
Published as a conference paper at ICLR 2024

DROPOUT-BASED RASHOMON SET EXPLORATION FOR
EFFICIENT PREDICTIVE MULTIPLICITY ESTIMATION

Hsiang Hsu1, Guihong Li2∗, Shaohan Hu1, and Chun-Fu (Richard) Chen1

1JPMorgan Chase Bank, N.A., USA
2The University of Texas at Austin, TX, USA
{hsiang.hsu, shaohan.hu, richard.cf.chen}@jpmchase.com
lgh@utexas.edu

ABSTRACT

Predictive multiplicity refers to the phenomenon in which classification tasks
may admit multiple competing models that achieve almost-equally-optimal per-
formance, yet generate conflicting outputs for individual samples. This presents
significant concerns, as it can potentially result in systemic exclusion, inexplicable
discrimination, and unfairness in practical applications. Measuring and mitigating
predictive multiplicity, however, is computationally challenging due to the need to
explore all such almost-equally-optimal models, known as the Rashomon set, in
potentially huge hypothesis spaces. To address this challenge, we propose a novel
framework that utilizes dropout techniques for exploring models in the Rashomon
set. We provide rigorous theoretical derivations to connect the dropout parame-
ters to properties of the Rashomon set, and empirically evaluate our framework
through extensive experimentation. Numerical results show that our technique
consistently outperforms baselines in terms of the effectiveness of predictive mul-
tiplicity metric estimation, with runtime speedup up to 20× ∼ 5000×. With
efficient Rashomon set exploration and metric estimation, mitigation of predictive
multiplicity is then achieved through dropout ensemble and model selection.

1 INTRODUCTION
The Rashomon effect, first introduced in Breiman [2001], describes the phenomenon that there is not
just one “best” explanation for the data, but many almost-equally-optimal models. The deliberation
of Rashomon effect has recently prevailed due to the increasingly complicated learning architectures
that exacerbate the under-specification1 of optimization problems [D’Amour et al., 2022]. The col-
lection of these almost-equally-optimal models is termed the Rashomon set [Semenova et al., 2019;
Marx et al., 2020]. The existence of Rashomon sets facilitates finding almost-equally-optimal mod-
els that further carry practically-desired properties for practitioners, such as interpretability [Rudin,
2019], epistemic patterns (e.g. causality) [Hancox-Li, 2020], fairness [Coston et al., 2021], or com-
pliance with domain knowledge [Hasan & Talbert, 2022].

Despite the newfound potential, the Rashomon effect introduces a burgeoning challenge in classifi-
cation problems, known as predictive multiplicity—the phenomenon where almost-equally-optimal
classification models assign conflicting predictions to individual samples, i.e., the predictions given
to an individual could be determined by an arbitrary model in the Rashomon set. When predictive
multiplicity is left out of account, an arbitrary choice of a single model in the Rashomon set may
lead to systemic exclusion from critical opportunities, unexplainable discrimination, and unfairness,
to individuals [Creel & Hellman, 2021]. Moreover, recent studies suggest predictive multiplicity
as an additional dimension to evaluate the trade-offs of privacy-assuring mechanisms such as dif-
ferential privacy [Kulynych et al., 2023] and fairness interventions [Long et al., 2023]. Therefore,
measuring predictive multiplicity has been increasingly recognized as a key aspect when reporting
model performance aside from its accuracy, for example, in Model Cards [Mitchell et al., 2019].

Several metrics have been proposed to measure predictive multiplicity by quantifying either the
spread of output scores from models in the Rashomon set such as viable prediction range [Watson-

∗Work done during internship at JPMorgan Chase Bank, N.A.
1Under-specification means there is no unique solution to an optimization problem, e.g. the empirical risk

minimization that is widely used in modern machine learning [Teney et al., 2022].
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Daniels et al., 2023] and Rashomon Capacity [Hsu & Calmon, 2022], or the inconsistency of deci-
sion such as ambiguity/discrepancy [Marx et al., 2020] and disagreement [Kulynych et al., 2023], to
name a few. The exact computation of these metrics relies on full access to models in the Rashomon
set, which is computationally infeasible and memory inefficient when the hypothesis space of can-
didate models is large and complex. Therefore, current strategies to compute predictive multiplicity
metrics either focus on special hypothesis spaces (e.g., linear classifiers [Marx et al., 2020], sparse
decision trees [Xin et al., 2022], and generalized additive models [Chen et al., 2023]), or by re-
peatedly re-training models with different random seeds to explore the Rashomon set when there
is no special structures to relieve the computational overheads. However, re-training is still time-
consuming when learning with large datasets. Thus, how to efficiently estimate predictive multiplic-
ity metrics for highly complicated models, esp. neural networks, still remains an open problem.

In this paper, we propose an efficient dropout-based Rashomon set exploration framework that is
easily applicable to neural networks without strenuously-repeated model re-training. The dropout
technique was first found useful to reduce over-fitting [Srivastava et al., 2014], and is later con-
nected with Bayesian approximation of neural networks to measure prediction uncertainty [Gal &
Ghahramani, 2016]. However, Gal & Ghahramani [2016] do not consider prediction uncertainty
with the notion of the Rashomon effect—they consider prediction uncertainty among all possible
models in the hypothesis space instead of models in the Rashomon set (see Appendix C for further
comparisons). To the best of our knowledge, this work is the first in using dropout techniques for
model exploration in Rashomon sets and efficient estimation of predictive multiplicity metrics. We
provide a rigorous theory on how hyper-parameters of dropout and network architectures control the
loss deviations of Rashomon sets for feed-forward neural networks (FFNNs). Through meticulous
parameter selection, a dropout model is highly likely to belong to a Rashomon set as the number of
model parameters approaches infinity. Besides theoretical discussions, we conduct empirical stud-
ies of measuring predictive multiplicity metrics using dropout with multiple datasets from diverse
domains, including financial analytics, medical prediction, large-scale images classification, and
human detection. Exploring models in Rashomon sets with our framework attains 20× ∼ 5000×
speedup compared with the baseline methods such as re-training. Finally, we demonstrate the mit-
igation of predictive multiplicity using the proposed dropout-based Rashomon set exploration with
(i) ensemble methods and (ii) model selection with smaller predictive multiplicity.

Omitted proofs, additional explanations and discussions, details on experiment setups and training,
and additional experiments are included in the Appendix. Code to reproduce our experiments can
be accessed at https://github.com/jpmorganchase/dropout-rashomon-set-exploration.

2 BACKGROUND AND RELATED WORK

We consider a dataset D = {(xi,yi)}ni=1, where each pair (xi,yi) consists of a feature vector
xi = [xi1, · · · ,xid]

⊤ ∈ X ⊆ Rd and a target yi ∈ Y . We denote by H a hypothesis space, a
set of candidate models parameterized by w ∈ W , i.e., H ≜ {hw : X → Ŷ : w ∈ W}. The
loss function used to evaluate model performance is denoted by ℓ : Ŷ × Y → R+ and L(w,D) ≜
1

|D|
∑

(xi,yi)∈D ℓ(hw(xi),yi) denotes the empirical risk evaluated with dataset D. When the context
is clear, we simply write L(w) instead of L(w,D) for the risk, and use w to denote a model. For
c-class classification problems, i.e., Y = [c] and Ŷ is the c-dimensional probability simplex ∆c ≜
{(r1, · · · , rc) ∈ [0, 1]c;

∑c
i=1 ri = 1}, the loss function could be the cross-entropy loss or the Brier

score loss [Brier, 1950] LBS(w) ≜ 1
n

∑n
i=1 ∥hw(xi)−yi∥2. For regression problems, Y = Ŷ = R,

and the loss function is mean square error (MSE) loss LMSE(w) ≜ 1
n

∑n
i=1(hw(xi)− yi)

2. In this
paper, we mainly focus on predictive multiplicity for classification problems. Finally, for a vector
v, diag(v) is a matrix with v on diagonals and 0 on off-diagonals, and for a matrix V, diag(V) is a
matrix that only keeps the diagonal entries.
The Rashomon set. We define the Rashomon set as the set of all models in the hypothesis
space H whose empirical risks are similar to that of a given empirical risk minimizer w∗ ∈
argminw∈W L(w). Formally, given a Rashomon parameter ϵ ≥ 0, the Rashomon set2 is defined as
[Semenova et al., 2019]:

R(H,D,w∗, ϵ) ≜ {hw ∈ H;L(hw,D) ≤ L(hw∗ ,D) + ϵ}. (1)

2The Rashomon set is defined regarding any given dataset D, even for out-of-distribution data.
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Here, ϵ determines the size of the set. We omit the arguments of R(H,D,w∗, ϵ) later in this paper
when they are clearly implied from context. The Rashomon set is at the core of measuring predictive
multiplicity, as introduced next.
Measuring predictive multiplicity. There are various metrics to quantify predictive multiplic-
ity across models in R by either considering their decisions (thresholded predictions/scores after
argmax) or output scores. Due to space limit, we summarize the mathematical formulations of
existing predictive multiplicity metrics in Appendix B.

Decision-based metrics include ambiguity and discrepancy, which measure the proportion of sam-
ples in a dataset that can cause models in the Rashomon set to make conflicting decisions [Marx
et al., 2020], and disagreement, which is the probability that any two models in the Rashomon set
output different decisions for a given sample [Kulynych et al., 2023]. On the other hand, a finer-
grained characterization of predictive multiplicity examines the output scores (i.e., vectors in ∆c).
For example, Long et al. [2023], Cooper et al. [2023] and Watson-Daniels et al. [2023] quantify
predictive multiplicity by the standard deviation, variance and the largest possible difference of the
scores (termed viable prediction range (VPR) therein) respectively. The Rashomon Capacity (RC)
measures score variations in the probability simplex with information-theoretic quantities that can
be generalized beyond binary classification. Despite score conflicts can not be directly translated
to decision conflicts, score-based metrics avoid potential over-estimation of predictive multiplicity
compared to decision-based metrics (see [Hsu & Calmon, 2022, Fig. 2] for a detailed discussion).
Exploring models in the Rashomon set. The computation of predictive multiplicity metrics
(cf. Appendix B) requires an exact characterization3 of a Rashomon set, i.e., having full access to all
of its models. When H is large (e.g., a neural network architecture), exhaustively finding all models
in the Rashomon set is computationally infeasible. Therefore, to approximate a full Rashomon set
R(H,D,w∗, ϵ), we define an empirical Rashomon set with m models, as follows,

Rm(H,D,w∗, ϵ) ≜ {hw1
, · · · , hwm

∈ H;L(hwi
,D) ≤ L(hw∗ ,D) + ϵ, ∀i ∈ [m]}. (2)

The empirical Rashomon set Rm(H,D,w∗, ϵ) is a subset of the Rashomon set defined in (1). Pre-
dictive multiplicity metrics can then be evaluated with the empirical Rashomon set instead of the
Rashomon set. Note that any estimation based on the empirical Rashomon set is an under-estimate
of the true predictive multiplicity. In consequence, an empirical Rashomon set is a “better” approx-
imate of the true Rashomon set than another empirical Rashomon set if it leads to higher estimates
of predictive multiplicity metrics. As m increases, the empirical Rashomon set better recovers the
Rashomon set, leading to a more precise estimation of predictive multiplicity metrics. Therefore,
how to efficiently acquire a vast amount of models in a Rashomon set becomes the core problem of
measuring predictive multiplicity.

In practice, the m models in the empirical Rashomon set can be obtained either by re-training
with different initializations (e.g., different random seeds to initialize the model weights, different
data shuffling for stochastic gradient descent, etc.), or by adversarial weight perturbation (AWP)
[Hsu & Calmon, 2022, Section 4]. The re-training strategy views a training procedure T to be
randomized. Accordingly, we can denote a random variable T (D) that outputs all possible models
trained with procedure T on D. Different models in T (D) can be induced by using different random
initialization4. By re-training models and rejecting those that disobey the loss deviation constraint in
(2), we are able to collect m models for the empirical Rashomon set. The AWP strategy, on the other
hand, aims to perturb the weights of a pre-trained model such that the output scores of a sample are
thrust toward all possible classes, again under the loss deviation constraint (cf. Appendix B for more
details). Both re-training and AWP require repeatedly training models, which is time-consuming
and hinders practitioners from efficiently estimating predictive multiplicity metrics.

Another strategy besides re-training and AWP is to explore sparse models in the Rashomon set. For
example, Xin et al. [2022] prove that large portions of the decision tree in the hypothesis space do not
contain any members of the Rashomon set and can safely be excluded, and provide an algorithm and
data structure to completely enumerate and store all models in the Rashomon set for sparse decision
trees. More recently, Chen et al. [2023] study an interpretable, predictive model called generalized

3It is possible for simple models such as an exact characterization of the Rashomon set for ridge regression
[Semenova et al., 2019, Section 5.1] or an exact computation of ambiguity/discrepancy for linear classifiers by
mixed integer programming [Marx et al., 2020, Section 3].

4See Kulynych et al. [2023] and Semenova et al. [2019] for more details about the re-training strategy.
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additive models (GAMs), and use high-dimensional ellipsoids to approximate the Rashomon sets
of sparse GAMs. Despite these progress, how to explore Rashomon sets and measure predictive
multiplicity for more complicated models, especially neural networks, still remain unclear. This
paper intends to bridge this gap using dropout techniques, as discussed next.

