chelsea Finn, Sergey Levine, and Brian Ichter. Pivot: iterative visual prompting elicits action-
able knowledge for vlms. In Proceedings of the International Conference on Machine Learning
(ICML), ICML’24. JMLR.org, 2024.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Charles Xu, Jianlan Luo, Tobias Kreiman, You Liang Tan, Lawrence Yunliang
Chen, Pannag Sanketi, Quan Vuong, Ted Xiao, Dorsa Sadigh, Chelsea Finn, and Sergey Levine.
Octo: An open-source generalist robot policy. In Proceedings of Robotics: Science and Systems,
Delft, Netherlands, 2024.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher
Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila
Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian Gib-
son, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hal-
lacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris Hesse, Alan
Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu,
Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt Knight, Daniel
Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Konstantinidis, Kyle Kosic, Gretchen
Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel
Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez,
Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv
Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney,
Christine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob Menick,

8

https://aclanthology.org/2023.tacl-1.37
https://openreview.net/forum?id=IDJx97BC38


Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Ra-
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In this supplementary material, we present additional details and clarifications that are omitted in
the main text due to space constraints.

• Appendix A Related Works.

• Appendix B Limitations.

• Appendix C Dataset Details.

• Appendix D Implementation Details.

• Appendix E Full Results.

A RELATED WORKS

VLMs for Robotics. Vision-language models (VLMs) have emerged as pivotal tools in robotics,
enabling systems to interpret and act upon complex visual and textual information. By integrating
visual perception with language understanding, VLMs facilitate more intuitive human-robot inter-
actions and enhance autonomous decision-making capabilities. Recent advancements have demon-
strated the potential of VLMs in various robotic applications. For instance, vision-language-action
models (VLAs) Kim et al. (2025); Zitkovich et al. (2023); Octo Model Team et al. (2024) enable
robots to interpret and execute complex instructions and output executable robot actions. Addition-
ally, VLMs like GPT-4v OpenAI et al. (2024) have been utilized for high-level task planning Wake
et al. (2024), allowing robots to generate detailed action sequences from natural language instruc-
tions. Furthermore, VLMs have been used for keypoint/mask prediction Huang et al. (2024c); Wi
et al. (2023); Nasiriany et al. (2024), error analysis Duan et al. (2025), grasp pose prediction Huang
et al. (2024a). Despite these advancements, integrating VLMs Cai et al. (2025); Cheng et al. (2024);
Yuan et al. (2024) into robotic systems presents challenges. One significant hurdle is the need for
precise spatial reasoning to navigate and manipulate objects effectively. While VLMs excel in un-
derstanding and generating language, their ability to comprehend and reason about spatial relation-
ships in dynamic environments remains limited Yamada et al. (2024); Xu et al. (2024); Wang et al.
(2024a). Therefore, ROBOSPATIAL aims to tackle this gap by presenting a large scale pretraining
and evaluation setup for teaching spatial understanding to VLM for robotics.

Spatial Understanding with VLMs. Spatial understanding has been implicitly and explicitly part
of various vision and question answering tasks Fu et al. (2024); Azuma et al. (2022); Jia et al.
(2024); Suhr et al. (2019); Salewski et al. (2022); Krishna et al. (2017); Johnson et al. (2017);
Hudson & Manning (2019). While many benchmarks and methods have been proposed, they often
come with limitations: some focus exclusively on simulations Szymanska et al. (2024) or generic
images Liu et al. (2023a); Rajabi & Kosecka (2024); Cheng et al. (2024); Chen et al. (2024); Fu
et al. (2024); Kamath et al. (2023); Shiri et al. (2024); Ranasinghe et al. (2024), others are difficult
to evaluate Szymanska et al. (2024); Du et al. (2024); Linghu et al. (2024), rely on complete 3D
scans Zhang et al. (2025); Man et al. (2024); Ma et al. (2023); Linghu et al. (2024), or do not consider
reference frames Zhang et al. (2025); Man et al. (2024); Ma et al. (2023); Linghu et al. (2024); Chen
et al. (2024); Cheng et al. (2024); Fu et al. (2024); Ranasinghe et al. (2024). Furthermore, they
often fail to address actionable, robotics-relevant spatial relationships such as spatial compatibility
and context Du et al. (2024); Fu et al. (2024); Wang et al. (2024b); Shiri et al. (2024); Kamath et al.
(2023); Linghu et al. (2024); Ranasinghe et al. (2024).

