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Abstract001

Human annotation variation (i.e., annotation002
disagreements) is common in NLP and often003
reflects important information such as task sub-004
jectivity and sample ambiguity. While Large005
Language Models (LLMs) are increasingly006
used for automatic annotation to reduce hu-007
man effort, their evaluation often focuses on008
predicting the majority-voted “ground truth” la-009
bels. It is still unclear, however, whether these010
models also capture informative human anno-011
tation variation. Our work addresses this gap012
by extensively evaluating LLMs’ ability to pre-013
dict annotation disagreements without access014
to repeated human labels. Our results show that015
LLMs struggle with modeling disagreements,016
which can be overlooked by majority label-017
based evaluations. Notably, while RLVR-style1018
reasoning generally boosts LLM performance,019
it degrades performance in disagreement pre-020
diction. Our findings highlight the critical need021
for evaluating and improving LLM annotators022
in disagreement modeling.2023

1 Introduction024

The field of NLP rests on annotations where inter-025

annotator disagreement is common (Snow et al.,026

2008). Such disagreement is often treated as in-027

convenient noise due to human error, “solved” by028

majority voting (Sabou et al., 2014) or expert ag-029

gregation (Hovy et al., 2013).030

These ad-hoc solutions may be misguided, as031

annotation disagreement can signal a diversity of032

views and is often valuable information (Plank,033

2022). Human annotators have access to differ-034

ent information sets and are guided by different035

value systems (Fornaciari et al., 2021; Fuchs et al.,036

2021). It is therefore not surprising that differ-037

ent annotators give different answers, in particular038

1Reinforcement learning with verifiable rewards (Lambert
et al., 2025; DeepSeek-AI, 2025)

2We will fully open-source our code, data, and LLM gen-
erations.

for subjective tasks such as hate speech detection 039

(e.g. Kennedy et al., 2018) where disagreement 040

often arises from varying sociodemographic and 041

cultural backgrounds (Fleisig et al., 2023). Even 042

seemingly “objective” labeling tasks, such as part- 043

of-speech (POS) tagging, show disagreement due 044

to ambiguous language3 (Plank et al., 2014; Jiang 045

and de Marneffe, 2022). Generally speaking, dis- 046

agreement is natural, contains valuable informa- 047

tion, and should not be ignored or erased, but ac- 048

tively modeled (Uma et al., 2021; Leonardelli et al., 049

2023). To model annotator disagreement, previous 050

work has trained models on datasets with multi- 051

ple annotations per data point, or used behavioral / 052

sociodemographic information for annotator mod- 053

eling (Mostafazadeh Davani et al., 2022; Fleisig 054

et al., 2023; Hu and Collier, 2024; Giorgi et al., 055

2024; Chochlakis et al., 2024, 2025; Orlikowski 056

et al., 2025). 057

All of the above require the existence of multiply- 058

annotated data. But what about datasets and emer- 059

gent tasks4 that lack repeated human labels? Col- 060

lecting repeated human labels can be expensive. 061

LLMs might prove a reasonable substitute for hu- 062

man annotation, especially given their general ef- 063

fectiveness in text classification (Pangakis et al., 064

2023a; Törnberg, 2024; He et al., 2024b), judging 065

chatbot preferences (Lee et al., 2024), and simulat- 066

ing human opinion (Meister et al., 2024b; Anthis 067

et al., 2025). However, the performance of these 068

LLM annotators is evaluated against a majority la- 069

bel or agreement with humans (He et al., 2024b; Ni 070

et al., 2024). In that setup, pointwise estimates are 071

more important than label distributions, so whether 072

they can capture human annotation disagreement 073

remains an open question. Therefore, we identify 074

the following practice-evaluation gap: 075

3E.g., there might be disagreement in the POS tagging of
“I saw her duck.” as duck can either be a noun or verb.

4For example, LLM generation evaluation (Zheng et al.,
2023) in emergent applications.
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While LLM annotators are widely studied and
deployed, there is no evaluation of whether they
can capture informative human disagreements.

076

Such evaluation can be particularly important for077

LLMs optimized on tasks with single-deterministic078

answers (e.g., RL with verifiable rewards), which079

contrasts with the reality that many annotation tasks080

involve multiple valid perspectives. Presumably,081

training and evaluation with LLM-annotated data082

that ignore human disagreement may run counter to083

efforts toward calibrated and pluralistically aligned084

AI (Sorensen et al., 2024). In other words: rather085

than measuring whether LLMs can reproduce the086

majority opinion, we want to know whether they087

can reproduce the distribution over human answers.088

To address this gap, we evaluate LLMs’ ability089

to predict human disagreement in different NLP090

annotation tasks, following the recommendations091

of Meister et al. (2024b) to predict human opinion092

distributions with LLMs. Specifically, we evalu-093

ate various training paradigms: LLMs trained with094

RLVR or RLHF5, along with other factors: (1) dis-095

tribution expression (Tian et al., 2023; Wei et al.,096

2024); (2) few-shot learning; and (3) scaling ef-097

fects of LLM size. We evaluate all settings on098

two dimensions: (1) variance correlation (VarCorr,099

Mostafazadeh Davani et al., 2022), measuring how100

well the LLM-predicted variance correlates to hu-101

man annotation variance; and (2) distributional102

alignment (DistAlign, Meister et al., 2024a), di-103

rectly comparing the distributional divergence of104

LLM and human labels.105

Our comprehensive evaluation spans 12 prompt-106

ing settings, 10 LLMs (ranging from 8B to 671B),107

and 5 widely studied datasets. We find that RLVR-108

style reasoning significantly harms disagreement109

prediction when human annotation variance is110

high. Moreover, forcing additional reasoning ef-111

fort (Muennighoff et al., 2025) does not improve112

the performance of RLVR LLMs. In contrast, for113

RLHF LLMs, Chain-of-Thought (CoT, Wei et al.,114

2023) reasoning significantly improves disagree-115

ment prediction. Furthermore, RLVR LLMs are116

better with a deterministic goal (e.g., predicting117

the majority annotation) than with a probabilistic118

goal (e.g., predicting the proportion of human dis-119

agreements). Our findings suggest that using LLM120

annotators—especially with RLVR LLMs and sub-121

jective tasks—requires extra caution, as these mod-122

els may overlook critical human disagreements. In123

5RLHF refers to LLMs with RL from human feedback
(Ouyang et al., 2022) but without test-time scaling on RLVR.

summary, our contributions are: 124

1. We extensively evaluate using LLMs to predict 125

annotation disagreement. 126

2. We reveal limitations of reasoning (RLVR) 127

LLMs in disagreement prediction (§ 6.2). 128

3. Our evaluation offers insights into distribution 129

expression methods (§ 6.1), reasoning (§ 6.2), 130

the importance of human annotations (§ 6.3), 131

few-shot steering (§ 6.4), and model scale 132

(§ 6.5). 133

2 Related Work 134

Annotation Disagreement in NLP. Annotation 135

disagreement has been an important area of study 136

with long history (Wiebe et al., 2004; Ovesdot- 137

ter Alm, 2011; Basile et al., 2021; Uma et al., 2021; 138

Leonardelli et al., 2023). Various qualitative and 139

quantitative analyses show that the majority of dis- 140

agreement is caused by other systematic reasons 141

(e.g., ambiguity, context sensitivity etc.) rather than 142

random annotation noise (e.g., carelessness) (Plank 143

et al., 2014; Popović, 2021; Jiang and de Marneffe, 144

2022; Santy et al., 2023; Zhang et al., 2024). 145

Prior work in modeling disagreement mainly fo- 146

cuses on datasets with repeated annotations and 147

annotator information (e.g., annotator ID and so- 148

ciodemographic features), which can be used for 149

annotator modeling (Mostafazadeh Davani et al., 150

2022; Hu and Collier, 2024; Giorgi et al., 2024; 151

Chochlakis et al., 2024, 2025; Orlikowski et al., 152

2025). However, emergent tasks (e.g., chatbot 153

preference) often lack human annotations (e.g., Ul- 154

traFeedback, Cui et al., 2024) due to the cost of 155

human data collection and the need for scalabil- 156

ity, making it even harder to obtain disagreements 157

with multiple human annotators. Even when mul- 158

tiple annotations are available (e.g., HelpSteer2, 159

Wang et al., 2025b), annotator information might 160

be missing, making it challenging to model individ- 161

ual annotators’ behavior or persona. Therefore, it 162

is important to evaluate LLM annotators’ ability to 163

capture disagreement without modeling extensive 164

repeated human labels. 165

Distribution Prediction with LLM. The extensive 166

training corpus of LLMs may enable them to sim- 167

ulate different opinions and predict distribution in 168

real-world (Grossmann et al., 2023; Ziems et al., 169

2024), and numerous previous studies use LLMs to 170

predict the distribution of political opinions (Argyle 171

et al., 2023; Durmus et al., 2024; Karanjai et al., 172
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DistAlign: 
Divergence 
from human 
distribution

VarCorr: 
Ability to 
predict human 
uncertainty

Annotation Task: which response to the prompt is better? Prompt: “Can you help me organize a file?”