3 EXPLORING THE RASHOMON SET WITH DROPOUT

The dropout technique, originated from the concept of dilution5 [Hertz et al., 1991], is a family
of stochastic techniques for regularization to prevent over-fitting [Hinton et al., 2012]. As implied
by its name, the dropout technique randomly removes neurons in a neural network at each training
time, and can be interpreted as implicitly averaging over an ensemble of sparse neural networks
with different configurations during training [Srivastava et al., 2014].

In addition to applying dropout in training, Gal & Ghahramani [2016] apply dropout at inference
time to estimate output uncertainty of a model. They interpret dropout as a variational approximation
of a deep Gaussian process, which is a Bayesian framework that produces a probability distribution
of model outputs. The underlying distribution can then be used to estimate the variance for a cer-
tain input, indicating the uncertainty of the model. However, the dropout inference studied in Gal &
Ghahramani [2016] has not taken the Rashomon effect into consideration, i.e., they consider the out-
put uncertainty of all possible models in the hypothesis space instead of all almost-equally-optimal
models in the Rashomon set; see Appendix C for a more thorough discussion. In this case, predictive
multiplicity and output uncertainty are over-estimated, since models without comparable accuracy
are also counted in, and therefore dropout inference is not directly applicable to measuring predic-
tive multiplicity. To address this issue, here, we illustrate how dropout parameters control the loss
deviations of Rashomon sets for linear models, and eventually for FFNNs.

3.1 FORMULATION OF DROPOUT TECHNIQUES

We start with the mathematical formulation. Consider model weights W ∈ Rd, and define dropout
random variables as z = [Z1, Z2, · · · , Zd]. Let Dz = diag(z) ∈ Rd×d, the weights after dropout
can be denoted as wD = Dzw. There are two common choices of the random variables Zi.
Bernoulli dropout (also called standard dropout), adopts Zi to be i.i.d. Bernoulli(1 − p) random
variables, where p ∈ [0, 1] is the probability of dropping out a weight (i.e., the dropout rate). On
the other hand, Gaussian dropout applies i.i.d. Gaussian multiplicative noise, Gaussian(1, α), on the
weights [Wang & Manning, 2013; Kingma et al., 2015]. Gaussian dropout can also be interpreted
as a variational information bottleneck layer [Rey & Mnih, 2021].

Suppose we have m realizations of the dropout matrix, Dz1 , · · · ,Dzm . At the inference time, we
may apply each dropout realization Dzi to a fixed model weight w∗, where each realization is a
new, sparse model hDzi

w∗ . We would like to note that even though applying dropout is much more
computationally efficient than re-training and AWP to obtain a vast amount of models, if, however,
the dropout method leads to a huge loss deviation L(hDzi

w∗) − L(hw∗), dropout models are not
likely to be in the Rashomon set unless the Rashomon parameter ϵ is set to be large. Therefore, in
the next section, we investigate the connection among dropout parameters (i.e., rate p for Bernoulli
dropout and variance α for Gaussian dropout), loss deviations, and the Rashomon set.

3.2 THE RASHOMON SET ON RIDGE REGRESSION WITH DROPOUT

We start the analysis with a special case of Bernoulli dropout on ridge regression and its connection
to the notion of Rashomon sets. Consider a parametric hypothesis space of linear models H =
{hw(x) = w⊤x;w ∈ Rd}, ridge regression aims to minimizes the penalized sum of squared error
(SSE) loss, LSSE(w) ≜ ∥Xw−y∥22 for a dataset (X,y) ∈ Rn×d×Rn, i.e., min

w∈W
LSSE(w)+λ∥w∥22,

where λ is the regularization strength. The solution of ridge regression is given by w∗ = (X⊤X+
λId)

−1X⊤y [Hastie et al., 2009]. Denoting the weight solution after dropout to be w∗
D = Dzw

∗,
the loss LSSE(w

∗
D) becomes a random variable. Choosing Zi ∼ bernoulli(1 − p), the goal is to

characterize the deviation between LSSE(w
∗
D) and LSSE(w

∗). In fact, if we define the loss deviation
as ϵ = LSSE(w

∗
D)− LSSE(w

′∗), where w′∗ ≜ (1− p)w∗, then ϵ is a random variable as well, and
its expectation can be computed, as shown in the following proposition.

5The difference is that dilution randomly removes a connect of a neuron while dropout randomly removes
the entire neuron (and all its connections to other neurons). For variants of dilution and dropout, see Hertz
[2018, Chapter 3] and Labach et al. [2019].
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Proposition 1. Consider Bernoulli dropout with rate p, and denote the dropout weights as w∗
D =

Dzw
∗. The loss deviation ϵ = LSSE(w

∗
D)− LSSE(w

′∗) satisfies

Ez∼bernoulli(1−p)[ϵ] = Ez∼bernoulli(1−p) [LSSE(w
∗
D)− LSSE(w

′∗)] = p(1− p)w∗⊤diag(X⊤X)w∗.
(3)

Moreover, if the features of data matrix X are linearly independent and normalized, i.e., X⊤X = Id,
we have Ez∼bernoulli(1−p)[ϵ] =

p(1−p)
(1+λ)2 ∥y∥

2
2.

Figure 1: Proposition 1 with 20k models and
dimension d = {10, 50, 100, 200}. As d in-
creases, the variance of loss enlarges, while
the mean still matches the theory in (3).

Proposition 1 illustrates that a dropout model hw∗
D

, in
expectation, belongs to the Rashomon set R(w′∗, p(1 −
p)w∗⊤diag(X⊤X)w∗). We provide Monte Carlo sim-
ulation with a Gaussian synthetic dataset with different
dimension d in Figure 1. It is clear that the expected sim-
ulated losses follow the theory, and sheds light on the pos-
sibility to control loss deviations of Rashomon sets using
dropout. Proposition 1 can be further improved. First,
(3) could be defined regarding the original weights w∗

instead of w′∗. Second, (3) only specifies that dropout
models belongs to a Rashomon set in expectation. In the
rest of this section, we aim to improve this two limita-
tions, and show that the probability is controlled by the
feature dimension d.
3.3 THE RASHOMON SET OF LINEAR MODELS WITH DROPOUT
We start with ridge regression, which Rashomon set Rridge(w

∗, ϵ) has an analytical form; in fact, it
is an d-dimensional ellipsoid centered at w∗ [Semenova et al., 2019, Theorem 16], i.e.,

Rridge(w
∗, ϵ) = {w ∈ W; (w −w∗)⊤(X⊤X+ λId)(w −w∗) ≤ ϵ}. (4)

With the exact form of the Rashomon set, we can further compute the probability that a dropout
model Dzw

∗ is in the Rashomon set, i.e., Pr
{
Dzw

∗ ∈ Rridge(w
∗, ϵ)

}
.

Proposition 2. Without loss of generality, assume X⊤X = Id (otherwise we can always “whiten”
the data matrix X) and the weights are bounded, i.e., ∥w∥22 ≤ M , then the probability that the
model w∗ after dropout is in the Rashomon set is lower bounded by

Pr
{
Dzw

∗ ∈ Rridge(w
∗, ϵ)

}
≥

{
1− (1 + λ)pMϵ , if Zi

i.i.d.∼ bernoulli(1− p);

1− (1 + λ)αMϵ , if Zi
i.i.d.∼ Gaussian(1, α).

(5)

Proposition 2 suggests that the dropout parameters, rate p and variance α, are important for con-
trolling the probability. Indeed, a trivial case is when p = α = 0 (i.e., no dropout), the probability
Pr
{
Dzw

∗ ∈ Rridge(w
∗, ϵ)

}
is always 1. Moreover, let δ > 0, if p = O(d−δ) for Bernoulli dropout

Zi ∼ Bernoulli(1 − p), and α = O(d−δ) for Gaussian dropout Zi ∼ Gaussian(1, α), both dropout
mechanisms leads to lim

d→∞
Pr
{
Dzw

∗ ∈ Rridge(w
∗, ϵ)

}
= 1 (cf. Appendix A.6 for details).

Similar results also hold if we pass the outputs hw(xi) = w⊤xi through a softmax function
softmax(t) = 1/(1 + exp(−t)) to get output scores, and use the Brier score loss LBS(w) to
minimize the average difference between labels and scores for a classification problem. Using the
1-Lipschitzness of the softmax function, the next proposition shows the probability that dropout
models belong to a Rashomon set RBrier(w

∗, ϵ) = {w ∈ W;LBS(w)− LBS(w
∗) ≤ ϵ}.

Proposition 3. Let ∥x∥22 = 1
n∥xi∥22 and suppose the weights are bounded, i.e., ∥w∥22 ≤ M , for

both Bernoulli dropout Zi ∼ Bernoulli(1 − p) , and Gaussian dropout Zi ∼ Gaussian(1, α), we
have

Pr {Dzw
∗ ∈ RBrier(w

∗, ϵ)} ≥

{
1− (1 + λ)

pMd∥x∥2
2

ϵ , if Zi
i.i.d.∼ bernoulli(1− p);

1− (1 + λ)
αMd∥x∥2

2

ϵ , if Zi
i.i.d.∼ Gaussian(1, α).

(6)

The bound in Proposition 3 is different from that in Proposition 2 with merely a factor of d. There-
fore, the asymptotic behaviors of the probability hold again as d approaches infinity. Precisely,
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as long as p and α are of order O(d−(1+δ)) and the norm of inputs xi is finite, δ > 0, we have
lim
d→∞

Pr {Dzw
∗ ∈ RBrier(w

∗, ϵ)} = 1 for both Bernoulli and Gaussian dropout mechanisms.

Proposition 2 and 3 together show that for regression and classification problems, as long as the
dropout parameters are carefully controlled with respect to the feature dimension d, dropout leads
to models in the Rashomon set with high probability.

3.4 EXTENSION TO FEED-FORWARD NEURAL NETWORKS
In the previous section, we focus on simple linear models. Here, we include the discussion between
dropout and the Rashomon set for FFNNs with hidden layers6. We use the fact that activation
functions σ(·) commonly used in neural networks such as ReLU, softmax, and tanh, and non-linear
functions such as max-pooling, are Lipschitz with constant 1 (cf. Virmaux & Scaman [2018]).

Consider a K-hidden-layer neural network as follows:

hK
W(xi) = W⊤

Kσ
(
W⊤

K−1 · · ·σ
(
W⊤

1 xi

)
· · ·
)
, (7)

where Wk ∈ Rmk−1×mk , k ∈ [K] are the weight matrices, where m0 = d and mK = c. Let
W = {W1, · · · ,WK} be the collection of all the weights and W∗ = {W∗

k}Kk=1 is an empirical
minimizer. Now, consider i.i.d. dropout matrices Dk for each weight matrix Wk respectively, the
output after dropout is then

hK
W∗

D
(xi) = (DKW∗

K)⊤σ
(
(DK−1W

∗
K−1)

⊤ · · ·σ
(
(D1W

∗
1)

⊤xi

)
· · ·
)
, (8)

where W∗
D = {DkW

∗
k}Kk=1 is the collection of all dropout weights. Next, we prove that by care-

fully controlling variance of Gaussian dropout, the deviation of losses before and after dropout can
also be controlled.
Proposition 4. Consider a K-hidden-layer neural network hK

W∗(xi) defined in (7) with ∥Wk∥2F ≤
M for all k ∈ [K], and Gaussian dropout, i.e., all diagonal entries of Dk

i.i.d.∼ Gaussian(1, α). For
both MSE loss L(·) = LMSE(·) and Brier score loss L(·) = LBS(·), with probability at least 1− ρ,

L(W∗
D)− L(W∗) ≤ ρ−1MK∥X∥2F

(
(mα+ 1)

K − 1
)
, (9)

where m = max
k∈[K]

mk and ∥X∥2F = 1
n

∑n
i=1 ∥xi∥22.

Proposition 4 indicates that both Bernoulli and Gaussian dropouts on neural networks lead to models
in the Rashomon set R

(
W∗, ρ−1MK∥X∥2F

(
(mα+ 1)

K − 1
))

with probability 1− ρ.

4 MEASURING PREDICTIVE MULTIPLICITY WITH DROPOUT MODELS
In previous sections, we have shown that the probability of dropout models in a Rashomon set
could be controlled by the hyper-parameters of neural network architectures and dropout. These
dropout models can then be used to construct the empirical Rashomon set defined in (2), and to es-
timate predictive multiplicity metrics. Note that not all estimators of predictive multiplicity metrics
carry a theoretical analysis of its statistical properties such as consistency and sample complexity
(cf. Appendix B for details). In Appendix A.7, we provide additional theoretical analysis regarding
a sample complexity bound of estimating (a surrogate metric of) score variance for a single and mul-
tiple samples, using Hoeffding’s inequality [Hoeffding, 1994] and Gaussian annulus theorem [Blum
et al., 2020, Theorem 2.9].

