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Abstract

We propose Chain-of-Questions, a framework
that trains a model to robustly answer multi-
step questions by generating and answering
sub-questions. We obtain supervision for sub-
questions from human-annotated question de-
composition meaning representation (QDMR),
but QDMR does not include annotated answers
to sub-questions. To overcome this technical
challenge, we treat sub-answers as latent vari-
ables and infer them with a novel dynamic
mixture of Hard-EM and MAPO. Chain-of-
Questions is effective and robust, greatly out-
performing strong neuro-symbolic methods by
9.0 F1 on a DROP contrast set and GPT-3.5 by
24.3 F1 on a HOTPOTQA adversarial set.

1 Introduction

Multistep question answering (QA) poses a rea-
soning challenge that current state-of-the-art QA
models have not fully addressed. Strong fine-
tuned QA models like UnifiedQA (Khashabi et al.,
2020a) can achieve impressive results on various
QA tasks through multitask training, but exhibit
subpar performance on multistep reasoning. More-
over, because some multistep reasoning bench-
marks contain annotation artifacts or reasoning
shortcuts (Jiang and Bansal, 2019), dedicated mod-
els trained on these benchmarks often have much
lower F1 performance on contrast sets (Gardner
et al., 2020) and adversarial sets (Schlegel et al.,
2021), indicating their lack of robustness.

Prior research has attempted to tackle this chal-
lenge with various question decomposition strate-
gies to explicitly incorporate reasoning chains into
the question answering process. However, as we
show in our experiments, existing methods (An-
dor et al., 2019; Chen et al., 2020) that perform
explicit reasoning steps still suffer from robustness
issues. Moreover, multi-step reasoning methods
are often engineered for a specific domain or type
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Figure 1: Single-step QA vs. Chain-of-Questions. We
show that a single-model with sub-question generation
and answering works better than single-step QA on
questions that require multistep reasoning.

of multistep QA (Fu et al., 2021; Perez et al., 2020),
and thus cannot be easily extended to other multi-
step QA settings. Prompting methods (Chen et al.,
2020; Dua et al., 2022) have shown promise in gen-
erating multistep solutions to questions, but they
require very large language models (LMs) as well
as careful prompt engineering, and still lag behind
fine-tuned methods (OpenAI, 2023).

To develop a robust multistep QA system, we
propose a novel framework, Chain-of-Questions
training with latent answers. Our framework trains
a model to generate sub-questions and their cor-
responding sub-answers one at a time, as shown
in Fig. 1, then aggregates those sub-answers to an-
swer the original question. To define an appropriate



set of sub-questions, we use question decomposi-
tion meaning representation (QDMR), an existing
dataset with human-annotated sub-questions for
questions from multiple multistep QA benchmarks.
While QDMR is helpful, it only contains anno-
tated sub-questions, not sub-answers, which makes
training a QA system to generate sub-answers tech-
nically challenging. We view the sub-answers
in the intermediate steps as latent variables, and
apply Hard-EM (Neal and Hinton, 1998) to op-
timize these latent variables during training. To
further improve performance, we use a memory
buffer to store trajectories with high F1 score, in-
spired by Memory-Augmented Policy Optimiza-
tion (MAPO; Liang et al., 2018), previously used
for semantic parsing. Because starting with MAPO
alone does not converge well, we design a dy-
namic loss function that combines the Hard-EM
and MAPO objectives for fast improvement at the
beginning and better final convergence.

We conduct experiments on DROP (Dua et al.,
2019), HOTPOTQA (Yang et al., 2018), and their
contrast and adversarial sets to evaluate the perfor-
mance of our proposed Chain-of-Questions frame-
work. On the contrast set of DROP, Chain-
of-Questions outperforms neuro-symbolic base-
lines by 9.0 on F1 score, and outperforms Chain-
of-Thought on GPT-3.5 by 16.8 despite using a
much smaller model (T5-Large, 770M parameters).
On the adversarial set of HOTPOTQA, Chain-of-
Questions outperforms Longformer by 5.5 on F1
score, and outperforms Chain-of-Thought on GPT-
3.5 by 24.3. Our experimental results demonstrate
that Chain-of-Questions successfully leverages ex-
isting QDMR annotations to train an effective and
robust multistep QA model.

2 Background and Related Work

We introduce the multistep QA benchmarks we use,
as well as other methods using question decompo-
sition during training and prompting.

Multistep QA Benchmarks. We focus on two
popular multistep QA benchmarks—DROP and
HOTPOTQA. DROP (Dua et al., 2019) focuses
on questions that require discrete and symbolic
reasoning. Most of its questions require mul-
tiple steps of retrieval and numerical execution.
HOTPOTQA (Yang et al., 2018) contains 2-hop
questions over 10 paragraphs. Other work has
constructed contrast and adversarial sets to eval-
uate the robustness of models trained on these

datasets. Gardner et al. (2020) created a contrast
set for DROP (DROP-CS) by modifying test in-
stances in ways that often change the correct an-
swer. HOTPOTQA-ADV (Jiang and Bansal, 2019)
adds adversarial paragraphs that do not change the
correct answer but fool models that rely too heavily
on reasoning shortcuts. We experiment on DROP,
HOTPOTQA, and their robustness evaluation sets.

Training with Question Decomposition. Wolf-
son et al. (2020) introduce QDMR, a human-
annotated question decomposition format and
dataset. Since QDMR’s for each question were
annotated without looking at evidence passages,
the QDMR dataset does not include sub-answers to
any sub-questions within each QDMR. Subsequent
work has used QDMR to help train QA models.
TeaBReaC (Trivedi et al., 2022b) uses the QDMR
decomposition graph to generate a large multistep
QA dataset with synthetic contexts for pretraining.
We show that TeaBReaC has complementary bene-
fits with Chain-of-Questions, which adds explicit
multistep reasoning at inference time. Guo et al.
(2022b) train a model to generate QDMR’s and
provide them as context to a single-step QA model.
Unlike this model, our model explicitly attempts to
generate sub-answers of QDMR sub-questions. We
compare with a single-step baseline similar to Guo
et al. (2022b), and show that learning to generate
sub-answers improves performance.