Response A: “Sure! You can group related documents into folders and label them by category or date.”

Response B: “Of course! Use a file organizer tool to sort your digital files by type, like PDFs or images.”

Guideline: preference 
is based on  Instruction 
following, correctness, 
formatting, clarity … Multiple Human 

Annotators
Ground Truth Annotation 

Distribution 𝒑𝒅

A > B

A < B

30%

70%

Prompt LLMs to 
predict 
annotation 
distribution

Steering: w/ or 
w/o few-shot
Example 1: …
Human distribution: 0.25
Example 2: …

Verbalized Dist: 
Percentage of A > B?

Sampling-based Dist: 
Human is most likely to 
prefer A or B?

Predicted Annotation 
Distribution ෝ𝒑𝒅

A > B

A < B

40%

60%RLHF or RLVR LLMs 
from 8B to 671B

Greedy Decoding

Temperature Sampling

Instructions:
Assess Human 
disagreement. 
Consider context 
sensitivity …

Compare 𝒑𝒅 and ෝ𝒑𝒅 in:  

F1-score: 
F1 against 
Majority 
Labels

Figure 1: An illustration of our evaluation: We start with a task with guidelines for both human and LLM annotators.
The LLM predictions of the annotation distributions are then compared with true human label distribution.

2025; Jiang et al., 2025). Meister et al. (2024b)173

highlight that the performance of distribution pre-174

diction is highly dependent on the target task (e.g.,175

political vs. non-political). Hence, we extend the176

evaluation of distribution prediction to disagree-177

ment in NLP annotation, an interesting yet under-178

explored area in existing work. We also evaluate179

the under-studied role of LLM scale and test-time180

reasoning in distribution prediction.181

Automatic Annotation. Despite the prevalence of182

LLM-automated annotation (Tan et al., 2024), its183

evaluation ignores disagreement modeling. LLM184

annotators are evaluated by accuracy (He et al.,185

2024b; Törnberg, 2023), downstream fine-tuning186

performance (Lee et al., 2024; Ni et al., 2024,187

2025), and agreement with human annotators (He188

et al., 2024a; Ni et al., 2024). An LLM annotator189

is validated as reliable if it achieves higher average190

agreement with human than inter-human agreement191

(Ni et al., 2024; Calderon et al., 2025). However,192

this justification ignores the rich information in dis-193

agreement between humans. To the best of our194

knowledge, no prior work has evaluated the LLMs’195

ability in simulating a group of annotators and pre-196

dicting the annotation distribution.197

3 Problem Formalization198

In this section, we formalize the problem of predict-199

ing human annotation disagreement and visualize200

it in Fig. 1. Let d ∈ D be a datapoint from a201

dataset D, for which we have a set of n annotations202

Ad = {ad,i|ad,i ∈ {0, 1}, i ∈ {1, 2, ..., n}} from203

different human annotators, indicating if d is a pos-204

itive (1) or negative (0) sample.6 We assume that205

6For simplicity, we study the binary classification problem.
Multi-label classification problem with m labels is equivalent
to m binary classification problems.