Next, we show empirical results of estimating predictive multiplicity metrics with the empirical
Rashomon set obtained from the dropout techniques. We estimate the predictive multiplicity metrics
with 6 UCI datasets [Asuncion & Newman, 2007], including three from the financial domain (Adult
Income, Bank Marketing, and Credit Approval), and the rest from the medical domain (Dermatol-
ogy, Mammography, and Contraception). These domains are selected since predictive multiplicity
therein could cause critical consequences of injustice. See Appendix D.1 for detailed descriptions
and pre-processing of the datasets, and Appendix D.2 for detailed training setups. The baseline
methods we adopt to compare with dropout are re-training with different seeds [Semenova et al.,

6The analysis can also be applied to convolutional neural networks as they are FFNNs that use filters and
pooling layers [Goodfellow et al., 2016].
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Figure 2: Loss vs. dropout parameters and the corresponding predictive multiplicity metrics of the baselines
with UCI datasets. The figures in a row share the same y-axis for the loss difference ϵ, i.e., the Rashomon
parameter in (2). Both Bernoulli and Gaussian dropouts give higher multiplicity estimates than re-training
under the same loss deviation constraints. In other words, dropout is much more effective than re-training.
Despite AWP outperforming all the other methods, it is the most computationally expensive.

2019], and the adversarial weight perturbation algorithm [Hsu & Calmon, 2022]. All the models
here have the same architecture—a neural network with a single hidden layer of 1k neurons.

Figure 2 summarizes the estimation of the 6 predictive multiplicity metrics, introduced in Section 2,
using the empirical Rashomon set obtained with dropout models. For Bernoulli dropout, we pick
the dropout rates p ∈ [0.0, 0.2], and for Gaussian dropout, the variance α is set to be in [0.0, 0.6] ;
we obtain 100 models per dropout parameters. The leftmost column shows how the loss deviations
(Loss diff. ϵ in the figure) are controlled by varying the dropout parameters, as suggested by the
analysis in Section 3. Note that since the Adult Income and Bank Marketing datasets have much
more samples than the rest of the datasets, their variances of loss difference are much smaller com-
pared to the other datasets. Moreover, for all datasets, the accuracy deviations caused by the loss
differences are all within 1% (see Appendix E.1).

Table 1: Average runtime speedup per model on UCI
datasets, evaluated with the same computational plat-
form. For the raw values of the runtime, see Table E.6.

Dataset
Gaussian Dropout

Speedup over

Re-training AWP

Adult Income 305.53× —
Bank Deposit 35.36× —
Credit Approval 267.75× 5345.45×
Dermatology 28.88× 1121.59×
Mammography 130.20× 4238.18×
Contraception 78.40× 2952.73×

For predictive multiplicity metrics that are de-
fined per sample (e.g., VPR and RC), for the
sake of demonstration, we plot the values of
50% or 90% quantile, depending on which
quantile value best shows the difference be-
tween dropout and the baseline methods. We
report the values of those metrics for all sam-
ples in Appendix E.1. As observed in Figure 2,
both Bernoulli and Gaussian dropouts mostly
outperform the re-training strategy in terms of
exploring models in the Rashomon set for es-
timating predictive multiplicity. For example,
in both Bank Marketing and Mammography
datasets, the VPR and Ambiguity given by re-
training are close to zero, whereas dropouts
provide diverse models with high multiplicity that are within the same loss deviation regime (i.e.,
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in the same Rashomon set). On the other hand, AWP outperforms both dropouts and re-training,
since it adversarially searches the models that mostly flip the decisions toward all possible classes
for each sample. Despite that AWP best explores the Rashomon set, it comes at the cost of high time
complexity, as shown in Table 1, where we record the average runtime per model for re-training,
Bernoulli/Gaussian dropouts, and AWP. Note that for all methods, a pre-trained an empirical mini-
mizer w∗ is given and its training time is not included in Table 1. The good performance of AWP
comes at the cost of it being more than 1000 times slower than dropout methods. Also, the dropout
methods are tens to hundreds times faster than re-training. We refer the reader to Table E.7 for
an additional comparison of the efficiency to obtain models from the Rashomon set between the
re-training and dropout strategies.

Figure 3: Human detection on MS COCO dataset. The
leftest column shows the ground truth of the bounding
boxes, and the rest of columns are the bounding boxes
found by 4 models in the dropout-based Rashomon set.
The green values denote the confidence of the bounding
boxes larger than 0.5, and red otherwise. The detectors
of the bounding boxes suffer from predictive multiplic-
ity in terms of the coverage and confidence.

We study a more complicated and practical
use case by using the Microsoft COCO hu-
man detection dataset [Lin et al., 2014]. The
goal of human detection is to determine, in
image or video sequence that contain multi-
ple objects, the smallest rectangular bounding
boxes that enclose humans. Predictive mul-
tiplicity therein could lower the trustworthi-
ness of applications involving human detection
such as autonomous driving or AR/VR systems
[Nguyen et al., 2016]. Figure 3 shows the pre-
dictive multiplicity of determining the human
bounding boxes with the YoloV3 detector [Red-
mon & Farhadi, 2018]. We use the Gaussian
dropout to explore models in the Rashomon
set, whose average precisions (APs) are within
0.5% to the pre-trained model. Despite that
the APs of the models are similar, the bound-
ing boxes exhibit high predictive multiplicity in
terms of the coverage and confidence of the re-
gions. For the corresponding predictive multi-
plicity metrics with the YoloV3 and Mask R-
CNN [He et al., 2017] detectors, see Appendix E.2.

For more extensive experiments with CIFAR-10/-100 datasets [Krizhevsky & Hinton, 2009] using
VGG16 [Simonyan & Zisserman, 2014] and ResNet50 [He et al., 2016], along with their runtime
comparisons, see Appendix E.3. For ablation studies on the depth, width, and architectures of the
neural network models, and model calibration [Platt et al., 1999], see Appendix E.4.

Note that either baselines such as re-training and AWP, or the proposed dropout method, can only
explore partially of the entire (true) Rashomon set when the hypothesis space is large, and there-
fore all estimates obtained from the three strategies are under-estimates of the multiplicity metrics.
In Figure E.13 in Appendix E.1, we demonstrate that when the hypothesis space is small (e.g., lo-
gistic regression), the re-training and dropout strategies have similar performance of exploring the
Rashomon set. Despite that the proposed dropout method may only search local models in the
Rashomon set, it provides fast lower bounds for multiplicity metric estimates.

5 APPLICATIONS USING EFFICIENT EXPLORATION OF THE RASHOMON SET

The efficient dropout technique makes applications regarding the exploration of the Rashomon set
computationally feasible. Here, we show two applications of the Rashomon set: (i) mitigating
predictive multiplicity using the ensemble method with dropout, and (ii) selecting models that have
the smallest multiplicity subject to potential loss deviations. We use the UCI Adult Income dataset
[Asuncion & Newman, 2007] following the same training settings in Section 4 for both applications.

Dropout ensembles to mitigate predictive multiplicity. Long et al. [2023] have shown that the
outputs of ensemble models have less variance and hence suffer less from predictive multiplicity.
The main challenge of getting an ensemble model is to obtain multiple models in the Rashomon
set. Using dropout, we can efficiently obtain a vast amount of models to compose an ensemble
model by averaging their outputs. As shown in Figure 4a, as the number of models in an ensemble

8
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(a) Predictive multiplicity metrics vs. different num-
ber of models in an ensemble. A larger ensemble can
effectively reduce multiplicity. Each value is aver-
aged over 100 ensemble models.

(b) Predictive multiplicity metrics of 5 different pre-
trained models using bernoulli(1 − 0.01) dropout.
Model 2 is preferred since it has smallest estimate of
multiplicity metrics over the rest of the models.

Figure 4: Applications of the Rashomon set using dropout with the Adult Income dataset.

(Ensemble Size in the figure) increases, both the score and decision-based predictive multiplicity
metrics shrink. Therefore, whenever given a pre-trained model, we can efficiently construct an
ensemble with dropout models in order to reduce predictive multiplicity.

Selecting models with smaller predictive multiplicity. We can also use our efficient estimation
framework to perform model selection if presented with multiple pre-trained models with simi-
lar performance. By performing dropout on each pre-trained model to construct the empirical
Rashomon set, we can pick the model that yields the smallest estimate of predictive multiplicity
metrics. For example, Figure 4b shows the spread of predictive multiplicity metrics for 5 models ,
trained with different weight initializations and same architectures. Model 2 has the smallest VPR,
RC, Ambiguity, and Discrepancy compared to the rest of the models. Conversely, Model 4 has the
highest estimate of predictive multiplicity metrics. Therefore, Model 2 would be a more favorable
choice for deployment over Model 4.

6 DISCUSSION
Here we reflect on the limitations and highlight interesting avenues for future work.
Limitations. First, in order to apply dropout on the model weights, our proposed framework re-
quires full access to the weights of the pre-trained model as it multiplies them with the dropout
random variables, i.e., the pre-trained model has to be a white-box model. However, white-box
pre-trained models are often unavailable due to practical reasons such as data security and IP pro-
tection. Second, as discussed in E.3, when the hypothesis space is extremely large, dropout method
could possibly only explore models that are “close” to (and dependent on) the pre-trained model and
therefore under-perform the re-training strategy. A potential solution to this issue is to combine the
re-training strategy and the dropout methods—we first re-train a few models to ensure a sufficient
exploration of diverse local minima, and then apply dropout on these models to further explore the
Rashomon set —see Figure E.22 and E.23 in Appendix E.3 for a demonstration of such strategy.
Future directions. First, our analysis of the connection between dropout and the Rashomon set is
primarily on FFNNs and CNNs. The analysis could be generalized to other neural network archi-
tectures with feedback loops (i.e., recurrent neural networks [Yu et al., 2019]) in order to investigate
predictive multiplicity for other applications such as time series or natural languages. Second, our
analysis assumes equal dropout probabilities for all weights in a neural network. However, dropout
on the first few layers (or some unfrozen layers) may better explore the Rashomon set, as some lay-
ers carry more semantics information [Yosinski et al., 2014]. Third, disagreements among models
in the empirical Rashomon set can be used to falsify or improve at least one (with the lowest loss) of
the models by reconciling the conflicting decisions [Roth et al., 2023]. Given models with different
dropout parameters, a possible procedure to reconcile the conflicting decisions could be assigning
different weights to those decisions, depending on the dropout parameters and neural network prop-
erties.
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Ethics statement. The phenomenon of the Rashomon effect and predictive multiplicity can be
maliciously exploited by adversaries to make harmful decisions towards targeted users. For example,
an adversary can measure predictive multiplicity across different training procedures, e.g., different
neural network architectures or order of batches of the training dataset, and select a combination of
settings that produces the most “unfair” decisions against a certain group of population.

Reproducibility statement. Our codes are based on PyTorch [Paszke et al., 2017], where the
Bernoulli and Gaussian dropouts could be implemented by intermediate activations with forward
hooks. Note that our implementation is different from Gal & Ghahramani [2016] in https:
//github.com/yaringal/DropoutUncertaintyExps/tree/master. The estima-
tion of the predictive multiplicity metrics follows directly from either the corresponding mathemati-
cal definitions in the papers or the GitHub repository therein. See Appendix B for the mathematical
formulations, corresponding definitions in each reference and the GitHub repositories.

Disclaimer. This paper was prepared for informational purposes by the Global Technology Ap-
plied Research center of JPMorgan Chase & Co. This paper is not a product of the Research De-
partment of JPMorgan Chase & Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its
affiliates makes any explicit or implied representation or warranty and none of them accept any lia-
bility in connection with this paper, including, without limitation, with respect to the completeness,
accuracy, or reliability of the information contained herein and the potential legal, compliance, tax,
or accounting effects thereof. This document is not intended as investment research or investment
advice, or as a recommendation, offer, or solicitation for the purchase or sale of any security, finan-
cial instrument, financial product or service, or to be used in any way for evaluating the merits of
participating in any transaction.
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The appendix is divided into the following parts. Appendix A: Omitted proofs and theoretical re-
sults; Appendix B: Discussion on predictive multiplicity metrics; Appendix C: Additional discus-
sion on prediction uncertainty; Appendix D: Details on the experimental setup; and Appendix E:
Additional empirical results.

A OMITTED PROOFS AND THEORETICAL RESULTS

A.1 USEFUL LEMMAS

We first introduce (and prove) the following useful lemmas to facilitate the proofs of the proposi-
tions. The first lemma is about the expectation of the dropout matrix Dz.
Lemma A.1. Let Dz = diag(Z1, Z2, · · · , Zd) ∈ Rd×d, where Zi are i.i.d. random variables, and
given a vector a ∈ Rd, then

E
[
a⊤(Dz − Id)

⊤(Dz − Id)a
]
=

{
∥a∥22p, if Zi

i.i.d.∼ bernoulli(1− p);

∥a∥22α, if Zi
i.i.d.∼ Gaussian(1, α).

(A.1)

Moreover, if a is the all-one d-dimensional vector, (A.1) can be alternatively expressed as

E
[
∥Dz − Id∥2F

]
=

{
dp, if Zi

i.i.d.∼ bernoulli(1− p);

dα, if Zi
i.i.d.∼ Gaussian(1, α).

