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ABSTRACT

Understanding the inner workings of Transformers is crucial for achieving more
accurate and efficient predictions. In this work, we analyze the computation per-
formed by Transformers in the layers after the top-1 prediction has become fixed,
which has been previously referred to as the “saturation event”. We expand the
concept of saturation events for top-k tokens, demonstrating that similar saturation
events occur across language, vision, and speech models. We find that these satu-
ration events happen in order of the corresponding tokens’ ranking, i.e., the model
first decides on the top ranking token, then the second highest ranking token, and
so on. This phenomenon seems intrinsic to the Transformer architecture, occur-
ring across different architectural variants (decoder-only, encoder-only, and to a
lesser extent full-Transformer), and even in untrained Transformers. We propose
an underlying mechanism of task transition for this sequential saturation, where
task k corresponds to predicting the k-th most probable token, and the saturation
events are in fact discrete transitions between the tasks. In support of this we
show that it is possible to predict the current task from hidden layer embedding.
Furthermore, using an intervention method we demonstrate that we can cause the
model to switch from one task to the next. Finally, leveraging our findings, we in-
troduce a novel token-level early-exit strategy, which surpasses existing methods
in balancing performance and efficiency.

1 INTRODUCTION

In recent years, Transformer-based models (Vaswani et al., 2017) have achieved state-of-the-art
performance in various tasks across multiple modalities, including text generation, image classifi-
cation, and automatic speech recognition (Zhang et al., 2023; OpenAI et al., 2024). This has lead
to a growing interest in model interpretability, which tries to explain the internal processes that give
rise to these remarkable capabilities. In the language domain, investigation into the way the model’s
predictions are constructed has led to the discovery of saturation events, where the model’s top-1
prediction is determined in an early layer and remains fixed in subsequent layers (Geva et al., 2022).

In this work, we address the following question – what computation is the Transformer model per-
forming after the saturation event? Taking inspiration from Frydenlund et al. (2022), we treat the
model’s output as a ranking over the labels instead of a probability distribution. Using the logit
lens (Nostalgebraist, 2020), we project the hidden states of intermediate layers onto the vocabulary
space to extract ranking over tokens and analyze the changes over the layers. For the first time, we
show that in a decoder-only text Transformer (GPT2-XL; Radford et al., 2019) saturation events also
take place for the top ranking tokens beyond the top-1 (2nd, 3rd, 4th, etc.). Surprisingly, we find
that they happen in order of their ranking, i.e. the second-ranking token is determined only after the
first-ranking token, and so forth (see in Figure 1). We then generalize the results across different
modalities and Transformer variants, including pretrained Transformers for both vision (encoder-
only ViT-L/16; Dosovitskiy et al., 2020) and speech (encoder-decoder Whisper-large; Radford et al.,
2023). Next, we demonstrate that sequential saturation seems intrinsic to the Transformer architec-
ture, occurring even in an untrained randomly initialized model (GPT2-XL).

We propose that this phenomenon is due to a discrete task-transition mechanism, where each task i
corresponds to the model determining the i-th token in the final ranking, and the transition between
one task and the next happens at the corresponding saturation layer. Furthermore, we find that the
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Figure 1: An illustration of the proposed task-transition mechanism wherein the layers of the Trans-
former perform a changing number of tasks in order, so that task i is determining the i-th token
in the final ranking, and the transition between task i and task i + 1 occurs at the corresponding
i-th saturation layer. The transition is akin to a switch being flipped “on” and staying “on” for the
remaining layers representing the i-th token being fixed from this point onward.

task information is encoded in the layer embeddings and that at each saturation layer, a discrete
“switch” is flipped, signaling that the relevant token has been determined, causing the model to
move on to the next task while keeping this token fixed in subsequent layers. To support this, we
show that it is possible to predict the task index from the layer embeddings using a simple logistic
regression classifier, and that we can cause the model to transition from the first to the second task
by “injecting” embeddings from either the top-1 saturation layer or of one of the subsequent layers.

Finally, we show that our findings lend themselves to practical applications in improving both model
efficiency and accuracy. Based on this new understanding of the Transformer, we define a new
early-exit decision strategy for text generation. Early exiting is a technique where the model can
make a prediction and terminate the computation before reaching the final layer, thus improving
efficiency (Schwartz et al., 2020). In our method, the early-exit layer is the first one predicted to
belong to task 2, presuming that after the transition from task 1 to task 2, the top-1 token represents
the model’s final prediction. We show that this strategy outperforms existing token-level measures,
such as softmax-response and hidden-state saturation (Schuster et al., 2022). In addition, we show
that we can use task information to achieve more accurate language models, by demonstrating that
in cases where the top-1 prediction is incorrect, the second highest ranking token represents a much
more accurate prediction when it reaches saturation than when it does not.

Our main contributions are:

• We find that Transformers tend to decide their top ranking tokens in order, so that the top ranking
token is fixed first, then the second-ranking token at a later layer and so on. We show that this oc-
curs across various modalities and variants of the Transformer architecture, and even in untrained
randomly initialized models.

• We show that sequential saturation can be explained with a discrete task-transition mechanism,
encoded in the representation of hidden layers where each task corresponds to determining the
next ranking token. We empirically show that it is possible to predict the task index only from
internal activations, and that we can cause the model to switch from one task to the next via an
intervention procedure.

• We show that these observations can be leveraged to achieve better downstream performance in
early exiting and language modeling, in terms of both accuracy and efficiency.
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Figure 2: Schematic of our framework and visualization of the ordered saturation of the top-k tokens
on GPT2-XL. The hidden states from each layer are projected onto the vocabulary space using the
unembedding matrix E, then sorted in descending order and treated as rankings. The saturation
effect is marked separately for each token in the top-4 of the final ranking, emphasizing the fact that
the 2nd token saturates after the 1st token, the 3d token saturates after the 2nd token and so on. The
dashed line represents the previously established saturation event of the top-1 token.

We will make the code for all of our experiments and evaluations publicly available.

2 EXPERIMENTS

In this section, we formulate two experiments to understand what computation the Transformer is
performing in the layers after the top-1 saturation event. To achieve this, we first extend the formal
definition of top-1 saturation to account for arbitrary i-th ranking token saturation (Section 2.1).
Then, in Section 2.2, we leverage this definition to develop a metric capturing the extent to which
the top tokens are saturated in order. In Section 2.3, we describe a probing method measuring
whether it is possible to determine the rank of the token currently being considered by the model
solely from the intermediate representation of the layer, without any additional context.

2.1 DEFINING SATURATION LAYERS

Definition 2.1 (1st Saturation Layer; Geva et al., 2022). The saturation event occurs at layer l (from
here on referred to as the “1st saturation layer”) for index i in the input if the top-1 prediction of the
model remains constant in all subsequent layers after l. Formally, given a model with N layers, a
saturation event occurs at layer l ≤ N − 1 if for all layers l′ s.t. l < l′ ≤ N the top-1 token in the
ranking induced by that layer remains unchanged. For example, the saturation event marked with a
dashed line in Figure 2 occurs on layer 44, since in subsequent layers the top predicted token (“toy”)
remains constant.