the n annotators are representative of the annotator 206

population, so human annotation on d follows a 207

Bernoulli distribution Hd parameterized by: 208

pd =
|{ad,i = 1|ad,i ∈ Ad}|

n
(1) 209

where pd denotes the probability that a human an- 210

notator labels d positive. The variance of human 211

annotation is σ2
d = pd(1− pd). 212

Given human disagreement as the gold label, a 213

machine learning algorithm is tasked with simulat- 214

ing and predicting it. Specifically, through tech- 215

niques such as fine-tuning, prompting, or sampling, 216

a model can predict a Bernoulli distribution Ĥd 217

regarding how likely a human will annotate d posi- 218

tive, parameterized by p̂d. Then, the variance of the 219

machine-predicted annotation is σ̂2
d = p̂d(1− p̂d). 220

To evaluate the model’s annotation distribution 221

against humans’, we employ two dimensions of 222

evaluation from prior work: 223

Variance Correlation. In automatic annotation, 224

it is crucial for LLMs to identify samples that are 225

likely to elicit disagreements between human an- 226

notators. To evaluate this ability, we adopt the 227

variance correlation metric from Mostafazadeh Da- 228

vani et al. (2022), which quantifies to what extent 229

higher model uncertainty indicates higher human 230

uncertainty. The formula is: 231

VarCorr = Corr
(
⟨σ2

d⟩d∈D, ⟨σ̂2
d⟩d∈D

)
(2) 232

where Corr denotes the Pearson’s Correlation (Pear- 233

son, 1895). 234

Distributional Alignment. Although VarCorr cap- 235

tures the alignment of uncertainty, it fails to cap- 236

ture the exact gap between the annotation distribu- 237

tions. For example, if ⟨pd⟩d∈D = ⟨0.4, 0.5⟩ and 238

3



⟨p̂d⟩d∈D = ⟨0.1, 0.2⟩, the model achieves perfect239

VarCorr but underestimates the human disagree-240

ment. Similarly, ⟨pd, p̂d⟩ = ⟨0.2, 0.8⟩ shares the241

same variance, but has contradictory distribution.242

Therefore, we adopt Distributional Alignment from243

Meister et al. (2024b), formalized by:244

DistAlign =
1

|D|
∑
d∈D

∥pd − p̂d∥1 (3)245

which measures the exact difference between246

two distributions. Importantly, DistAlign can-247

not fully substitute VarCorr in evaluating uncer-248

tainty. For example, given the gold labels of sam-249

ples ⟨p1, p2⟩ = ⟨0.33, 0.4⟩, model prediction (A)250

⟨p̂1, p̂2⟩ = ⟨0.4, 0.33⟩ is better than (B) ⟨p̂1, p̂2⟩ =251

⟨0.15, 0.4⟩ in DistAlign. However, (B) has better252

VarCorr than (A) and correlates better with human253

uncertainty.254

Therefore, both VarCorr and DistAlign are im-255

portant dimensions to evaluate the prediction of256

disagreement.257

F1 on Majority Label. LLMs (especially with258

RLVR) are optimized to predict the majority la-259

bels. Therefore, we adopt F1-score to study the260

difference between disagreement prediction and261

majority label prediction. Specifically, we compute262

F1(⟨1{pd > 0.5}⟩d∈D, ⟨1{p̂d > 0.5}⟩d∈D) where263

1 is the indicator function. We drop data points264

with pd or p̂d equal to 0.5 to avoid biased tie-break.265

4 Datasets266

Hate speech detection (Warner and Hirschberg,267

2012; Waseem, 2016) and emotion classification268

(Hirschberg et al., 2003; Mihalcea and Liu, 2006)269

are two broadly studied tasks in annotation dis-270

agreement. We follow Mostafazadeh Davani et al.271

(2022) and include Gab Hate Corpus (hereafter272

GHC; Kennedy et al., 2018) and GoEmotions273

(Demszky et al., 2020) for our evaluation. GoE-274

motion is a multi-label classification dataset. We275

divide it into three binary classification problems—276

annotating whether a post contains (1) positive /277

negative / ambiguous emotions, or not (0). GoEmo-278

tion Subtasks hereafter referred to as Pos, Neg, and279

Amb. Furthermore, we include HelpSteer2 (here-280

after HS2; Wang et al., 2025b), which consists of281

multiple annotators’ preferences for the helpfulness282

of chatbot responses. Therefore, our evaluation in-283

cludes five tasks: hate speech detection, chatbot284

preference classification, and classifications of pos-285

itive, negative, and ambiguous emotions.286

We further derive two subsets of interest from 287

the dataset of each task: (1) Random subset: a ran- 288

domly sampled subset with 1k data points; and 289

(2) HighVar subset: a subset of 2007 data points 290

where at least two annotators disagree with the 291

majority label, and where the overall proportion 292

of the minority label (1 − pd) falls between 1
3 293

and 1
2 to ensure high annotation variance. Random 294

keeps the original data distribution, containing a 295

lot of samples where human achieves agreement 296

and certain samples where human disagrees. It 297

is useful for evaluating VarCorr—how a model is 298

helpful in predicting human annotation variance. 299

HighVar contains samples with potential system- 300

atic disagreement (e.g., two annotators disagree 301

with the other three). Therefore, it is useful in 302

evaluating DistAlign—when there exist separate 303

opinions, can a model detect that and predict an 304

aligned distribution? Dataset preparation details 305

can be found in App. A. 306

Notably, we do not evaluate F1 and VarCorr on 307

HighVar, as predicting majority labels or annota- 308

tion variance is ill-defined when human annotators 309

already exhibit high annotation variance. 310

5 Methodology 311

To effectively evaluate LLMs’ ability in disagree- 312

ment prediction, it is important to prompt them 313

correctly. Therefore, we first survey previous work 314

to identify promising distribution prediction meth- 315

ods worth exploring in our evaluation (§ 5.1). Then 316

we describe the implementation details of these 317

methods and relevant baselines (§ 5.2). 318

5.1 Existing Methods for LLM Distribution 319

Prediction 320

Distribution Expression Method. Literature in 321

LLM calibration suggests two approaches for LLM 322

to express a distribution: (1) asking for a verbalized 323

probability (Tian et al., 2023); and (2) sampling 324

multiple LLM responses and using the answer fre- 325

quency as the probability. Tian et al. (2023) show 326

that a verbalized distribution is better, while Wei 327

et al. (2024) draw an opposite conclusion. In dis- 328

tribution prediction, Meister et al. (2024b) finds 329

that verbalized distributions achieve good perfor- 330

mance, but sampling-based distributions remain 331

underexplored, especially when combined with rea- 332

soning. Therefore, we explore both verbalized and 333

7Size of HighVar is determined by the limited number
of data points with at least two disagreements. The size of
Random is determined for budget control.
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sampling-based distribution expression methods.334

The Effects of Reasoning. Test-time reasoning335

significantly enhances LLM performance in deter-336

ministic reasoning tasks like math and code gener-337

ation (Wei et al., 2023; DeepSeek-AI, 2025). How-338

ever, no previous work explores the role of reason-339

ing in probabilistic annotation disagreement. On340

one hand, reasoning can benefit the prediction of341

disagreements by giving LLMs the chance to ex-342

plore and compare different opinions; on the other343

hand, reasoning may harm decision making, espe-344

cially when the problem is subjective or has hard-345

to-articulate criteria (Nordgren and Dijksterhuis,346

2009; Liu et al., 2024). In this work, we compare347

three settings: RLHF LLMs with and without CoT,348

and RLVR-style reasoning.349

In-Context Steering Methods. In-context steering350

refers to providing LLMs with information about351

the target group being simulated to help distribution352

prediction. We investigate the impact of few-shot353

prompting on predicting annotation disagreement,354

a method shown effective by previous work (Meis-355

ter et al., 2024b). Other common steering methods356

include persona steering (Santurkar et al., 2023)357

and annotator modeling (Chochlakis et al., 2024,358

2025). However, we do not include these methods359

because (1) for many tasks (e.g., chatbot prefer-360

ence), demographic information might have limited361

relevance to disagreements, and annotator informa-362

tion might often be unavailable; and (2) piror work363

has highlighted notable limitations in both prompt-364

based annotator modeling (Chochlakis et al., 2024,365

2025) and persona steering (Meister et al., 2024b;366

Hu and Collier, 2024).367

5.2 Implementation Details368

Prompt-Based Methods. We evaluate the com-369

binations of promising settings discussed in the370

previous section—namely, the combinations of (1)371

with or without few-shot steering; (2) verbalized or372

sampling-based distribution; and (3) RLHF LLMs373

with or without CoT, or using RLVR LLMs instead.374

Hence, there are 2 × 2 × 3 = 12 settings to be375

evaluated in total.376

To make RLHF and RLVR LLMs comparable,377

we use DeepSeek-R1 series LLMs (DeepSeek-AI,378

2025) (e.g., DeepSeek-R1-Distill-Llama-70B) and379

corresponding RLHF LLMs sharing the same base380

LLM (e.g., Llama-3.3-70B-Instruct). To investi-381

gate the effect of scaling in LLM size, we experi-382

ment LLMs of 8B, 14B, 32B, 70B, and 671B pa-383

rameters8. 384

The prompt structure is illustrated in Fig. 1. For 385

few-shot illustration, We carefully balance the 5 386

examples—2 of human-agreed positives and nega- 387

tives correspondingly, and 1 human-disagreed—to 388

avoid introducing spurious bias (Turpin et al., 2023) 389

to distribution prediction. For verbalized probabil- 390

ity, we follow Meister et al. (2024b) to directly ask 391

for the proportion of human annotators that may 392

annotate the sample positive. For sampling-based 393

distributions, we ask for the most likely human la- 394

bel and sampling 10 times with a temperature of 395

0.7 for conventional LLMs, and 0.6 for reasoning 396

LLMs, following the official recommendation. 397

Furthermore, all prompts present LLMs with 398

the same annotation guidelines as in the original 399

dataset papers, which are likely the guidelines pre- 400

sented to human annotators. This may increase 401

LLMs’ chance to capture human disagreement 402

caused by the context or natural ambiguity of anno- 403

tation guidelines. We also explicitly prompt LLMs 404

to assess potential disagreement and consider con- 405

text sensitivity (e.g., cultural, social, linguistic am- 406

biguity) that may influence the interpretation. Full 407

prompts and inference hyperparameter / budget are 408

detailed in App. B and App. C respectively. 409

Fine-tuning Methods. Fine-tuning encoder-only 410

LMs for disagreement prediction is a straightfor- 411

ward way to use human labels (Mostafazadeh Da- 412

vani et al., 2022; Fleisig et al., 2023). Therefore, we 413

fine-tune ModernBERT-large (Warner et al., 2024) 414

and DeBERTa-V3-large (He et al., 2023) to regress 415

onto the positive annotation probability of human 416

pd. The loss function is: 417

LMSE =
1

|Dtrain|
∑

d∈Dtrain

(p̂d − pd)
2 (4) 418

where p̂d = LM(d) is the prediction of the encoder- 419

only LM; and Dtrain denotes a randomly sampled 420

training set. Fine-tuning baselines require thou- 421

sands of data points and repeated human labels 422

to capture the target distribution. This is not ap- 423

plicable for most automatic annotation tasks with 424

limited human labels without majority voting ag- 425

gregation. Fine-tuning details are in App. D. 426

6 Results 427

This section presents the evaluation results and 428

takeaways. We start from comparing distribution 429

8We exclude 7B LLMs because their base LLM, Qwen2.5-
7B-Math, is specialized for mathematical tasks and therefore
unsuitable for the current task.
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Random Random Random HighVar
VarCorr DistAlign F1 DistAlign

Verbalized > Sampling:
95.0%∗∗ 92.5%∗∗ 28.3%∗∗ 98.3%∗∗

RLVR > RLHF:
40.0% 62.0%∗ 36.0%∗∗ 18.0%∗∗

RLHF CoT > RLHF w/o CoT :
64.0%∗∗ 72.0%∗∗ 66.0%∗∗ 70.0%∗∗

Extend Reasoning Once > Natural Ending :
62.50% 65.00%∗ 47.50% 60.00%

Extend Reasoning Twice > Natural Ending :
60.00% 72.50% 50.00% 57.50%

w/ > w/o Few-Shot:
45.3% 41.3%∗∗ 30.7%∗∗ 37.3%∗

HS2 w/ > w/o Few-Shot:
26.67%∗∗ 0.00%∗∗ 6.67%∗∗ 0.00%∗∗

GHC w/ > w/o Few-Shot:
80.00%∗∗ 80.00%∗∗ 66.67%∗∗ 53.33%

GE-Pos w/ > w/o Few-Shot:
53.33% 60.00% 33.33%∗∗ 66.67%∗∗

GE-Neg w/ > w/o Few-Shot:
53.33% 53.33% 26.67%∗∗ 53.33%

GE-Amb w/ > w/o Few-Shot:
13.33%∗∗ 13.33%∗∗ 20.00% 13.33%∗∗

Positive > Negative Scaling:
73.33%∗∗ 70.00%∗∗ 86.67%∗∗ 56.67%∗

Table 1: Win rates of the left settings with Wilcoxon
signed-rank tests. We evaluate on the Random and
HighVar subsets. The intensity of green and red in-
dicates how strongly the left setting wins over or loses
to the right one. Statistically significant wins or losses
are marked with ∗∗ (p < 0.01) and ∗ (p < 0.05).

