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Abstract

Machine learning has great potential to revolutionize experimental materials re-
search; however, the degree to which these approaches accelerate novel discovery
is rarely quantified. To this end, we propose a framework for characterizing the
rate of “first discovery” of scientific hypotheses in the form of materials families.
We use a combination of the SuperCon and Materials Project databases to simulate
a scientific needle-in-a-haystack discovery problem as a motivating example. We
use this approach to compare the ability of different adaptive sampling strategies
to rediscover promising superconductor families, such as the Cuprates and iron-
based superconductors. This methodology can be applied using various notions of
novelty, making it applicable to discovery problems more broadly.

1 Introduction

Discovery is central to the advancement of science, but targeted discovery is notoriously difficult.
The discovery process is often opaque and explanations of why we follow path A over path B can be
difficult to teach but are crucial for spurring subsequent discoveries [6]. In many fields, promising new
candidates occupy only a tiny portion of a vast search space, making targeted discovery analogous
to finding a needle in a haystack [43, 25]. Furthermore, we are often interested in materials with
emergent properties, by which we mean properties that are not immediately obvious consequences
of the individual constituents (e.g. as in superconductivity, where the critical temperature cannot be
easily derived from the constituent elements). For this reason, fundamentally new and revolutionary
results are rare, not all discoveries are equally useful, and incremental discovery is the norm. The
challenge is how to best employ data-driven techniques to accelerate the scientific method for the
discovery of useful, novel materials.

Artificial Intelligence (AI) and Machine Learning (ML) may hold the key to enable more targeted
explorations into the unknown [33]. However, ML relies upon representative training data and out-of-
distribution generalization is a known challenge [14]. Unfortunately, scientific publications and their
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corresponding data sets are often not representative of the entire space of possibilities. Confirmation
bias and the desire to make practical use of discoveries favors the publication of positive results and
encourages incremental exploration in the region of known rare events. Consequently, scientific data
sets typically only cover a fraction of the overall search space, tend to be more densely sampled
in regions where positive results have been discovered previously, and frequently under-represent
negative results.

While substantial progress has been made applying ML for materials property prediction and dis-
covery [7, 17, 38, 28, 20, 32, 9, 29, 47, 4, 46, 37, 31, 44, 12, 50], fully assessing the notion of gener-
alization for novel discovery subject to data set limitations remains an outstanding challenge. For
example, the search for new materials that conduct electricity with zero resistance (superconductors)
is challenging from both experimental and theoretical perspectives [16, 36, 3]. On a statistical basis,
several hundred new superconducting families may need to be discovered to find another Tc > 100 K
material, with orders of magnitude more to realize room-temperature superconductivity [3]. In this
paper we introduce a framework for simulating the discovery process for novel materials, present
example experiments from the context of superconductivity research, and empirically assess the
performance of ML-driven closed-loop, adaptive discovery methodologies.

2 Related Work

Discovery, including materials discovery, presents unique challenges. In Meredig et al. [32], the
authors observe that the random k-fold cross-validation (CV) procedure often used to estimate
generalization performance in ML applications is ill-suited to discovery problems and leads to
overly optimistic performance estimates. The reason is that unobserved regions of materials space
are unlikely to exhibit precisely the same statistical stoichiometry-to-property relationships as the
previously explored training data and thus the model is being asked to make predictions “out-of-
distribution”. As an alternative, they propose a leave-one-cluster-out cross-validation (LOCO CV)
approach, whereby data splits are defined by a clustering approach that better represents the challenge
of making predictions in previously unseen regimes of design space. The impact of different clustering
approaches has also been considered in this context [9].

Scientific data sets are typically not static - they evolve over time as measurements are contributed
or corrected. This adds another dimension to out-of-distribution challenges. The authors of Li et al.
[29] observe that predictors can perform well on one version of a scientific data set but degrade as that
data set evolves over time. They demonstrate this effect using a variety of ML models in conjunction
with the Materials Project data set [18] from two different year, 2018 and 2021, as a test case.

Sequential methods, which iteratively sample from the design space and use newly acquired measure-
ments to improve subsequent predictions, provide a compelling paradigm for ML-driven scientific
discovery. One example is Bayesian optimization (BO) which has a long history for sequential
design [22]; extensions of this approach continue to be developed for needle-in-the-haystack type
problems found in materials science, e.g. [44]. Sequential methods also figure prominently in the
active learning community. In particular, adaptive search is a special case of active learning where
the goal is to discover members of a rare, desirable class by sequentially selecting and inspecting
data points [11]. In the materials discovery context, Jiang et al. consider active search to identify new
bulk metallic glasses which comprised 4% of the membership of a held-out test set [21]. However,
explicitly incorporating a notion of novel discovery over coherent groups representing scientific
hypotheses does not appear to have been studied.