Other work on multistep QA, such as Decom-
pRC (Min et al., 2019b), ONUS (Perez et al., 2020)
and RERC (Fu et al., 2021), generate a decompo-
sition with one model and the answers for the sub-
questions with another model, although none of
these use QDMR. These methods require a single-
step QA model trained with other QA data, whereas
our approach does not. Moreover, they rely on
entity matching to decompose questions; such ap-
proaches do not naturally extend to tasks requiring
forms of multistep reasoning that are not entity-
centric, such as numerical reasoning.

Neuro-symbolic methods such as BERT-
Calculator (Andor et al., 2019) and NeRd (Chen
et al., 2020) generate functional programs for mul-
tistep numerical reasoning. However, they require
the model to generate accurate programs in a single
run, without observing the results of intermedi-
ate stages of computation. This process can make
them more susceptible to learning simple reasoning
shortcuts, compared with Chain-of-Questions.
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Figure 2: Chain-of-Questions framework and its training process with Hard-EM and MAPO. In the left panel,
the blue box contains the input question and context, the pink box shows the intermediate sub-questions and
sub-answers, the orange box is the final sub-question and final answer. Words in red braces {} are sampled as latent
variables, and the other words are learned with supervision. In the right panel, during training, we first select the
best of top-k candidates to compute the Hard-EM loss, then we combine these candidates with samples from the
buffer to compute the MAPO loss. Finally, we add high-reward candidates into the buffer.

Prompting with Question Decomposition.
Chain-of-Thought prompting (Wei et al., 2022)
inserts explicit reasoning chains into prompts to
help language models answer compositional and
multistep questions, especially ones involving
mathematical reasoning. Subsequent work such as
successive (Dua et al., 2022; Zhou et al., 2023), it-
erative (Zelikman et al., 2022), modularized (Khot
et al., 2022) or tool-based prompting (Yao et al.,
2023) filter or refine the reasoning process.
However, LLMs are computationally expensive
and require careful prompt engineering. We show
that smaller, more efficient LMs can outperform
LLMs when trained to output reasoning chains.

3 Problem Formulation

We define the notations related to the question de-
composition annotation QDMR, as well as the mul-
tistep QA training and testing setups.

3.1 QDMR

Formally, a QDMR for a question q is a corre-
sponding list of natural language sub-questions
qsub = [qsub

1 , qsub
2 , ..., qsub

n ], where answering each
sub-question would lead to answering q (Wolf-
son et al., 2020). The number of sub-questions
n = |qsub| varies for different questions q; if q
requires multistep reasoning, n is usually > 1.

QDMR Parser. We assume access to a QDMR
parser model g(·;ϕ), parameterized by ϕ, that takes
in a question q and generates a corresponding
QDMR, as proposed by Wolfson et al. (2020). The
parser is trained with the original QDMR annota-
tion, and can predict QDMR for any new question.

3.2 Multistep Question Answering

A QA model takes in a question q and context pas-
sage c, and outputs a predicted answer â. We train
our model on a training dataset of question-context-
answer triples (q, c, a). Our multistep QA model
answers a question q by generating and answering
QDMR sub-questions one at a time.

Training Data. We assume that all QA train-
ing examples have a QDMR qsub corresponding
to question q. However, the human-annotated
QDMR dataset only has gold QDMR’s annotated
for a small fraction of QA examples. We con-
sider two settings: (1) only use examples with gold
QDMR data for QA training (DQDMR); (2) we use
the QDMR parser to generate silver QDMR for
the rest of the QA training data (DQDMR+). The
sub-answers asub = [asub

1 , asub
2 , ..., asub

n ] to each
sub-question are not included in the QDMR, as
QDMR annotators only looked at the question
without supporting passages. We use âsub =
[âsub

1 , âsub
2 , ..., âsub

n ] to denote the model predicted



sub-answers. At inference time the model is given
only the question q and context c as input, and must
generate both sub-questions and sub-answers.

4 Proposed Methods

We discuss how to use the QDMR annotation and
the QDMR parser, as well as how to train the QA
model with Hard-EM and reinforcement learning
in this section. We combine question decompo-
sition and latent variable learning to construct a
generalizable multistep reasoning framework.

4.1 Chain-of-Questions Framework
Our model f(; θ) predicts each QDMR sub-
question and its corresponding sub-answer one
at a time. During training, we feed the question
and context into our model f , as in the blue box
of Fig. 2, and first ask it to predict the first sub-
question, qsub

1 , along with its corresponding sub-
answer, âsub

1 . To separate the sub-question and the
sub-answer, we append a special [QDMR] token to
the sub-question and another special [QDMR-ANS]
token to the sub-answer in the model input and out-
put. In the second iteration, we append the gold
qsub
1 and predicted âsub

1 after the question and con-
text, thereby allowing the model to predict the sec-
ond sub-question and its sub-answer based on pre-
vious steps. This process is repeated until all sub-
questions and sub-answers have been predicted. In
the final iteration, the model outputs a [END-QDMR]
tag indicating the end of iterations. We use the final
sub-answer âsub

n as the answer to the input question.

4.2 Learning with Latent Answers
We illustrate how the model f learns to predict the
sub-questions and sub-answers. The sub-questions
are provided in the annotation, so we can simply ap-
ply supervised learning to optimize the likelihood
of ground-truth sub-questions given the question,
the context and any sub-answers as in Eq. (1).

ℓSL(θ, q, c, â
sub)

=

n∑
j=1

− log pθ(q
sub
j | q, c, qsub

1:j−1, â
sub
1:j−1), (1)

where qsub
1:j denotes the set {qsub

i }ji=1, and likewise
for asub

1:j . Notice that the model is trained to generate
the gold next sub-question regardless of whether its
previous predicted sub-answers are correct (Bengio
et al., 2015). Because the ground truth sub-answers
are not provided in the training time, we regard the

intermediate sub-answers as latent variables and
use Hard-EM and RL to optimize them.