expression methods—verbalized vs. sampling-430

based distribution. Then, we investigate the role of431

steering method and different reasoning paradigms.432

Due to the large number of experiments, we present433

aggregated results to convey core messages and434

present the full model-level performance in App. E.435

6.1 Verbalizing or Sampling?436

We compare verbalized and sampling-based distri-437

butions across 120 controlled experimental settings,438

varying only the distribution expression method.439

These settings span 4 LLM sizes (8B, 14B, 32B,440

and 70B9), 3 reasoning paradigms (RLVR, RLHF441

with and without CoT), 5 datasets, and 2 steering442

strategies (few-shot or no steering).443

The winning rates of the verbalized distribution444

in different metrics are shown in the first row of445

Table 1, combined with the results of the Wilcoxon446

test (Wilcoxon, 1992) to show statistical signif-447

icance. We observe that the verbalized method448

significantly outperforms in predicting annotation449

distribution (VarCorr and DistAlign). However, the450

9We exclude the 671B model due to the high cost of
sampling-based prediction.

sampling-based method is better in predicting the 451

majority label (F1). This indicates that predicting 452

the majority label and disagreement are different 453

tasks that require separate evaluations. 454

Takeaway: we recommend using verbalized dis- 455

tribution in disagreement prediction, and evaluat- 456

ing LLM annotators on both majority label and 457

disagreement prediction—especially those rely on 458

sampling-based self-consistency to improve major- 459

ity label prediction (Pangakis et al., 2023b; Ni et al., 460

2024; Zhou et al., 2025; Wang et al., 2025a). 461

Given the significantly better performance of 462

verbalized distribution, we focus the analyses in 463

the following sections on results obtained with this 464

method. Sampling-based methods yield better ma- 465

jority label prediction, which lies outside the scope 466

of disagreement prediction. We therefore analyze 467

those results separately in App. F. 468

6.2 Reasoning in Disagreement Prediction 469

We compare reasoning methods—(1) RLHF LLMs 470

without reasoning; (2) RLHF LLMs with CoT 471

reasoning; and (3) lengthy reasoning with RLVR 472

LLMs—across 50 controlled settings, varying only 473

the reasoning methods. Controlled settings span 5 474

LLM sizes (8B, 14B, 32B, 70B, 671B), 5 datasets, 475

and 2 steering strategies (few-shot or no steering). 476

Results on Random and HighVar are presented 477

in Table 2 and Table 3 respectively. We aggregate 478

the results of 5 LLM sizes by the average and best 479

scores to enable straightforward comparisons be- 480

tween reasoning methods. Rows 2 and 3 of Table 1 481

present the comparisons of (1) RLVR vs. RLHF 482

(w/ or w/o CoT); and (2) RLHF w/ vs. w/o CoT 483

across 50 controlled settings. 484

When comparing RLVR LLMs with their RLHF 485

counterparts, we observe that (1) on HighVar 486

where humans strongly disagree with each other, 487

RLVR LLMs achieve significantly worse perfor- 488

mance in both aggregated scores in Table 3 and 489

setting-level comparisons summarized in Table 1. 490

(2) On Random, results are more mixed but RLVR 491

model does not significantly outperform their 492

RLHF counterparts, as Table 1 row 2 shows. How- 493

ever, the Table 1 row 3 shows that CoT reasoning 494

in RLHF LLMs improves the performance on both 495

Random and HighVar, compared to without CoT. 496

To better understand the effect of long reason- 497

ing with RLVR LLMs, we force these models 498

to think longer by replacing the end of thinking 499

token “</think>” with “Wait”, which effectively 500

boosts performance for math reasoning (Muen- 501
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HelpSteer2 Gab Hate Corpus GE-Positive GE-Negative GE-Ambiguous
VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑

Fine-Tuning-Based Methods

ModernBERT 0.003 0.269 0.559 0.426 0.141 0.368 0.277 0.187 0.681 0.487 0.180 0.584 0.249 0.198 0.528
DeBERTa-V3 0.020 0.272 0.578 0.554 0.115 0.495 0.336 0.178 0.745 0.530 0.168 0.670 0.289 0.186 0.631

Verbalized Distribution & w/o Few-shot Steering

Avg
No-CoT 0.143 0.254 0.718 0.362 0.229 0.294 0.183 0.249 0.607 0.337 0.265 0.561 0.096 0.273 0.440
CoT 0.177 0.250 0.677 0.363 0.203 0.373 0.192 0.226 0.638 0.329 0.246 0.570 0.116 0.252 0.431
R1 0.136 0.247 0.705 0.374 0.177 0.394 0.236 0.215 0.633 0.331 0.242 0.556 0.121 0.257 0.395

Best
No-CoT 0.183 0.236 0.741 0.461 0.158 0.376 0.241 0.220 0.721 0.444 0.265 0.583 0.126 0.256 0.547
CoT 0.230 0.231 0.715 0.399 0.164 0.434 0.233 0.209 0.675 0.389 0.246 0.581 0.183 0.230 0.534
R1 0.188 0.230 0.722 0.426 0.148 0.463 0.274 0.201 0.674 0.419 0.241 0.596 0.147 0.233 0.463

Verbalized Distribution + Few-shot Steering

Avg
No-CoT 0.098 0.291 0.683 0.355 0.205 0.372 0.197 0.240 0.573 0.241 0.275 0.526 0.055 0.306 0.450
CoT 0.139 0.279 0.686 0.380 0.182 0.405 0.200 0.226 0.619 0.321 0.250 0.566 0.098 0.276 0.450
R1 0.100 0.281 0.608 0.416 0.159 0.393 0.236 0.212 0.589 0.359 0.233 0.538 0.107 0.279 0.333

Best
No-CoT 0.163 0.258 0.710 0.459 0.142 0.553 0.249 0.210 0.658 0.411 0.226 0.576 0.088 0.268 0.534
CoT 0.182 0.266 0.692 0.436 0.147 0.467 0.243 0.211 0.680 0.409 0.219 0.580 0.135 0.248 0.512
R1 0.128 0.255 0.678 0.449 0.135 0.447 0.252 0.205 0.675 0.402 0.214 0.593 0.118 0.267 0.437

Table 2: Performance on Random (randomly sampled) subsets of all datasets, aggregating 8B–671B results by
Average or Best. Color intensity reflects relative performance within each column. RLVR LLMs shows no significant
advantage over RLHF LLMs. Fine-tuning outperforms prompting on all datasets except HS2.

