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Abstract— In this paper, we propose LAN-grasp, a novel
approach towards more appropriate semantic grasping. We
use foundation models to provide the robot with a deeper
understanding of the objects, the right place to grasp an object,
or even the parts to avoid. This allows our robot to grasp
and utilize objects in a more meaningful and safe manner.
We leverage the combination of a Large Language Model, a
Vision Language Model, and a traditional grasp planner to
generate grasps demonstrating a deeper semantic understand-
ing of the objects. We first prompt the Large Language Model
about which object part is appropriate for grasping. Next, the
Vision Language Model identifies the corresponding part in
the object image. Finally, we generate grasp proposals in the
region proposed by the Vision Language Model. Building on
foundation models provides us with a zero-shot grasp method
that can handle a wide range of objects without the need for
further training or fine-tuning. We evaluated our method in
real-world experiments on a custom object data set. We present
the results of a survey that asks the participants to choose an
object part appropriate for grasping. The results show that the
grasps generated by our method are consistently ranked higher
by the participants than those generated by a conventional
grasping planner and a recent semantic grasping approach.

I. INTRODUCTION

Objects found in household environments often require
a specific way of interaction which ensures various cri-
teria such as avoiding to damage the object, user safety,
functionality, etc. As robots are increasingly involved in
human living environments, it is crucial to provide them with
sufficient semantic knowledge about these environments and
the objects found within them.

Traditional approaches to robotic grasping [1], [2], [3]
only analyze the object geometry and aim to optimize the
grasp stability. Recent data-driven approaches [4], [5], [6]
also account for the object class and can generate grasps
appropriate for the specific object type. However, most of
these methods require substantial computational resources
for training and can fail to generalize to unseen object
categories. Our objective is an approach for object-specific
grasping that ensures tool usability and safety without any
need for further training.

We proceed towards this goal by introducing LAN-grasp,
a zero-shot method built on foundation models. The scale of
these models and the massive size and generality of their
training data allow us to reason about a large variety of
objects without further training or fine-tuning. In particu-
lar, LAN-grasp uses a Large Language Model (LLM) to
understand which part of an object is suitable for grasping.
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Graspit! LAN-grasp

Fig. 1: Robot performing the command of “Pick up the ice
cream please”. The grasp on the left is generated without
including semantic information while the grasp on the right
is performed using our method leveraging a deeper object
understanding provided by Large Language Models.

Next, this information is grounded in the object image by
leveraging a Vision Language Model (VLM). Our method
uses GPT-4 as LLM and OWL-Vit [10] as VLM. However,
due to the modular structure of LAN-grasp, it can easily be
adapted to use other LLMs or VLMs. Finally, we use an
off-the-shelf grasp proposal tool [2] to plan the grasps in
accordance with the admissible parts of the object detected
by the deployed foundation models2.

In summary, we make the following contributions:
1) We propose a novel approach using foundation models

for zero-shot semantic object grasping.
2) We demonstrate that the presented approach can work

with a wide variety of day-to-day objects without the
need for additional training.

3) We evaluate our approach by asking human partici-
pants to choose the appropriate grasps.

II. RELATED WORK

Traditional grasping algorithms [1], [2], [3], [11] analyze
the geometry of the object and the gripper to propose and
evaluate a grasping pose. Building on decades of develop-
ment, these methods are fast and reliable off-the-shelf tools.
However, they do not incorporate semantic information and
operate based on object shape only. Also, such methods
rely on a precise object model and thus suffer from partial
or noisy geometry. Data-driven approaches regress grasping
candidates from either single view RGB images [4], [12]
or point clouds [13], [14], thus mitigating the need for a
complete object model. Further, a network can learn a more
natural grasping policy if human-like grasps are included
in the training data, where such grasps are either created
manually [15] or learned through imitation [6]. Do et al. [17]

2Video available at https://tinyurl.com/5bnwpkuc.
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propose an end-to-end trained network that detects object in-
stances in an image and assigns pixel-wise affordance masks
to object parts. Monica and Aleotti [19] propose a system
that decomposes an object point cloud into meaningful parts
which then serve as grasping targets. However, the part the
robot has to grasp is provided by the user whereas in our
method the part is suggested by an LLM.

Recently, foundation models have attracted a lot of at-
tention in different sub-fields of robotics [20], [21], [22].
Ngyen et al. [23] train an open-vocabulary affordance de-
tector for point clouds whereby CLIP is deployed to encode
the affordance labels. Similarly, Tang et al. [8] use CLIP
to facilitate task-specific grasping from RGB images and
language instructions. Song et al. [25] use BERT as the
language back-end and train a network that grounds object
parts in a point cloud from a user instruction. Here, however,
the part label is explicitly referred to in the user input. The
approach of Tang et al. [9] lifts this limitation by prompting
an LLM to describe the shape and parts of an object. The
LLM response is then processed by a Transformer-based
grasp evaluation network. Our method also relies on an
LLM for deciding what object part should be grasped. The
crucial difference to the above works is that our approach
relies solely on foundation models and does not require any
training. Thus, once more powerful foundation models are
available, the performance of our approach is easily improved
by switching to a novel LLM or VLM.