Definition 2.2 (k-th Saturation Layer). Here, we are interested in examining model behavior beyond
the determination of the top ranking token and so naturally extend the definition of top-1 Saturation
(Definition 2.1) to capture the layer at which the k-th top token is determined and remains fixed.
Formally, the saturation event for the k-th top token at index i in the input occurs at layer lk ≤ N−1
(from here on referred to as the “ k-th saturation layer”) if for all following layers l′ s.t. lk < l′ ≤ N
the token in position k in the ranking induced by that layer remains unchanged. We note that the
saturation event defined in (Geva et al., 2022) happens at l1. For example, in Figure 2, l1 = 44 as that
is where the top token (“toy”) is determined; l2 = 45, since the second-most probable token (“ball”)
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is determined at layer 45; and similarly l3 = 46, since the third-most probable token (“ribbon”) is
determined at layer 46, etc.1 See Appendix B.1 for statistics of 1st and k-th saturation.

2.2 EXAMINING THE ORDER OF SATURATION LAYERS

We investigate whether the saturation layers of the top-k tokens l1, l2, . . . lk are arranged in order,
i.e., whether the saturation of the first token happens before the saturation of the second token, the
saturation of the second token happens before the saturation of the third token and so on. To this
end, for each token in the input we first calculate these saturation layers for k = 1, . . . , 5 according
to Definition 2.2 and then for each k compute the rank of the saturation layer of the k-th top token.
We use k = 5 to ensure consistency across models, as it is the highest value of k where the k-th
token reaches saturation in at least 5% of input tokens for all the models analyzed. Following our
example from Figure 2, we have l1 = 44, l2 = 45, l3 = 46, l4 = 47,2 and their ranking is [1, 2, 3, 4],
since l1 < l2 < l3 < l4. If the tokens reach saturation in order of ranking, as they do in this case,
we would expect the average rank of the saturation layers to increase monotonically with k.

2.3 PROBING FOR TASK TRANSITION

We argue that the mechanism underlying the saturation of the top-k tokens in order is one of task
transition, such that determining the identity of each token in the final ranking is a separate task, and
the model performs them sequentially: first determining the identity of 1st token, then the identity of
the 2nd token, and so on, and that the transition from one task to the next occurs at the corresponding
saturation layer. Additionally, we claim that the specific task number can be inferred from the model
embedding at each layer, and that this information is independent of the context or the specific token
predicted by the model.

To test this hypothesis, we perform a type of probing in which we train a simple one-versus-all
multi-class logistic regression classifier to predict the number of the task the model is “working on”
from the hidden state embeddings of the model. We collect the data for training by extracting the
model’s hidden states during inference and categorize them into 5 classes according to the saturation
layers of the top-5 tokens for each instance. This means that for a given input, embeddings from
layers up to (and including) the 1st saturation layer are classified as belonging to task 1, embeddings
from layers from the next layer until the 2nd saturation layer are classified as belonging to task 2,
and so forth, for tasks 1 through 5. For example, in the case of the token ”a” as depicted in Figure 2,
the embeddings from layers 1 through 44 would be classified as belonging to task 1; the embedding
of layer 45 would be classified as belonging to task 2; the embedding of layer 46 would be classified
as belonging to task 3; the embedding of layer 47 would be classified as belonging to task 4; and
as the model reaches the last layer directly afterward there would be no embedding classified as
belonging to task 5.

We balance the training data so that embeddings from all layers are represented equally in each
class. To show that the task number is encoded in the model’s embeddings and is not an artifact of
the classifier’s weights, we construct a control setting where, for each class, we generate random
vectors with the same dimension, drawn from a normal distribution with the mean and variance of
the layer embeddings in that class.3

3 RESULTS

To show the robustness of our findings, we test pretrained Transformer models on corresponding
datasets from three modalities: text, vision and speech.

1In all of our experiments, we only consider tokens in the input where the 1st saturation layer satisfies that
l1 ≤ 0.85 ·N , to ensure that there are enough layers after it for meaningful analysis.

2l5 is ill-defined in this case as the 5-th token doesn’t reach saturation before the last layer.
3The number of tasks is determined per model to be the maximum number for which after balancing the

data there are at least 10 embeddings from each layer in each class from at least 4 different layers.
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(a) Pretrained GPT2-XL (b) ViT-L/16

(c) Whisper-large (d) Randomly initialized GPT2-XL

Figure 3: Average rank of the k-th saturation layer among the saturation layers for k=1,..,5 with
standard error bars. Asterisks indicate statistically significant differences between consecutive token
ranks (*** represents p < 0.001), based on an independent samples t-test.

3.1 TEXT TRANSFORMER

We first conduct our experiments on a pretrained GPT2-XL model, an auto-regressive decoder-only
LLM, using 60K tokens taken from 100 randomly sampled texts from CNN/DM dataset (Hermann
et al., 2015). We additionally reproduce our results using Llama3-8B (Dubey et al., 2024) model
on MMLU (Hendrycks et al., 2020) and Hellaswag (Zellers et al., 2019) benchmarks (see Appendix
B.2).

Tokens reach saturation in order of ranking. Figure 8a shows the average rank of the k-th satu-
ration layer for each k. This value increases monotonically with k, and the difference between each
two consecutive token ranks is statistically significant with p < 0.001 based on a pairwise indepen-
dent samples t-test. This supports our claim that saturation events happen sequentially according
to token ranking in this LLM. To statistically validate this phenomenon we use a stricter version of
Kendall’s τ coefficient, where we also consider ties as disagreements (see Appendix A.1 for details
and mathematical formulation). This is done to discount cases where two or more tokens reach
saturation at the same layer. The coefficient takes values in the range [−1, 1] where values close to
1 indicate strong agreement, and values close to -1 indicate strong disagreement between the rank-
ings. To check whether the sequence of saturation layers of the top-k tokens (l1, .., lk) is strictly
increasing, we use that sequence as one ranking, and the sequence (1, 2, .., k) as the other. k is set
independently for each token in the input to be the largest token index such that this token’s reaches
saturation by our definition i.e. lk < N . The average τ coefficient indicates moderate agreement
between the rankings, which is larger than all values over 1K permutations, where the saturation
layers sequence were randomly shuffled for each instance, resulting in p < 0.001.

Task number can be predicted from model embeddings. We split the data into train and test
using 5-fold cross validation, and report the mean and standard error of the accuracy. Table 1 shows
that the logistic regression classifier trained on embeddings extracted from pretrained GPT2-XL
model achieves very high accuracy, while the classifier trained on the random embeddings in the
control setting performs approximately at chance level (see Appendix A.3 for accuracy and ROC-
AUC scores per class). From this we conclude that the representations of the hidden layers across
examples encode task specific information and that the saturation layers as we defined them are the
points of transition between those tasks.
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Table 1: Accuracy of task number logistic regression classifier showing that in all modalities the
layer embeddings contain information about the task number. Asterisks indicate statistically signif-
icant accuracy (*** represents p < 0.001), based on an Binomial Distribution probability test.