HS2↓ GHC↓ Pos↓ Neg↓ Amb↓

Fine-Tuning-Based Methods

ModernBERT 0.094 0.246 0.148 0.153 0.138
DeBERTa-V3 0.109 0.256 0.166 0.191 0.153

Verbalized Distribution & w/o Few-shot Steering

Avg
No-CoT 0.272 0.233 0.294 0.279 0.223
CoT 0.202 0.207 0.237 0.217 0.193
R1 0.240 0.222 0.260 0.261 0.246

Best
No-CoT 0.240 0.182 0.249 0.222 0.165
CoT 0.180 0.170 0.205 0.173 0.156
R1 0.206 0.204 0.217 0.239 0.195

Verbalized Distribution + Few-shot Steering

Avg
No-CoT 0.284 0.236 0.233 0.227 0.233
CoT 0.279 0.211 0.237 0.234 0.231
R1 0.286 0.232 0.260 0.260 0.283

Best
No-CoT 0.216 0.188 0.178 0.159 0.204
CoT 0.254 0.193 0.202 0.193 0.159
R1 0.251 0.204 0.218 0.228 0.231

Table 3: DistAlign Performance on HighVar (high an-
notation variance) subset of all datasets. RLVR LLMs
constantly underperforms RLHF LLMs on both Avg
and Best. Fine-tuning outperforms prompting on all
datasets except GHC.

nighoff et al., 2025). We force longer reasoning502

twice, and compare to the results to natural ending.503

The controlled comparisons span 40 settings—4504

LLM sizes10, 2 steering methods, and 5 datasets.505

The row 4 and 5 of Table 1 show the results, where506

forcing longer reasoning rarely leads to statistically507

significant improvements.508

Moreover, RLVR underperforms RLHF on ma-509

jority label prediction (F1) with verbalized distribu-510

tion as shown by Table 1. However, when applying511

10We exclude the 671B DeepSeek-R1 since this model is
accessed through API, which does not allow forcing longer
reasoning

sampling-based method, RLVR significantly out- 512

performs RLHF on F1 (win rate 62.5%∗∗ ). This 513

may be because, in sampling, LLMs are prompted 514

to predict the most likely human label (i.e., major- 515

ity label), while considering disagreement. This 516

deterministic goal is more suitable for RLVR LLMs 517

than the probabilistic goal of predicting the propor- 518

tion of disagreement. However, the sampling-based 519

method still leads to worse distributional prediction 520

as discussed in § 6.1. 521

Takeaway: CoT reasoning with RLHF LLMs 522

may benefit the prediction of disagreement. How- 523

ever, people should be more cautious about lengthy 524

reasoning with RLVR LLMs, which can signifi- 525

cantly harm the performance in probabilistic dis- 526

agreement prediction. 527

6.3 Human Labels are Important 528

To study whether it is necessary to gather repeated 529

human labels for disagreement modeling, we com- 530

pare small LMs – ModernBERT and DeBERTa- 531

V3 – fine-tuned on large-scale human annotations, 532

to the best LLM results. From Table 2 and Ta- 533

ble 3, we observe that fine-tuned small encoder- 534

only LMs outperforms LLMs on GHC Random, 535

HS2 HighVar, and all GoEmotions subsets, indicat- 536

ing the value of real human annotations in predict- 537

ing disagreement. However, LLM-based methods 538

are also promising, achieving better performance 539

on HS2 Random and GHC HighVar without human 540

annotations. 541

Takeaway: incorporating human labels is highly 542

beneficial for accurate disagreement modeling, 543

while LLM-based methods also demonstrate strong 544

potential due to their cost efficiency and solid per- 545

formance on certain tasks. 546
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HS2 Random HighVar GHC Random HighVar Pos Random HighVar Neg Random HighVar Amb Random HighVar
VarCorr DistAlign F1 DistAlgin VarCorr DistAlign F1 DistAlgin VarCorr DistAlign F1 DistAlgin VarCorr DistAlign F1 DistAlgin VarCorr DistAlign F1 DistAlgin

Verbalized Distribution but w/o Few-shot Steering

No-CoT 0.702 0.703 0.945 -0.037 -0.345 -0.049 0.277 0.722 0.568 0.586 0.825 0.690 -0.402 -0.197 0.539 0.196 0.818 0.224 0.428 -0.046
CoT 0.913 0.738 0.447 -0.097 0.441 0.485 0.799 0.261 0.786 0.593 0.582 0.260 -0.303 -0.280 0.686 -0.096 0.899 0.854 0.329 0.138
R1 0.852 0.790 0.726 -0.668 0.083 -0.400 0.628 0.862 -0.059 0.598 0.470 0.853 -0.700 -0.333 0.306 0.873 0.518 0.934 0.657 0.667

Verbalized Distribution + Few-shot Steering

No-CoT 0.906 0.804 0.507 0.399 0.275 0.298 0.240 0.175 0.578 0.593 0.778 -0.289 -0.167 -0.235 0.030 -0.819 0.014 0.023 0.584 0.172
CoT 0.692 0.252 -0.209 -0.230 0.457 0.463 0.587 -0.379 0.503 0.428 0.777 -0.047 -0.170 -0.455 0.299 -0.604 0.504 0.327 0.457 -0.105
R1 0.653 -0.104 -0.811 -0.488 0.151 0.056 0.539 0.671 0.639 0.700 -0.299 0.789 -0.714 -0.570 -0.152 0.792 0.449 0.204 0.862 0.504

Table 4: Correlation of performance and log-number of LLM parameters (log(8) to log(671)). Green and red
intensity reflects the degree of positive / negative scaling.

6.4 Few-Shot Steering547

Meister et al. (2024b) show that LLMs exhibit548

strong few-shot steerability in distribution predic-549

tion. Therefore, we investigate whether few-shot550

illustrations can steer LLMs for better disagree-551

ment prediction. Few-shot is compared to zero-shot552

prompting across 75 controlled settings—spanning553

5 LLM sizes (8B to 671B), 3 reasoning settings,554

and 5 datasets. Comparisons are summarized in the555

sixth row of Table 1. Few-shot steering decreases556

the performance on 4 metrics, with statistically sig-557

nificant drop in 3 of them.558

Observing Table 2 and Table 3, we notice that559

few-shot steering seems to help certain tasks (e.g.,560

GHC Random) but harm others (e.g., HS2). There-561

fore, we separately evaluate the effect of few-shot562

steering on each dataset (see the lower half of Ta-563

ble 1 before the last row). The results show that564

few-shot steering significantly harms disagreement565

prediction on HS2 and GE-Pos, but improves per-566

formance on GHC Random and GE-Neg HighVar.567

Takeaway: few-shot steering can be helpful, but568

its effectiveness varies across tasks and datasets.569

We also perform similar per-dataset analyses570

in earlier sections (e.g., comparing CoT vs. no-571

CoT), which mostly yield consistent trends with572

the aggregated results or lacks statistical signifi-573

cance. We thus only include the aggregated results574

in Table 1 and briefly discuss the per-dataset results575

in App. G.576

6.5 Scaling Effect of LLM Size577

Our coverage of LLMs from 8B to 671B allows578

exploring the scaling effect of LLM size in dis-579

agreement prediction. Specifically, we compute580

the correlation between performance improvement581

and the increase of log-number of parameters. Ta-582

ble 4 reports the Pearson’s coefficients spanning583

30 settings—5 datasets, 2 steering methods, and584

3 reasoning settings. The comparison across 30585

settings are summarized in the last row of Table 1.586

Scaling LLM size can improve disagreement pre-587

diction with statistical significance. However, the 588

improvement is less significant on HighVar while 589

more significant for majority label prediction (F1). 590

Table 4 also shows that different datasets seem to 591

have different scaling effect. Conducting Wilcoxon 592

Test for each dataset, we find that there is statistical 593

significant negative scaling on the disagreement 594

prediction of Neg Random. Other trends are consis- 595

tent with the results observed across all datasets. 596

Takeaway: Scaling LLM size may more effec- 597

tively boost majority label prediction than disagree- 598

ment prediction. Negative scaling occurs especially 599

in cases of strong disagreement (HighVar subsets) 600

or on specific datasets (e.g., Neg Random). 601

7 Discussion and Conclusion 602

LLM annotators are widely used, but their ability to 603

capture informative human disagreement remains 604

under-explored. Addressing this gap, we compre- 605

hensively evaluate LLMs in disagreement predic- 606

tion, covering widely studied tasks, and common 607

settings of LLM usage. 608

RLHF LLMs exhibit greater potential than 609

RLVR LLMs in predicting disagreements (§ 6.2). 610

This may be because RLVR optimization on veri- 611

fiable and deterministic answers harms the ability 612

to capture multiple debatable answers. In contrast, 613

reasoning (CoT) with RLHF LLMs improves dis- 614

agreement prediction, suggesting that the reduced 615

performance of RLVR is not necessarily due to rea- 616

soning itself. This may also be related to recent 617

observations that RLVR models can hallucinate 618

more than RLHF models in some tasks (Metz and 619

Weise, 2025). 620

Moreover, we find that although scaling LLM 621

size and few-shot steering improve disagreement 622

prediction, these methods are not more effective 623

than a data-centric approach—fine-tuning small 624

LLMs with thousands of human data (§ 6.3). Given 625

the scarcity of repeated human labels, future work 626

may explore how to leverage human data more 627

efficiently. 628
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Limitations629