III. METHOD DESCRIPTION

In this section, we explain the details of LAN-grasp.
The pipeline consists of two main parts: the Language
Module and the Grasp Planning Module. The overview of
our approach is depicted in Figure 2.

A. Language Module

In the first step, the object label <object> provided by
the user is transferred into a LLM prompt in the following
format:
"role": "system", "content": "You are an
intelligent robotic arm."
"role": "user", "content": "If you want
to pick up an <object>, which part makes
the most sense to grasp? Name one part."

The scheme of the prompt is chosen to be compatible with
GPT-4 which is the LLM that we used in the pipeline [28].
We included the last sentence to prevent the LLM from
giving extra explanations and thus only output the desired
object part. We use OWL-Vit [10] as the VLM for grounding
the object part label in the image. It builds on the Vision
Transformer Architecture, first presented by Dosovitskiy et
al. [29]. OWL-Vit detects and marks the desired object part
with a bounding box which is projected on the object 3D
model.

B. Grasp Planning Module

We deploy the GraspIt! simulator [32] as our grasp
proposal generator. It is a standard tool that operates on

geometric models and evaluates grasps according to physical
constraints. Thus, the first step for grasp planning is to create
a dense 3D mesh model of the object. In our setup, we
use two fixed RGB-D sensors and a turning table for object
scanning. We acquire the camera poses from an Aruco board
and integrate the depth images via KinectFusion [33].

To generate feasible grasps, GraspIt! splits the scene into
object and obstacle geometry, and we exploit this mechanism
by marking the mesh parts that project into the VLM-
generated bounding box as object and the rest as obstacle.
This enforces grasping only at the desired object part. The re-
sulting grasp proposals are ranked based on grasp efficiency
and finger friction. In case the object part suggested by the
LLM is not detected in the image our system considers the
full object geometry, i.e., it falls back to the vanilla grasp
planner.

We want to point out that our approach is agnostic about
the grasp planner and could be potentially replaced by other
tools that do not require a complete object model.

IV. EXPERIMENTAL EVALUATION

In this section, we present the details of our experiments
and results. Our goal is to demonstrate that our method
proposes to grasp object parts that are preferred by humans
on a variety of objects. We argue that humans generally
choose grasps that enable correct tool usage and ensure
safety and that a robot retains these desirable qualities by
executing similar grasps. To that end, we first collect a data
set of typical household objects. Next, we apply our approach
to these objects and execute the grasping on a real robot.
Finally, we show that our grasping strategy is similar to
human preferences obtained through a survey and that our
approach outperforms two baselines based on this similarity
metric.

A. Dataset

We collect a data set containing 22 different objects
commonly found in household environments. We chose these
objects to cover a wide range of situations where semantic
knowledge is required for proper grasping. Our first objective
was to showcase grasping on functional objects like tools or
kitchen supplies, e.g., shovel, hand brush, and knife. Further,
we included delicate objects that might be damaged with an
improper grasp, for instance, rose, cupcake, and ice cream.
For other objects, a wrong grasp can cause a dangerous
situation, e.g., candle. Finally, we include objects where an
improper grasp might not necessarily be harmful but is rather
unnatural to a human observer, for instance, doll, bag, and
wine glass. The objects in the data set are shown in Figure 1,
Figure 3, and Figure 4.

B. Experimental Setup and Baselines

Our first baseline is the plain GraspIt! simulator. Here
we use the same 3D models as for our approach but do
not restrict grasping to the object part selected by the
language model. The second baseline is GraspGPT [9], a
recent approach to task-oriented grasping (ToG). Though our
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Fig. 2: Our approach in a nutshell: First, the command from the user is turned into a prompt suitable for the LLM. Next,
the LLM outputs the proper part for grasping the object, which in this example is the cone. This label is then grounded in
the object image using a VLM. The object 3D model and the object part mask are then passed to the grasp planner, which
is restricted to generate grasps only in the masked region. The best grasp candidate is finally executed by the robot.

method performs semantic grasping and not ToG, we chose
this baseline because it also leverages an LLM similar to
ours. GraspGPT requires as input an object point cloud and
a natural language prompt describing the object, the object
class, and the task. We generate the point clouds from the
object meshes reconstructed as above and use an object-
specific activity as the task label, for instance, "to drink"
for a mug. Further, we experiment with different task labels
as GraspGPT input for each object and only report the best
baseline results according to our evaluation metric. Also we
note that GraspGPT uses GPT-3 as LLM back-end, whereas
we rely on GPT-4. However, from preliminary experiments
with GPT-3 we found that for the task at hand the differences
to GPT-4 are negligible. All real-world experiments are
executed on the Human Support Robot (HSR) [35] as shown
in Figure 3.