(A.2)

Proof. By direct computation of the expectation, we have

E
[
a⊤(Dz − Id)

⊤(Dz − Id)a
]
= E

[
d∑

i=1

(ai)
2(Zi − 1)2

]
= E

[
(Zi − 1)2

] d∑
i=1

(ai)
2

= E
[
(Zi − 1)2

]
∥a∥22.

(A.3)

Now, we discuss different distributions for the random variable Zi.

Bernoulli random variable. If Zi ∼ bernoulli(1 − p), then Zi − 1 ∼ 2bernoulli(p) − 1 and
(Zi − 1)2 ∼ bernoulli(p). Therefore,

E
[
(Zi − 1)2

]
= E [Z ′

i] = p, where Z ′
i ∼ bernoulli(p). (A.4)

Gaussian random variable. If Zi ∼ Gaussian(1, α), then Zi − 1 ∼
√
αSi, where Si ∼

Gaussian(0, 1) follows the standard Gaussian distribution. Therefore,

E
[
(Zi − 1)2

]
= E

[(√
αSi

)2]
= αE

[
S2
i

]
= α

(
var(Si) + E[Si]

2
)
= α. (A.5)

The desired result follows from combining (A.3), (A.4) and (A.5).

Finally, if a is the all-one d-dimensional vector,

E
[
a⊤(Dz − Id)

⊤(Dz − Id)a
]
= E

[
d∑

i=1

(Zi − 1)2

]
= E

 d∑
i=1

d∑
j=1

[Dz − Id]
2
i,j


= E

[
∥Dz − Id∥2F

]
,

(A.6)

and the rest follows by directly plugging in ∥a∥22 = d.

The second lemma is on the upper bound of the neural network outputs after dropout.
Lemma A.2. Given the dropout matrices D1, · · · ,DK , weight matrices W1, · · · ,WK , input x
and the activation function with Lipschitz constant 1, we have

∥σ (DKWKσ (· · ·σ (D1W1x) · · · )) ∥22 ≤

(
K∏

k=1

∥Wk∥2F

)(
K∏

k=1

(
∥Dk − Id∥2F + 1

))
∥x∥22.

(A.7)
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Proof. We prove this lemma by induction on the number of layers k. First, when k = 1, we have

∥σ (D1W1x) ∥22 = ∥σ
(
(D1W1)

⊤x
)
− σ

(
W⊤

1 x
)
+ σ

(
W⊤

1 x
)
∥22

≤ ∥σ
(
(D1W1)

⊤x
)
− σ

(
W⊤

1 x
)
∥22 + ∥σ

(
W⊤

1 x
)
∥22

≤ ∥W1∥2F ∥x∥22
(
∥D1 − Id∥2F + 1

)
.

(A.8)

Now, let hK
WD

(x) follows the definition in (8), and suppose (A.7) holds for k = K − 1, i.e.,

∥σ
(
hK−1
WD

(x)
)
∥22 ≤

(
K−1∏
k=1

∥Wk∥2F

)(
K−1∏
k=1

(
∥Dk − Id∥2F + 1

))
∥x∥22, (A.9)

we have

∥σ
(
hK
WD

(x)
)
∥22 = ∥σ

(
(DKWK)⊤σ

(
hK−1
WD

(x)
))

∥22
≤ ∥σ

(
(DKWK)⊤σ

(
hK−1
WD

(x)
))

− σ
(
W⊤

Kσ
(
hK−1
WD

(x)
))

∥22
+ ∥σ

(
W⊤

Kσ
(
hK−1
WD

(x)
))

∥22
≤ ∥DK − Id∥2F ∥WK∥2F ∥∥σ

(
hK−1
WD

(x)
)
∥22 + ∥WK∥2F ∥∥σ

(
hK−1
WD

(x)
)
∥22

≤
(
∥DK − Id∥2F + 1

)
∥WK∥2F ∥∥σ

(
hK−1
WD

(x)
)
∥22

≤
(
∥DK − Id∥2F + 1

)
∥WK∥2F

(
K−1∏
k=1

∥Wk∥2F

)(
K−1∏
k=1

(
∥Dk − Id∥2F + 1

))
∥x∥22

=

(
K∏

k=1

∥Wk∥2F

)(
K∏

k=1

(
∥Dk − Id∥2F + 1

))
∥x∥22.

(A.10)

The third lemma essentially says that the distance of points, sampled from a d-dimensional Gaussian
distribution, is tightly concentrated around the distance

√
d. The quantity

√
d is also called natural

scale or radius of d-dimensional Gaussian distributions.

Lemma A.3 (Gaussian annulus theorem [Blum et al., 2020, Theorem 2.9]). For a d-dimensional
Gaussian with mean zero and variance σ2Id. for any β ≤ σ

√
d, all but at most 3e−

β2

8 of the
probability mass lies within the annulus β − σ

√
d ≤ |x| ≤ β + σ

√
d.

The fourth lemma is a direct application of Lemma A.3 by choosing β = σ
√
d.

Lemma A.4. Consider a d-dimensional Gaussian distribution PNd
(v) with mean w ∈ Rd and

variance σ2Id ∈ Rd×d, and a unit ball B centered at w with radius 2σ
√
d, i.e., B(w, 2σ

√
d) =

{v ∈ Rd; 0 ≤ |v| ≤ 2σ
√
d}, we have the following integral∫

v∈B(w,2σ
√
d)

PNd
(v)dv ≥ 1− 3e−

σ2d
8 and

∫
v∈Bc(w,2σ

√
d)

PNd
(v)dv ≤ 3e−

σ2d
8 , (A.11)

where the latter integral could be viewed as the tail probability bound on the d-dimensional ball
with radius 2σ

√
d.

A.2 PROOF OF PROPOSITION 1

For any weight vector w ∈ W , denote the dropout weights as wD = Dzw, the mean square error
(MSE) is

∥XwD − y∥22 = (XwD − y)⊤(XwD − y) = y⊤y − 2w⊤
DX⊤y +w⊤

DX⊤XwD

= y⊤y − 2w⊤D⊤
z X

⊤y +w⊤D⊤
z X

⊤XDzw.
(A.12)
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Taking the expectation, we have

E
[
∥XwD − y∥22

]
= y⊤y − 2w⊤E [XDz]

⊤
y +w⊤E [XDz]

⊤ E [XDz]w

= y⊤y − 2(1− p)w⊤X⊤y +w⊤E [XDz]
⊤ E [XDz]w

= ∥(1− p)Xw − y∥22 − (1− p)2w⊤X⊤Xw +w⊤E [XDz]
⊤ E [XDz]w

= ∥(1− p)Xw − y∥22 +w⊤
(
E [XDz]

⊤ E [XDz]− (1− p)2X⊤X
)
w

= ∥(1− p)Xw − y∥22 + p(1− p)w⊤diag(X⊤X)w,
(A.13)

where the last equality comes from the fact that the off-diagonal entries are cancelled out, and that
for Bernoulli(1 − p) random variables, the second moment is p(1 − p) + (1 − p)2 = 1 − p, and
therefore (1− p)− (1− p)2 = p(1− p).

Since the equality above holds for all weights, let w = w∗ and wD = Dzw
∗, we have

Ez∼bernoulli(1−p)[ϵ] = Ez∼bernoulli(1−p)

[
∥XwD − y∥22 − ∥(1− p)Xw∗ − y∥22

]
= Ez∼bernoulli(1−p)

[
∥XwD − y∥22

]
− ∥(1− p)Xw∗ − y∥22

= p(1− p)w∗⊤diag(X⊤X)w∗,

(A.14)

which is the desired result.

If the features of data matrix X are linearly independent and normalized, i.e., X⊤X = Id, we have
diag(X⊤X) = Id and w∗ = (X⊤X + λId)

−1X⊤y = X⊤y
1+λ . The expectation of ϵ can then be

further simplified as

Ez∼bernoulli(1−p)[ϵ] = p(1− p)w∗⊤diag(X⊤X)w∗ = p(1− p)w∗⊤w∗ =
p(1− p)

(1 + λ)2
y⊤XX⊤y

=
p(1− p)

(1 + λ)2
∥y∥22.

(A.15)

A.3 PROOF OF PROPOSITION 2

Following the definition of the Rashomon set for ridge regression in (4) and the assumption X⊤X =
Id, we have

Pr {Dzw
∗ ∈ R(w∗, ϵ)} = Pr

{
(Dzw

∗ −w∗)⊤(X⊤X+ λId)(Dzw
∗ −w∗) ≤ ϵ

}
= Pr

{
((Dz − Id)w

∗)⊤(1 + λ)Id(Dz − Id)w
∗ ≤ ϵ

}
= Pr

{
w∗⊤(Dz − Id)

⊤(Dz − Id)w
∗ ≤ ϵ

1 + λ

}

≥ 1− (1 + λ)
E
[
w∗⊤(Dz − Id)

⊤(Dz − Id)w
∗
]

ϵ

(A.16)

where the last inequality comes from Markov inequality.

Now, using Lemma A.1 for different dropout random variables Zi, the assumption ∥w∗∥22 ≤ M ,
and (A.16), we have

Pr {Dzw
∗ ∈ R(w∗, ϵ)} ≥ 1− (1 + λ)

E
[
w∗⊤(Dz − Id)

⊤(Dz − Id)w
∗
]

ϵ

=

{
1− (1 + λ)pMϵ , if Zi

i.i.d.∼ bernoulli(1− p);

1− (1 + λ)αMϵ , if Zi
i.i.d.∼ Gaussian(1, α).

(A.17)

If p = O(d−δ) and α = O(d−δ) with δ > 0, we have

lim
d→∞

(1 + λ)
pM

ϵ
= lim

d→∞
(1 + λ)

αM

ϵ
= 0. (A.18)

Therefore, the desired results follow for both Bernoulli and Gaussian dropout mechanisms, i.e.,
lim
d→∞

Pr {Dzw
∗ ∈ R(w∗, ϵ)} = 1. (A.19)
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A.4 PROOF OF PROPOSITION 3

Follow the definition of the Rashomon set and using tiangle and Cauchy–Schwarz inequalities, we
have

LBS(Dzw
∗)− LBS(w

∗) =
1

n

n∑
i=1

(
σ((Dzw

∗)⊤xi)− yi

)2 − 1

n

n∑
i=1

(
σ(w∗⊤xi)− yi

)2
≤ 1

n

n∑
i=1

(
σ((Dzw

∗)⊤xi)− σ(w∗⊤xi)
)2

≤ 1

n

n∑
i=1

(
w∗⊤(Dz − Id)

⊤xi

)2
≤ 1

n

n∑
i=1

∥w∗∥22∥Dz − Id∥2F ∥xi∥22

= M∥Dz − Id∥2F ∥x∥22,

(A.20)

where ∥x∥22 ≜ 1
n

∑n
i=1 ∥xi∥22 and ∥w∗∥22 ≤ M . Therefore, the probability that the dropout weights

lead to models in the Rashomon set is

Pr {LBS(Dzw
∗)− LBS(w

∗) ≤ ϵ} ≥ Pr
{
M∥Dz − Id∥2F ∥x∥22 ≤ ϵ

}
= Pr

{
∥Dz − Id∥2F ≤ ϵ

M∥x∥22

}

≥ 1− M∥x∥22E[∥Dz − Id∥2F ]
ϵ

,

(A.21)

where the inequality comes from the Markov inequality.

Using Lemma A.1 and (A.21), we have

Pr {LBS(Dzw
∗)− LBS(w

∗) ≤ ϵ} ≥ 1− ME[∥Dz − Id∥2F ∥x∥22]
ϵ

=

{
1− (1 + λ)

pMd∥x∥2
2

ϵ , if Zi
i.i.d.∼ bernoulli(1− p);

1− (1 + λ)
αMd∥x∥2

2

ϵ , if Zi
i.i.d.∼ Gaussian(1, α).

(A.22)
Therefore, as long as p and α are of order O(d−(1+δ)), δ > 0, we have

lim
d→∞

(1 + λ)
pMd∥x∥22

ϵ
= lim

d→∞
(1 + λ)

αMd∥x∥22
ϵ

= 0, (A.23)

and lim
d→∞

Pr {LBS(Dzw
∗)− LBS(w

∗) ≤ ϵ} = 1 for both Bernoulli and Gaussian dropout mecha-

nisms.

A.5 PROOF OF PROPOSITION 4

We prove this proposition by the induction method on the number of layers k ∈ [K]. We first
consider a neural network h2

W(·), and derive a bound for the deviation of the outputs (in ℓ2-norm)
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1
n

∑n
i=1 ∥h2

WD
(xi)− h2

W(xi)∥22 before and after dropout. By triangle inequality, we have

1

n

n∑
i=1

∥h2
WD

(xi)− h2
W(xi)∥22 =

1

n

n∑
i=1

∥(D2W2)
⊤σ
(
(D1W1)

⊤xi

)
−W⊤

2 σ
(
W⊤

1 xi

)
∥22

≤ 1

n

n∑
i=1

∥(D2W2)
⊤σ
(
(D1W1)

⊤xi

)
−W⊤

2 σ
(
(D1W1)

⊤xi

)
∥22︸ ︷︷ ︸

(i)

+
1

n

n∑
i=1

∥W⊤
2 σ
(
(D1W1)

⊤xi

)
−W⊤

2 σ
(
W⊤

1 xi

)
∥22︸ ︷︷ ︸

(ii)

.