This work evaluates LLMs in disagreement predic-630

tion and draws observations with statistical signifi-631

cance tests. However, it does not analyze the causes632

of the observations. For example, what are the ex-633

act causes of RLVR worse than RLHF LLMs? Why634

does few-shot steering work for some datasets but635

not others? These questions are critical for provid-636

ing concrete guidelines for real-world practice. As637

the first work studying disagreement modeling in638

LLM annotation, we prioritize evaluation breadth639

to include broad potential settings in reasoning, dis-640

tribution expression, in-context steering, and LLM641

size. This gives us advantages in (1) addressing642

promising settings in prior work (§ 5.1); and (2)643

conducting a statistical significance check thanks644

to the large number of experiments. However, it645

also limits us in analysis depth and we leave the646

critical causal analyses of the observations to future647

work.648

Ethics Statement649

Data Privacy or Bias. We use publically avail-650

able datasets (GHC, GoEmotions, and HelpSteer2)651

which have no data privacy issues or bias against652

certain demographics. All artifacts we use are un-653

der licenses allowing research usage. We also no-654

tice no ethical risks associated with this work.655
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As shown by (Sandri et al., 2023), 2 annotators1070

making random mistake might be 100 times less1071

likely than 1 annotator doing that.1072

After this filtering, we randomly select 2,0001073

data points from the 3,330 Gab Hate Corpus sam-1074

ples, 2,000 data points from the 20,014 GoEmo-1075

tions samples, and 1,250 data points from the 2,4671076

HelpSteer2 samples as training data; and 1K data-1077

points for Random subsets for testing. The size of1078

training set is strategically picked so that there are1079

enough annotations with high human annotation1080

variance to form the HighVar subsets. HelpSteer21081

has a smaller training set because it has less data-1082

points with at least 4 annotations. Therefore, we1083

shrink its training sets’ size to ensure the size of1084

evaluation sets.1085

The distributions of human annotation pd of each1086

dataset are presented in Fig. 2.1087

B Prompts1088

Here we use Gab Hate Corpus prompts to showcase1089

our prompt design. Tasks for other datasets can be1090

found in our Github repository.1091

One example prompt for Gab Hate Corpus is1092

illustrated bellow, with verbalized distribution and1093

w/o few-shot steering. It is used for RLVR LLMs1094

and for RLHF w/o reasoning, since no reasoning1095

is required in output format. In the instruction part,1096

the model is guided to consider potential disagree-1097

ment.1098

GHC Prompt Example

You are a helpful research assistant with expertise in
detecting hate speech from social media posts.

Objective:
You are tasked with evaluating social media posts to
assess the distribution of labels assigned by annotators
regarding whether a post constitutes hate speech. The
goal is to predict the percentage of annotators who
classify the post as hate speech and those who classify it
as not hate speech, based on the specific aspects of hate
speech it may exhibit.

A post contains hate speech if it contains any of
the following aspects:
- Assaults on Human Dignity: Does the post demean or
degrade individuals or groups based on race, ethnicity,
gender, religion, sexual orientation, or other protected
characteristics?
- Calls for Violence: Does the post incite or encourage
physical harm or violence against individuals or groups?
- Vulgarity and/or Offensive Language: Does the post
contain profanity, slurs, or other offensive language that
may or may not be directed at individuals or groups?

Instruction:
- Review the Post: Carefully read the social media post

1099

and consider its content in relation to the three aspects
of hate speech listed above.
- Assess Agreement: Human annotators may have high
disagreement if the post contains ambiguous language
or context, or if it is likely to be interpreted differently
based on subjective views about the severity or nature
of hate speech. They may have low disagreement if the
post clearly falls into one or more of the hate speech
categories or is obviously not hate speech.
- Context Sensitivity: Consider the cultural, social, and
linguistic context that may influence the interpretation
of the post.

Output Format:
[Percentage]: a floating-point number indicating the per-
centages of annotators who classify the post as hate
speech, in a squared bracket, e.g., [0.3]. Omit explana-
tions and only give the percentage.
Here is the post: post

1100

For sampling-based distribution, the objective 1101

and output format changes to follows, where the 1102

LLM is asked to predict the “most likely” annota- 1103

tion from human. 1104

Sampling-Based Distribution
...
Objective:
You are tasked with evaluating social media posts to
determine whether they contain hate speech or not.
The goal is to predict the label most likely assigned
by human annotators, classifying each post as either
containing hate speech or not, based on the specific
aspects of hate speech it expresses.

...task_description...

Output Format:
[Prediction]: your prediction of how the majority of
human annotators will label the post (0 or 1 in squared
brackets). [1] if it contains hate speech; [0] if it contains
no hate speech. Omit explanations and only give the
percentage.
...

1105

When using RLHF LLMs with CoT, we change 1106
the output format requirements to: 1107

RLHF CoT
...
Output Format:
[Reasoning]: your careful reasoning about the content
of the post, focusing on the clarity or ambiguity of the
post’s content concerning aspects of hate speech.
[Prediction]: your prediction of how the majority of
human annotators will label the post (0 or 1 in squared
brackets). [1] if it contains hate speech; [0] if it contains
no hate speech.
...

1108

For few-shot steering, we add the following in- 1109

context examples. The few-shot illustrations are 1110

carefully picked to avoid biasing the output distri- 1111

bution (Turpin et al., 2023). 1112
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GHC Few-Shot Steering
...
Here are some sample posts:

Post: Lots of references to an oligarchy in the shadows
who wants to depopulate the planet and sees common
folk as insects to be crushed; but who are they?
https://www.zerohedge.com/news/2018-08-26/retired-
... #Geopolitics #Ebola #Africa #China | Percetage of
postive human labels: 0.25

Post: The minority that will outbreed you and
make you the minority | Percetage of postive human
labels: 0.50

Post: GOTTA REMEMBER...THE LEFT IS IN-
SANELY DESPERATE CAUSE THEY KNOW
THEY’RE ON THE PRECIPICE OF GOING TO
GITMO FOR TREASON...IT’S ALREADY IN
MOTION...SO LET EM SCRAMBLE AND TALK
SHIT...THEIR TIME IS LIMITED...LIKE THE
DEVIL’S... | Percetage of postive human labels: 1.00

Post: Dozens at Facebook Unite to Chal-
lenge Its 2̆018Intolerant2̆019 Liberal Culture
https://nyti.ms/2NsJ2rJ It would be nice if it was
hundreds, but it’s a start. | Percetage of postive human
labels: 0.00

Post: I am officially done trying to have peaceful
conversation with liberals. They are animals. They
deserve to be removed from our republic. Either your
believe in America or you are a fucking traitor. Get out
of America. You are not welcomed by those of us who
love our country. | Percetage of postive human labels:
0.75

1113

C Inference Details1114

LLMs. We use the following LLMs—1115

RLHF LLMs: Llama-3.1-Tulu-3.1-8B11;1116

Qwen2.5-14B-Instruct;1117

Qwen2.5-32B-Instruct;1118

Llama-3.3-70B-Instruct, and DeepSeek-V3.1119

RLVR LLMs: DeepSeek-R1-Distill-Llama-8B;1120

DeepSeek-R1-Distill-Qwen-14B;1121

DeepSeek-R1-Distill-Qwen-32B;1122

DeepSeek-R1-Distill-Llama-70B; and1123

DeepSeek-R1.1124

Framework and Hyperparameters. For 8B to1125

70B LLMs, we rely on a cluster with 4 GH2001126

GPUs for local inference. We use vLLM for fast1127

inference. For R1-series RLVR LLMs, we use all1128

official recommended settings, including a temper-1129

ature of 0.6, and always add <think> at the begin-1130

ning of assistant message. For RLHF LLMs, we1131

use temperature 0 for verbalized distribution and1132

11Llama-3.1-8B-Instruct from Meta refuse classify hate
speeches, so we use Tulu-3.1 which is also based on Llama-
3.1-8B