One early example applying sequential learning to materials design is Ling et al. [31]. The authors
used random forests as the underlying predictors and tracked the mean number of predictions required
to identify an optimal candidate within the held-out test data set. This metric is similar in spirit to
the notion of sample efficiency typically used to evaluate the performance of BO or reinforcement
learning algorithms [10, 8]. In Koppel et al. and Pogue et al., the authors pair ML with physical
fabrication and characterization [27, 37]. Pogue et al. explicitly closed the design loop by both
making and testing ML-derived predictions through several iterations [37].

To date, there have only been a few studies that explicitly quantify the cost (in measurements) of
revolutionary materials discovery in adaptive settings. Baird et al. introduced the Descending from
Stochastic Clustering Variance Regression (DiSCoVeR) algorithm to aid in identifying promising
chemically-unique compounds using ML [4]. They tested this algorithm using computationally-
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Figure 1: Our approach to evaluating the rate of discovery associated with different sampling
approaches involves jointly evaluating performance on a held-out group of materials in a sequential
manner, allowing us to better understand the overall rate of discovery and adaptability of the model.

predicted bulk modulus data and compared this approach to naive random search. Since bulk modulus
is a continuous quantity that every material has, it is fundamentally different from superconductivity,
which is an emergent property only found in some materials that is not fully understood and more
difficult to predict.

The same DiSCoVeR algorithm was subsequently used to quantify novelty in the superconductivity
setting [42], although only one round of predictions was made and an explicit characterization of
sample efficiency is not performed. They also did not utilize the same domain expert-informed notion
of novel discovery that will be presented in Section 3.

The approach of Borg et al. [5] is closest to ours in that the focus is upon quantifying the performance
of sequential learning in a simulated discovery setting. The problem setup is based on a decomposition
of the target values, but their metrics are different from the notion of first discovery we will discuss
in Section 3. Their metrics do not contain a sense of the similarity between compounds, which are
captured by our family groupings.

3 Approach

While a number of studies interrogate ML prediction performance on held-out material groups (and
this is becoming more systematic, e.g. [40]), or assess some measure of sequential performance, most
do not consider both jointly. To quantify the impact of various algorithmic choices, we propose an
evaluation procedure that mirrors the full scope of the discovery setting as closely as possible. In
our approach (Figure 1), we pose a simulated discovery problem whereby one or more scientifically
related groups (termed here “target groups”) manifesting a rare property of interest are withheld
from the initial training set. These target groups serve as proxies for scientific hypotheses, whose
re-discovery we wish to simulate.

We then combine these target groups with select negative examples from the data set, as well as with
a large corpus of unlabeled “distractor” data which further augment the set of negative examples.
This mixture comprises the test set. Supplementing with additional negative examples helps mitigate
the aforementioned tendency for existing data sets to under-represent negative results. In addition to
adding negative examples, we also downsample the target groups, reducing their relative abundance
so that our experiments more closely approximate the asymmetry of real-world scientific discovery.

Using this data set we conduct a simulated adaptive design experiment, whereby a ML model is
trained, the model makes predictions on the test set, a subset of these predictions are selected for
measurement, and these selected materials (and their labels) are incorporated into the training data
set for the next iteration. The metric for this simulated discovery task is defined as the number of
recommendations (simulated measurements) required before any member of a given target group
appears within the top k recommendations in some iteration of the adaptive procedure. Once a target
material appears as a recommendation, its entire group is considered “first discovered”. This is in
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some sense a global notion of discovery which presumes that, after any member of the target group is
identified, traditional methodologies will be used to perform more exhaustive local exploration to
further refine the result (e.g. by sampling in the neighborhood of the material system or via standard
per-atom substitution methods).

The above procedure is analogous to sample efficiency studies used to evaluate BO algorithms, with
a key difference being the focus on target groups and first discovery times. The process of restricting
target groups to the initial test is reminiscent of the LOCO CV procedure, but our performance metric
is related to discovery time vs a static measure of performance on the entire held-out group.