Inspired by prior works on spatial reasoning Liu et al. (2023a); Kamath et al. (2023)—where the
impact of reference frames and spatial configurations was explored in generic images Lin et al.
(2014); Hudson & Manning (2019)—we extend spatial understanding to a robotics-specific context
with actionable spatial relationships such as spatial compatibility and spatial context. Our aim is to
enable direct application to robotic workflows, such as task planning and verification.

To achieve this, we have developed and are planning to open-source a large-scale 2D/3D ready
pretraining dataset, an automated data annotation pipeline, and trained models. We further show how
our dataset can be used to teach spatial reasoning to a suite of vision-language models (VLMs) in
in-domain and out-of-domain spatial reasoning datasets. We hope these resources lower the barrier
to entry for exploring spatial understanding tailored to robotics.
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B LIMITATIONS

While ROBOSPATIAL significantly improves spatial reasoning capabilities in VLMs, certain design
choices naturally introduce trade-offs and areas for future exploration.

First, the dataset relies on a top-down occupancy map to identify and annotate empty regions for
spatial context and compatibility tasks. This approach simplifies reasoning about object placement
on horizontal surfaces and enables efficient data generation, but it currently does not support spa-
tial questions involving containment—such as whether an object can fit inside or under another
object—which would require more detailed volumetric modeling.

Second, although the models are deployed on a real robot using a modular approach, we do not
yet explore tighter forms of integration such as training it jointly with robot trajectories Kim et al.
(2025). Investigating these alternatives could enhance downstream policy learning and enable more
seamless end-to-end systems.

Finally, ROBOSPATIAL focuses on indoor and tabletop scenes containing objects commonly en-
countered in household environments, and does not include humans or animals. This reflects the
nature of source datasets and our emphasis on robot object manipulation. While this limits coverage
of social or dynamic interaction scenarios, trained models still generalizes well to out-of-distribution
benchmarks like BLINK, which include humans and animals—suggesting that the learned spatial
representations are broadly transferable.

C DATASET DETAILS

C.1 DATASET STATISTICS

We provide the full dataset statistics in Table 3. For all training, we use only 900,000 spatial relation-
ships, sampled equally across all datasets, due to computational constraints. We further experiment
on the effect of data scaling on Table 7 and explain the results. Notably, HOPE Tyree et al. (2022)
and GraspNet-1B Fang et al. (2020) contain similar tabletop images captured from different per-
spectives, resulting in lower dataset diversity for the tabletop environment. We plan to enhance the
diversity of ROBOSPATIAL by incorporating additional tabletop datasets.

C.2 CHOICE OF SPATIAL RELATIONSHIPS

In designing the dataset, we focused on spatial relationships that directly impact robotic perception,
planning, and interaction: context, compatibility, and configuration. These were selected to reflect
the core spatial reasoning challenges that robots encounter when operating in complex, real-world
environments.

We intentionally excluded tasks such as object counting, as we consider them to fall outside the
scope of spatial understanding. While counting is an important visual reasoning skill, it does not
require reasoning about spatial relations between objects or between objects and their environment.
For example, determining that “three cups are on the table” is a perceptual task rather than a spatial
reasoning one. As such, counting may complement but does not substitute for the types of relational
reasoning we target. We leave the integration of counting tasks into spatial benchmarks as future
work.

Similarly, we exclude tasks that rely solely on distance measurements. Although distance is a fun-
damental spatial quantity, it is difficult to define consistently across different environments, object
scales, and robot embodiments. Absolute distances can vary significantly between indoor and out-
door scenes, small and large objects, or different robot perspectives, making them hard to normalize
or interpret in a general way. Moreover, distance alone often lacks the relational semantics required
for higher-level reasoning—for example, understanding that an object is behind, above, or in front of
others. ROBOSPATIAL instead focuses on spatial relationships that are more invariant, interpretable,
and transferable across diverse robotic scenarios.