0.7 for sampling-based distribution. All other hy- 1133

perparameters are set to default without restriction 1134

on generation length. For the 671B LLMs, we use 1135

DeepSeek API with recommended settings. 1136

Computational Cost. The majority of inference 1137

cost goes to RLVR LLMs. For the RLVR LLMs 1138

of 70B, 32B, 14B, and 8B, the inference costs 100, 1139

40, 20, and 10 GPU hours correspondingly, where 1140

the majority is spent on sampling-based distribu- 1141

tion which requires sampling 10 times. For RLHF 1142

LLMs, especially without CoT, the cost is much 1143

less. The RLHF LLMs of 70B, 32B, 14B, and 1144

8B cost 40, 20, 10, 10 GPU hours correspond- 1145

ingly with the cost of CoT and no-CoT settings 1146

combined. Note that model loading times are not 1147

counted into GPU cost. The API cost of DeepSeek- 1148

R1 and DeepSeek-V3 costs roughly 40 USD in 1149

total. 1150

Packages for Evaluation. Scipy is used to calcu- 1151

late Pearson’s Correlations and Wilcoxon Tests. 1152

D Fine-Tuning Details 1153

We use Huggingface to fine-tune and evaluate fine- 1154

tuned ModernBERT-large and DeBERTa-V3-large. 1155

We use a learning rate of 5e-5, a weight decay of 1156

0.01, a batch size of 128, and a epoch number of 5. 1157

All other hyperparameters are set to default. 1158

E Results w/o Aggregation 1159

Here we present the performance of all LLMs with 1160

different settings regarding distribution expression, 1161

steering, and reasoning, which can be used to cal- 1162

culate all the aggregated results in § 6. Results 1163

on Random and HighVar subsets are presented in 1164

Table 5 and Table 6, respectively. 1165

F Majority Label Prediction 1166

In § 6.1, we observe that sampling-based method 1167

achieves better majority label prediction (F1) than 1168

verbalized distribution. The prediction of majority 1169

labels lies outside the scope of this project, so we 1170

analyze those observations in this appendix sec- 1171

tion to fully reveal the potential of sampling-based 1172

methods. We draw the following observations with 1173

statistical significance. 1174

1. RLVR LLMs outperform RLHF LLMs, with 1175

a win rate 62.50∗∗% . 1176

2. RLHF w/ CoT outperforms w/o CoT, with a 1177

win rate 62.50∗∗% . 1178
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3. Few-shot steering improves the F1 of GHC1179

with a rate of 66.67∗∗% , but decrease the1180

HS2, Pos, and Neg where the win rates are1181

6.67∗∗% , 33.33∗∗% , and 26.67∗∗% corre-1182

spondingly.1183

All other trends on F1 do not have statistical1184

significance.1185

G Per-Dataset Results1186

When comparing RLVR with RLHF LLMs on each1187

dataset, the trends are mostly consistent with Ta-1188

ble 1 row 2 on Random F1 and HighVar DistAlign.1189

For Random VarCorr and DistAlgin, we further find1190

that following observations with statistical signif-1191

icance: (1) RLVR underperforms RLHF on HS21192

Random; and (2) RLVR outperforms RLHF on Pos1193

Random. The trends in Table 1 summarizes this1194

observation, as RLVR vs. RLHF has more mixed1195

results on distribution prediction of Random subsets,1196

compared to HighVar subsets.1197

For CoT vs. w/o CoT on RLHF LLMs, per-1198

dataset comparison shows that on all datasets, CoT1199

either significantly outperforms w/o CoT, or CoT1200

slightly underperforms w/o CoT but without statis-1201

tical significance.1202

Furthermore, extending reasoning with RLVR1203

LLMs does not lead to significant change to the1204

performance on all datasets; while verbalized dis-1205

tribution constantly performs significantly better1206

than sampling-based distribution on all datasets.1207

Figure 2: Density bars of the Five Random Sets
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HelpSteer2 Gab Hate Corpus GE-Positive GE-Negative GE-Ambiguous
VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑ VarCorr↑ DistAlign↓ F1↑

Verbalized Distribution & w/o Few-shot Steering

Llama-8B
No-CoT 0.043 0.277 0.699 0.283 0.290 0.225 0.109 0.357 0.504 0.282 0.294 0.517 0.045 0.309 0.499
CoT 0.127 0.273 0.699 0.262 0.265 0.270 0.121 0.269 0.631 0.256 0.269 0.566 0.089 0.273 0.514
R1 0.053 0.281 0.695 0.298 0.194 0.230 0.186 0.240 0.547 0.301 0.273 0.456 0.136 0.268 0.408

Qwen-14B
No-CoT 0.147 0.251 0.713 0.442 0.206 0.294 0.175 0.228 0.637 0.344 0.280 0.558 0.083 0.265 0.392
CoT 0.132 0.256 0.566 0.399 0.194 0.372 0.194 0.222 0.647 0.374 0.239 0.573 0.068 0.266 0.392
R1 0.109 0.252 0.675 0.426 0.153 0.400 0.256 0.214 0.670 0.419 0.215 0.596 0.076 0.268 0.339

Qwen-32B
No-CoT 0.172 0.245 0.721 0.461 0.158 0.376 0.195 0.220 0.552 0.444 0.198 0.583 0.102 0.256 0.273
CoT 0.193 0.234 0.706 0.398 0.164 0.400 0.210 0.214 0.594 0.389 0.216 0.562 0.084 0.257 0.270
R1 0.151 0.243 0.713 0.425 0.148 0.463 0.262 0.209 0.625 0.398 0.212 0.581 0.123 0.269 0.330

Llama-70B
No-CoT 0.171 0.263 0.717 0.337 0.238 0.274 0.241 0.221 0.620 0.409 0.245 0.579 0.126 0.258 0.487
CoT 0.205 0.257 0.697 0.376 0.208 0.389 0.202 0.209 0.644 0.379 0.234 0.567 0.155 0.230 0.448
R1 0.180 0.230 0.722 0.351 0.193 0.428 0.274 0.201 0.674 0.332 0.234 0.595 0.125 0.247 0.436

Deepseek
V3-no-CoT 0.183 0.236 0.741 0.288 0.254 0.302 0.194 0.220 0.721 0.208 0.307 0.568 0.123 0.280 0.547
V3-CoT 0.230 0.231 0.715 0.381 0.186 0.434 0.233 0.216 0.675 0.246 0.273 0.581 0.183 0.234 0.534
R1 0.188 0.231 0.721 0.370 0.196 0.447 0.204 0.209 0.649 0.206 0.274 0.552 0.147 0.233 0.463

Verbalized Distribution + Few-shot Steering

Llama-8B
No-CoT 0.049 0.293 0.658 0.111 0.365 0.147 0.070 0.325 0.409 0.052 0.340 0.450 0.005 0.347 0.489
CoT 0.067 0.297 0.692 0.215 0.282 0.230 0.142 0.255 0.526 0.197 0.276 0.540 0.123 0.267 0.494
R1 0.065 0.297 0.676 0.353 0.186 0.258 0.234 0.224 0.546 0.352 0.245 0.456 0.086 0.279 0.290

Qwen-14B
No-CoT 0.086 0.317 0.710 0.459 0.142 0.553 0.207 0.224 0.584 0.371 0.226 0.557 0.079 0.289 0.375
CoT 0.139 0.267 0.685 0.428 0.147 0.467 0.205 0.226 0.639 0.387 0.224 0.580 0.029 0.296 0.386
R1 0.114 0.255 0.674 0.442 0.135 0.444 0.216 0.214 0.608 0.402 0.214 0.593 0.105 0.267 0.234

Qwen-32B
No-CoT 0.108 0.290 0.655 0.434 0.145 0.387 0.249 0.210 0.582 0.288 0.241 0.555 0.088 0.268 0.383
CoT 0.144 0.266 0.680 0.436 0.154 0.397 0.205 0.213 0.591 0.394 0.230 0.567 0.072 0.302 0.368
R1 0.066 0.298 0.558 0.449 0.149 0.386 0.247 0.205 0.610 0.365 0.223 0.570 0.118 0.306 0.291

Llama-70B
No-CoT 0.083 0.299 0.684 0.431 0.166 0.378 0.229 0.227 0.633 0.411 0.236 0.576 0.083 0.310 0.471
CoT 0.182 0.297 0.687 0.413 0.164 0.467 0.243 0.211 0.656 0.409 0.219 0.576 0.132 0.248 0.490
R1 0.127 0.261 0.678 0.433 0.161 0.447 0.231 0.211 0.675 0.352 0.229 0.592 0.118 0.274 0.411

Deepseek
V3-no-CoT 0.163 0.258 0.710 0.343 0.208 0.396 0.229 0.212 0.658 0.085 0.331 0.490 0.028 0.317 0.534
V3-CoT 0.164 0.271 0.686 0.406 0.164 0.462 0.206 0.226 0.680 0.220 0.300 0.566 0.135 0.268 0.512
R1 0.128 0.291 0.455 0.403 0.162 0.429 0.252 0.206 0.509 0.322 0.257 0.479 0.107 0.270 0.437