Of course, our approach assumes that the unlabeled examples all correspond to negative results; this
may not be straightforward to establish in all settings, or in fact a few positive examples may enter
and introduce label noise. However, assuming that the property of interest is indeed rare, if positive
examples are present in the unlabeled set, our assumption introduces a small but systematic bias in
the results. In this case, the discovery time metric will overestimate the real discovery time since
feedback from false negative simulated measurements may cause the model to miss correlations that
otherwise might accelerate discovery of target group(s). Due to this overestimate, our procedure
yields an approximate upper bound on discovery time. However, because this error is systematic, we
contend this is still a useful mechanism to compare and assess algorithms.

4 Use Case

To demonstrate the “first discovery” framework of Section 3, we consider a concrete problem:
discovering novel superconductors. Superconductors satisfy the needle-in-a-haystack assumption
and have the advantage that there exist data sets with pre-existing categorizations into scientifically
distinct families, such as Cuprates, iron-based, Borides, and BaAl4-derivatives. While the community
has not converged on a single universally accepted definition of “family”, adapting an existing
taxonomy provides us with a tangible starting point.

4.1 Data Sets

The basis for our analysis is the 2022-08-08 release of the SuperCon Database [19]. SuperCon is
one of the largest public data sets for experimental measurements of superonductivity and lists the
superconducting transition temperature (Tc) of > 24000 materials (Figure 2). Since most materials
in nature do not superconduct at achievable temperatures, this database over-represents materials that
superconduct and have higher Tc’s. To understand bias and its effects on model performance, we
categorized superconductors in the SuperCon database by family. The family designations included
in SuperCon are used to construct our target groups. The distribution of critical temperature, Tc, and
fraction of each family present in SuperCon are displayed in Figure 2. The Cuprate family known for
having high Tc members comprises ∼ 30% of the database and other families, like the iron-based
pnictides and Borides, are also over-represented. For our supplementary source of negative examples
we employ data from Materials Project [18], a database of computationally generated materials for
which critical temperature values (Tc) are generally unknown. While Materials Project is not devoid
of superconducting materials (e.g. see [37]) we assume they are rare and adopt the upper bound
interpretation of results described in Section 3.

A number of the materials within SuperCon lack a Tc entry (the field contains NaN). However, a
subset of these materials have been experimentally determined to not superconduct above a known
temperature value (i.e. the dataset provides an upper bound on the possible Tc value). This is
designated by the “tcn” field in SuperCon. For the subset of materials lacking a Tc label and for
which the tcn field is less than 5K we impute a Tc value of 0 and include the material in our data
set; the remaining entries lacking a Tc value are discarded. We also discard any material whose
composition string we are not able to parse with pymatgen [35] or for which the parsed composition
contains dummy species. This is done in part to facilitate ingestion by the machine learning models.
We also removed two iron-based entries with Tc > 150K (associated with refno PRB098014518)
whose values did not appear entirely consistent with the original reference. The result is a data set of
24,161 entries.

For Materials Project (our test set distractors) we restrict our attention to “stable” entries, defined
here as those whose energy above the convex hull (a measure of how far a given material lies from
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Figure 2: Distribution of SuperCon data and adaptive sampling strategies. Panel (a) displays the
SuperCon dataset distribution of Tc and the contributions of various superconducting families to
the database. (b) explains the three adaptive sampling strategies beyond uniform, random sampling
examined in this study. These were chosen to represent both extremes of optimization (greedy)
vs. discovery (uniform random sampling) goals while also representing strategies making use of
estimated uncertainty from the ML predictions (upper confidence bound) and hybrid approaches
(epsilon-tail). The epsilon-tail approach, containing aspects of both greedy and random uniform
sampling approaches, when requesting N samples to test, selects samples from the predicted high-Tc

tail with probability 1-ϵ and samples from the low-Tc base with probability ϵ.
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the most energetically favorable condition presently known) is less than 0.1 eV/atom (as reported
in Materials Project). The majority of these have negligible energy above the hull and the 75th
percentile is 0.028 eV/atom. To ensure these materials are sufficiently distinct from SuperCon, we
furthermore drop any entries whose Element Movers Distance (ElMD) [13] to any SuperCon entry
is ≤ 0.2 (where the ElMD is a distance metric between inorganic compositions that is informed by
a notion of work required to transform one element to another). The threshold of 0.2 is a heuristic
based on a domain expert’s manual inspection of a subset of materials. The end result is a total of
56,866 putative non-superconducting materials which are used to expand the test set. In the future,
generative methods (e.g. [51, 24, 39, 52, 1, 34]) would be well-suited for enriching the test set.