(A.24)
By Lemma A.2 and let ∥X∥2F = 1

n

∑n
i=1 ∥xi∥22, we can bound the first term (i) in (A.24) as

(i) =
1

n

n∑
i=1

∥((D2 − Id)W2)
⊤σ
(
(D1W1)

⊤xi

)
∥22

≤ 1

n

n∑
i=1

∥D2 − Id∥2F ∥W2∥2F ∥σ
(
(D1W1)

⊤xi

)
∥22

≤ ∥D2 − Id∥2F ∥W2∥2F ∥W1∥2F
(
∥D1 − Id∥2F + 1

)
∥X∥2F .

(A.25)

Similarly, we have the bound on the second term (ii) in (A.24) as

(ii) =
1

n

n∑
i=1

∥W2∥2F ∥(D1W1)
⊤xi −W⊤

1 xi∥22 ≤ ∥D1 − Id∥2F ∥W2∥2F ∥W1∥2F ∥X∥2F .

(A.26)
Combining (A.24), (A.25) and (A.26), we have

1

n

n∑
i=1

∥h2
WD

(xi)− h2
W(xi)∥22 ≤ (i) + (ii)

≤ ∥D2 − Id∥2F ∥W2∥2F ∥W1∥2F
(
∥D1 − Id∥2F + 1

)
∥X∥2F

+ ∥D1 − Id∥2F ∥W2∥2F ∥W1∥2F ∥X∥2F
= ∥W2∥2F ∥W1∥2F

(
(∥D2 − Id∥2F + 1)(∥D1 − Id∥2F + 1)− 1

)
∥X∥2F .

(A.27)

Now, suppose the upper bound holds for a (K − 1)-hidden-layer feed-forward neural network, i.e.,

1

n

n∑
i=1

∥hK−1
WD

(xi)− hK−1
W (xi)∥22 ≤

(
K−1∏
k=1

∥Wk∥2F

)(
K−1∏
k=1

(
∥Dk − Id∥2F + 1

)
− 1

)
∥X∥2F ,

(A.28)
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then again by applying Lemma A.2 and (A.28), for L layers, the upper bound is

1

n

n∑
i=1

∥hK
WD

(xi)− hK
W(xi)∥22 =

1

n

n∑
i=1

∥(DKWK)⊤σ
(
hK−1
WD

(xi)
)
−WKσ

(
hK−1
W (xi)

)
∥22

≤ 1

n

n∑
i=1

∥(DKWK)⊤σ
(
hK−1
WD

(xi)
)
−W⊤

Kσ
(
hK−1
WD

(xi)
)
∥22

+
1

n

n∑
i=1

∥W⊤
Kσ
(
hK−1
WD

(xi)
)
−WKσ

(
hK−1
W (xi)

)
∥22

≤ ∥DK − Id∥2F ∥WK∥2F ∥

(
1

n

n∑
i=1

σ
(
hK−1
WD

(xi)
)
∥22

)

+ ∥WK∥2F

(
1

n

n∑
i=1

∥σ
(
hK−1
WD

(xi)
)
− σ

(
hK−1
W (xi)

)
∥22

)

≤ ∥DK − Id∥2F

(
K−1∏
k=1

(
∥Dk − Id∥2F + 1

))( K∏
k=1

∥Wk∥2F

)
∥X∥2F

+

(
K∏
i=1

∥Wi∥2F

)(
K−1∏
i=1

(
∥Di − Id∥2F + 1

)
− 1

)
∥X∥2F

=

(
K∏
i=1

∥Wi∥2F

)(
K∏
i=1

(
∥Di − Id∥2F + 1

)
− 1

)
∥X∥2F .

(A.29)

Since the weights are bounded, i.e., ∥Wk∥2F ≤ M for all k ∈ [K], the probability that the output
deviation before and after dropout is smaller than ϵ is given by

1

n

n∑
i=1

Pr
{
∥hK

WD
(xi)− hK

W(xi)∥22 ≤ ϵ
}
≥ Pr

{(
K∏
i=1

∥Wi∥2F

)(
K∏
i=1

(
∥Di − Id∥2F + 1

)
− 1

)
∥X∥2F ≤ ϵ

}

= Pr


(

K∏
i=1

(
∥Di − Id∥2F + 1

)
− 1

)
≤ ϵ(∏K

i=1 ∥Wi∥2F
)
∥X∥2F


≥ Pr

{(
L∏

i=1

(
∥Di − Id∥2F + 1

)
− 1

)
≤ ϵ

MK∥X∥2F

}

≥ 1− E

[
K∏
i=1

(
∥Di − Id∥2F + 1

)
− 1

](
ϵ

MK∥X∥2F

)−1

= 1−

(
K∏
i=1

E
[(
∥Di − Id∥2F + 1

)]
− 1

)(
ϵ

MK∥X∥2F

)−1

,

(A.30)
where the last equation comes from the fact that the Dk for different layers are independent.
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Let m = max
i∈[L]

mi and since Zi ∼ Gaussian(1, α), the product in (A.30) becomes

K∏
i=1

E
[(
∥Di − Id∥2F + 1

)]
=

K∏
i=1

E

mi∑
j=1

(Zj − 1)
2
+ 1

 ≤
K∏
i=1

E

 m∑
j=1

(Zj − 1)
2
+ 1


=

K∏
i=1

 m∑
j=1

E
[
(Zj − 1)

2
]
+ 1


=

K∏
i=1

(mα+ 1)

= (mα+ 1)
K
.

(A.31)
Combining (A.30) and (A.31), we have

1

n

n∑
i=1

Pr
{
∥hK

WD
(xi)− hK

W(xi)∥22 ≤ ϵ
}

≥ 1−

(
K∏
i=1

E
[(
∥Di − Id∥2F + 1

)]
− 1

)(
ϵ

MK∥X∥2F

)−1

≥ 1−
(
(mα+ 1)

K − 1
)( ϵ

MK∥X∥2F

)−1

.

(A.32)

In other words, with probability at least 1− ρ, the deviation is bounded by

1

n

n∑
i=1

∥hK
WD

(xi)− hK
W(xi)∥22 ≤ ρ−1MK∥X∥2F

(
(mα+ 1)

K − 1
)
. (A.33)

Moreover, as long as α = O(m−(1+δ)), δ > 0,

lim
m→∞

ρ−1MK∥X∥2F
(
(mα+ 1)

K − 1
)
= 0. (A.34)

We finally connect the deviation of the outputs to the loss functions. For regression tasks, the
deviation of MSE losses becomes

LMSE(WD)− LMSE(W
∗) =

1

n

n∑
i=1

∥hK
WD

(xi)− yi∥22 −
1

n

n∑
i=1

∥hK
W(xi)− yi∥22

≤ 1

n

n∑
i=1

∥hK
WD

(xi)− hK
W(xi)∥22.

(A.35)

For classification task, the deviation of the Brier scores is

LBS(wD)− LBS(W
∗) =

1

n

n∑
i=1

∥softmax(hK
WD

(xi))− yi∥2 −
1

n

n∑
i=1

∥softmax(hK
W(xi))− yi∥2

≤ 1

n

n∑
i=1

∥softmax(hK
WD

(xi))− softmax(hK
W(xi))∥2

≤ 1

n

n∑
i=1

∥hK
WD

(xi)− hK
W(xi)∥2.

(A.36)

Therefore, combining , for both MSE loss and Brier score, with at least probability at least 1− ρ,

LMSE(WD)− LMSE(W
∗) ≤ ρ−1MK∥X∥2F

(
(mα+ 1)

K − 1
)
, and

LBS(WD)− LBS(W
∗) ≤ ρ−1MK∥X∥2F

(
(mα+ 1)

K − 1
)
.

(A.37)
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A.6 ADDITIONAL NOTES ON THEORETICAL RESULTS

Note that the condition in Proposition 2 and 3, d → ∞, is a regime commonly known in the asymp-
totic analysis of learning models such as over-parameterization [Cao & Gu, 2020], and the universal
approximator theorem [Hornik et al., 1989].

The goal to explore the Rashomon set is to find models with diverse outputs while satisfying the loss
deviation constraint. If we are allowed to find models outside of the Rashomon set, the performance
of the models could be much worse and are less likely to be selected in practice. Note that the
phenomenon of predictive multiplicity is only discussed within almost-equally optimal models (say
models that all have 99% accuracy). In this sense, the concentration bound helps to characterize the
probability that a model after dropout will still be inside the Rashomon set, and is a vital mathemat-
ical tool used in our proofs. Ideally, it is more efficient to directly select models at the boundaries of
the Rashomon set. It is possible when the Rashomon set could be explicitly expressed, e.g., for ridge
regression. However, for general hypothesis space, how to search at the boundaries of a Rashomon
set is still an open challenge, and re-training (and AWP) was the only strategy.

The Rashomon set in (2) is defined regarding the mean of the loss for a given dataset of a fixed size.
In other words, the dataset is a given parameter, not a source of randomness in the definition of a
Rashomon set. Note that the randomness in the convergence in (6) and (9) is with respect to the
dropout matrix, not like the vanilla concentration bound that consider drawing samples from a data
distribution, it makes sense that those convergence results does not rely on the number of samples.
In (5), the loss we used is the sum of the loss for each samples as we w.l.o.g. assume the data matrix
is whitened. In (6) and (9) the losses are defined with the mean of the loss for each sample.

A.7 ADDITIONAL THEORETICAL RESULTS

We show the sample complexity for estimating a surrogate metric for score variance. Using score
variance as a predictive multiplicity metric is adopted in Cooper et al. [2023] and Long et al. [2023];
however, they only consider the case of binary classification. Here, we generalize the notion to
multi-class classification problems. Since hW(xi) is a c-dimensional vector, we can model the
distribution of the score [hW(xi)]yi of the correct label yi ∈ [c] as a beta distribution beta(α, β). In
this case, the variance of the beta distribution is

αβ

(α+ β)2(α+ β + 1)
=

µ(1− µ)

α+ β + 1
≤ µ(1− µ), (A.38)

where µ is the population mean.

We assume that the models around W∗ are uniformly distributed in a d-dimensional ball with center
W∗ and radius δ, i.e., B(W∗, δ). Accordingly, we may assume that the population mean µ for a
sample can be expressed as

µ(xi) = EW∼uniform(B(W∗,δ))

[
[hW(xi)]yi

]
. (A.39)

The assumption of the uniform distribution around W∗ may not reflect the true underlying distribu-
tions of models in the Rashomon set (e.g., when there are exponentially many local minima), but it
is an ideal assumption that facilitates mathematical analysis that was also adopted in existing liter-
ature [Kulynych et al., 2023]. How to characterize the distribution of models in the Rashomon set
still remains an open and active challenge in the field. The estimator for µ(xi) by using T Gaussian
dropout models is given by

µ̂(xi) ≜
1

T

T∑
t=1

[
hW∗

D,t
(xi)

]
yi

, where W∗
D,t = {Dk,tW

∗
k}Kk=1 and [Dk,t]i,i ∼ Gaussian(1, α).

(A.40)
We pick v(xi) ≜ µ(xi)(1− µ(xi)) as a surrogate metric for the upper bound of the score variance
in (A.38), and the plug-in estimator is v̂(xi) ≜ µ̂(xi)(1− µ̂(xi)).

In the following proposition, we show that v̂(xi) can be used to estimate v(xi) reliably in terms of
the number T of models in the empirical Rashomon set (2) by concentration bounds and Gaussian
annulus theorem (cf. Lemma A.3).
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Proposition 5. For TGaussian(1, α) dropout models, hWD,1
, · · · , hWD,T

in the empirical
Rashomon set, with probability at least 1− ρ, ρ ∈ (0, 1], the deviation |v̂(xi)− v(xi)| satisfies

|v̂(xi)− v(xi)| ≤
(
6e−

αdw2
max

8 +

√
1

2T
ln

2

ρ

)(
1 + 6e−

αdw2
max

8 +

√
1

2T
ln

2

ρ

)
, (A.41)

where wmax = max
k∈[K],i∈[mk−1],j∈[mk]

[W∗
k]i,j and d =

∑K
k=1 mk−1 ×mk.

Proof. Since v̂(xi) is a continuous transformation of µ̂(xi), we could bound the deviation |v̂(xi)−
v(xi)| by |µ̂(xi)− µ(xi)|. Suppose µ̂(xi)− µ(xi) = ν and ν ∈ [−η, η], we have

|v̂(xi)− v(xi)| = |µ̂(xi)(1− µ̂(xi))− µ(xi)(1− µ(xi))|
= |(µ(xi) + ν)(1− µ(xi)− ν)− µ(xi)(1− µ(xi))|
=
∣∣µ(xi)(1− µ(xi)) + ν(1− µ(xi))− νµ(xi)− ν2 − µ(xi)(1− µ(xi))

∣∣
≤ |ν| |1− 2µ(xi)− ν|
≤ |ν| |1 + ν| .