That said, the data generation pipeline is general and could readily support auxiliary tasks involving
object counting or distance estimation if desired. These metrics may serve as useful complements
in future extensions of the benchmark or as auxiliary supervision signals in model training.
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C.3 OBJECT GROUNDING DATASET

To support accurate spatial understanding, we generate an auxiliary dataset for object grounding.
Many spatial reasoning tasks assume that the model can correctly identify which object is being
referred to in the scene. However, in practice, this can be a major source of error—especially in
cluttered environments or when multiple instances of the similar object type are present.

The grounding dataset provides direct supervision to help models learn to associate text descriptions
with specific objects in the image. For each image, we include a set of object descriptions (e.g., “the
keyboard” or “the chair”) paired with the corresponding 2D bounding box of the object in the image.
These 2D boxes are projected from the annotated 3D bounding boxes using camera intrinsics and
extrinsics.

A total of 100k grounding QA pairs are generated and used during training to reduce reference am-
biguity and improve object identification accuracy in spatial tasks. While not part of the main spatial
reasoning taxonomy, grounding accuracy is a prerequisite for answering spatial questions correctly,
and we find that including this data helps reduce errors caused by incorrect object identification.

C.4 DATASET GENERATION DETAILS

The dataset generation pipeline is detailed in the main text (section 2), which introduces a two-stage
process for computing 3D spatial relationships and projecting them into 2D image space. Here, we
expand on implementation details not covered in the main paper and provide clarification on the
reasoning logic used in spatial annotation.

Reference Frame Annotation. For each spatial configuration question, we label relationships from
three perspectives: ego-centric (camera view), object-centric (based on object heading), and world-
centric (aligned with the dataset’s global frame). To compute object-centric directions, we use the
heading vector of each oriented 3D bounding box to define the “front” of the object. Left, right,
behind, and front relations are then assigned accordingly. World-centric annotations modify vertical
relationships (above/below) using global z-coordinates to reflect elevation.

Surface Detection and Free Space Sampling. To identify support surfaces such as tables, counters,
or floors, we use GPT-4o to select candidate objects that are likely to support placement. A top-down
occupancy map is constructed from bounding boxes in the scene Figure 3. We sample 3D points in
unoccupied regions and project them into the image plane for spatial context tasks. Points are filtered
via occlusion checks using raycasting, ensuring sampled points are visible and unobstructed.

Compatibility Check and Object Placement. For spatial compatibility, we simulate placing a
virtual object bounding box at candidate locations. The placement must fit without intersecting
other objects and must allow a clearance of at least 10 cm in all axes. We allow in-plane rotation and
translation to test flexible placement. This provides a binary label (True/False) indicating whether
the object can be compatibly placed in the region.

Output Format. Though ROBOSPATIAL uses point prediction for ease of integration with robot
setups, the pipeline also supports mask-based outputs and can be extended in future work.

Category Dataset Split Scans Images Configuration Q Context Q Compatibility Q

Indoor

Matterport3D Chang et al. (2017) Train 1859 scans 236243 298439 298439 298439
Validation 10 scans 200 200 200 200

ScanNet Dai et al. (2017) Train 1514 scans 280402 299039 299039 299039
Validation 12 scans 400 400 400 400

3RScan Wald et al. (2019) Train 1543 scans 366755 298839 298839 298839
Validation 18 scans 400 400 400 400

Tabletop
HOPE Tyree et al. (2022) Train 60 scenes 50050 36817 36817 36817

Validation 47 scenes 235 500 500 500

GraspNet-1B Fang et al. (2020) Train 130 scenes 25620 36817 36817 36817
Validation 30 scenes 120 500 500 500

Table 3: Full dataset statistics for indoor and tabletop datasets.
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Top-down Map3D Bounding Boxes

Figure 3: An example of generated top-down map of the image from 3D bounding boxes.