Hard-EM. A variant of the EM algorithm, Hard-
EM (Neal and Hinton, 1998) assigns the most likely
values to all latent variables and maximizes the
expected log-likelihood of the label based on these
values. Hard-EM helps to filter spurious ways to
derive the correct answer. Min et al. (2019a) use
Hard-EM for weakly supervised training for multi-
mention QA tasks.

Since it is computationally infeasible to enumer-
ate all possible sets of sub-answers to find the best
set, we approximately compute the best âsub with
beam search (see Appendix A.1 for details). In
particular, we pick the sequence of sub-answers
ãsub where ãsub

n = a and ãsub
1:n−1 has the highest

likelihood to predict a:

ãsub
1:n−1 = argmax

âsub
1:n−1

pθ(a | q, c,qsub, âsub
1:n−1).

Following Hard-EM, we train the model to maxi-
mize the probability of both qsub and ãsub, which is
equivalent to minimizing negative log likelihood:

ℓH-EM(θ, q, c,qsub, ãsub)

=− log pθ(q
sub, ãsub | q, c)

=
n∑

j=1

− log pθ(ã
sub
j | q, c, qsub

1:j , ã
sub
1:j−1)

+ ℓSL(θ, q, c, ã
sub). (2)

Reinforcement Learning. In another perspec-
tive, we view each sub-answer as an action and
the whole sub-answer set as a trajectory. By do-
ing so, we can use reinforcement learning methods
such as Memory-Augmented Policy Optimization
(MAPO; Liang et al., 2018), originally designed
for semantic parsing, to optimize the latent sub-
answers. MAPO reduces the variance of policy
gradient estimates with a memory buffer that stores
high-reward trajectories (in our case, sequences of
predicted sub-answers).1

We adapt MAPO to multistep QA as follows.
While the original MAPO algorithm samples many
independent trajectories using the model f , we in-
stead use the trajectories from the beam, which
reduces sampling time and yields better quality
trajectories. During training, we maintain a replay
buffer B of high-quality sequences of predicted sub-
answers. For each example (q, c, a), we choose the

1See details of the original MAPO in Appendix A.2



Testing Data (F1)
Model Method Training Data DROP DROP-CS

BERT-Calculator DROP 81.7 55.8BERT NeRd DROP 81.8 59.5
Chain-of-Thought (4-shot) - 59.7 51.7GPT-3.5 ⋆

Standard Prompting (0-shot) - 40.4 34.1

T5-B

Single-step run DROP 51.6 44.8
DROP w/ DQDMR+ 53.1 45.0

Chain-of-Questions

DROP w/ DQDMR 46.6 44.3
DROP w/ DQDMR+ 74.4 63.8

w/o MAPO 73.7 62.9
w/o Regex 59.1 56.4

T5-L

Single-step run DROP 73.9 53.7
DROP w/ DQDMR+ 75.2 55.3

Chain-of-Questions

DROP w/ DQDMR 65.8 55.4
DROP w/ DQDMR+ 84.4 67.9

w/o MAPO 83.5 67.8
w/o Regex 78.1 64.4

TB-T5-L Single-step run DROP 81.4 60.1
Chain-of-Questions DROP w/ DQDMR+ 85.6 68.2

Table 1: F1 scores on DROP dev set and DROP-CS. Blue bold is the best model, purple bold is the second best.
Chain-of-Questions outperforms other baselines on both the in-distribution dev set and the contrast set. Integrating
Chain-of-Questions with TeaBReaC Pretraining further improves the performance. ⋆We report our reproduced
results of GPT-3.5, which is slightly lower than their official report (64.1 on DROP with few-shot prompting).

top 5 trajectories from the beam that are not in the
replay buffer to use as out-of-memory trajectories.
Next, we sample at most 5 in-memory trajectories
from the replay buffer. We thus have a total of m
different sub-answer trajectories (5 ≤ m ≤ 10),
denoted as {âsub

i }mi=1, for each (q, c) example. Fi-
nally, we use the F1 score of the final predicted
sub-answer âsub

n as the reward R(âsub) of the tra-
jectory, The MAPO training objective uses both
sets of trajectories to derive an unbiased stratified
sampling estimator of policy gradient objective:

ℓMAPO(θ, q, c,q
sub, {âsub

i }mi=1) =∑
âsub
i ∈B

−rB
m

R(âsub
i ) log pθ(â

sub
i | q, c,qsub)

+
∑

âsub
i /∈B

−1− rB
m

R(âsub
i ) log pθ(â

sub
i | q, c,qsub)

+
1

m

m∑
i=1

ℓSL(θ, q, c, â
sub
i ), (3)

where rB is the ratio of the number of trajecto-
ries in the buffer to the total number of sampled
trajectories. As step 3 in Fig. 2, after computing
the objectives, we update the replay buffer B with
high-reward examples from the beam.

4.3 Chain-of-Questions Training Algorithm
As mentioned in Agarwal et al. (2019), MAPO
works poorly at the beginning of training, as ini-

tially no sampled trajectories receive high reward.
Hard-EM provides useful training signal at the start
of training, but MAPO can help training converge
to a better final model once some successful tra-
jectories are added to the buffer. Thus, we apply a
mixture weight λ to dynamically balance Eq. (2)
and (3). The overall Chain-of-Questions (CoQ)
loss for a given example (q, c, a) is defined as:

ℓCoQ = λℓMAPO + (1− λ)ℓH-EM, (4)

where λ is the proportion of examples with at least
one trajectory in the replay buffer. We rely on
Hard-EM at the beginning of training, but switch
to MAPO as the model finds successful trajectories.
Note that ℓSL is used in both ℓMAPO and ℓH-EM.

5 Experiments

We present our experimental setup and show CoQ
outperforms other multistep fine-tuning or prompt-
ing baselines over multiple benchmarks.