Model Layer Embeddings Random Embeddings Chance Level
GPT2-XL (pretrained) 91.4∗∗∗ ± 0.3 20.6± 0.5 20.0
GPT2-XL (random initialization) 86.1∗∗∗ ± 0.7 32.7± 0.1 33.3
ViT-L/16 (pretrained) 63.8∗∗∗ ± 0.1 21.0± 0.5 20.0
Whisper-large (pretrained) 52.7∗∗∗ ± 0.1 24.5± 0.4 25.0

3.2 VISION TRANSFORMER

Encoder-only image-classification ViTs take as input a sequence of linear projections of equal-sized
image patches with added position embedding and a special “class token” denoted [CLS]. Following
the work of (Vilas et al., 2024) we use a version of the logit lens adapted to ViT to project the hidden
state representations of each layer in the encoder onto the class embedding space using the output
embedding matrix. Importantly this is done only for the [CLS] token for each image under the
assumption that it best represents the model’s prediction, since during ViT’s pretraining the only
token projected onto the class-embedding space is the [CLS] token from the last layer.

For our experiments we use the ViT-L/16 variant pretrained on ImageNet-21k and fine-tuned on
ImageNet 2012, which has 1K classes and 24 layers, and run inference on 5K randomly sampled
images from the CIFAR-10 (Krizhevsky et al., 2009) dataset. Figure 3b demonstrates the high
correspondence between saturation layer and token rank, and the stricter Kendall’s τ coefficient
indicates a moderate agreement between the saturation layers order and the sequence (1, 2, .., k)
which is statistically significant with p < 0.001 (see Appendix A.1), supporting our claim that in
this domain as well as in text the saturation layers are highly ordered. Furthermore, Table 1 shows
that the task index can be predicted from the hidden layer activations with high accuracy well above
chance and control setting.

3.3 SPEECH TRANSFORMER

Whisper is an encoder-decoder Transformer model trained on many different speech processing
tasks, including ASR. Although recently there have been attempts to increase efficiency in ASR,
such as Malard et al. (2023), the concept of early exit has yet to be explored in this setting, and
to the best of our knowledge there has not been work done concerning saturation events in speech
models. We adapt the logit lens and apply it only to the decoder stack of Whisper-large, which has
32 layers, under the assumption that representations in the encoder stack are inherently different
and projecting them onto the token vocabulary space would not be meaningful. For our dataset we
randomly sample 5K audios from LibriSpeech (Panayotov et al., 2015).

In addition to reproducing the classical top-1 saturation event established in language and vision
models in previous work, we also show in Figure 3c evidence for the tendency of the top-k tokens
to reach saturation in order in this model as well, albeit only up to the third token. Moreover, a
permutation test performed on the stricter Kendall’s τ coefficient demonstrates that the agreement
between the token ranking and the order of saturation layers is statistically significant with p < 0.001
(see Appendix A.1). We suspect that the order deteriorates in later tokens due to the fact that each
layer in the decoder is conditioned on the last layer of the encoder which may interfere with the task
transition mechanism by “blurring the lines” between the tasks. Even so, Table 1 shows that the
task index can be predicted from Whisper’s decoder layers’ embeddings for tasks 1 through 4 with
accuracy much higher than chance or that achieved in the control setting.

4 ANALYSIS

We have shown that top-k tokens tend to reach saturation in order of their ranking, as well as the
plausibility of the underlying task transition mechanism over multiple modalities and variants of
Transformers: decoder only, encoder only and full Transformer; in section 4.1 we argue that this
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Figure 4: Left: Forward pass of two input tokens (“wanted” and “the”) in the same context for which
the model’s final top-1 prediction is the same (“artist”), but the 1st saturation layers are different (25
and 40 respectively). Right: By injecting the output from the top-1 saturation layer of “the” as
input to the subsequent layer of “artist”, we trigger a saturation at the injected layer (26) in the post-
intervention run, without altering the top-1 prediction. Saturation layers are marked in bold. The
use of activations from adjacent layers is not depicted for the sake of clarity.

phenomenon is inherent to the architecture itself and in section 4.2 we delve deeper into the way the
model transitions between tasks, demonstrating that we can cause the model to switch to the next
task using an intervention procedure.

4.1 UNTRAINED TRANSFORMERS ALSO DETERMINE IN ORDER

We repeat our experiments on an untrained GPT2-XL with randomly initialized weights on the same
amount of randomly sampled tokens from CNN/DM dataset as with the pretrained model. Surpris-
ingly, Figure 3d shows that the top-k tokens tend to reach saturation in order up to the 4th token,
and although the stricter Kendall’s τ coefficient is lower than in the pretrained GPT2-XL model (see
Appendix A.1), it is still statistically significant.

In addition, Table 1 shows that the task transition classifier’s accuracy is more than 2.5x times higher
than chance or that of the control setting. The ability of the classifier to extract the task index from
the hidden layers’ representations in this setting is especially remarkable, demonstrating that despite
the randomness of the weights as well of the identities of the predicted tokens, there is still highly
ordered information encoded in the model originating only from the constraints of the architecture.

4.2 INTERVENING IN LAYER ACTIVATIONS CAUSES TASK SWITCH

Using the probing analysis, we demonstrated that the tasks, as we defined them, are distinct enough
to be separated by a simple classifier, that saturation layers mark the boundaries between them, and
that the task index is encoded in the hidden layer embeddings. We argue that in addition, each
saturation layer encodes the signal to transition to the next task, and all subsequent layers contain
the information that the previous task has been completed and that the relevant token is fixed. This
can be thought of as switch being flipped “on” for each token that reaches saturation, and remaining
”on” from the saturation layer onwards.

To causally validate this claim, taking inspiration from Stolfo et al. (2023), we perform an interven-
tion (visualized in Figure 4) in which we “inject” the output from the 1st saturation layer of sample
s1 as input into the subsequent layer in the run on sample s2 and check how this affects the 1st
saturation layer of s2. If these activations contain the signal to switch to the next task, we expect
this intervention to cause the model to switch to task 2 at the injected layer in the post-intervention
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Figure 5: Flipping the Top-1 Switch. The percentage of examples where the top-1 saturation oc-
curred at the injected layer after the intervention, shown as a function of the layer from which the
injected activations were taken, relative to the original saturation layer (e.g., −2 means activations
were taken from two layers before the original saturation layer).

run, i.e. in the new post-intervention run the 1st saturation layer should be the one on which the
intervention is performed which is l1(s1) + 1. To minimize the effect of confounding factors, we
choose pairs of samples s1 and s2 that share context and where the original top-1 prediction of the
model is the same, but there is a big difference in their 1st saturation layers s.t. l1(s1) < l1(s2). In
the example depicted in Figure 4 s1 = “wanted” and s2 = “the”, and for both the model’s top-1
next-word prediction is “artist”, but l1(s1) = 25 while l1(s2) = 40. Injecting the output of layer
l1(s1) into the subsequent layer (26) in the run for s2 should cause the model to switch to task 2,
resulting in layer 26 being the new 1st saturation layer post intervention.