D IMPLEMENTATION DETAILS

D.1 MODEL TRAINING

We further explain the training details for all 2D and 3D VLMs trained on ROBOSPATIAL. For
all models, we perform instruction tuning using the model weights from public repositories. All
training is done using 8 Nvidia H100 GPUs, with the training time between 20 and 40 hours.

VILA Lin et al. (2024) We initialize our model from Efficient-Large-Model/Llama-3-VILA1.5-8B
on Hugging Face. We use the fine-tuning script from the VILA GitHub repository to train our model
using the default hyperparameters.
LLaVA-NeXT Liu et al. (2024) We initialize our model from lmms-lab/llama3-llava-next-8b on
Hugging Face. We use the LLaVA-Next fine-tuning script from the LLaVA-Next repository using
the default hyperparameters.
SpaceLLaVA Chen et al. (2024) As official code and weights for SpatialVLM Chen et al. (2024)
is not released, we use a community implementation which is endorsed by SpatialVLM Chen et al.
(2024) authors. We initialize our model from remyxai/SpaceLLaVA from Hugging Face. We use
LLaVA-1.5 finetuning script from LLaVa Liu et al. (2023b) repository using the default hyperpa-
rameters.
RoboPoint Yuan et al. (2024) We initialize our model from wentao-yuan/robopoint-v1-vicuna-v1.5-
13b on Hugging Face. We use the fine-tuning script provided in the RoboPoint Yuan et al. (2024)
GitHub repository to train our model using the default hyperparameters.
3D-LLM Hong et al. (2023) We initialize our model using the pretrain blip2 sam flant5xl v2.pth
checkpoint downloaded from the official GitHub repository. Since the model requires preprocessing
of multiview images, we follow the author’s pipeline to process multiview images from our environ-
ments. Because the model does not accept image input, we append the following text in front of the
question to ensure the model understands the perspective from which the question is being asked: “I
am facing ANCHOR OBJECT.” We use the default hyperparameters and train the model for 20 epochs
per the author’s guidelines. We choose the best model based on validation accuracy.
LEO Huang et al. (2024b) We initialize our model from the sft noact.pth checkpoint downloaded
from the official GitHub repository.
Since LEO supports dual image and 3D point cloud input, we input both of them and modify the
question as in 3D-LLM. We use the default hyperparameters and train the model for 10 epochs per
the author’s guidelines, and choose the best model based on validation accuracy.

We could not fine-tune Molmo Deitke et al. (2024) from allenai/Molmo-7B-D-0924 or GPT-4o Ope-
nAI et al. (2024) from the gpt-4o-2024-08-06 API due to the unavailability of the fine-tuning script
at the time of this work, thus we use them as a zero-shot baselines.

D.2 ROBOT SETUP

For picking, we find which object the point maps to using SAM 2 Ravi et al. (2025) and execute
our picking behavior on that object. For placing, we simply compute the 3D coordinate based on
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Model Indoor Tabletop Average
Configuration Context Compatibility Configuration Context Compatibility Indoor Tabletop Total

Open-source VLMs
2D VLMs

VILA Lin et al. (2024) 54.7 18.3 56.3 45.1 13.2 53.8 43.1 37.4 40.2
+ROBOSPATIAL 71.4 ↑ 45.9 ↑ 77.2 ↑ 71.8 ↑ 43.7 ↑ 73.3 ↑ 64.8 ↑ 62.9 ↑ 63.9 ↑

LLaVA-NeXT Liu et al. (2024) 48.9 12.5 32.7 48.3 8.4 30.9 31.4 29.2 30.3
+ROBOSPATIAL 69.3 ↑ 41.3 ↑ 70.5 ↑ 70.7 ↑ 44.8 ↑ 66.1 ↑ 60.4 ↑ 60.5 ↑ 60.5 ↑

SpaceLLaVA Chen et al. (2024) 52.6 15.3 49.0 66.5 12.2 60.1 38.9 46.2 43.6
+ROBOSPATIAL 76.0 ↑ 50.7 ↑ 76.6 ↑ 74.9 ↑ 46.4 ↑ 70.5 ↑ 67.8 ↑ 63.6 ↑ 65.7 ↑