5.1 Experimental Details
Datasets. For in-distribution evaluation, we use
DROP and HOTPOTQA. DROP contains 77,400
training examples and 9,536 validation examples.
HOTPOTQA contains 72,928 training examples
and 5,901 validation examples.2 DQDMR contains

2We use the two-paragraph HOTPOTQA version released
by Fisch et al. (2019) for efficient training.



the question decomposition of 7,705 training exam-
ples from DROP and 6,233 training examples from
HOTPOTQA. We use a T5-base (Raffel et al., 2020)
QDMR parser to create DQDMR+, which has ques-
tion decompositions of all training examples. We
do not use QDMR examples from other datasets
during training, e.g., we only use the DROP ex-
amples in DQDMR for training on DROP. For ro-
bustness evaluation, we evaluate on the contrast
set DROP-CS (Gardner et al., 2020) containing
947 examples, and the adversarial set HOTPOTQA-
ADV (Jiang and Bansal, 2019) containing 3,627
examples.

Models. For DROP, we apply CoQ with T5-
Base (T5-B), T5-Large (T5-L), and TeaBReaC T5-
Large (TB-T5-L) with a batch size of 16. For HOT-
POTQA, the context length of examples in the 4-
paragraph HOTPOTQA-ADV exceeds 512, which
is the token number limit of T5. We apply CoQ
with LongT5-Base (LongT5-B; Guo et al., 2022a)
with a batch size of 8.

Baselines. We compare Chain-of-Questions to
several fine-tuning methods and prompting meth-
ods. For fine-tuning methods, we compare with:
• BERT-Calculator (Andor et al., 2019): A uni-

fied model that uses BERT to predict programs
that execute to answers on DROP.

• NeRd (Chen et al., 2020): A neuro-symbolic
model that extends BERT-Calculator from one-
step operators to two-step compositions.

• Longformer (Beltagy et al., 2020): A trans-
former encoder that combines local and global
attention to process long documents.

For prompting methods, we compare with the fol-
lowing methods using GPT-3.5:
• Chain-of-Thought (Wei et al., 2022): We insert

few-shot in-context examples with explicit rea-
soning chains to solve multistep problems. Due
to the limited context window of Transformer
models, we use 4-shot prompting for DROP and
2-shot prompting for HOTPOTQA. Our prompt
examples consist of QDMR’s paired with manu-
ally written sub-answers.

• Standard Prompting (Brown et al., 2020): We
prompt GPT-3.5 to generate the answer without
providing any in-context examples.

We engineered prompts to make these baselines as
competitive as possible, as detailed in Appendix C.

Single-step Baselines. We compare to two
single-step baselines. One is standard fine-tuning

with the given dataset, and the other is fine-tuning
with QDMR-augmented contexts. For the latter,
we concatenate all sub-questions from the question
decomposition to (q, c) as the input to the model
and fine-tune it to perform single-step QA (i.e., di-
rectly generate the answer). At inference time, we
first use the QDMR parser g to generate the sub-
questions for each question, and input them along
with (q, c) to the model. This baseline is similar
to (Guo et al., 2022b), which uses the same QDMR
parser and the same model. The only difference is
they train the QDMR parser with Hard-EM.

5.2 Task-Specific Modifications

To match the in-distribution performance of state-
of-the-art systems, we make task-specific modifica-
tions for DROP and HOTPOTQA.

Modifications for DROP. Smaller language
models such as T5-B and T5-L struggle with numer-
ical operations. Since DROP focuses on numerical
reasoning, analogous to how BERT-Calculator help
the model to do arithmetic, we add a regular ex-
pression matching module that can handle basic
numerical operations. We note that only the last
sub-question of a DROP example may require nu-
merical operation. Hence, we add regular expres-
sion matching and the “[REGEX]” tag in the last
step.

For each example, we take the last sub-question
generated by the model f , parse it to a functional
program based on the keyword matching and ex-
ecute it. If the parsing and execution process are
both successful, we put the “[REGEX]” token in
front of the numerical execution result and input
them together into the answer generation process.
Else, we keep the answer generation process un-
changed as in Fig. 2.

Modification for HOTPOTQA. Predicting the
supporting facts is an auxiliary task of HOTPOTQA
used in many models (Groeneveld et al., 2020; Belt-
agy et al., 2020). Following the same input format
as Longformer, we add the supporting fact (SF)
prediction and the span prediction (SP) tasks in the
encoder as auxiliary tasks. We use a two-layer feed-
forward network for supporting fact prediction, and
one-layer classification head for span prediction.
We perform these two tasks at each run of model f
and add the two cross-entropy losses to ℓCoQ.



Testing Data (F1)
Model Method Training Data HOTPOTQA HOTPOTQA-ADV
Longformer Longformer HOTPOTQA 85.6 77.7

Chain-of-Thought (2-shot) - 66.8 58.9GPT-3.5 Standard Prompting (0-shot) - 69.7 57.1

LongT5-B

Single-step run HOTPOTQA 85.4 77.5
HOTPOTQA w/ DQDMR+ 85.2 78.2

Chain-of-Questions

HOTPOTQA w/ DQDMR 74.7 72.8
HOTPOTQA w/ DQDMR+ 85.1 83.2

w/o MAPO 83.0 82.0
w/o SF & SP 78.1 76.5

Table 2: F1 scores on HOTPOTQA dev set and HOTPOTQA-ADV. Blue bold is the best model, purple bold is
the second best. Chain-of-Questions matches the performance of Longformer on the in-distribution dev set, and
outperforms all baselines on the adversarial set.

5.3 Results

We show results for DROP and DROP-CS in Ta-
ble 1, and results for HOTPOTQA and HOTPOTQA-
ADV in Table 2. The results indicate the effective-
ness and robustness of Chain-of-Questions.