Moreover, we would expect the same thing to happen when injecting activations from a layer l after
the 1st saturation layer, i.e. l > l1(s1), since they should contain the information that the top-1
token is fixed. On the other hand, activations from a layer l′ before the 1st saturation layer, i.e.
l′ < l1(s1) should not result in saturation at the injected layer as the switch is still “off” in our
analogy, indicating to the model that it still working on task 1. To test this, we repeat the same steps
with activations from 5 layers before and after the 1st saturation layer [l1(s1) − 5, l1(s1) + 5] each
time injecting them as input into the subsequent layer.

Figure 5(a) shows the results of this procedure performed using pretrained GPT2-XL on 200 token
pairs taken from 5 randomly sampled texts from the CNN/DM dataset, Figure 5(b) shows similar
results reproduced using ViT-L/16 on 200 pairs of images from CIFAR-10 dataset, and Figure 5(c)
shows the results of the intervention on Whisper-large on 200 token pairs from 100 randomly sam-
pled audios from LibriSpeech 4. There is a stark difference in the effect the injected activations have
on the 1st saturation layer post-intervention when the activations are taken from the 1st saturation
layer in the original run or one of the following layers, compared to the layers before it. When the
injected activations are taken from an earlier layer, the new top-1 saturation almost never occurs
at the injected layer, whereas when the injected activations are taken from the saturation layer or a
later layer the top-1 saturation occurs at the injected layer in a high percentage of cases. This drastic
change resembles a step function, and is in line with our description of a switch being flipped ”on”
at the 1st saturation layer and remaining turned on in all subsequent layers, indicating to the model
to switch to the next task and keep the top-1 constant.

5 PRACTICAL APPLICATIONS

In this section, we show that our findings can be leveraged for computation efficiency and better
performance in LLMs.

4See Appendix A.4 for a formal description of the procedure as well as details on how we adapted it for
vision and speech modalities
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Table 2: Highest accuracy and corresponding speedup-ratio achieved by each early-exit strategy.

Softmax Response State Saturation Ours

Accuracy 35.9± 0.6 37.5± 0.7 40.0 ± 0.7
Speedup Ratio 1.126± 0.004 1.003± 0.001 1.185 ± 0.009

5.1 NEW EARLY-EXIT STRATEGY

We propose a new token-level dynamic inference method based on the task-transition classifier de-
scribed in Section 2.3, where the early exit layer for each token is defined as the earliest layer which
is predicted to belong to task 2 by the classifier. The idea being that once the model has transitioned
into the second task, it has finished with the first task of determining the top-1 token. To demonstrate
the viability and advantages of this method, we compare it to two other local confidence measures
introduced by Schuster et al. (2022): softmax response (the difference between the top two values
of the logits after softmax) and hidden-state saturation (cosine similarity between two consecutive
layer embeddings), both recently found to be competitive with other early exiting methods (Zhou
et al., 2024). Since dynamic decoding is not the focus of this paper, we calculate the metrics for
each measure while propagating states from the layers after the “early exit” as in regular inference.5

Table 17 shows our results on a pre-trained GPT2-XL model and 100 randomly sampled texts from
CNN/DM dataset. We evaluate the model on next-word prediction, and compute the speedup ratio
for each method as the number of layers it uses for each token divided by the total number of layers
in the model, and average across all tokens. For the two other local confidence measures we calculate
these metrics at various thresholds (see details in Appendix A.5), while in our measure the class is
selected based on the highest predicted score among all classes. Our strategy outperforms the other
two when considering the trade-off between next-word prediction accuracy and speedup ratio, and
requires no training besides that of a simple logistic regression classifier on a relatively small amount
of data. We find that the difference in accuracy between our strategy and the other two methods to
be statistically significant with p < 0.001 using an independent samples t-test.

5.2 IMPROVED LANGUAGE MODELING

Popular decoding methods in language generation such as top-k (Fan et al., 2018) or top-p (Holtzman
et al., 2020) sample the next token according to the shifted distribution induced by probabilities of
the top ranking tokens. Based on our task-transition mechanism and the assumption that the tasks
represent relevant computation, we argue that top ranking tokens that are determined in the last layer
represent less meaningful predictions, since the model only had enough layers for the first task in
these instances.

To test this hypothesis we compare the accuracy of the second ranked token in the next word predic-
tion task between two conditions: (1) the second token’s saturation layer is at least 7 layers before
the output, to increase the chances that this is a “true” saturation as the model had enough layers
to change its (recurring error) prediction and it is not due to noise; (2) the second token does not
saturate, and is determined only in the last layer (See Appendix B.3 for more details). In both cases
we only look at examples where the top-1 token is not the correct prediction. The number of layers
in the first setting is a hyper-parameter, and future work should investigate its affects on the second
ranked token accuracy.

Using 100 randomly sampled texts from CNN/DM dataset and pretrained GPT2-XL predictions,
we find that in the first condition the accuracy is 33.36%, and in the second condition it is only
18.04%. A Two Proportion Z-Test indicates a statistically significant difference between the groups
(p < 0.001). This supports our claim that top-k tokens that reach true saturation are more plausible
than those that are determined only in the last layer, which has potential implications for generation
decoding strategies which consider tokens beyond the top-1.

5This is an informative comparison between the measures, as the effect of a state copying mechanism for
skipped layers on model’s performance is negligible Schuster et al. (2022).
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6 RELATED WORK

There are multiple ways of thinking about the role of intermediate layers in Deep Neural Networks
(DNNs) in general, and Transformers in particular. The iterative inference hypothesis interprets each
layer as an iteration from an iterative and convergent process (Simoulin & Crabbé, 2021), suggesting
that each layer incrementally refines the hidden representation by gradually shaping the next token
prediction (Geva et al., 2022; Belrose et al., 2023; Rushing & Nanda, 2024). We argue that our
findings challenge this view, given the discrete nature of the tasks in the proposed task-transition
mechanism and the sharp transitions between them.