4.2 Family Definitions

The family definitions within SuperCon (contained within the str3 column) are delineated based
on a combination of the chemical constituents, crystal structure, and hypotheses for why materials
superconduct (see Supplementary Information (SI)). We took the str3 family designations for
compounds in SuperCon and further aggregated these into the families shown in Figure 2; these
families play the role of target groups described in Section 3. The initial number of unique str3
designators was prohibitively large for human-interpretable analysis and visualization. This initial
set of designators occasionally contained multiple designators for a given sub-family and a mixture
of broad and specific groupings. Further details on our re-grouping are provided in the SI. Other
ways of associating materials with hypotheses are of course possible. In addition to alternative
manually constructed taxonomies, recent work has explored using unsupervised learning-based
approaches to define superconductivity families [41]. More broadly, it is an open research question
how best to quantify the notion of scientific hypotheses so that they can be incorporated within ML
approaches [26].

In this experiment, the Cuprate, Borides, BaAl4-derivatives, and iron-based families comprise the
primary target groups of interest. These four families were entirely withheld from the initial training
data set. For the aggregate SuperCon families (denoted “Other high Tc” and “Other low Tc” in
Figure 2), these were allocated to train and test, on a per-family basis, in an approximately 80/20
ratio. The motivation for this split was to give the model some concept of superconductivity at time
t = 0 while withholding the families that best represent scientific hypotheses so that their discovery
rate can be assessed. In order to approach a more realistic level of scarcity, we further downsampled
the target classes within the test set. For the Cuprates, Borides, iron-based, and BaAl4-derivatives
families we further downsample so that each family has no more than 20 representatives within the
test set. The end result is that a given test fold contains less than 0.5% superconductors (see SI for
further details).

4.3 Machine Learning Predictors

There are by now a range of ML models available for material property prediction. For our experi-
ments, we leverage an existing ML algorithm named “Representation learning from Stoichiometry”
(RooSt) [12]. The RooSt model is a graph-based convolutional neural network which solves a
regression or classification problem on the basis of stoichiometry alone. While there also exist
structure-aware ML models, the flexibility to work with compositions of unknown structure, together
with the relative simplicity of the RooSt model, make it a good candidate for our studies. Further-
more, the RooSt model readily produces uncertainty estimates which are useful for certain adaptive
sampling strategies. Another advantage is that RooSt has been employed in real-world discovery
contexts (e.g. [37]), and hence analyses related to its discovery rate are of independent interest.

We largely rely on the default hyperparameters for the RooSt model. We have empirically observed
these to be fairly robust across a range of problems and this is consistent with analyses conducted
by the RooSt authors themselves. Key hyperparameters are reported in the SI. For our experiments,
we use an ensemble of 5 models, primarily to control the computational cost. We used RooSt in the
“robust” mode, whereby the model behaves as a Mean Variance Estimation (MVE) neural network,
i.e., the model assumes target values are distributed normally and the model’s predictions consist
of the corresponding estimated mean and variance [45]. Our uncertainty estimates are based on
combining the epistemic uncertainty obtained from the ensemble together with the predicted variance
as described in [12].
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4.4 Adaptive Sampling

Given mechanisms for making predictions, and for characterizing the uncertainty of those predictions,
it remains to define a methodology for recommending a small set of high-quality candidate materials
whose properties should be characterized experimentally. For screening applications where a finite
pool of possible candidates is defined a-priori (e.g. from an existing database), an obvious strategy is
to make predictions on each candidate, rank the predictions by the estimated Tc, and recommend the
top k, a strategy which we term “greedy”. Another alternative is to use both the prediction and the
uncertainty, which gives rise to the typical “exploration vs exploitation tradeoff” [10]. There are a
wide variety of so-called acquisition functions which manage this tradeoff; these methods have also
been applied to materials science discovery within the context of BO [30]. There also exist batch
variants (“q-acquisition functions”) that address cases where multiple experiments can be conducted
in parallel [49]. One commonly employed acquisition function is the Upper Confidence Bound
(UCB). In our experiments, we adopt the approach of [23] where the UCB can be related to quantiles
of a posterior distribution (which, in our case, is obtained from the MVE network). Specifically, let
Q(t, ρ) denote the quantile function associated with the distribution ρ such that P(X ≤ Q(x, ρ)) = x;
then instead of using the predicted value to rank candidates we use

qj(t) = Q(1− αt, ρ
t−1
j ),

where t is index of the adaptive sampling round, αt is of order 1/t, and ρt−1
j denotes the posterior

estimate for candidate j generated in the previous adaptive sampling round [23]. In this work, we
assume a finite pool of candidates and use the sequential UCB criteria above.