Chain-of-Questions outperforms other baselines.
In Table 1, CoQ w/ DQDMR+ on DROP outper-
forms all baselines on F1 by 2.6% in-distribution
and 7.8% on the contrast set. Moreover, the T5-
L version is 3.5% better than recently released
GPT-4 F1 score on the DROP (OpenAI, 2023).
The model can be further improved by initializ-
ing with TeaBReaC Pretraining. Similarly, in Ta-
ble 2, CoQ w/ DQDMR+ on HOTPOTQA is on-par
in-distribution with Longformer and 5.5% higher
on the adversarial set. On both datasets, CoQ
has a smaller performance gap between the in-
distribution dev set and the robustness evaluation
set compared with the baselines, indicating its
strong robustness.3

Chain-of-Thought prompting is weaker than
fine-tuning methods on multistep QA. On both
DROP and HOTPOTQA, prompting methods have
lower F1 than fine-tuning methods, which indicates
the difficulty of prompting large language models
to do multistep QA. Moreover, Chain-of-Thought
is 2.9% worse than zero-shot Standard Prompting
on HOTPOTQA F1 score. We find it difficult to
design prompts for GPT-3.5 that lead to clean and
concise answers under the Chain-of-Thought setup.
HOTPOTQA-ADV benefits from question decom-
position, which suggests Standard Prompting may
take reasoning shortcuts on HOTPOTQA examples.

3The one exception is the prompting baselines on DROP,
which are 30% lower on DROP and 20% lower on DROP-CS
than CoQ.

MAPO works better on HOTPOTQA than
DROP. Using MAPO in addition to Hard-EM,
as opposed to Hard-EM alone, leads to larger gains
in F1 on HOTPOTQA (+[1.2-2.5]%) than on DROP
(+[0.1-0.9]%). As the sub-answers should be spans
in the context for both DROP and HOTPOTQA, our
hypothesis is that the span prediction task provides
an inductive bias for actions to focus on spans in the
context, which makes the model more likely to gen-
erate correct answers. The context of 2-paragraph
HOTPOTQA is shorter than DROP, which makes
the action space smaller.

Task-specific modifications are necessary. Both
the regular expression module in DROP and the
auxiliary tasks (SF & SP) in HOTPOTQA improves
F1 by more than 5% on the in-distribution dev sets
and 3% on the robustness evaluation sets in Table 1
and 2. This shows that task-specific modifications
are an important part of Chain-of-Questions.

Chain-of-Questions can generalize to bench-
marks with no QDMR annotation. To test if
our framework is still effective when annotated
QDMR’s are not available for the training dataset,
we conduct additional experiments where we omit
the QDMR annotations for one dataset, then run
CoQ on that dataset using only QDMR generated
by a QDMR parser trained on other datasets.

Recall that in our main DROP experiments,
DQDMR+ includes both human-annotated gold
QDMR and silver QDMR generated by a QDMR
parser trained with the QDMR annotation of
DROP. Instead, we now train a QDMR parser
with only the QDMR annotation of COMPLEXWE-
BQUESTIONS (Talmor and Berant, 2018) and HOT-
POTQA. Then, we use that QDMR parser to gen-
erate bronze QDMR augmentation for the whole
DROP dataset, and use these to run CoQ. In this



Train Data DROP DROP-CS
DROP

w/ DQDMR 46.6 44.3
w/ bronze QDMR 69.1 59.8
w/ DQDMR+ 74.4 63.8

Train Data HOTPOTQA HOTPOTQA-ADV
HOTPOTQA

w/ DQDMR 74.7 72.8
w/ bronze QDMR 84.9 81.5
w/ DQDMR+ 85.5 83.2

Table 3: F1 scores of Chain-of-Questions models on
DROP dev set, DROP-CS, HOTPOTQA dev set and
HOTPOTQA-ADV set, trained with different QDMR
data. By assuming DROP and HOTPOTQA has no
QDMR annotation, CoQ models trained on bronze
QDMR drops 4-5% F1 on DROP and DROP-CS, 1-2%
F1 on HOTPOTQA and HOTPOTQA-ADV, while they
are still much better than the gold-only QDMR training,
as well as the single-run baselines.

way, we consider what would happen if no anno-
tated QDMR was available for DROP. Similarly,
for HOTPOTQA, we train the QDMR parser with
the QDMR annotation of COMPLEXWEBQUES-
TIONS and DROP, and generate bronze QDMR for
the HOTPOTQA dataset.

Compared to training on DQDMR+, CoQ train-
ing on bronze QDMR results in decreases of 4-5%
F1 on DROP and DROP-CS and 1-2% F1 on
HOTPOTQA and HOTPOTQA-ADV. Nonetheless,
these F1 scores are still much better than the single-
run baselines on the contrast and adversarial sets.
These experiments show that CoQ can be effective
even on benchmarks without QDMR annotations.
Training on bronze QDMR is also much more effec-
tive than training only on gold DQDMR, as shown in
Table 3. This suggests that having a large amount
of training data greatly helps CoQ, even if that data
is lower quality; future work could explore using
more unannotated data to further improve perfor-
mance.

5.4 Qualitative Analysis on QDMR

We conduct qualitative analysis on QDMR to check
its quality and effectiveness.

How good are the generated sub-questions and
sub-answers? We list three multistep QA exam-
ples in Table 4 to show quality of generated QDMR
sub-questions and sub-answers.4 The generated

4We choose the examples based on following the criteria
(1) the example must be a multistep QA (2) we manually check
around 3 examples per dataset satisfying (1) and select one

sub-questions from DROP (1st) and HOTPOTQA
(3rd) examples are correct decompositions. In the
DROP-CS (2nd) example, the generated QDMR is
also a valid decomposition, although answering the
first two generated sub-questions require additional
reasoning steps. Note that the QDMR is anno-
tated by only looking at the questions (Wolfson
et al., 2020), and the QDMR sub-question genera-
tion in Chain-of-Questions is trained by supervised
learning. The QDMR annotation may cause the
sub-question generation to focus only on the ques-
tion, and thus generate sub-questions that require
multiple reasoning steps from the passage, which
are hard for the model to answer.