Pruning is another approach, focused on mitigating the redundancy inherent to large machine learn-
ing models by removing unnecessary parameters. Recent work has applied structured pruning
methods to Transformer based LLMs, dropping whole modules, from self-attention layers (Artzy
& Schwartz, 2024; He et al., 2024) to full Transformer blocks (Sun et al., 2024; Men et al., 2024).
These studies often focus on the middle layers of the model, and claim to reduce memory and
computation costs without degrading performance on downstream tasks. It’s important to note that
these works evaluate the accuracy before and after pruning based only on the top-1 prediction of the
model, even though stochastic generation methods such as top-p (Holtzman et al., 2019) and top-k
(Fan et al., 2018) are preferable to deterministic decoding in certain settings such as open-ended
tasks as they produce more coherent and varied text (Shi et al., 2024). In light of this and of our
results regarding the sequential saturation of top ranking tokens, we suggest that future work takes
this into account, since what may seem as redundancy is actually necessary computation that is not
reflected in the measured metric.

The logit lens has also been used to study intermediate layers in a wide variety of interpretability
papers (Yang et al., 2024; Wendler et al., 2024; Halawi et al., 2023). Despite this, Belrose et al.
(2023) claim that it can produce implausible results due to the difference in representations between
layers. To address this issue they introduce the “tuned lens”, in which an affine transformation is
learned for each layer in the model with a distillation loss, so that its image under the unembedding
matrix matches the final layer logits as closely as possible. Although this method may be better at
approximating final top-1 prediction from intermediate layers, our work highlights why this might
actually be a disadvantage when attempting to gain insights into the computational process of the
Transformer, as it could obscure the changing dynamics of the lower ranked tokens.

7 CONCLUSION AND FUTURE WORK

This paper systematically investigates the unexplored question of what computation is performed by
the Transformer layers following a top-1 saturation event. We find that the top-k tokens (for k > 1)
go through similar saturation events in the order of their ranking. We argue that this phenomenon is
inherent to the Transformer architecture, replicating our results on an untrained model and demon-
strating its robustness over multiple modalities: text, vision, and (to a lesser extent) speech. We then
provide evidence in support of a task transition as underlying mechanism for this ordered saturation,
showing that we can predict task index from the hidden layers’ embeddings, as well as cause the
model to switch from the first task to the second via an intervention procedure. Our findings also
hold promise in improving inference efficiency and next word prediction accuracy as suggested by
the preliminary results in the Practical Applications section.

Limitations and Future Work Although our analysis sheds light on the high-level task transition
mechanism behind the ordered saturation of top-k tokens, there is still a need for more work to
determine which components in the Transformer architecture give rise to it, via ablation studies for
example, as well as more concrete explanation for how the model keeps the “chosen” tokens constant
after their saturation events across remaining layers. In addition, we did not consider whether the
model encountered the data used in our experiments during training as a relevant factor. Finally, as
we only explored Transformer architectures, it is necessary to check whether other types of DNNs
also determine their top-k tokens in order. Recurrent Neural Networks (RNNs) might be of particular
interest due to their mathematical equivalence to decoder only Transformers (Oren et al., 2024), and
based on previous work successfully applying the logit lens to them to extract meaningful predictions
from intermediate layers (Paulo et al., 2024).
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A APPENDIX

A.1 STRICTER KENDALL’S TAU

We define a version of Kendall’s tau coefficient measuring the ordinal association between two tank-
ing, where one-sided ties are considered discordant unlike the regular metric, where ties are typically
either ignored or handled as neutral, meaning they neither count as concordant nor discordant.

Given two rankings x = (x1, x2, ., xn) and y = (y1, y2, ., yn), let pair(i, j) be a pair of indices
where 1 ≤ i < j ≤ n.

We define the pair as concordant if the rankings in both sequences agree, meaning:

(xi > xj and yi > yj) or (xi < xj and yi < yj) or (xi = xj and yi = yj)

The pair is discordant if:

(xi > xj and yi < yj) or (xi > xj and yi > yj) or (xi = xj and yi ̸= yj) or (xi ̸= xj and yi = yj)

The coefficient τstrict, is computed as:

τstrict =
C −D

C +D
,

where C is the number of concordant pairs, and D is the number of discordant pairs (including ties),
ranging in values between [−1, 1].

Table 3 summarizes the results of this metric across the different models discussed in the paper,
along with the p-values of the permutation test performed for the mean τstrict for each.

Table 3: Stricter Kendall’s tau coefficients and p-values for each model

Model τstrict (avg ± ste) pvalue τstrict > 0

GPT2-XL (pre-trained) 0.187± 0.004 < 0.001 67.39%
GPT2-XL (random initialization) 0.082± 0.009 < 0.001 49.48%
ViT-L/16 (pre-trained) 0.149± 0.007 < 0.001 58.94%
Whisper-large (pre-trained) 0.210± 0.009 < 0.001 63.78%

A.2 TRAINING DATA FOR TASK TRANSITION CLASSIFIER

Table 4 shows from which layers we took embeddings to train the task-transition classifier for each
model.

Table 4: Task transition probing data

Model Layers Dataset size

GPT2-XL (pre-trained) 23− 40 6K
GPT2-XL (random initialization) 31− 41 2K
ViT-L/16 (pre-trained) 16− 21 2K
Whisper-large (pre-trained) 29− 32 4K

A.3 PER CLASS METRICS FOR TASK TRANSITION CLASSIFIER

Table 5 shows accuracy scores per-class for each model, while Table 6 shows ROC-AUC scores
per-class for each model.
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Table 5: Task transition probing per-class accuracy scores

Model Task 1 Task 2 Task 3 Task 4 Task 5
GPT2-XL (pre-trained) 0.862 0.92 0.926 0.921 0.941
GPT2-XL (random initialization) 0.782 0.83 0.972 − −
ViT-L/16 (pre-trained) 0.646 0.618 0.603 0.644 0.678
Whisper-large (pre-trained) 0.520 0.528 0.484 0.576 −

Table 6: Task transition probing per-class ROC-AUC scores

Model Task 1 Task 2 Task 3 Task 4 Task 5
GPT2-XL (pre-trained) 0.966 0.987 0.974 0.974 0.985
GPT2-XL (random initialization) 0.929 0.951 0.995 − −
ViT-L/16 (pre-trained) 0.855 0.821 0.809 0.829 0.866
Whisper-large (pre-trained) 0.777 0.767 0.695 0.765 −

A.4 INTERVENTION PROCEDURE ADDITIONAL DETAILS

Formally, this procedure consists of the following steps:

1. Given an input sequence x =< x1, ..., xt > we first pass it through the model as in regular
inference while storing the activation values at all hidden layers, i.e hl

i for all 1 ≤ i ≤ t,
1 ≤ l ≤ N .

2. We calculate the saturation layer l1i of the 1st token for each token wi in the text.
3. We sample pairs of token indexes i, j in the text that the satisfy the following conditions:

(a) The distance between i and j is no more than 40 tokens, i.e. |i− j| ≤ 40.
This is a precaution to minimize the effect of the difference in context on the model’s
predictions after intervention.

(b) The model’s top-1 prediction (in the final layer) for both indexes is the same token y,
meaning y = argmax(softmax(EhN

i )) = argmax(softmax(EhN
j )).

The goal here is to avoid a conflict in the top-1 predictions which could be a confound-
ing factor.