An assumption underlying the UCB approach is that one has drawn sufficient examples from the
domain such that the uncertainty estimates are well-calibrated, something that is not entirely obvious
when making predictions in novel regions of materials space. Therefore, we also consider strategies
that incorporate exploration without relying on the model’s uncertainty estimates. For this, we use
a strategy whereby the model preferentially selects “outlier” Tc predictions (defined as predictions
lying 1.5 times the inter-quartile range above the 75th percentile) with probability 1− ϵ and otherwise
selects candidates uniformly at random with probability ϵ. This strategy is termed “epsilon-tail”.

As a baseline, we also consider a pure uniform sampling strategy to emulate a pure “trial-and-error”
discovery methodology. Ideally ML-informed methods will outperform this baseline.

5 Results

Figure 3 shows the result of running 50 adaptive sampling iterations using the experimental setup
described above. The x-axis depicts the adaptive sampling iteration, where each iteration comprises a
batch of 10 recommendations made using a given strategy. The y-axis shows the cumulative number
of families discovered; the lines depict the mean across 10 random trials and the shaded regions
denote 95% confidence intervals.

From the figure, it is clear that “greedy” and “epsilon-tail” strategies eventually outperform uniform
random sampling (after approximately batch 12, or 120 simulated measurements). While the precise
time at which the ML-based methods begin outperforming the baseline in our simulation is not
necessarily completely reflective of discovery “in the wild” (due to approximations in inherent in our
simulation and also the upper bound interpretation inherent in our approach), it nevertheless provides
quantitative evidence to suggest that, indeed, ML-based methods can provide significant acceleration
over blind trial-and-error. This ability to quantitatively compare different algorithmic choices, and
contrast with representative baselines, is a key benefit of our re-discovery simulation approach.

While it is not statistically significant, the mean performance might suggest that the greedy method
underperforms the the epsilon-tail strategy initially before overtaking it sometime around iteration 12.
This would be consistent with the intuition that the ML model may struggle initially on out-of-domain
data and that managing the exploration-vs-exploitation tradeoff may be especially important early in
the adaptive sampling process.

Along these lines, it is interesting to observe that the UCB approach did not perform well in this
study. One remark here is that we used a non-batch version of UCB (i.e. we did not use q-UCB or
similar methods) which would take proper advantage of the fact that each iteration permits multiple
recommendations. Furthermore, it may be that the uncertainty estimates we are using are not well
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Figure 3: Results of sample efficiency study. The x-axis depicts the number of adaptive sampling
iterations, where each iteration corresponds to a batch of 10 material recommendations (thus, 500
materials were recommended overall). The y-axis shows the cumulative number of families discov-
ered (i.e. have at least one member that has been recommended by the algorithm). For each strategy,
the mean and 95% CI are shown, obtained over 10 random trials (which reflects variation both in
initial model weights as well as test set membership; more details are provided in the SI).

Table 1: Family discovery count by family and adaptive sampling method. The family is considered
discovered in a trial if a member is recommended within any of the 50 batches. Numbers in the
table reflect discovery counts over the same 10 random trials described in Figure 3. Of the four
explicitly designated families, the Cuprates seem to be the most challenging to rediscover. Note that
the aggregate (other high, other low) families are relatively more abundant in the test set (see also SI).

Held-out family Epsilon Greedy UCB Uniform

BaAl4-derivatives 9 10 2 0
Borides 8 10 4 1
Cuprate 2 3 3 1
Iron-based 7 8 0 2
Other Low Tc 8 6 1 5
Other High Tc 10 10 2 3

calibrated in this out-of-domain setting, which would work against methods that depend upon them.
Understanding conditions under which various uncertainty quantification methods are well calibrated
continues to be an active area of research, e.g. [48, 15]. A productive direction for future work would
be to investigate these model calibration and performance issues more carefully in this setting.

The y-axis of Figure 3 does not distinguish among the 6 target families (two of which are “aggre-
gations” and the other four are more closely aligned with specific scientific hypotheses). To further
decompose this aspect of the results, Table 1 shows the total number of discoveries (across all 10
randomized trials) by family and adaptive sampling strategy. One observation here is that, of the four
families most closely aligned with scientific hypotheses, the Cuprate family seems to be the most
difficult to uncover.