Sampling-Based Distribution & w/o Few-shot Steering

Llama-8B
No-CoT 0.021 0.423 0.695 0.357 0.158 0.398 0.002 0.286 0.631 0.097 0.273 0.564 0.027 0.358 0.521
CoT 0.063 0.440 0.699 0.215 0.207 0.355 0.061 0.289 0.631 0.143 0.308 0.566 0.004 0.374 0.496
R1 0.121 0.447 0.697 0.149 0.233 0.330 0.169 0.232 0.690 0.089 0.312 0.586 0.099 0.292 0.494

Qwen-14B
No-CoT 0.090 0.361 0.669 0.135 0.203 0.354 0.080 0.271 0.629 0.047 0.332 0.567 0.031 0.382 0.426
CoT 0.070 0.318 0.688 0.202 0.210 0.350 0.098 0.267 0.649 0.083 0.324 0.593 0.043 0.361 0.495
R1 0.124 0.282 0.705 0.287 0.165 0.406 0.145 0.250 0.686 0.234 0.281 0.595 0.050 0.306 0.469

Qwen-32B
No-CoT 0.091 0.348 0.702 0.142 0.187 0.376 0.092 0.264 0.623 0.124 0.297 0.590 0.042 0.366 0.402
CoT 0.118 0.287 0.702 0.280 0.165 0.430 0.157 0.251 0.627 0.208 0.290 0.589 0.025 0.349 0.458
R1 0.073 0.294 0.759 0.244 0.169 0.414 0.184 0.233 0.685 0.192 0.285 0.607 0.071 0.301 0.442

Llama-70B
No-CoT 0.024 0.412 0.673 0.074 0.263 0.298 0.006 0.291 0.644 0.043 0.367 0.565 0.014 0.393 0.513
CoT 0.124 0.357 0.693 0.146 0.216 0.337 0.046 0.289 0.649 0.053 0.361 0.560 0.030 0.355 0.516
R1 0.091 0.278 0.751 0.175 0.208 0.344 0.158 0.240 0.699 0.112 0.313 0.591 0.063 0.315 0.484

Sampling-Based Distribution + Few-shot Steering

Llama-8B
No-CoT 0.003 0.414 0.698 0.004 0.313 0.257 0.064 0.373 0.563 0.097 0.386 0.522 0.067 0.476 0.504
CoT 0.006 0.440 0.697 0.150 0.237 0.332 0.070 0.275 0.646 0.098 0.326 0.565 0.088 0.299 0.313
R1 0.022 0.445 0.699 0.114 0.236 0.339 0.182 0.227 0.689 0.181 0.275 0.607 0.060 0.290 0.483

Qwen-14B
No-CoT 0.084 0.357 0.685 0.151 0.208 0.348 0.087 0.298 0.634 0.087 0.320 0.570 0.084 0.417 0.504
CoT 0.062 0.316 0.697 0.266 0.175 0.394 0.121 0.282 0.646 0.139 0.324 0.579 0.037 0.333 0.222
R1 0.121 0.290 0.692 0.322 0.158 0.389 0.137 0.257 0.673 0.209 0.281 0.601 0.068 0.310 0.488

Qwen-32B
No-CoT 0.101 0.381 0.687 0.142 0.183 0.375 0.111 0.263 0.646 0.111 0.301 0.585 0.034 0.372 0.493
CoT 0.130 0.281 0.709 0.272 0.166 0.416 0.120 0.253 0.661 0.111 0.320 0.564 0.051 0.330 0.358
R1 0.019 0.308 0.743 0.246 0.164 0.419 0.174 0.237 0.701 0.161 0.290 0.604 0.084 0.299 0.473

Llama-70B
No-CoT 0.025 0.433 0.703 0.018 0.231 0.335 0.090 0.300 0.646 0.120 0.326 0.593 0.023 0.438 0.505
CoT 0.077 0.322 0.715 0.158 0.192 0.391 0.022 0.303 0.644 0.098 0.323 0.590 0.100 0.329 0.389
R1 0.063 0.288 0.749 0.234 0.184 0.388 0.148 0.247 0.687 0.197 0.299 0.592 0.069 0.320 0.475

Table 5: Performance on Random (randomly sampled) subsets of all datasets.
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HS2↓ GHC↓ Pos↓ Neg↓ Amb↓

Verbalized Distribution & w/o Few-shot Steering

Llama-8B
No-CoT 0.182 0.317 0.284 0.296 0.165
CoT 0.178 0.222 0.205 0.229 0.156
R1 0.204 0.280 0.263 0.291 0.232

Qwen-14B
No-CoT 0.236 0.293 0.328 0.318 0.258
CoT 0.230 0.200 0.295 0.239 0.235
R1 0.216 0.235 0.284 0.262 0.283

Qwen-32B
No-CoT 0.253 0.240 0.303 0.222 0.261
CoT 0.242 0.199 0.252 0.173 0.226
R1 0.227 0.242 0.281 0.257 0.284

Llama-70B
No-CoT 0.294 0.262 0.307 0.277 0.225
CoT 0.170 0.180 0.210 0.207 0.165
R1 0.235 0.236 0.257 0.255 0.235

Deepseek
V3-no-CoT 0.199 0.248 0.249 0.282 0.210
V3-CoT 0.217 0.207 0.223 0.237 0.184
R1 0.227 0.206 0.217 0.239 0.195

Verbalized Distribution + Few-shot Steering

Llama-8B
No-CoT 0.225 0.274 0.178 0.188 0.204
CoT 0.254 0.226 0.222 0.232 0.159
R1 0.255 0.234 0.263 0.276 0.276

Qwen-14B
No-CoT 0.357 0.188 0.231 0.213 0.245
CoT 0.289 0.193 0.271 0.240 0.278
R1 0.251 0.236 0.270 0.255 0.286

Qwen-32B
No-CoT 0.317 0.232 0.240 0.159 0.259
CoT 0.307 0.203 0.239 0.193 0.305
R1 0.341 0.239 0.278 0.270 0.360

Llama-70B
No-CoT 0.306 0.266 0.296 0.269 0.246
CoT 0.256 0.209 0.202 0.196 0.173
R1 0.273 0.249 0.272 0.271 0.262

Deepseek
V3-no-CoT 0.216 0.218 0.219 0.305 0.210
V3-CoT 0.288 0.226 0.251 0.309 0.241
R1 0.308 0.204 0.218 0.228 0.231

Sampling-Based Distribution & w/o Few-shot Steering

Llama-8B
No-CoT 0.408 0.333 0.274 0.339 0.240
CoT 0.440 0.365 0.341 0.381 0.315
R1 0.461 0.386 0.334 0.405 0.274

Qwen-14B
No-CoT 0.433 0.476 0.451 0.492 0.447
CoT 0.298 0.402 0.397 0.437 0.354
R1 0.293 0.389 0.381 0.415 0.338

Qwen-32B
No-CoT 0.429 0.469 0.449 0.474 0.442
CoT 0.327 0.417 0.400 0.427 0.372
R1 0.349 0.398 0.375 0.422 0.336

Llama-70B
No-CoT 0.467 0.478 0.446 0.495 0.451
CoT 0.338 0.430 0.400 0.469 0.379
R1 0.316 0.434 0.379 0.443 0.353

Sampling-Based Distribution + Few-shot Steering

Llama-8B
No-CoT 0.380 0.393 0.353 0.389 0.384
CoT 0.435 0.383 0.342 0.392 0.259
R1 0.448 0.391 0.349 0.381 0.286

Qwen-14B
No-CoT 0.415 0.456 0.447 0.483 0.453
CoT 0.297 0.403 0.403 0.436 0.398
R1 0.321 0.381 0.384 0.415 0.327

Qwen-32B
No-CoT 0.430 0.465 0.443 0.469 0.451
CoT 0.330 0.419 0.389 0.420 0.379
R1 0.356 0.400 0.370 0.421 0.332

Llama-70B
No-CoT 0.457 0.481 0.461 0.482 0.481
CoT 0.333 0.434 0.427 0.449 0.385
R1 0.323 0.425 0.385 0.422 0.363

Table 6: DistAlign Performance on HighVar (high annotation variance) subset of all datasets.
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