RoboPoint Yuan et al. (2024) 39.0 41.4 38.3 37.9 31.6 45.2 39.6 38.2 38.9
+ROBOSPATIAL 72.2 ↑ 68.9 ↑ 72.1 ↑ 70.3 ↑ 61.7 ↑ 78.4 ↑ 71.0 ↑ 70.1 ↑ 70.6 ↑

3D VLMs
3D-LLM Hong et al. (2023) 54.5 8.1 53.6 59.2 10.6 57.4 37.6 42.4 40.0

+ROBOSPATIAL 76.3 ↑ 35.4 ↑ 77.5 ↑ 76.2 ↑ 46.8 ↑ 75.0 ↑ 63.1 ↑ 66.0 ↑ 64.6 ↑
LEO Huang et al. (2024b) 56.1 11.3 58.3 60.8 11.1 59.3 41.9 43.7 42.8

+ROBOSPATIAL 80.2 ↑ 56.7 ↑ 82.5 ↑ 78.1 ↑ 55.2 ↑ 78.9 ↑ 73.1 ↑ 70.7 ↑ 71.9 ↑
Not available for fine-tuning

2D VLMs
Molmo Deitke et al. (2024) 40.6 48.2 60.0 61.5 35.8 54.6 49.6 50.6 50.1
GPT-4o OpenAI et al. (2024) 63.5 25.1 59.4 62.3 27.9 66.8 49.3 52.3 50.8

Table 4: Results of existing 2D/3D VLMs on a held-out validation split (ROBOSPATIAL-Val) of
images and scans. All methods, for all tasks, perform better (↑) when fine-tuned on ROBOSPATIAL.
The best result for each column is bolded.

the depth value at that pixel and place the object at that coordinate. There were no failures due to
cuRobo Sundaralingam et al. (2023) failing. The experiments were purposely designed to consist
of behaviors that our robot system can handle in order to avoid introducing irrelevant factors. The
picking behavior consists of computing a top-down grasp pose and reaching it with cuRobo Sundar-
alingam et al. (2023). To compute the grasp pose:

1. We estimate the major axis of the object’s point cloud in top-down view using PCA.

2. The grasp orientation is orthogonal to the major axis.

3. The grasp height is based on the highest point in the object’s point cloud minus an offset of
3cm. This heuristic ensures the system can grip long objects.

The placing behavior is the same as picking, except that an area within 5cm of the placement coor-
dinate is used as the point cloud for estimating orientation and height, and a vertical height offset is
added to account for the height at which the object was picked.

E FULL RESULTS

E.1 OMITTED RESULTS IN THE MAIN TEXT

We show the full results in held-out test split in Table 4 and out-of-domain splits in Table 5.

E.2 CROSS-DATASET GENERALIZATION

We evaluate the generalization capability of our method by testing it across different scene
types—specifically, both indoor and tabletop scenes—to control for any bias in the annotations
of the underlying datasets that make up our benchmark. We train on data derived from subsets of
the datasets corresponding to one scene type (either indoor or tabletop) and test on held-out datasets
from the other scene type, representing unseen environments. We expect that even when training on
a subset of datasets, the performance on unseen scene types will improve if our method generalizes
well. The results of this cross-dataset evaluation are shown in Table 6.

E.3 DATA SCALING

In Table 7, we experiment with scaling the number of annotations while keeping images fixed. We
found that even though the number of images stays consistent, increasing the number of annotations
can improve performance. For future work, we plan to apply our data generation pipeline to a diverse
set of indoor and tabletop environments to further improve the performance of our models.
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Model ROBOSPATIAL-Home BLINK SpatialBench
Configuration Context Compatibility Accuracy Accuracy

2D VLMs
VILA Lin et al. (2024) 57.8 0.0 69.0 72.7 53.0

+ROBOSPATIAL 65.9 ↑ 15.6 ↑ 78.0 ↑ 79.7 ↑ 73.6 ↑
LLaVA-NeXT Liu et al. (2024) 68.3 0.0 70.5 71.3 55.9