The final answer of the question is generated in
the first sub-answer in the HOTPOTQA (3rd) ex-
ample, which is not a correct answer to the first
sub-question. The model may use reasoning short-
cuts to generate the final answer as sub-answers,
which is beneficial to generate the final answer at
the last step, but not answering the sub-question.

How do the generated sub-questions help the
QA model? We hypothesize generated sub-
questions helps the model return the right answer
for the right reason, and we try to detect this by
looking at whether it can correctly identify sup-
porting facts in HOTPOTQA-ADV. For each ques-
tion, the model predicts two supporting facts in
the context using the encoder output embedding.
We observe that the accuracy of supporting fact
prediction improves as we incorporate question de-
composition in the input.

For example, given a question “What govern-
ment position was held by the woman who por-
trayed Corliss Archer in the film Kiss and Tell?”,
the ground truth supporting facts are two sentences:

“Kiss and Tell is ... Shirley Temple as Corliss Archer.”
and “As an adult, she ... served as Chief of Pro-
tocol of the United States.”, from two different
paragraphs.

In the first run, the input to the encoder is only
the question and context; the model predicts the
first supporting fact correctly, while it takes a sen-
tence “As an adult, she ... served as Chief of treaty
of the United States.” from an adversarial para-
graph, which refers to a different person, as the
second supporting fact. However, in the second
run, when the input to the encoder contains the first
sub-question and sub-answer (“[QDMR] return

based on how well the context and the relevant information
can be visualized.



Question Context Ground-truth QDMR Generated QDMR & Answers

How many years after
Pegu fell did the king
die? (DROP)

After the fall of Pegu in December
1599 ... but the king died during the
campaign on 3 March 1606.

1. return year that Pegu fell;
2. return year that the king did die;
3. return difference of #2 and #1.

1. return the year when Pegu fell: 1599;
2. return the year when the king died: 1606;
3. return difference of 1606 and 1599: 7.

Which cities did they
go before Manchester
and Derby? (DROP-
CS)

The Jacobite army ... enteblue England
on 8 November ... Two days later they
reached Carlisle ... On 26 November,
they reached Preston ... followed by
Manchester on the 28th November ...
enteblue Derby on 4 December ...

1. return the date they went to
Manchester;

2. return the date they went to Derby;
3. return the cities they went before #1;
4. return the cities they went before #2;
5. return the cities in both #3 and #4.

1. return cities they go before Manchester:
Preston;

2. return cities they go before Derby:
Manchester;

3. return the cities in both Preston and
Manchester: Preston.

Which airline partners
with Gogo Inflight In-
ternet and opened in
1984? (HOTPOTQA)

Gogo Inflight ... 17 airlines partner
with Gogo to provide in-flight WiFi,
including ... Virgin Atlantic, a trading
name of ... was established in 1984 ...

1. return airline that partners with Gogo
Inflight Internet;

2. return #1 that opened in 1984.

1. return which airline partners with Gogo
Inflight Internet: Virgin Atlantic;

2. return Virgin Atlantic open in 1984:
Virgin Atlantic.

Table 4: Qualitative analysis of model-generated reasoning chains. We use black bold to mark relevant information
in the context, blue bold to mark correct final answers, and red bold to mark wrong final answers. We find (1) most
generated sub-questions are correct; (2) a generated sub-question by CoQ models can contain multiple reasoning
steps; (3) the model may use reasoning shortcuts to generate the final answer as sub-answers for early sub-questions.

the woman who portrayed Corliss Archer in
the film Kiss and Tell [QDMR-ANS] Shirley
Temple”), the model selects the second sentence
from the paragraph about Shirley Temple, thus pre-
dicting both supporting facts correctly.

For all the 2-hop questions in HOTPOTQA-
ADV, the supporting fact prediction accuracy is
75.6% during the first run, and rises to 83.2% dur-
ing the second run. This accuracy increase shows
the effectiveness of generating sub-questions step-
by-step, which helps the model gradually filter out
close but irrelevant context.

6 Discussion

We present Chain-of-Questions (CoQ), a robust
sub-question generation and answering framework
that shows strong performance on DROP and HOT-
POTQA. CoQ uses a combination of Hard-EM and
MAPO for training, effectively optimizing the la-
tent variables associated with sub-answers of inter-
mediate questions.

We envision multiple directions for future work.
CoQ requires supervision from QDMR; other fam-
ilies of RL methods we did not explore may be
used to reduce our reliance on this supervision, and
instead allow the model to learn appropriate decom-
positions from scratch. On the other hand, we could
also explore using different question decomposi-
tions, such as ones generated by LLMs like GPT-
3.5. Either approach could help us extend CoQ to
other multistep reasoning datasets with no QDMR
annotation. Similar to DROP, FINQA (Chen et al.,
2021) consists of numerical reasoning questions
over financial data. In a similar format as HOT-
POTQA, MUSIQUE (Trivedi et al., 2022a) contains
3-hop and 4-hop retrieval questions. ROPES (Lin

et al., 2019) requires complex multistep reasoning
between a background context paragraph and sit-
uation context paragraph. We could either train
models on these datasets if we can eliminate our
reliance on QDMR data, or test whether models
trained with CoQ can transfer well to these other
datasets.

Limitations

Due to GPU resource constraints, we were unable
to scale up our method to larger models such as T5-
3B. However, the smaller models we were able to
experiment with already show good performance.
Similar, for computational efficiency, we did not
try other more advanced on-policy reinforcement
algorithms, but we find that MAPO already yields
good improvement on F1.

Chain-of-Questions still requires task-specific
modifications for different multistep QA
benchmarks—we did not find out a good way to
build a universal model that is highly effective
on all datasets. UnifiedQA (Khashabi et al.,
2020b) constructs a unified model for multiple QA
benchmarks, but their largest model (T5-11B) still
has poor performance on DROP, again suggesting
the importance of dataset-specific modifications.