6 Discussion

In this work we propose a quantitative methodology for assessing the rate of novel hypothesis
discovery in ML-driven settings, where hypotheses are framed in terms of a scientifically coherent
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materials taxonomy. We can compare the number of discovered families for different numbers of
prediction batches. Due to the cost of experiments, for many material or chemical discovery problems,
studies are conducted in the low batch number regime. Here, time to first family discovery may be
an appropriate metric. Using a representative problem of superconductor discovery, we show that
modern ML-based predictors with simple acquisition strategies indeed appear to provide a distinct
advantage over a pure trial-and-error approach. We hope the ideas included here will help inform
future ML analyses and also future benchmarking efforts, similar to those of Riebesell et al. [40].
Approaches like this are useful for answering the question: “What is the right strategy to encourage
and stimulate discovery?" As such, we can move beyond assessing ML/AI methods and also assess
both traditional and non-traditional approaches to discovery to understand the tradeoffs involved.

The approach we outlined uses predefined superconductor families as a surrogate for scientific
hypotheses; however, there is abundant opportunity to explore other ways of formalizing scientific hy-
potheses so that they can be rigorously assessed in ML-informed discovery settings. This is one open
research question we look forward to exploring further in future work. There are also opportunities to
expand the scope of acquisition functions considered and further enrich the experimental data using
recent developments in generative models. More broadly, this work represents one step towards our
longer-term objectives of further understanding and improving practical model generalization and
the exploration of scientific hypotheses within the context of ML-driven discovery to enable broader
AI-enabled understandings beyond prediction lists.
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Supplementary Information

6.1 Family Assignment

To explore the effects of data set biases, one must be divide up the data set into groups for tracking
purposes. The physics, chemistry, and materials science communities often discuss superconductors
in terms of “families," which are groupings of superconducting materials. These delineations are
generally made based on a combination of chemical constituents, structure, and understandings and
hypotheses for why the materials superconduct. The edges of these families can be fuzzy, with history
also playing a role in these classifications. Iron-based superconductors (pnictides) generally contain
iron and an element in the pnictide column (column 15) of the periodic table. The Cuprates contain
copper and oxygen and generally have perovskite-derived structures with layers of copper oxides.
Other perovskites like BaPb1-xBiO3 superconduct and have a perovskite structure, but do not contain
copper. They are, therefore, not considered Cuprates but similarities can be noted. Intermetallic
superconductors are often denoted by a combination of stoichiometry and structure. Here, too,
the boundaries can be somewhat fuzzy. BaAl4-derivatives’ structures are clearly different from
Heusler, half Heusler, and TMX1 intermetallic subfamilies, which is clear when one compares their
stoichiometries and structures. Due to the sheer number of families, we chose to divide the data set
into Cuprate, Pnictide, Boride, BaAl4-derivatives, other high Tc (define here to be Tc > 5K) and other
low Tc families (Tc ≤ 5K) for reporting. These were chosen because they had the largest number of
members of distinct groups. The inclusion of the LaRu2Si2 subfamily within the BaAl4-derivatives
family despite its different structure was an acknowledgement that its related stoichiometry would
make it difficult to differentiate with a composition-only model. There is some overlap between
iron-based superconductors and BaAl4-derivatives, particularly with the ThCr2Si2 structure type.

The SuperCon database used for this study was originally created around 1990 for the study of oxide
(primarily Cuprate) superconductors [2]. It has since been expanded beyond oxide superconductors
and is maintained and updated by the Japanese National Institute for Materials Science (NIMS).
Later, iron pnictide superconductors were discovered and rigorously investigated by NIMS researcher
Hideo Hosono and his team so the database also contains a large number of entries from this material
family. Family (str3) is one of the fields in the SuperCon database, although that field is not always
populated. In some cases, the family, as written, is very specific (e.g. Y123, a Cuprate) and, in
others, the family was very broad (i.e. intermetallic). To allow these families to be visualized
practically, the list of families was further condensed to 45 families including those that were listed
as “NON_UNIQUE" or were not mapped. Some of these sub-families were much larger than others.
We looked at a sampling of the members of these sub-families when deciding how to group them.
Initially, the four most common families include Cuprates (30%), iron-based (6%), BaAl4-derivatives
(5%), and Borides (4%) (Other=26%). 28% of the database was not mapped, although we could infer
a number of the groupings used in this study. The rules we used for inferring unmapped families are
as follows:

• Borides: The composition contains at least two distinct elements, one of which is B.
• Cuprates: The composition contains both O and Cu.
• Iron-based pnictide: The composition contains Fe and at least one of: N, P, As, Sb, Mc, Se.