(c) There is a difference of at least 10 layers between the 1st token saturation layers of
i and j, such that |l1i − l1j | ≤ 10, to ensure that the change in saturation layer after
intervention is significant.

For convenience’s sake we will assume in the remainder of the procedure description that
l1i < l1j , i.e that the saturation layer of the first index in the pair is smaller then that of the
second index (even though both cases are allowed by our conditions).

4. We perform 11 additional forward passes, each time injecting the output from layer l′ in
range [l1i − 5, l1i +5] at position i as input into layer l′ +1 at position j . The goal here is to
to quantify the difference in effect between layers preceding the saturation event and those
after it.

5. We measure the causal effect of the intervention by calculating the percent of examples
where the saturation layer of the 1st token after intervention l̃1j is the layer on which we
intervened, i.e. l̃1j = l + 1.

For example, in the setting depicted in 4 we would take the indexes of the marked tokens ”wanted”
and ”the” as our pair, where the original top-1 prediction in both is ”artist”. The top-1 saturation
layer in the clean run for ”wanted” is layer 25, so we would inject activations from layers 20 to 30
one at a time as inputs into the corresponding subsequent layers in the run of token ”the” (i.e. layers
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21 to 31), and check for each one if the injected layer became the new top-1 saturation layer after
the intervention.

A.4.1 INTERVENTION PROCEDURE ON VIT

To adapt the intervention procedure described in section 4.2 to ViT-L/16 and the image classification
setting we made the following modifications:

1. Since each image is processed independently by the model there is no need for two images
to share a context, so the only requirements for two images to be chosen as a relevant pair
were: a distance of at least 5 layers (instead of 10, since this model only has 24 total layers
compared to GPT2-XL’s 48) between the top-1 saturation layers, and the same top-1 class
prediction in the final layer.

2. For each image, as in all experiments conducted on this model we only consider the pre-
diction at index 0 corresponding to the [CLS] token in the input.

3. We used embeddings from 3 layers before and 3 layers after the saturation layer (instead of
5, again due to the smaller number of layers) resulting in 7 total forward passes.

Figure 5 shows that the results for this model follow a similar step function pattern to the ones
for GPT2, where injecting embeddings from the top-1 saturation layer or one of the subsequent
layers causes the model to ”immediately” (at the injected layer) switch to the second task in a high
percentage of cases, when compared to injecting embeddings from one of the layer before the top-1
saturation which almost never has the same effect.

A.4.2 INTERVENTION PROCEDURE ON WHISPER

We made the following adjustments to run the procedure described in section 4.2 on Whisper-large
and 200 token pairs from randomly sampled 50 audios from the LibriSpeech dataset:

1. Since the average audio in LibriSpeech is 10 seconds long there are not enough tokens in
one sample to find relevant pairs, so we wave the requirement for a pair to share context
and only leave two conditions: a distance of at least 5 layers (instead of 10, since this model
only has 32 total layers compared to GPT2-XL’s 48) between the top-1 saturation layers,
and the same top-1 prediction in the final layer.

2. We used embeddings from 3 layers before and 3 layers after the saturation layer (instead of
5, again due to the smaller number of layers) resulting in 7 total forward passes.

Figure 5 shows that the results for this model follow a similar pattern to the other two models, even
though the effect increases in the following layers after the saturation event.

A.5 ADDITIONAL DETAILS FOR TOKEN-LEVEL EARLY EXIT MEASURES COMPARISON

Table 7 shows the accuracy and speedup ratio of the Softmax Response token-level early-exit strat-
egy at various thresholds.

Table 8 shows the accuracy and speedup ratio of the Hidden-state saturation token-level early-exit
strategy at various thresholds.

Figure 14 visualizes the performance-efficiency trade-off of both methods in comparison to our
novel early-exit strategy, as well as baseline and oracle.
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Figure 6: Performance-efficiency trade-off comparison of different confidence measures against a
static baseline (where all layers are used for each token) and a local oracle measure (where the early
exit is at the top-1 saturation layer). The graph shows softmax and state confidence measure results
at different thresholds. Our method achieves the highest next-word prediction accuracy out of all
early-exist methods while providing significant speedup compared to the baseline.

Table 7: Softmax Response accuracy & speedup ratios at various confidence thresholds

Thresholds
0.4 0.5 0.6 0.7 0.8 0.9 0.92 0.94

Accuracy 0.240 0.270 0.296 0.317 0.336 0.353 0.357 0.359
Speedup Ratio 1.830 1.640 1.491 1.373 1.269 1.169 1.148 1.126

Table 8: Hidden-sate saturation accuracy & speedup ratios at various confidence thresholds

Thresholds
0.986 0.988 0.989 0.99 0.991 0.992 0.993 0.994 0.995

Accuracy 0.256 0.306 0.333 0.353 0.367 0.372 0.374 0.374 0.375
Speedup Ratio 1.496 1.288 1.197 1.125 1.073 1.039 1.019 1.008 1.003
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B SUPPLEMENTARIES BASED ON REVIEWER FEEDBACK

B.1 SATURATION STATISTICS

Using GPT2-XL model and 200 randomly chosen texts from CNN/DM dataset we show that sat-
uration events are common for top-k tokens in Table 9, with over 80% of samples reaching top-1
saturation at least 3 layers before output. Even if we consider only cases where top-1 saturation
happens in the first 85% layers of the model, as we do in all of our experiments in Section 2.2, we
find that this includes 51.5% of all samples.

Table 9: Percent of samples where top-k tokens reach saturation at least 3 layers before output

Model 1st token 2nd token 3d token 4th token 5th token

GPT2-XL (pre-trained) 80.7% 56.6% 40.2% 30.1% 23.6%

We show in Figure 7 that the samples that reach top-1 saturation belong to all different parts of
speech (POS), and are not just function words for example, with over 27% of them being nouns.

Figure 7: POS of samples that reach top-1 saturation in first 85% of layers of GPT2-XL

B.2 LLAMA3 RESULTS

We reproduce the qualitative results from Sections 3.1 and 4.2 as well as the practical applications
from Section 5 using a 8-bit quantized version of pre-trained Llama3-8B (Wendler et al., 2024)
model, a multilingual SOTA decoder-only LLM, on two datasets: MMLU (Hendrycks et al., 2020)
and HellaSwag (Zellers et al., 2019).

MMLU is a multitask benchmark consisting of multiple-choice questions from 57 different subjects
including elementary mathematics, US history, computer science, law, and more. We use 1K ran-
domly sampled questions from the MMLU test split. We employ the following prompt to present
each task’s questions, answer choices, and correct answer, ensuring a uniform input structure.

Prompt format:

Question: <QUESTION>
A. <CHOICE A>
B. <CHOICE B>
C. <CHOICE C>
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(a) MMLU (b) Hellaswag

Figure 8: Average rank of the k-th saturation layer among the saturation layers for k=1,..,5 of
Llama3-8B with standard error bars. Asterisks indicate statistically significant differences between
consecutive token ranks (*** represents p < 0.001), based on an independent samples t-test.