+ROBOSPATIAL 78.9 ↑ 19.7 ↑ 80.1 ↑ 79.0 ↑ 70.6 ↑
SpaceLLaVA Chen et al. (2024) 61.0 2.5 61.0 76.2 47.1

+ROBOSPATIAL 71.6 ↑ 13.1 ↑ 72.4 ↑ 81.8 ↑ 67.7 ↑
RoboPoint Yuan et al. (2024) 69.9 19.7 70.5 63.6 44.1

+ROBOSPATIAL 78.0 ↑ 31.1 ↑ 81.0 ↑ 70.6 ↑ 64.7 ↑
3D VLMs

3D-LLM Hong et al. (2023) 39.8 0.0 35.2 N/A N/A
+ROBOSPATIAL 55.2 ↑ 8.2 ↑ 52.3 ↑ N/A N/A

LEO Huang et al. (2024b) 51.2 0.0 38.1 N/A N/A
+ROBOSPATIAL 64.2 ↑ 10.0 ↑ 57.1 ↑ N/A N/A

Not available for fine-tuning
Molmo Deitke et al. (2024) 58.6 0.1 18.1 67.1 55.9
GPT-4o OpenAI et al. (2024) 77.2 5.7 58.1 76.2 70.6

Table 5: Results on an out-of-domain test split comparing prior art VLMs. The results show improved (↑)
spatial understanding capabilities on similar domains. Bolded number is the best result for the column.

Indoor → Tabletop Tabletop → Indoor
RoboPoint Yuan et al. (2024) 38.7 38.2

+ROBOSPATIAL 48.9 ↑ 51.3 ↑
LEO Huang et al. (2024b) 41.9 43.7

+ROBOSPATIAL 47.2 ↑ 54.5 ↑

Table 6: Average accuracy for dataset generalization when fine-tuning on indoor scenes and testing on tabletop
scenes (indoor→tabletop), and vice versa (tabletop→indoor), evaluated on the ROBOSPATIAL-Val split.

E.4 ACCURACY PER FRAME OF REFERENCE

We show the results per frame in Table 8 for our out-of-domain test set. From the results, we
can see a distinct difference between 2D and 3D VLMs in understanding the world-centric frame
before training with ROBOSPATIAL. Baseline 2D VLMs have trouble understanding the world-
centric frame, which involves understanding elevation, while 3D VLMs comparatively excel at it.
Furthermore, we can see that since baseline 3D VLMs are trained on point clouds without infor-
mation of perspective, their accuracy in ego-centric and object-centric frames is lower. However,
with ROBOSPATIAL training, we were able to teach the 3D VLMs to think in a certain frame, thus
considerably improving their performance on ego-centric and object-centric frames. However, we
hypothesize that, due to their design—specifically, the lack of a means to visually inject perspective
information since they require complete 3D point clouds—3D VLMs still lag behind 2D VLMs on
ego-centric and object-centric frames.

E.5 ROBOT EXPERIMENTS

We present additional results from our robot experiments in Figure 4 and Figure 5. We observe
that models trained with ROBOSPATIAL consistently outperform baseline models in most cases,
even though the prompt is not optimized for ROBOSPATIAL-trained models. This demonstrates that
the power of VLMs enables templated language to generalize to language unseen during training
while maintaining spatial understanding capabilities. However, even with ROBOSPATIAL training,
the models struggle with understanding stacked items, indicating a need for further data augmen-
tation with diverse layouts. In a few cases, ROBOSPATIAL training adversely affects performance,
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Table 7: Results of scaling experiment on LLaVa-Next Liu et al. (2024) with varied spatial relationship anno-
tations. Average accuracy on held-out test set is reported.

Annotation Size 100K 300K 900k (Default) 1.8M 3M (Full)

LLaVa-Next Liu et al. (2024) 38.1 46.7 60.5 65.8 72.4

Table 8: Results of per frame accuracy of existing 2D/3D VLMs on a held-out test split of images and scans.
All methods, for all tasks, perform better (↑) when fine-tuned on our ROBOSPATIAL dataset. The best result
for each column is bolded.