(A.42)
Therefore, we only need to bound the deviation |µ̂(xi)− µ(xi)|. Here, we have

|µ̂(xi)− µ(xi)| = |µ̂(xi)− E[µ̂(xi)] + E[µ̂(xi)]− µ(xi)|
≤ |µ̂(xi)− E[µ̂(xi)]|︸ ︷︷ ︸

(i)

+ |E[µ̂(xi)]− µ(xi)|︸ ︷︷ ︸
(ii)

, (A.43)

where the expectation is taken over the distribution of all dropout matrices Dk. For (i) in (A.43),
using Chernoff-Hoeffding inequality [Hoeffding, 1994], we have

Pr {|µ̂(xi)− E[µ̂(xi)| < η} ≥ 1− 2 exp(−2η2T ). (A.44)

In order to bound (ii) in (A.43), let wmax = max
k∈[K],i∈[mk−1],j∈[mk]

[W∗
k]i,j , d =

∑K
k=1 mk−1 ×mk,

δ = wmax
√
αd and pN be the probability density of Gaussian dropout, using Lemma A.4, we have

|E[µ̂(xi)]− µ(xi)| =
∣∣E[[hW(xi)]yi

]− EW∼uniform(B(W∗,δ))[[hW(xi)]yi
]
∣∣

=

∣∣∣∣∣
∫
R

∏K
k=1

mk

[hW(xi)]yi
pN (W)dW −

∫
B(w∗,δ)

[hW(xi)]yi

1

vol(B(W∗, δ))
dW

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B(W∗,δ)

[hW(xi)]yi

(
pN (W)− 1

vol(B(W∗, δ))

)
dW

∣∣∣∣∣
+

∣∣∣∣∣
∫
Bc(W∗,δ)

[hW(xi)]yi
pN (W)dW

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B(W∗,δ)

(
pN (W)− 1

vol(B(W∗, δ))

)
dW

∣∣∣∣∣+
∣∣∣∣∣
∫
Bc(W∗,δ)

pN (W)dW

∣∣∣∣∣
≤

∣∣∣∣∣
∫
B(W∗,δ)

pN (W)dW −
∫
B(W∗,δ)

1

vol(B(W∗, δ))
dW

∣∣∣∣∣+
∣∣∣∣∣
∫
Bc(W∗,δ)

pN (W)dW

∣∣∣∣∣
= 1−

∫
B(W∗,δ)

pN (W)dW +

∫
Bc(W∗,δ)

pN (W)dW

= 2

∫
Bc(W∗,δ)

pN (W)dW

≤ 6e−
αdw2

max
8 .

(A.45)

22



Published as a conference paper at ICLR 2024

Combining (A.43), (A.44) and (A.45), we have

Pr {|µ̂(xi)− µ(xi)| ≤ η} ≥ Pr {|µ̂(xi)− E[µ̂(xi)]|+ |E[µ̂(xi)]− µ(xi)| ≤ η}

≥ Pr

{
|µ̂(xi)− E[µ̂(xi)]|+ 6e−

αdw2
max

8 ≤ η

}
≥ Pr

{
|µ̂(xi)− E[µ̂(xi)]| ≤ η − 6e−

αdw2
max

8

}
≥ 1− 2 exp

(
−2

(
η − 6e−

αdw2
max

8

)2

T

)
.

(A.46)

Let ρ = 2 exp

(
−2

(
η − 6e−

αdw2
max

8

)2

T

)
, we have with probability at least 1− ρ, ρ ∈ (0, 1],

|µ̂(xi)− µ(xi)| ≤ 6e−
αdw2

max
8 +

√
1

2T
ln

2

ρ
. (A.47)

Therefore, by plugging in the deviation |µ̂(xi)− µ(xi)| in (A.42), we have with probability at least
1− ρ

|v̂(xi)− v(xi)| ≤ |ν| |1 + ν| ≤
(
6e−

αdw2
max

8 +

√
1

2T
ln

2

ρ

)(
1 + 6e−

αdw2
max

8 +

√
1

2T
ln

2

ρ

)
.

(A.48)

Proposition 5 shows the sample complexity of estimating v(xi) with T models for a single sample.
In practice, one might need to estimate the score variance for multiple samples, e.g., computing
average score variance over a test dataset. Naı̈vely, we need nT models to estimate v(xi) for a
dataset with n samples. In contrast, we can easily generalize the results in Proposition 5 to n samples
by union bounds, and show that in such cases sample complexity grows only logarithmically under
mild assumptions. To be precise, since the samples x1,x2, · · · ,xn are i.i.d., we have the following
union bound for the concentration of sample mean, i.e.,

Pr

{
n⋃

i=1

{|µ̂(xi)− E[µ̂(xi)| ≥ η}

}
≤

n∏
i=1

Pr {|µ̂(xi)− E[µ̂(xi)| ≥ η} ≤ 2n exp(−2η2T ).

(A.49)
Therefore, with probability 1 − ρ, for all i ∈ [n], |µ̂(xi) − E[µ̂(xi)| ≤

√
1
2T ln 2n

ρ . By following

the proof of Proposition 5, with probability 1− ρ, for all i ∈ [n],

|v̂(xi)− v(xi)| ≤
(
6ne−

αdw2
max

8 +

√
1

2T
ln

2n

ρ

)(
1 + 6ne−

αdw2
max

8 +

√
1

2T
ln

2n

ρ

)
. (A.50)

Since the term e−
αdw2

max
8 could be made arbitrarily small, it can compensate the linear growth of n.

23



Published as a conference paper at ICLR 2024

B DISCUSSION ON PREDICTIVE MULTIPLICITY METRICS

We give a thorough introduction of predictive multiplicity metrics, including their mathematical
formulation, operational meanings, and computational details. Predictive multiplicity metrics can
be categorized into two groups: score-based and decision-based, where a decision is a thresholded
score or the score vector after argmax. Precisely, consider a binary classification, if we have a score
s, then the decision can be obtained by 1[s > τ ], where τ is a threshold and 1[·] is the indicator
function. For a c-class classification problem where c > 2, the score is a vector, say s ∈ ∆c, and the
decision can be obtained by argmax

i∈[c]

[s]i. In the following, we start with the decision-based metrics.

First, consider a Rashomon set R, the pattern Rashomon ratio r(D) of a dataset D is defined as the
ratio of the count of all possible binary predicted classes given by the functions in the Rashomon set
to that given by the functions in the hypothesis space [Semenova et al., 2019, Defn. 12], i.e,

r(D) ≜

∑2n−1
i=0 1[∃hw ∈ R, [argmaxhw(x1), · · · , argmaxhw(xn)] = binary(i)]∑2n−1
i=0 1[∃hw ∈ H, [argmaxhw(x1), · · · , argmaxhw(xn)] = binary(i)]

, (B.51)

where binary(·) denotes the vector of the binary representation of an integer, e.g., 5 ≡
[0, · · · , 0, 1, 0, 1]. Computing pattern Rashomon ratio involves a summation with the number of
terms grows exponentially fast with the number of samples n. Therefore, pattern Rashomon ratio is
an “expensive” metric for predictive multiplicity when evaluated on large datasets.

There are several decision-based predictive multiplicity metrics that use the disagreement among de-
cisions given by models in the Rashomon set under difference disguise [Black et al., 2022; D’Amour
et al., 2022; Marx et al., 2020]. For example, Marx et al. [2020] propose two metrics: ambiguity and
discrepancy. Ambiguity is the proportion of samples in a dataset that can be assigned conflicting
predictions by competing classifiers in the Rashomon set. Discrepancy is the maximum number of
predictions that could change in a dataset if we were to switch between models within the Rashomon
set. More precisely, given a pre-trained model hw∗ , the ambiguity α(D) and the discrepancy δ(D)
are respectively defined as [Marx et al., 2020, Definitions 3 and 4]

α(D) ≜
1

|D|
∑
xi∈D

max
hw∈R

1 [argmaxhw(xi) ̸= argmaxhw∗(xi)]

δ(D) ≜ max
hw∈R

1

|D|
∑
xi∈D

1 [argmaxhw(xi) ̸= argmaxhw∗(xi)]

(B.52)

Both ambiguity and discrepancy can be estimated by a mixed integer program [Marx et al., 2020,
Section 3].

Moreover, instead of computing the empirical mean of decision disagreement over a dataset D,
we may define disagreement directly using the notion of probability. Precisely, Black et al. [2022,
Section A.1] and Kulynych et al. [2023, Eq. (4)] propose the following quantity to measure disagree-
ment:

µ(xi) ≜ 2Pr{1[hw(xi) > τ ] ̸= 1[h′
w(xi) > τ ];hw, h′

w ∈ R}, (B.53)
where hw and h′

w are any two models in the Rashomon set and the factor 2 ensures that µ(xi) is
in the [0, 1] range for the ease of interpretation. Kulynych et al. [2023] further proposed a plug-in
estimator to estimate disagreement for binary classification with a sample complexity bound on the
number of models obtained by re-training.

On the other hand, score-based metrics focus on the spread of the output scores [Hsu & Calmon,
2022; Watson-Daniels et al., 2023; Long et al., 2023]. Borrowing from information theory, Hsu &
Calmon [2022, Definition 2] measures the spread of output scores for c-class classification problems
in the probability simplex ∆c by an analog of channel capacity, termed the Rashomon Capacity, i.e.,

c(xi) ≜ sup
PR

inf
q∈∆c

Ehw∼PRDKL(hw(xi)∥q), (B.54)

where PR is the probability distribution over the models in the Rashomon set, and DKL(·∥·) is
the Kullback-Leibler (KL) divergence. The infimum inf

q∈∆c

Ehw∼PRDKL(hw(xi)∥q) measures (in

the sense of KL divergence) the spread of the scores of a sample xi given a distribution PR over
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Table B.2: Predictive multiplicity metrics implemented in this paper.

Metrics GitHub

Viable Prediction Range not included
Score std./var. not included
Rashomon Capacity https://github.com/HsiangHsu/rashomon-capacity
Disagreement https://github.com/spring-epfl/dp_multiplicity
Ambiguity

https://github.com/charliemarx/pmtoolsDiscrepancy

all all the models hw in the Rashomon set, where the minimizing q acts as a “centroid” for the
outputs of the classifiers. The supremum picks the worst-case distribution PR over all possible
distributions in the Rashomon set. The Rashomon Capacity is closely connected to the information
diameter, a metric to measure the diameter of a set of probability distributions [Kemperman, 1974].
Hsu & Calmon [2022] proved that the Rashomon Capacity can be estimated using c models in the
Rashomon set, obtained by the adversarial weight perturbation (AWP) algorithm, and the Blahut-
Aromoto algorithm [Blahut, 1972; Arimoto, 1972].

Based on ambiguity and discrepancy, Watson-Daniels et al. [2023, Definition 2] proposed Viable
Prediction Range (VPR) v(xi), which is the largest score deviation of a sample that can be achieved
by models in the Rashomon set:

v(xi) ≜ max
hw∈R

hw(xi)− min
hw∈R

hw(xi). (B.55)

The VPR can be computed using similar mixed integer programs in Marx et al. [2020] for binary
classification with linear classifiers.

Instead of computing the largest score deviation of a sample, Long et al. [2023, Definition 2] mea-
sures the standard deviation (std.) s(xi) (and the variance (var.)) of the scores of a sample by all
models in the Rashomon set:

s(xi) ≜
√
Ehw∼PR [(hw(xi)− Ehw∼PR [hw(xi)])2]. (B.56)

The score standard deviation can be estimated using the re-training strategy.

Computation. There are some theoretical analyses of estimating predictive multiplicity metrics.
For example, the exact estimation of ambiguity and discrepancy for linear classifiers are studied in
Marx et al. [2020]. Similarly, the theoretical analysis of estimating VPR with logistic regression
is also provided in Watson-Daniels et al. [2023]. Moreover, the estimation of disagreement is also
discussed in Kulynych et al. [2023]. However, the statistical properties of estimating other metrics
such as the Rashomon Capacity, or with a general hypothesis space, still remain an open challenge.
Finally, we summarize the GitHub implementation for computing the predictive multiplicity metrics
in Table B.2. For metrics where the implementations are not included, we implement them directly
following the mathematical definitions.

The AWP algorithm. The Adversarial Weight Perturbation algorithm, as proposed in Hsu & Cal-
mon [2022, Eq. 9] , will adversarially perturb the output scores of a given sample to each class. For
example, if there are c classes, AWP maximizes each entries of h w(x), i.e., [h w(x)] i for each
i ∈ [c], under the constraint that the model after perturbation is still inside the Rashomon set. Given
a sample xi, we obtain models with output predictions pk by approximately solving the following
optimization problem which maximizes the output score for class k:

pk = hθ̂(xi), where θ̂ = argmax
hθ∈R(H,ϵ)

[hθ(xi)]k, ∀k = 1, 2, · · · , c. (B.57)

To solve equation B.57, for each k, we set the objective to be minθ∈Θ −[hθ(xi)]k, compute the
gradients, and update the parameter θ until L(hθ) > ϵ. Therefore, for one sample, AWP requires to
perform one perturbations (adversarial training) via SGD for each class (i.e., c adversarial training
in total for one sample), and if there is a dataset with n samples, we need n× c adversarial training
to estimate multiplicity metrics for the entire dataset. We can imagine that each of these n × c
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perturbations leads to a model in the Rashomon set that outputs the most inconsistent score for a
given class per sample. On the other hand, the dropout method does not require to iterate over all
samples and does not require gradient computations and updating model weights. In this sense,
AWP is very different from the proposed dropout strategy.