Finally, the best version of Chain-of-Questions
requires QDMR annotation during training, which
is only available for some datasets. In order to be in-
dependent of the QDMR annotation, we show some
generalization of CoQ by assuming no QDMR an-
notation on DROP and training on bronze ques-
tion decompositions generated by QDMR parser.
CoQ could also be tested on other datasets without
QDMR annotation to evaluate its transferability,
by having the QDMR parser for bronze annota-



tions. On the other hand, the method can be further
explored to work with question decompositions
generated by LLMs.
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A Chain-of-Questions Algorithm Details

We list omitted details of Hard-EM and MAPO in
the Chain-of-Questions algorithm.

A.1 Sub-Answer Sampling Strategy
Given qsub and âsub, we compute the likelihood to
predict the sequence of qsub and âsub by:

pθ(q
sub, âsub | q, c) =

n∏
j=1

pθ(â
sub
j | q, c, qsub

1:j , â
sub
1:j−1)

n∏
j=1

pθ(q
sub
j | q, c, qsub

1:j−1, â
sub
1:j−1) (5)

We use beam search to sample the sub-answers
and keep a beam of size k. In each iteration, we
expand each beam with b different answers and
select the top-k likelihood answers to construct a
new beam following Eq. (5). We choose k = 25
and b = 5 in our experiments. Thus, we have
5 different candidates for âsub

1 in the first run, 25
different candidates for (âsub

1 , âsub
2 ) after the second

run, and in general 25 candidates for âsub
1:j for the

j-th run for j > 2.
The challenge is to ensure the sampling will pro-

vide some correct sub-answers. However, notice
that roughly 10% of annotated QDMR’s across
DROP and HOTPOTQA are single-step decomposi-
tion (i.e., n = 1). Our hypothesis is the model may
to learn to do single-step QA from these examples,
which will also help it learn to produce meaning-
ful sub-answers to sub-questions that come from
multistep QDMR’s.

A.2 Difference from Original MAPO
Given a policy model π(; θ), and a replay buffer B,
the original MAPO objective is:

OMAPO = rBEâsub∼π+
θ (âsub)R(âsub)

+(1− rB)Eâsub∼π−
θ (âsub)R(âsub)

where R(âsub) denotes the reward of the trajectory,
and rB is the ratio of the number of trajectories in
the buffer to the total number of sampled trajecto-
ries, used to derive an unbiased stratified sampling
estimator of the gradient. π+

θ (â
sub) and π−

θ (â
sub)

are the normalized probability distribution inside
and outside the buffer, defined as:

π+
θ (â

sub) = πθ(â
sub)/rB · 1[âsub ∈ B]

π−
θ (â

sub) = πθ(â
sub)/(1− rB) · 1[âsub ̸∈ B]

Notice that sampling a new trajectory is expensive
in our scenario, especially with a large model. So
instead of use samples from a policy model, we
instead use the trajectories from the beam, which
reduces sampling time and yields better quality
trajectories.

On the other hand, MAPO stores trajectories
with rewards greater than 0 in B. However, wrong
answers with some corrects words could also get
a F1 score greater than 0 with our reward function.
Hence, we select R(âsub) > 0.8 and store these
trajectories in the replay buffer B.

B Implementation Details

We list the implementation details and hyperparam-
eter choice as follows.

B.1 Datasets

Jiang and Bansal (2019) constructed HOTPOTQA-
ADV by generating up to 8 adversarial paragraphs
for a given HOTPOTQA example. Because we
trained on the 2-paragraph HOTPOTQA, we gen-
erate a 4-paragraph version of HOTPOTQA-ADV
to reduce length generalization. We take the ad-
versarial set from Jiang and Bansal (2019), filter
the examples with at least 2 adversarial paragraphs,
and select their intersection with the validation set
of 2-paragraph HOTPOTQA. We randomly choose
the 2 adversarial paragraphs, and randomly order
them with the 2 supporting paragraphs.

B.2 DROP Regular Expression

During the execution time, we detect the output
[END-QDMR] token for the last sub-question.

We search for specific keywords in the last sub-
question and match them with numerical opera-
tions, e.g., we match “higher” to max and “less” to
min. The keyword matching perfectly matches the
ground truth QDMR annotation to numerical oper-
ations. We use 7 operators in total: max, min, sum,
diff, mul, div, or.

We take the last sub-question generated by the
model f , parse it to a functional program based on
the keyword matching and execute it. If the pars-
ing and execution process are both successful, we
put the “[REGEX]” token in front of the numerical
execution result and input them together into the
answer generation process. For example, if the last
sub-question generated is “[QDMR] return the
largest of 4 and 3 [END-QDMR]”, we will in-
put “[QDMR] return the largest of 4 and



Model DROP DROP-CS

TB-T5-L 85.6±0.5 68.2±0.8
Model HOTPOTQA HOTPOTQA-ADV

LongT5-B 85.1±0.3 83.0±0.5

Table 5: The mean F1 score and the standard deviation
on the evaluation benchmarks of the best CoQ models.
The results are based on three different runs.

3 [END-QDMR] [REGEX] 4” into the decoder for
answer generation, in both training and inference
time.

B.3 Hyperparameters

In training DROP, we train a total of 50k iterations
with a batch size of 8 for T5-B and a batch size of
4 for T5-L. One run of DROP training with T5-B
on one NVIDIA V100 GPU takes 40 hours. One
run of DROP training with T5-L on one NVIDIA
A100 GPU takes 60 hours.

In training HOTPOTQA, we train a total of 30k
iterations with a batch size of 16 for LongT5-B.
One run of HOTPOTQA training with LongT5-B
on one NVIDIA V100 GPU takes 30 hours.

In all training, we use the AdamW optimizer
with a weight decay of 0.01. The learning rate is
set as 1e−5. We evaluate the model every 500 steps
and set an early-stopping criterion on the validation
F1 score, with max patience of 3.

B.4 Standard Deviation

We report the mean F1 score and the standard de-
viation over three runs of the best CoQ models in
Table 5, which are the TB-T5-L model for DROP
and the LongT5-B model for HOTPOTQA.

C Prompt Engineering

We show the effort we made on prompt engineering
to get the best possible performance on DROP and
HOTPOTQA using GPT-3.5.