Model Indoor Tabletop Average
Ego-centric Object-centric World-centric Ego-centric Object-centric World-centric Indoor Tabletop Total

Open-source VLMs
2D VLMs

VILA Lin et al. (2024) 55.9 40.5 32.9 43.6 39.7 28.9 43.1 37.4 40.2
+ROBOSPATIAL 74.3↑ 57.8 ↑ 62.3 ↑ 70.3 ↑ 58.1 ↑ 60.3 ↑ 64.8 ↑ 62.9 ↑ 63.9 ↑

LLaVA-Next Liu et al. (2024) 35.2 24.3 34.7 36.4 28.5 22.7 31.4 29.2 30.3
+ROBOSPATIAL 75.4 ↑ 54.1 ↑ 68.8 ↑ 67.9 ↑ 54.7 ↑ 58.9 ↑ 60.4 ↑ 60.5 ↑ 60.5 ↑

SpaceLLaVA Chen et al. (2024) 40.6 36.0 30.1 52.3 32.8 53.5 38.9 46.2 43.6
+ROBOSPATIAL 78.5 ↑ 60.6 ↑ 64.3 ↑ 73.0 ↑ 49.5 ↑ 68.3 ↑ 67.8 ↑ 63.6 ↑ 65.7 ↑

RoboPoint Yuan et al. (2024) 41.9 36.2 40.7 46.2 30.5 37.9 39.6 38.2 38.9
+ROBOSPATIAL 76.4 ↑ 58.3 ↑ 78.3 ↑ 76.7 ↑ 62.6 ↑ 71.0 ↑ 71.0 ↑ 70.1 ↑ 70.6 ↑

3D VLMs
3D-LLM Hong et al. (2023) 28.9 38.3 45.6 38.9 35.7 52.6 37.6 42.4 40.0

+ROBOSPATIAL 60.7 ↑ 52.1 ↑ 76.5 ↑ 57.9 ↑ 62.8 ↑ 77.3 ↑ 63.1 ↑ 66.0 ↑ 64.6 ↑
LEO Huang et al. (2024b) 46.9 30.6 48.2 41.4 34.3 55.4 41.9 43.7 42.8

+ROBOSPATIAL 68.1 ↑ 71.6 ↑ 79.6 ↑ 71.4 ↑ 60.2 ↑ 80.5 ↑ 73.1 ↑ 70.7 ↑ 71.9 ↑
Not available for fine-tuning

2D VLMs
Molmo Deitke et al. (2024) 50.4 50.8 47.6 64.4 33.6 53.8 49.6 50.6 50.1
GPT-4o OpenAI et al. (2024) 52.9 38.7 56.3 62.5 30.7 63.7 49.3 52.3 50.8

especially with RoboPoint Yuan et al. (2024). We hypothesize that mixing the dataset with Robo-
Point training data and ROBOSPATIAL training data may lead to unforeseen side effects, particularly
in grounding objects. Nevertheless, we demonstrate that ROBOSPATIAL training enhances VLM’s
spatial understanding in real-life robotics experiments, even with freeform language.

E.6 MORE QUALITATIVE EXAMPLES

Figure 6 presents additional qualitative comparisons between models trained on ROBOSPATIAL.
The findings demonstrate that models trained on ROBOSPATIAL consistently exhibit spatial under-
standing in the challenging ROBOSPATIAL-Home dataset, even outperforming closed models like
GPT-4o OpenAI et al. (2024). However, we observed that object grounding is a crucial prerequisite
for spatial understanding; the improvement is often hindered by the model’s inability to ground ob-
jects in cluttered scenes, where GPT-4o performs more effectively. Additionally, we show that the
ROBOSPATIAL-trained model successfully generalizes to unseen spatial relationships in BLINK-
Spatial Fu et al. (2024), including those involving distance, such as ”touching.”
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Task: Place the object in a free space in front of the orange juice box.

Task: Place the object in a free space in front of the pony.