C. Qualitative Results

The grasps executed on the HSR are shown in Figure 3.
For the rest of the objects, the grasping area proposed by
our method is visualized in Figure 4. The results suggest
that LAN-grasp proposes grasps suitable for the usage of the
respective object. For instance, grasping the handle for shovel
and broom corresponds to the intended use of these items.
For lollipop and cupcake, the grasp is placed away from the
edible part at the stick and the wrapper, respectively. It is
noteworthy that our method is able to understand the relation
between stacked objects, e.g., flowers in a vase or plate of
cake. Also, for a single cup, LAN-grasp suggests grasping
the handle while for the cup on a saucer the grasp proposal
is the saucer. Other objects, e.g., doll, bag, or wine glass,
do not possess a critical area where grasping would cause
harm or directly interfere with the functionality. However,
our method is able to generate grasps that are closer to how
a human would handle these items. In contrast to LAN-grasp,

the areas suggested by GraspIt! are expectantly random and
do not consider semantic intricacies.

TABLE I: Similarity of grasping area preferences compared
to a human user. The left half of the table lists the objects and
the object part the majority of survey participants suggested
for grasping, with the corresponding percentage of users. The
right half of the table shows the similarity scores per object
for the two baselines and our proposed method.

Object Preferred Part GraspIt! GraspGPT LAN-grasp

doll torso 92.1% 0.28 0.48 0.92
ice cream cone 100.0% 0.05 0.40 1.00
candle base 93.1% 0.22 0.57 0.93
flowers in the vase vase 93.2% 0.32 0.73 0.93
bag handle 91.1% 0.79 0.69 0.91
plant pot 94.3% 0.16 0.56 0.94
hand brush handle 95.4% 0.65 0.95 0.95
toilet brush handle 97.6% 0.42 0.52 0.98
cactus pot 98.8% 0.26 0.99 0.99
cupcake wrapper 100.0% 0.10 0.40 1.00
cup on a saucer saucer 81.2% 0.24 0.59 0.81
plate of cake plate 98.8% 0.11 0.51 0.99
mug handle 77.1% 0.28 0.73 0.77
saucepan handle 94.3% 0.36 0.94 0.94
broom handle 97.6% 0.42 0.98 0.98

Average 0.31 0.67 0.94

D. Quantitative Results

To support the claim that our approach proposes grasps
similar to human preferences, we designed a questionnaire on
grasping choices. A group of 83 participants were presented
with images of all objects used in the experiments and
were asked where they would grasp them. For each object,
the participants could choose between two parts marked
by bounding boxes in the image. The survey results are
summarized in Table I. Per object, we state the preferred
part and the percentage of participants that selected it.

Next, we evaluate how similar the generated grasps are
compared to the ones suggested by human users. Given that
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Fig. 3: The performed grasps by the HSR robot: Each column presents the grasps for one object. The first row for each
object, shows the grasp generated without semantic knowledge about the objects, while the second row shows the grasps
generated by LAN-grasp.

Fig. 4: The results of LAN-grasp on a set of common household objects. The green bounding box shows the area to grasp
suggested by our method.

an object is segmented into parts a and b, let pa ∈ [0, 1]
be the empirical probability that a method grasps at part a
and pb = 1 − pa that part b is grasped. Further, let pha be
the human grasping frequency at a according to the survey
results and pxa the corresponding frequency produced by one
of the considered methods. To compute pxa for the baselines,
we obtained the best 20 grasp proposals from each algorithm
and counted the grasps falling into region a. LAN-grasp
restricts the grasps to the object part selected by the LLM,
which in our experiments robustly proposed the same part
for a given object. Thus, the values of pxa were here either 1
or 0. Finally, we computed a per-object similarity score for
each method x as simx = 1 − |pha − pxa|. These scores are
shown in Table I along with the average similarity scores
over all objects.

Our method consistently outperforms the baselines on the
similarity score and ties only in four cases with GraspGPT.
The average similarity score of LAN-grasp is considerably
higher with the value of 0.94 compared to 0.31 achieved
by GraspIt! and 0.67 achieved by GraspGPT. We further
note that in all cases, the object part choice of LAN-grasp
coincides with the majority vote of the survey participants.
The low score of GraspIt! is not surprising since it only
considers geometric and not semantic aspects of the ob-
ject. GraspGPT exhibits a better performance compared to
GraspIt! due to leveraging semantic concepts and LLMs.

GraspGPT is trained on a data set mostly containing tools
and house supplies and thus performs best on objects close
to its training data distribution. However, the performance
drops on objects outside of its training data like a doll or an
ice cream.

We do not evaluate grasping stability, since our focus is on
choosing a reasonable object part to grasp. In future, a grasp
stability measure could be included into the grasp candidate
selection.

E. Conclusion and Future Work

In this paper, we presented LAN-grasp, a novel approach
to semantic object grasping. By leveraging foundation mod-
els, we provide our approach with a deep understanding of
the objects and their intended use in a zero-shot manner.
Through extensive experiments, we showed that for a wide
range of objects LAN-grasp is generating grasps that are
preferred by humans and also ensure safety and object
usability. In particular, the proposed grasps were compared
to human preferences gathered through a questionnaire. The
evaluation showed that LAN-grasp performs consistently
better on that metric than the baseline methods. Inspired by
these results, in future we plan to further exploit LLMs to
not only decide where to grasp an object but also how to
grasp and hold it according to a specific task.
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