26



Published as a conference paper at ICLR 2024

C ADDITIONAL DISCUSSION ON DROPOUT AND PREDICTION UNCERTAINTY

We introduce dropout inference for prediction uncertainty proposed in Gal & Ghahramani [2016],
and discuss its difference from the notion of Rashomon set and predictive multiplicity.

Gal & Ghahramani [2016] proposed a theoretical understanding of dropout at inference with
Bayesian approximation. In the Bayesian framework, the conditional probability p(y|x,D) of the
output y for an unseen input x is viewed as a deep Gaussian process [Damianou & Lawrence, 2013],
and can be expressed as

p(y|x,D) =

∫
w∈W

p(y|x,w)p(w|D)dw. (C.58)

Here, p(w|D) is the distribution of the weights given the training set D, and is usually intractable
in practice. By substituting the true distribution p(w|D) with an approximation q(w), the posterior
p(y|x,D) can be computed as

p(y|x,D) ≈
∫
w∈W

p(y|x,w)q(w)dw. (C.59)

q(w) is assumed to follow a distribution parameterized by θ, and a suitable approximation q(w) can
be found by minimizing the KL divergence min

θ
DKL(p(w|D)∥q(w)).

Gal & Ghahramani [2016] used dropout for q(w) with single-hidden-layer networks, and interpret
dropout inference as as a Monte Carlo sampling that is equivalent to estimate characteristics of
the underlying distribution p(y|x,D) in (C.59). Therefore, the variance of the prediction y can be
estimated using p(y|x,D), and can be taken to indicate the prediction uncertainty of the model for
a particular input. Later on, Lee et al. [2017] generalized the analysis in Gal & Ghahramani [2016]
to multi-hidden-layer neural networks.

Note that the integral in (C.59) is computed over the set of all possible models p(y|x,w) in the
hypothesis space W; however, not all models provide satisfactory performance in terms of loss and
accuracy, i.e., not all models are in the Rashomon set. In other words, the posterior we are interested
in is

p(y|x,D) =

∫
w∈R(w∗,ϵ)

p(y|x,w)p(w|D)dw. (C.60)

The difference between the integrals in (C.58) and (C.60) is the main difference between the con-
sideration of prediction uncertainty and predictive multiplicity. In Table C.3, we use the UCI Credit
Approval dataset to compare the predictive uncertainty, i.e., score variance evaluated with (C.58),
against score variance evaluated with (C.60), where the Rashomon parameter ϵ is the mean loss de-
viation under each dropout parameters p for Bernoulli dropout and α for Gaussian dropout. For the
sake of illustration, we show the value of the 80% quantile of the score variances across all samples.
It is clear that without the consideration of the Rashomon set, both dropout techniques could include
models that are not in the Rashomon set (i.e., models that have loss deviations larger than ϵ), and
hence over-estimating the score variance.

Table C.3: Comparison between the score variances computed with (C.58) and (C.60) on the Credit Approval
dataset. It is clear that using (C.58), i.e., without the consideration of the Rashomon set, the score variance is
over-estimated.

Bernoulli Dropout Gaussian Dropout

Dropout Parameters p = 0.020 p = 0.040 p = 0.060 α = 0.120 α = 0.210 α = 0.330
Rashomon Parameters ϵ = 0.003 ϵ = 0.006 ϵ = 0.007 ϵ = 0.002 ϵ = 0.005 ϵ = 0.011

Score Var. with (C.58) 0.001131 0.002051 0.003280 0.000385 0.001211 0.003000
Score Var. with (C.60) 0.000010 0.000114 0.001699 0.000067 0.000285 0.000858
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D DETAILS ON THE EXPERIMENTAL SETUP

We summarize the dataset descriptions, training setups and the results.

D.1 DATASET DESCRIPTION AND PRE-PROCESSING

The datasets used in this paper are the 6 datasets from the UCI machine learning repository [Asun-
cion & Newman, 2007] and the Microsoft COCO dataset [Lin et al., 2014]. The UCI machine
learning repository is a well-known and widely used collection of 650 datasets for machine learn-
ing research and experimentation, and contains a diverse and extensive collection of datasets across
various domains. We select 6 datasets that may possess critical consequences if predictive multi-
plicity is not accounted for. The first three datasets are related to financial applications, including
Adult Income, Bank Marketing and Credit Approval, and the other three are related to medical,
including Dermatology, Mammography and Contraception. The Adult Income dataset aims to pre-
dict whether the income of an individual exceeds 50,000 per year based on 1994 census data. The
Bank Marketing dataset is related with direct marketing campaigns of a Portuguese banking insti-
tution based on phone calls in order to predict if the client will subscribe a bank term deposit or
not. The Credit Approval dataset concerns the prediction of successful credit card application with
anonymized feature names. The Dermatology dataset aims to determine the differential diagnosis of
erythemato-squamous diseases in dermatology. The Mammography dataset aims to discriminate be-
tween benign and malignant mammographic masses based on BI-RADS attributes and the patient’s
age. The Contraception dataset contains samples from married women who were either not pregnant
or do not know if they were at the time of interview of the 1987 National Indonesia Contraceptive
Prevalence Survey, and the goal is to predict the current contraceptive method choice (no use, long-
term methods, or short-term methods) of a woman based on her demographic and socio-economic
characteristics. For these datasets, we remove samples with missing values, one-hot encoded nomi-
nal features, re-scale numeric features, and set the target label name to be 1 and the rest to be 0. For
the number of features, training/test split and the label names, see Table D.4.

The Microsoft COCO (Common Objects in Context) dataset is a benchmark dataset with 200,000
images spanning 80 object categories, comprising a vast collection of high-quality images annotated
with rich and detailed object segmentation, captioning, and keypoint information. For the image
datasets, we follow standard normalization procedures to normalize the values of each pixel in each
color channel.

D.2 TRAINING SETUPS AND RESULTS.

For the UCI datasets, we use a single-hidden-layer neural network with 1000 hidden neu-
rons, and train for 100 epochs with learning rate 0.001 and batch size 100. The perfor-
mance of the base models, including training and test losses and accuracy, is included in Ta-
ble D.5. The re-training strategy follows the same setting but with fewer epochs. For Adult
Income dataset, we re-train 100 times for each epoch 20, 25, 30, 35, 40, 45, 50, 55. For Bank
Marketing dataset, we re-train 100 times for each epoch 1, 2, 3, 4, 5, 6, 7, 8, 9. For Credit Ap-
proval dataset, we re-train 100 times for each epoch 35, 40, 45, 50, 55, 60. For Dermatol-
ogy dataset, we re-train 100 times for each epoch 1, 2, 3, 4, 5, 6, 7, 8, 9. For Mammography
dataset, we re-train 100 times for each epoch 11, 12, 13, 14, 15, 16, 17, 18, 19. For Contracep-
tion dataset, we re-train 100 times for each epoch 11, 12, 13, 14, 15, 16, 17, 18, 19. Similarly,

Table D.4: UCI dataset descriptions.

Dataset # of features Training set size Test set size Label (# of classes)

Adult Income 104 22621 7541 income >50K (2)
Bank Marketing 63 30891 10297 has deposit (2)
Credit Approval 46 489 164 approved (2)
Dermatology 34 268 90 has erythema (2)
Mammography 5 622 208 benign or malignant (2)
Contraception 9 1104 369 long or short term (2)
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Table D.5: UCI dataset base model results.

Dataset Training Test

Loss Accuracy Loss Accuracy

Adult Income 0.3026 85.96% 0.3190 85.00%
Bank Marketing 0.1962 91.27% 0.2013 91.06%
Credit Approval 0.3149 88.14% 0.2975 87.80%
Dermatology 0.1138 99.25% 0.1248 98.89%
Mammography 0.3604 84.24% 0.4920 79.33%
Contraception 0.5658 73.64% 0.5986 69.38%

for Bernoulli and Gaussian dropouts, we obtain 100 models each with 21 values of p and α
spread evenly between 0.2 and 0.6 respectively. Finally, we perform adversarial weight pertur-
bation on four datasets (Credit Approval, Dermatology, Mammography and Contraception), with
ϵ ∈ {0.000, 0.004, 0.008, 0.012, 0.016, 0.020, 0.024, 0.028, 0.032, 0.036, 0.040} and the perturba-
tion learning rate is 0.001.

For MS COCO, we adopt two pre-trained models (the YoloV3 [Redmon & Farhadi, 2018]
and Mask R-CNN [He et al., 2017] detectors) in MMDetection [Chen et al., 2019] to vali-
date the Rashomon effect on the detection models with the proposed dropout inference. For
the YoloV3 detector, we use p ranged from 5e-5 to 1e-4 for Bernoulli dropout and use α
ranged from 0.03 to 0.1 for Gaussian dropout; while for the Mask R-CNN detector, we use p
ranged from 5e-5 to 3e-4 for Bernoulli dropout and use α ranged from 0.01 to 0.07 for Gaus-
sian dropout. Then, we choose the models whose average precision on person class is within
ϵ ∈ {0.005, 0.006, 0.007, 0.008, 0.009, 0.010, 0.011, 0.012}.
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E ADDITIONAL RESULTS AND EXPERIMENTS

We include (i) the deviations of loss and accuracy versus different dropout parameters, p for
Bernoulli dropout and α for Gaussian dropout, (ii) the complete values of the estimated predictive
multiplicity metrics, (iii)the comparison of the efficiency between re-training and dropout-based
Rashomon set exploration, (iv) addition experiments on CIFAR-10/-100 datasets, and (v) ablation
studies.

E.1 ADDITIONAL RESULTS ON UCI DATASETS

In Figure E.5, we show the deviation of loss and accuracy versus different dropout parameters for
both Bernoulli (p ∈ [0.0, 0.2]) and Gaussian (α ∈ [0.0, 0.6]) dropouts. As we can see, the dropout
parameters can stably control the loss deviation and the according accuracy changes. Note that for
all dropout parameters, the accuracy change is ≈ 1%. Moreover, the standard deviations of the
loss difference ϵ and the accuracy are determined by the number of samples in the datasets—not
necessarily the accuracy of the base models. For example, the Adult Income and Bank Marketing
datasets have the most number of samples > 20000, and hence has the smallest standard deviations.
On the other hand, despite that the Dermatology dataset also has 98% accuracy, it suffers from a
relatively large standard deviation in terms of loss difference and accuracy.

Figure E.6, Figure E.7, Figure E.8, Figure E.9, Figure E.10, and Figure E.11 summarize the cu-
mulative distributions of the predictive multiplicity metrics that are defined across all samples, and
Figure E.12 shows the ambiguity and discrepancy, for UCI Adult Income, Bank Marketing, Credit
Approval, Dermatology, Mammography, and Contraception datasets [Asuncion & Newman, 2007].
Since all estimates of predictive multiplicity metrics are under-estimate of their true values, and
therefore higher values indicate a more effective method for estimation. Observing viable predic-
tion range, score variance, and the Rashomon Capacity, it is clear that both Bernoulli and Gaussian
dropouts are more effective in terms of estimating predictive multiplicity metrics compared to re-
training. Moreover, Bernoulli and Gaussian dropouts are also comparable to the adversarial weight
perturbation algorithm. Note that we do not perform adversarial weight perturbation algorithm on
Adult Income and Bank Marketing datasets since the number of samples is too large, which causes
extreme time complexity.

Table E.6 summarizes the raw runtime values of four strategies, and the speedups are reported in
Table 1. The runtimes for Bernoulli and Gaussian dropouts are in a similar order, and therefore
in Table 1 we only report the speedup of Gaussian dropout. The adversarial weight perturbation
algorithm costs the most time since it has to scan over all samples and perturb (i.e., train) the weights.

Finally, Table E.7 shows the efficiency of obtaining models from the Rashomon set with differ-
ent Rashomon parameters ϵ, compared with the re-training strategy. Note that it is hard to control
the eventual loss value with the re-training strategy, and therefore we perform the re-training strat-
egy will different number of epochs, in order to obtain models corresponding to different ϵ in the
Rashomon set. On the other hand, it is easier to control ϵ using dropout techniques, as supported in
Figure E.5. For example, when ϵ = 0.004, there are only less than 3% of the models obtained by the
re-training strategy that are in the Rashomon set; however, by carefully controlling dropout parame-
ters, there are more than 70% of the models obtained by Gaussian dropout that are in the Rashomon
set. Moreover, Gaussian dropout is more “benign” compare to Bernoulli dropout in terms of chang-
ing the model weights, since Bernoulli dropout directly removes the weights while Gaussian dropout
only scales them.