Figure 4: Robotics experiments: the red dot shows the model output (if not present, the model failed
to provide a valid point in the image); green dots are used to show when a model outputs multiple
points. The robot motion generator, cuRobo Sundaralingam et al. (2023), is used to grasp the item
referenced by the generated point. The spatial- prefix indicates model trained with ROBOSPATIAL.
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Question: pick lone object

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ✓
GPT-4o OpenAI et al. (2024) ×

Question: Is there room to slot the pan-
cake mix in the middle of the row of
boxes

LLaVa-Next Liu et al. (2024) ✓
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ✓
GPT-4o OpenAI et al. (2024) ✓

Question: Is there space in the white
container for the orange juice box

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ×
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ✓

Question: pick object behind the mid-
dle container

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ×
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: place object in container be-
hind popcorn

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: alphabet soup fit in the pur-
ple box

LLaVa-Next Liu et al. (2024) ✓
LLaVa-Next-FT Liu et al. (2024) ×
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ✓

Question: pick shortest object

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ✓
GPT-4o OpenAI et al. (2024) ✓

Question: place the object inside the
smallest box

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ✓
GPT-4o OpenAI et al. (2024) ×

Question: can the robot directly pick
the red orange peaches can without dis-
turbing other objects?

LLaVa-Next Liu et al. (2024) ✓
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ×
Molmo Deitke et al. (2024) ✓
GPT-4o OpenAI et al. (2024) ✓

Question: can the macaroni and cheese
be placed on top of cheez-it without
touching other objects?

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ×
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ✓

Question: place on the object to the left
of macaroni and cheese

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ✓
GPT-4o OpenAI et al. (2024) ×

Question: is there an object that is not
in a stack?

LLaVa-Next Liu et al. (2024) ✓
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ✓
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ✓
GPT-4o OpenAI et al. (2024) ✓

Question: is there space to place one of
the cans on the cheez-it box?

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ×
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ×
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: pick the highest object on
the stack of two objects

LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ×
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ×
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Figure 5: Additional robot experiments. A green check mark indicates that the model
answered correctly. The -FT suffix denotes a model trained with ROBOSPATIAL. The
questions are purposely not cleaned to reflect realistic language inputs.
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Question: Pinpoint several points
within the vacant space situated to the
left of the pot.

Answer
LLaVa-Next Liu et al. (2024)
LLaVa-Next-FT Liu et al. (2024)
RoboPoint Yuan et al. (2024)
RoboPoint-FT Yuan et al. (2024)
Molmo Deitke et al. (2024)
GPT-4o OpenAI et al. (2024)

Question: Pinpoint several points
within the vacant space situated behind
the trash bin.

Answer
LLaVa-Next Liu et al. (2024)
LLaVa-Next-FT Liu et al. (2024)
RoboPoint Yuan et al. (2024)
RoboPoint-FT Yuan et al. (2024)
Molmo Deitke et al. (2024)
GPT-4o OpenAI et al. (2024)

Question: Can the lamp fit in front of
the shelf?

Answer Yes
LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: Is the lamp above the shelf?

Answer Yes
LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ✓

Question: Is the dining table touching
the donut?

Answer Yes
LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: Can the pot fit above the
fridge?

Answer Yes
LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: Is the chair behind the bed?

Answer Yes
LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Question: Is the couch under the suit-
case?

Answer Yes
LLaVa-Next Liu et al. (2024) ×
LLaVa-Next-FT Liu et al. (2024) ✓
RoboPoint Yuan et al. (2024) ×
RoboPoint-FT Yuan et al. (2024) ✓
Molmo Deitke et al. (2024) ×
GPT-4o OpenAI et al. (2024) ×

Figure 6: Qualitative results on spatial reasoning benchmarks. The -FT suffix denotes a
model trained with ROBOSPATIAL. The first three rows show examples from ROBOSPA-
TIAL-Home, covering spatial context, spatial compatibility, and spatial configuration. For
spatial context questions, only the first predicted point from each model is shown. The
fourth row shows generalization to unseen spatial relationships on the Blink-Spatial Fu
et al. (2024) dataset, demonstrating that the ROBOSPATIAL-trained model can transfer to
unseen relationships.
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