D. <CHOICE D>
Answer: <ANSWER>

HellaSwag is a commonsense reasoning benchmark, consisting of multiple choice questions where
the options are different possible continuations for a given context and the challenge is to choose
the most likely one. We use 1K randomly sampled questions from the HellaSwag validation split.
We employ the following prompt to systematically present each task’s context, continuation options,
and correct option, ensuring a uniform input structure.

Prompt format:

Context: <CONTEXT>
Options:

A. <OPTION A>
B. <OPTION B>
C. <OPTION C>
D. <OPTION D>

The most likely option is: <ANSWER>

We show in Figure 8 that the Llama3’s top-k tokens reach saturation in order of their ranking up to
(and including) the 4th ranking token. We suspect that the phenomenon doesn’t extend to the 5th
ranking token because this model has only 32 layers compare to the 48 of GPT2-XL.

We additionally validate this agreement between token ranking and saturation layer ranking using a
stricter version of Kendall’s τ metric as described in Section 3.1, and find that the average τ value
over 500 questions randomly sampled from MMLU dataset is 0.026 ± 0.007, which is statistically
significant with p < 0.001 based on a random permutation test.

Furthermore, in support of our task transition mechanism, using embeddings extracted from infer-
ence over 500 questions randomly sampled from MMLU dataset, we demonstrate that task number
can be predicted from Llama3 embeddings. The logistic regression classifier trained over 5K em-
bedding, balanced between classes as described in Section 2.3 achieves average accuracy of 88.1
over 3 classes. We report full results and control settings in Table 10. Asterisks indicate statistically
significant accuracy (*** represents p < 0.001), based on an Binomial Distribution probability test.

Finally, we show in Figure 9 the results of the intervention procedure described in Section 4.2 using
Llama3-8B over 200 token pairs extracted from 10 randomly sampled texts from CNN/DM dataset6.
Similarly to what we find in Section 4.2, when the injected activations are taken from the top-1

6We use texts from CNN and not MMLU for this experiment as they tend to be longer and have more pairs
that fit our criteria for intervention
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Table 10: LLaMA3-8B task transition probing

Model Layers Dataset size Accuracy

Layer embeddings Random embeddings Chance

LLaMA3-8B (pre-trained) 19− 27 5K 88.1∗∗∗ ± 0.4 33.1± 0.5 33.3

Figure 9: Flipping the Top-1 Switch in Llama3-8B. The percentage of examples where the top-1
saturation occurred at the injected layer after the intervention, shown as a function of the layer from
which the injected activations were taken, relative to the original saturation layer (e.g., −2 means
activations were taken from two layers before the original saturation layer).

Table 11: Llama3-8B: Highest accuracy and corresponding speedup-ratio achieved by each early-
exit strategy.

Softmax Response State Saturation Ours

Accuracy 35.9± 0.6 37.5± 0.7 40.0 ± 0.7
Speedup Ratio 1.126± 0.004 1.003± 0.001 1.185 ± 0.009

saturation layer or later layers, the new top-1 saturation happens at the injected layer much more
frequently than when injecting activations from earlier layers, indicating that these layer contain the
signal to switch to the next task and keep the top-1 constant.

B.2.1 LLAMA3 PRACTICAL APPLICATIONS

Table 11 shows our results on a pre-trained Mistral-7B model and 100 randomly sampled texts from
CNN/DM dataset. We evaluate the different early-exit strategies as described in Section 5.1. Our
strategy outperforms the other two when considering the trade-off between next-word prediction
accuracy and speedup ratio, and requires no training besides that of a simple logistic regression
classifier on a relatively small amount of data. We find that the difference in accuracy between our
strategy and the other two methods to be statistically significant with p < 0.001 using an independent
samples t-test.

Figure 10 visualizes the performance-efficiency trade-off of both methods in comparison to our
novel early-exit strategy, as well as baseline and oracle.

We repeat the same experiment described in Section 5.2, using 100 randomly sampled texts from
CNN/DM dataset and pretrained Mistral-7B predictions, varying how many layers before output
saturation occurs for the 2nd ranking token. Using a Two Proportion Z-Test we find that difference
in next-word prediction accuracy between 2nd token achieving saturation i layers before final layer
(with 2 ≤ i ≤ 6) condition and the condition of the 2nd token being determined only in the last
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Figure 10: Llama3-8B: Performance-efficiency trade-off comparison of different confidence mea-
sures against a static baseline (where all layers are used for each token) and a local oracle measure
(where the early exit is at the top-1 saturation layer). The graph shows softmax and state confidence
measure results at different thresholds. Our method achieves the highest next-word prediction accu-
racy out of all early-exist methods while providing significant speedup compared to the baseline.

layer is statistically significant with p < 0.001 even when correcting for multiple comparisons. See
Table 12 for full results.

Table 12: Llama3-8B: Accuracy of next word prediction of 2nd ranking token when top-1 token is
incorrect (comparing no saturation to saturation i layers before output)

No saturation Saturation i layers before output
i = 2 i = 3 i = 4 i = 5 i = 6

25.22 38.10 48.58 37.55 37.58 33.01

B.3 HYPER-PARAMETER VARIATIONS ON IMPROVED LANGUAGE MODELING

We repeat the same experiment described in Section 5.2, varying how many layers before output
saturation occurs for the 2nd ranking token. Using a Two Proportion Z-Test we find that difference
in next-word prediction accuracy between 2nd token achieving saturation i layers before final layer
(with 2 ≤ i ≤ 10) condition and the condition of the 2nd token being determined only in the last
layer is statistically significant with p < 0.001 even when correcting for multiple comparisons. See
Table 13 for full results.

Table 13: Accuracy of next word prediction of 2nd ranking token when top-1 token is incorrect
(comparing no saturation to saturation i layers before output)

No saturation Saturation i layers before output
i = 2 i = 3 i = 4 i = 5 i = 6 i = 7 i = 8 i = 9 i = 10

18.04 26.11 28.2 29.48 31.35 32.16 33.36 34.07 35.28 35.7
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(a) Mistral-7B (b) Falcon–7B

Figure 11: Average rank of the k-th saturation layer among the saturation layers for k=1,..,5 of
Mistral-7b and Falcon-7B with standard error bars. Asterisks indicate statistically significant differ-
ences between consecutive token ranks (*** represents p < 0.001, ** represents p < 0.01), based
on an independent samples t-test.

B.4 MISTRAL & FALCON RESULTS

We reproduce our results from Sections 3.1 and 4.2 with 8-bit quantized versions of Mistral-7B
(Jiang et al., 2023) and Falcon-7B (Almazrouei et al., 2023) models, both decoder-only LLMs.