Table 3 shows the str3 to family mappings that were inferred in this manner. In addition, there were
1329 database entries without a valid str3 whose family assignment was inferred, for a total of 2462
inferred family designations.

These lists, displaying the sub-family groupings, are given in Tables 2 and 3. Data that were not
members of the BaAl4-derivatives, Borides, Cuprates, or iron-based groups and could not be inferred
to be a member of those groups were separated into Other High Tc and Other Low Tc groups based
on whether their Tc exceeded 5 K.

Note that these are typeset to match the actual str3 string in the database without capitalization
corrections. The values in str3 were a mix of different notations. Formatting changes are limited to
subscripting to enhance readability. Many values of str3 were the names of compounds, signifying
a grouping with the same structure of the parent (e.g. Sr2CuO3). Occasionally space groups were

1A ternary intermetallic compound of the form T-M-X where T is a transition metal, a rare earth or an alkaline
earth metal, M is an element from the first line of the transition metals, and X is a metalloid.
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listed (e.g. P4/nmm, F222). For Cuprates, a different notation was often used consisting of an
element followed by four numbers. The first denotes the number of insulating layers between adjacent
conducting blocks, the second represents the number of spacing layers between identical CuO2
blocks. The third gives the number of layers that separate adjacent CuO2 planes within the conducting
block. The fourth gives the number of CuO2 planes within a conducting block. A component element
is also often listed (often a dopant). Other Cuprates (particularly 3-digit families) are grouped by
stoichiometry. For example, Cuprate 112 denotes a (AB)CuO2 stoichiometry. Similar nomenclature
is sometimes used for the iron-based superconductors. RT4B4 describes the stoichiometry of a family
where R is a rare earth element, T is a transition metal element or elements, and B is boron. When we
inspected entries containing F222 and Fmmm (space groups) as labels, we noticed that all of these
were Borides.

6.2 RooSt Hyperparameters

Table 4 shows the RooSt model hyperparameters used in this study. These correspond the the
“reference” model of [12].

Test Set Composition

Table 5 shows the composition of the held-out test set at t = 0 for the ten randomized trials considered
in this paper.
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Table 2: A list of the str3 subfamilies making up the each family used in this study. Note that
these are typeset to match the actual str3 string in the database without formatting or capitalization
corrections.

BaAl4-derivatives

BaNiSn3 CaBe2Ge2 CeCu2Si2 LaRu2Si2 ThCr2Si2
Borides

AlB2 CaB6 CeCo3B2 CePt3B CrB
F222 FeB Fmmm LuRuB2 Mo2B5
Mo2IrB2 MoB RT4B4 RuB2 SrPtSb
Ta3B4 ThMoB4 UB12 YCrB4 YOs3B2

Cuprate

(Cu,C)1223 (Cu,C)1234 (Cu,C)1245 (Cu,Mo)1252 (Cu,Mo)1262
1113 112 1201 1212 1222
201 2112 2116 212 2125
2126 214S 2212 2216 223
234 245 3137 336 4334
446 Ag1223 Ag1234 Ag1245 Ag1256
Al1212 Al1223 Al1234 Al1245 B1223
B1234 B1245 Bi0212 Bi1112 Bi1212
Bi1232 Bi2212 Bi2222 Bi2223 Bi2224
Bi2234 Bi2268 Bi4334 C1201 C1212
C1223 Ca1223 CaCuO2 Cd1212 Co1222
Cu1201 Cu1222 Cu1223 Cu1232 Cu1234
Cu1242 Cu1245 Cu1256 Cu1267 Cu1278
Cu1289 Cu2323 Cu2334 CuC1223 CuC1224
Fe1212 Ga1212 Ga1223 Ga1234 Ga2434
Hg,Re-1223 Hg1201 Hg1212 Hg1222 Hg1223
Hg1232 Hg1234 Hg1245 Hg1256 Hg1267
Hg12nm Hg2201 Hg2223 Hg2234 Hg2245
IL LAD La1113 La3137 LaBiSeSF
LaRu3Si2 M1201 M1222 M1223 M1234
M1245 M1256 M1267 M2212 Ml1222
Nb1212 Nb1222 Nb123 P2 < 1 > /m P4/nmm
Pb1201 Pb1212 Pb1213 Pb1222 Pb1223
Pb2212 Pb3201 Pb3212 Pb3222 Pb3232
Pb3252 Pr124 Pr247 RCSCNO RPr123
RSCNO RSNCO Ru2122 Sr0201 Sr0212
Sr2CuO3 SrCuO3 T T’ T*
Ti2322 Tl1201 Tl1222 Tl1234 Tl1245
Tl1302 Tl212 Tl2201 Tl2202 Tl2213
Tl2234 Tl2324 Tl5526 Y123 Y143
Y184 Y211 Y223 Y358
Iron-based