In Figure E.13, we show the model weights of logistic regression learnt with the UCI Adult Income
dataset, explored by the re-training and dropout strategies. Since the model weights (features) is
high-dimensional, we apply t-SNE visualization [Van der Maaten & Hinton, 2008] on the model
weights for the sake of illustration. As observed, the model weights obtained by he re-training and
dropout strategies largely overlapped with each other, indicating that they have similar performance
in terms of exploring the Rashomon set when the hypothesis space is small. Note that there is no
closed-form characterization of the Rashomon set for logistic regression.
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(a) Adult Income dataset. (b) Bank Marketing dataset. (c) Credit Approval dataset.

(d) Dermatology dataset. (e) Mammography dataset. (f) Contraception dataset.

Figure E.5: Loss and accuracy deviations versus Bernoulli and Gaussian dropouts on the UCI datasets.

Figure E.6: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the UCI Adult Income dataset.

Figure E.7: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the UCI Bank Marketing dataset.
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Figure E.8: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the UCI Credit approval dataset.

Figure E.9: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the UCI Dermatology dataset.
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Figure E.10: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the UCI Mammography dataset.

Figure E.11: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the UCI Contraception dataset.
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(a) Adult Income dataset. (b) Bank Marketing dataset.

(c) Credit Approval dataset. (d) Dermatology dataset.

(e) Mammography dataset. (f) Contraception dataset.

Figure E.12: Ambiguity and discrepancy of the UCI datasets.

Table E.6: Raw runtime values on the UCI datasets.

Dataset Runtime (seconds per model)

Re-training AWP Bernoulli
Dropout

Gaussian
Dropout

Adult Income 19.35± 0.68 — 0.0614± 0.24 0.0633± 0.24
Bank Deposit 7.78± 2.94 — 0.2243± 0.42 0.2200± 0.41
Credit Approval 0.51± 0.56 10.18± 2.29 0.0019± 0.04 0.0019± 0.04
Dermatology 0.11± 0.34 4.27± 0.96 0.0038± 0.06 0.0038± 0.06
Mammography 0.31± 0.52 10.09± 1.62 0.0024± 0.05 0.0024± 0.05
Contraception 0.56± 0.67 21.09± 3.78 0.0071± 0.08 0.0071± 0.08
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Table E.7: The efficiency of obtaining models from the Rashomon set with different Rashomon parameters ϵ
on the UCI datasets. Each number is the percentage of the obtained models that are in the Rashomon set by
different methods. For most datasets and ϵ, dropout has higher percentage compared to re-training.

Dataset Rashomon
Parameter ϵ

Methods

Re-training Bernoulli
Dropout

Gaussian
Dropout

Adult Income

0.001 29.50% 0.00% 75.00%
0.002 55.25% 50.00% 82.67%
0.003 71.00% 66.67% 85.00%
0.004 81.25% 75.00% 87.38%

Bank Marketing

0.001 2.89% 0.00% 75.00%
0.002 9.89% 50.00% 83.17%
0.003 18.44% 66.67% 85.43%
0.004 24.67% 75.00% 87.50%

Credit Approval

0.001 0.33% 0.00% 63.00%
0.002 0.67% 50.00% 71.25%
0.003 2.00% 50.00% 71.00%
0.004 2.67% 59.00% 72.00%

Dermatology

0.001 0.78% 0.00% 66.75%
0.002 1.33% 50.00% 74.80%
0.003 1.89% 50.00% 78.50%
0.004 2.11% 61.33% 79.14%

Mammography

0.001 20.78% 0.00% 57.50%
0.002 25.22% 50.00% 59.50%
0.003 30.78% 52.33% 65.38%
0.004 38.11% 57.75% 69.38%

Contraception

0.007 92.00% 0.00% 66.00%
0.008 95.56% 59.00% 69.43%
0.010 97.89% 65.50% 73.75%
0.011 98.89% 64.43% 75.40%

Figure E.13: Comparisons of the model weights of logistic regression obtained from the re-training and dropout
strategies on UCI Adult Income dataset with t-SNE visualization [Van der Maaten & Hinton, 2008].
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E.2 ADDITIONAL RESULTS ON THE MS COCO DATASET

In Figure E.14 and Figure E.16a, we report the estimation of all predictive multiplicity metrics that
corresponds to the example shown in Figure 3 for the MS COCO dataset. There are a significant
portion of samples (30% ∼ 50%) that disagree with each other on the human bounding boxes found
by the Yolov3 detector. Due to extremely high time complexity, we do not include the re-training
strategy and the adversarial weight perturbation algorithm.

In Figure E.15 and Figure E.16b, we implement another detector Mask R-CNN [He et al., 2017],
which is a state-of-the-art model for instance segmentation, developed on top of a region-based
convolutional neural networks called Faster R-CNN. The Mask R-CNN detector makes a larger
portion of the samples have higher predictive multiplicity, in terms of viable prediction range and
the Rashomon Capacity, compared against the Yolov3 detector.

Figure E.14: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the MS COCO dataset with the YoloV3 detector.

Figure E.15: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in the MS COCO dataset with the Mask R-CNN detector.

(a) The YoloV3 detector. (b) The Mask R-CNN detector.

Figure E.16: Ambiguity and discrepancy of the MS COCO dataset with the YoloV3 and Mask R-CNN detec-
tors.
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E.3 ADDITIONAL EXPERIMENTS ON CIFAR-10/-100 DATASETS
We measure the predictive multiplicity metrics on more challenging image datasets CIFAR-10/-100
[Krizhevsky & Hinton, 2009] with convolutional neural network architectures including VGG16 [Si-
monyan & Zisserman, 2014] and ResNet50 [He et al., 2016]. CIFAR-10 consists of 60,000 32× 32
colored tiny images divided into ten classes, with each class representing a distinct object category
such as airplanes, dogs, and cars. CIFAR-100 offers a more challenging dataset containing 100
classes with 600 images each, providing a broader range of object categories, including fine-grained
distinctions like various types of birds and flowers. We train CIFAR-10 with VGG16 for 7 epochs
with learning rate 0.001, and CIFAR-100 with ResNet50 for 40 epochs with learning rate 0.001—the
performance of the bases models is summarized in Table E.8. We obtain 50 Bernoulli and Gaussian
dropout models for each 5 values p and α spread evenly in [0, 0.008] and [0, 0.1] respectively for
CIFAR-10, and similarly for CIFAR-100 where p and α spread evenly in [0, 0.002] and [0, 0.05].
For the re-training results, we re-train 20 times for each epoch 4,5,6,7,8,9 for CIFAR-10, and 20
times for each epoch 20,25,30,35 for CIFAR-100. The estimates of predictive multiplicity metrics
are summarized in Figure E.18, and runtime/speedup in Table E.9. Since VGG16 and ResNet50 are
large-scale models that contain many local minima, re-training can easily find different local min-
ima that have similar performance. On the other hand, the dropout methods can only search models
at the neighborhood of the given pre-trained model. Therefore, re-training outperforms dropout in
terms of exploring diverse models in the Rashomon set, at the expense of a much larger runtime.
Finally, Figure E.19 and Figure E.20 summarize the cumulative distributions of the predictive mul-
tiplicity metrics that are defined across all samples for CIFAR-10 and CIFAR-100 respectively, and
Figure E.21 shows the ambiguity and discrepancy.

Table E.8: CIFAR-10/-100 dataset base model performance.

Dataset Architecture Training Test

Loss Accuracy Loss Accuracy

CIFAR-10 VGG-16 0.2692 90.85% 0.5743 81.63%
CIFAR-100 ResNet-50 0.0014 99.96% 2.1591 59.53%

(a) CIFAR-10 dataset. (b) CIFAR-100 dataset.

Figure E.17: Loss and accuracy deviations versus Bernoulli and Gaussian dropouts on CIFAR-10/-100 datasets.

Figure E.18: Loss vs. dropout parameters and the corresponding predictive multiplicity metrics of the baselines
with CIFAR-10/-100 datasets.
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Table E.9: Raw runtime values and speedup on CIFAR-10/-100 datasets. All runtimes are evaluated with the
same computational platform.

Dataset Runtime (seconds per model) Speedup

Re-training Bernoulli
Dropout

Gaussian
Dropout

Gaussian Dropout
over Re-training

CIFAR-10 (VGG16) 485.10± 10.29 1.8720± 0.33 4.1040± 0.93 118.20×
CIFAR-100 (ResNet50) 3985.45± 1626.27 1.0880± 0.28 1.3200± 0.47 3019.28×

Figure E.19: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in CIFAR-10 dataset.

Figure E.20: Cumulative distributions of the predictive multiplicity metrics that are defined across all samples
in CIFAR-100 dataset.

(a) CIFAR-10 dataset. (b) CIFAR-100 dataset.

Figure E.21: Ambuguity and dsicrepancy of CIFAR-10/-100 datasets.
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Finally, we implement the re-training + dropout strategy, as mentioned in Section 6, to better explore
the Rashomon set. In Figure E.22 and E.23, the predictive multiplicity metrics presented in each
row are all estimated from 100 models in the Rashomon set. The first row is 100 dropout models
obtained from 1 model via re-training. The second row is 50 dropout models obtained separately
from 2 different model via re-training (again 100 models in total). The third row is 25 dropout
models obtained separately from 4 different model via re-training, and the fourth is 20 dropout
models obtained separately from 5 different model via re-training. Observing multiplicity metrics
such as the viable prediction range, the score variance and the Rashomon Capacity, it is clear that
with more diverse model via re-training, the estimates of the multiplicity metrics have a higher
cumulant. Take the viable prediction range as an example, around 20% of the samples has up to
value 0.5 if we apply dropout on only one re-training model (first row). However, there are 50% of
the samples has up to value 0.5 if we apply dropout on 5 diverse re-training models (last row).

Figure E.22: Re-training + Bernoulli dropout to explore the Rashomon set on the CIFAR-10 dataset with VGG-
16.

Figure E.23: Re-training + Gaussian dropout to explore the Rashomon set on the CIFAR-10 dataset with VGG-
16..
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E.4 ABLATION STUDY

We use the UCI Adult Income dataset to perform ablation studies on the width and depth of the
feed-forward neural networks, and use CIFAR-10/-100 for different neural network architectures.

We train the UCI Adult Income dataset on a neural network with different numbers of layers
K ∈ {1, 2, 3, 4, 5}, and the number of neurons in each layers is 200. Figure E.24 shows the loss and
accuracy deviations caused by Bernoulli and Gaussian dropouts. As the number of layers increases,
the loss deviation also increases, which is consistent with the theoretical bound derived in (9). On
the other hand, Figure E.25 shows that for a neural network with only one hidden layer and differ-
ent number of neurons {200, 400, 600, 800, 1000}, it does not have a significant effect on the loss
deviation under the same dropout parameter. The reason is in (9), the effect of number of layers K
is polynomial while the effect of the number of neurons m is linear.

Finally, we discuss the Rashomon effect with different neural network architectures on CIFAR-10/-
100 datasets. Note that VGG-16, ResNet-18 and ResNet-50 have 138M, 11M and 25.6M param-
eters. We compare the loss deviation using Figure E.17 for VGG-16 and Figure E.26 for ResNet-
18/-50. For CIFAR-10, Bernoulli dropout on different architectures has similar performance, while
Gaussian dropout leads to the largest loss deviation on ResNet-18. It is because ResNet-18 has the
least number of parameters. Moreover, ResNet-18 and ResNet-50 have similar loss deviations on
CIFAR-100.

Figure E.24: Loss and accuracy deviations versus Bernoulli and Gaussian dropouts on on Adult Income dataset
with different numbers of layers.

Figure E.25: Loss and accuracy deviations versus Bernoulli and Gaussian dropouts on on Adult Income dataset
with different numbers of neurons.

(a) CIFAR-10 with ResNet-18. (b) CIFAR-10 with ResNet-50. (c) CIFAR-100 with ResNet-18.

Figure E.26: Loss and accuracy deviations versus Bernoulli and Gaussian dropouts on CIFAR-10/-100 datasets
with different neural network architectures.
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Figure E.27: Score-based predictive multiplicity metrics of the Credit Approval dataset with and without model
calibration. Calibration, as an score manipulation on average performance, will not affect predictive multiplic-
ity.

Moreover, we discuss whether model calibration could either reduce or exacerbate predictive mul-
tiplicity. If a perfectly calibrated classifier assigns a 50% score to a sample (e.g., in binary classifi-
cation), it does not necessarily mean that this sample has high multiplicity. A perfectly calibrated
classifier is one whose predicted classes matches the true classes on average across samples (e.g.,
samples predicted to be 50% of one class have true outcomes matching that class 50% of the time).
However, this does not necessarily translate to a (in)consistent set of predictions for a single target
sample across equally calibrated classifiers. It may be the case that all calibrated models drawn from
the Rashomon set assign the same 50% probability for that sample (no multiplicity). Conversely,
some models may assign higher and lower confidence for that sample (high multiplicity) yet, on
average, still be well-calibrated. Again, this happens because calibration (like accuracy and loss) is
an average metric across all samples.

We implement Platt scaling [Platt et al., 1999] to calibrate the scores produced by the neural net-
works for the Credit Approval dataset, and compare the score-based predictive multiplicity metrics
with and without calibration in Figure E.27. We observe that the score-based predictive multiplicity
metrics are not impacted with calibration, for the exact reasons we have provided above.
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