Using randomly sampled 1K questions from MMLU dataset for each model and the prompt format
described in Section B.2, we show in Figure 11 that the Mistral’s top-k tokens reach saturation in
order of their ranking up to (and including) the 5th ranking token, while Falcon’s top-k tokens reach
saturation in order of their ranking up to the 4th token.

We additionally validate this agreement between token ranking and saturation layer ranking using a
stricter version of Kendall’s τ metric as described in Section 3.1, and find that the average τ value
over 500 questions randomly sampled from MMLU dataset is 0.08 ± 0.003 for Mistral and 0.04 ±
0.001, both of which are statistically significant with p < 0.001 based on a random permutation test.

Furthermore, in support of our task transition mechanism, using embeddings extracted from infer-
ence over 500 questions randomly sampled from MMLU dataset, we demonstrate that task number
can be predicted from both Mistral and Falcon hidden layers’ embeddings. For Mistral, a logistic
regression classifier trained over 3K embeddings, balanced between classes as described in Section
2.3 achieves average accuracy of 85.8 over 4 classes. For Mistral, a logistic regression classifier
trained over 2K embeddings, balanced between classes as described in Section 2.3 achieves average
accuracy of 91.0 over 4 classes. We report full results and control settings in Table 14. Asterisks
indicate statistically significant accuracy (*** represents p < 0.001), based on an Binomial Distri-
bution probability test.

Table 14: Mistral and Falcon task transition probing

Model Layers Dataset size Accuracy

Layer embeddings Random embeddings Chance

Mistral-7B (pre-trained) 22− 27 2K 85.8∗∗∗ ± 0.01 27.1± 0.01 25
Falcon-7B (pre-trained) 19− 27 2K 91.0∗∗∗ ± 0.01 24.6± 0.01 25

Finally, we show in Figure 12 the results of the intervention procedure described in Section 4.2
using Mistral-7B and Falcon-7B models over 200 token pairs (each) extracted from 10 randomly
sampled texts from CNN/DM dataset. As with the other models, when the injected activations are
taken from the top-1 saturation layer or later layers, the new top-1 saturation happens at the injected
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(a) Mistral-7B (b) Falcon–7B

Figure 12: Flipping the Top-1 Switch. The percentage of examples where the top-1 saturation
occurred at the injected layer after the intervention, shown as a function of the layer from which the
injected activations were taken, relative to the original saturation layer (e.g., −2 means activations
were taken from two layers before the original saturation layer).

Table 15: Mistral-7B: Highest accuracy and corresponding speedup-ratio achieved by each early-
exit strategy.

Softmax Response State Saturation Ours

Accuracy 35.9± 0.6 37.5± 0.7 40.0 ± 0.7
Speedup Ratio 1.126± 0.004 1.003± 0.001 1.185 ± 0.009

layer much more frequently than when injecting activations from earlier layers, indicating that these
layer contain the signal to switch to the next task and keep the top-1 constant.

B.4.1 MISTRAL PRACTICAL APPLICATIONS

Table 15 shows our results on a pre-trained Mistral-7B model and 100 randomly sampled texts from
CNN/DM dataset. We evaluate the different early-exit strategies as described in Section 5.1. Our
strategy outperforms the other two when considering the trade-off between next-word prediction
accuracy and speedup ratio, and requires no training besides that of a simple logistic regression
classifier on a relatively small amount of data. We find that the difference in accuracy between our
strategy and the other two methods to be statistically significant with p < 0.001 using an independent
samples t-test.

Figure 14 visualizes the performance-efficiency trade-off of both methods in comparison to our
novel early-exit strategy, as well as baseline and oracle.

We repeat the same experiment described in Section 5.2, using 100 randomly sampled texts from
CNN/DM dataset and pretrained Mistral-7B predictions, varying how many layers before output
saturation occurs for the 2nd ranking token. Using a Two Proportion Z-Test we find that difference
in next-word prediction accuracy between 2nd token achieving saturation i layers before final layer
(with 2 ≤ i ≤ 6) condition and the condition of the 2nd token being determined only in the last
layer is statistically significant with p < 0.001 even when correcting for multiple comparisons. See
Table 16 for full results.

B.4.2 FALCON PRACTICAL APPLICATIONS

Table 17 shows our results on a pre-trained Falcon-7B model and 100 randomly sampled texts from
CNN/DM dataset. We evaluate the different early-exit strategies as described in Section 5.1. Our
strategy outperforms softmax response when considering the trade-off between next-word prediction
accuracy and speedup ratio, and requires no training besides that of a simple logistic regression
classifier on a relatively small amount of data. We find that the difference in accuracy between our
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Figure 13: Mistral-7B: Performance-efficiency trade-off comparison of different confidence mea-
sures against a static baseline (where all layers are used for each token) and a local oracle measure
(where the early exit is at the top-1 saturation layer). The graph shows softmax and state confidence
measure results at different thresholds. Our method achieves the highest next-word prediction accu-
racy out of all early-exist methods while providing significant speedup compared to the baseline.

Table 16: Mistral-7B: Accuracy of next word prediction of 2nd ranking token when top-1 token is
incorrect (comparing no saturation to saturation i layers before output)

No saturation Saturation i layers before output
i = 2 i = 3 i = 4 i = 5 i = 6

13.812 33.37 38.43 41.03 41.91 39.15

Table 17: Falcon-7B: Highest accuracy and corresponding speedup-ratio achieved by each early-exit
strategy.

Softmax Response State Saturation Ours

Accuracy 35.9± 0.6 37.5± 0.7 40.0 ± 0.7
Speedup Ratio 1.126± 0.004 1.003± 0.001 1.185 ± 0.009

strategy and softmax response to be statistically significant with p < 0.001 using an independent
samples t-test.

Figure 14 visualizes the performance-efficiency trade-off of both methods in comparison to our
novel early-exit strategy, as well as baseline and oracle.

We repeat the same experiment described in Section 5.2, using 100 randomly sampled texts from
CNN/DM dataset and pretrained Falcon-7B predictions, varying how many layers before output
saturation occurs for the 2nd ranking token. Using a Two Proportion Z-Test we find that difference
in next-word prediction accuracy between 2nd token achieving saturation i layers before final layer
(with 2 ≤ i ≤ 6) condition and the condition of the 2nd token being determined only in the last
layer is statistically significant with p < 0.001 even when correcting for multiple comparisons. See
Table 18 for full results.
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Figure 14: Falcon-7B: Performance-efficiency trade-off comparison of different confidence mea-
sures against a static baseline (where all layers are used for each token) and a local oracle measure
(where the early exit is at the top-1 saturation layer). The graph shows softmax and state confidence
measure results at different thresholds. Our method beats the hidden state strategy, but performs
worse than softmax.

Table 18: Falcon-7B: Accuracy of next word prediction of 2nd ranking token when top-1 token is
incorrect (comparing no saturation to saturation i layers before output)

No saturation Saturation i layers before output
i = 2 i = 3 i = 4 i = 5 i = 6

12.78 37.81 34.55 34.83 35.33 37.74
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