21113 AlFe3Te3 BaTi2Sb2O CaRb1144 CeCr2Si2C
Fe-112 FeAs K2Cr3As3 NiAs PbFCl
oxypnictide
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Table 3: Inferred mappings. Note that not every materials having the associated str3 was mapped to
this family; the “Count” column indicates the number of materials for which the family was inferred
(total of 1133). Note that these are typeset to match the actual str3 string in the database without
capitalization corrections.

str3 Family Count

Mo5siB2 Borides 1
NaCl Borides 5
diamond Borides 3
"T " Cuprate 2
Bi2201 Cuprate 105
Cu1212 Cuprate 93
Hg2212 Cuprate 11
IK Cuprate 1
K2NiO4 Cuprate 1
M1212 Cuprate 34
Ru1212 Cuprate 102
Ru1222 Cuprate 29
Tl1212 Cuprate 107
Tl1223 Cuprate 15
Tl2212 Cuprate 42
Tl2223 Cuprate 31
Y124 Cuprate 430
Y247 Cuprate 54
22325 Pnictide 1
22426 Pnictide 8
22438 Pnictide 4
BaAl4 Pnictide 8
FA22426 Pnictide 1
FA22438 Pnictide 1
FA2254(11) Pnictide 1
FA2264(12) Pnictide 1
FA2286(18) Pnictide 1
Fe-32522 Pnictide 2
Fe-42622 Pnictide 9
ThCr2Si2-type Pnictide 1
b-SrRh2As2 Pnictide 10
tetragonal Pnictide 19

Table 4: Key hyperparameters for RooSt model used in this study, along with model parameter counts.
Inputs flow from the “Initial Embedding” downstream through the “Property Prediction Network”.

Initial Embedding (12663 parameters)
element initial embedding size 200
element feature length 64

Element Message Passing Network (744786 parameters)
layers 3
attention heads per layer 3

Material Message Passing Network (149958 parameters)
layers 3
attention heads per layer 3
Fixed-length Representation Network (1312512 parameters)
layers 2
hidden units per layer 1024, 512

Property Prediction Network (82177 parameters)
layers 3
hidden units per layer 256, 128, 64
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Table 5: Test set composition for each of our ten initial conditions, where each row indicates the
percentage of the test set corresponding to each family. These conditions reflect variation in both the
neural network initialization as well as the specific data points included in the test set. For the “High
Tc” and “Low Tc” aggregate families we also enforced that the train/test splits respect the original,
more granular family assignments. Therefore, the fraction of the test set they comprise varies slightly
depending upon the cardinality of the families assigned to test. The “Assumed Tc=0” denotes the
contributions from Materials Project (the presumed negative examples). In all scenarios, the known
superconductors represent less than 1% of the test set.

Assumed Tc=0 BaAl4 Borides Cuprate Pnictide Low Tc High Tc
seed

0 99.67 0.04 0.04 0.04 0.04 0.10 0.10
1000 99.60 0.04 0.04 0.04 0.04 0.17 0.09
2000 99.67 0.04 0.04 0.04 0.04 0.10 0.09
3000 99.54 0.04 0.04 0.04 0.04 0.21 0.11
4000 99.56 0.04 0.04 0.04 0.04 0.26 0.04
5000 99.62 0.04 0.04 0.04 0.04 0.16 0.08
6000 99.56 0.04 0.04 0.04 0.04 0.24 0.06
7000 99.71 0.04 0.04 0.04 0.04 0.11 0.04
8000 99.65 0.04 0.04 0.04 0.04 0.14 0.06
9000 99.68 0.04 0.04 0.04 0.04 0.08 0.09
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