C.1 Zero-shot Prompting

The zero-shot prompt we used to evaluate the
model is
“Please answer the question after

reading the context. You should start
with the thinking and reasoning steps,
such as retrieving relevant content from
the context and solving the question
step-by-step. You should give the final
answer in the format of ‘The answer is

_’. The final answer must be short and
concise. Don’t repeat the question in the
final answer. \n\n”

The last two sentences help the model to gener-
ate clean and concise answers. Without these two
sentences in the prompt, the zero-shot F1 score will
drop by more than 10% in DROP and HOTPOTQA
benchmarks. Without the thinking step-by-step sen-
tence, the F1 performance will drop more (-8%) on
DROP but less (-2%) on HOTPOTQA, indicating
HOTPOTQA has more validation questions contain-
ing reasoning shortcuts.

However, even with these constraints and ex-
plicit format provided in the prompt, the GPT-3.5
model is still hard to generate the precise answer in
the format we want. For example, apart from ‘The
answer is’, GPT-3.5 generates different strings in
front of the answer, such as ‘The final answer is’,
‘Final answer is’, ‘Answer:’. During the answer
parsing, we consider all different variations of the
pre-answer string to parse for the answer.

C.2 Few-shot Prompting

The few-shot prompt we used to evaluate the model
is
“[INSTRUCTION] [EXAMPLE] [REASONING]

[ANSWER] [EXAMPLE] [REASONING] [ANSWER]
... [EXAMPLE]”

where
[INSTRUCTION] = “We provide 4 examples

for answering the question given the
context, by thinking step-by-step. Please
answer the last question in the same
format. \n\n”

[EXAMPLE] = “question: q, context: c
\n”,

[REASONING] = “question decomposition:
qsub1 : asub1 ; ...; qsubn : asubn . \n”,
[ANSWER] = “The answer is a \n\n”

We tried different variations for each tag as follows
and evaluated on 100 random examples to choose
the best prompt over their combinations.
[INSTRUCTION] = “Please answer the

question after reading the context. You
should start with the thinking and
reasoning steps, such as retrieving
relevant content from the context and
solving the question step-by-step. We
provide 4 examples for answering the
question given the context, by thinking
step-by-step. You should give the final



answer in the format of ’The answer is
_’. The final answer must be short and
concise. Don’t repeat the question in the
final answer. \n\n”
[REASONING] = “Let’s think step-by-step:

qsub1 : asub1 ; ...; qsubn : asubn . \n”,
[ANSWER] = “Answer: a \n\n”
The results on 100 random validation examples

of DROP and HOTPOTQA both show that shorter
and more concise instruction with a more formal
reasoning format achieves better F1 score.

In terms of the cost, we did not optimize for the
best few-shot examples for validation data. Instead,
we selected 5 random set of few-shot examples
and chose the best set over them by F1 score over
100 validation examples. For each few-shot exam-
ples set, we wrote the sub-answers for the QDMR
annotations and inserted these sub-answers into
the QDMR question if they are referenced. The an-
swer parsing mechanism is the same as in zero-shot
prompting.

D Random Qualitative Examples

We use numpy.random.choice to select 2 random
examples from DROP and 2 random examples from
HotpotQA. Unlike in Table 4, we omit the manually
written ground truth QDMR for the dev set and use
the ground truth answer instead.



Question Context Generated QDMR & Answers GT Answer

How many of the per-
sonnel were not military
specialists? (DROP)

The total number of active military per-
sonnel .... In May 2016, Armed Forces
had 16,019 members, of which 14,506
were active military personnel and
1,513 civil servants. Of the 14,506 ac-
tive military personnel, 3,183 were of-
ficers, ... 520 military specialists, ...

1. return number of personnel: 14,506
were active military personnel. 2. re-
turn number of military specialists:
520 military specialists. 3. return the
differences of 14,506 were active mil-
itary personnel and 520 military spe-
cialists: 13,986.

13,986

How many more people
are there than housing
units? (DROP)

As of the census of 2000, there were
49,129 people, ... There were 21,779
housing units at an average density of
39 per square mile (15/km2) ...

1. return number of people: 49,129
people. 2. return number of housing
unit: 21,779. 3. return the differences
of 49,129 people and 21,779: 27,350.

27,350

This cabin built in
1925 is located in a
park encompasses over
1 million acre and
includes parts of two
what? (HOTPOTQA)

Lower Park Creek Patrol Cabin. The
Lower Park Creek Patrol Cabin in
Glacier National Park is a rustic
backcountry log cabin. Built in
1925, the cabin has... Glacier Na-
tional Park is a national park ... The
park encompasses over 1 million
acre and includes parts of two moun-
tain ranges (sub-ranges of the Rocky
Mountains), over 130 named lakes, ...

1. return park this cabin built in 1925:
Glacier National Park. 2. return
Glacier National Park encompasses
over 1 million acre and includes parts
of two what: mountain ranges.

mountain ranges

Bandit was built in
1988 by which Japanese
amusement ride com-
pany that built roller
coasters, giant wheels,
carousels, flumes, dark
rides, sky cycles and
other amusement rides?
(HOTPOTQA)

Bandit (Yomiuriland)... Built in 1988
by the TOGO company... TOGO.
TOGO (株式会社トゴ , Kabushiki-
gaisha Tōgo ) was a Japanese amuse-
ment ride company that built roller
coasters, giant wheels, carousels,
flumes, dark rides, sky cycles and
other amusement rides.

1. return the Japanese amusement
ride company that built roller coast-
ers, giant wheels, carousels, flumes,
dark rides, sky cycles and other amuse-
ment rides: TOGO (株式会社トゴ,
Kabushiki-gaisha Tōgo ). 2. return
TOGO (株式会社トゴ, Kabushiki-
gaisha Tōgo ) built bandit in 1988:
TOGO.

TOGO company

Table 6: Qualitative analysis of model-generated reasoning chains. We use black bold to mark relevant information
in the context.


