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Abstract— Despite significant advancements, autonomous
driving systems continue to struggle with occluded objects and
long-range detection due to the inherent limitations of single-
perspective sensing. Aerial-ground cooperation offers a promis-
ing solution by integrating UAVs’ aerial views with ground
vehicles’ local observations. However, progress in this emerging
field has been hindered by the absence of public datasets
and standardized evaluation benchmarks. To address this gap,
this paper presents a comprehensive solution for aerial-ground
cooperative 3D perception through three key contributions: (1)
Griffin, a large-scale multi-modal dataset featuring over 200
dynamic scenes (30k+ frames) with varied UAV altitudes (20-
60m), diverse weather conditions, and occlusion-aware 3D anno-
tations, enhanced by CARLA-AirSim co-simulation for realistic
UAV dynamics; (2) A unified benchmarking framework for
aerial-ground cooperative detection and tracking tasks, includ-
ing protocols for evaluating communication efficiency, latency
tolerance, and altitude adaptability; (3) AGILE, an instance-
level intermediate fusion baseline that dynamically aligns cross-
view features through query-based interaction, achieving an
advantageous balance between communication overhead and
perception accuracy. Extensive experiments prove the effective-
ness of aerial-ground cooperative perception and demonstrate
the direction of further research. The dataset and codes are
available at https://github.com/wang-jh18-SVM/Griffin.

I. INTRODUCTION

While significant progress has been made in autonomous
driving technologies, current single-perspective systems still
struggle with fundamental challenges of severe occlusions
and limited field-of-view in complex environments. To ad-
dress these limitations, an increasing number of cooperative
perception strategies have emerged, including vehicle-to-
vehicle (V2V) [1], [2] and vehicle-to-infrastructure (V2I)
[3], [4] cooperation. These approaches have demonstrated
feasible solutions and significant enhancements in percep-
tion capabilities. Nevertheless, their practical implementa-
tion often requires substantial infrastructure investment and
widespread adoption of connected vehicles, which may
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Fig. 1: Motivation for aerial-ground cooperative percep-
tion. While pedestrians (circled in red) are occluded in the
ground vehicle’s view, they can be clearly observed from
the drone’s perspective. This approach enables improved
perception in complex environments and offers a more eco-
nomically viable and rapidly deployable alternative to V2V
and V2I solutions.

present economic barriers. In contrast, vehicle-to-drone or
so called, aerial-ground cooperative (AGC) systems lever-
age the aerial panoramic views with ground-level detailed
observations. The integration of unmanned aerial vehicles
(UAVs), or drones, provides unique advantages for rapid
deployment in critical applications, including smart cities,
emergency response, and security patrols, thereby offering a
new paradigm for dynamic environment perception.

Despite the promising potential, developing effective
aerial-ground cooperative perception systems still faces two
critical challenges. The first challenge stems from dynamic
perspective mismatch: unlike V2V and V2I collaborations,
where sensors primarily move on a horizontal plane, drones
introduce altitude variations and dynamic pitch/roll angle
changes, complicating the alignment of cross-view fea-
tures. Second, existing drone-view 3D perception datasets
are still compromised. As shown in Table [l datasets like
CoPerception-UAV [5] and UAV3D [6] lack occlusion-aware
annotations, resulting in bounding boxes that include targets
in invisible regions. Meanwhile, many datasets employ over-
simplified fixed-angle [8], [9] or fixed-altitude [6], [7], [8],
[9] camera models, which do not reflect the real-world drone
dynamics influenced by factors such as wind disturbances
and target acceleration.

Inspired by the Griffin, a mythical creature that unites the
lion’s terrestrial strength and the eagle’s aerial dominance,
we aim to harness the combined power of aerial and ground
perspectives to overcome these challenges and enhance per-
ception for autonomous driving. To this end, we present
the following contributions for aerial-ground cooperative 3D
perception:
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TABLE I: A detailed comparison between representative cooperative perception datasets

Mode Dataset Name Year Source Cams (/Agent)y BBox  Tracking ID  Occ-Aware  Frames (k) Altitude (m)
Veh-Veh OPV2V [1] 2022  Joint Sim Multiple 3D v v 11 -
eh-YeN  V2v4Real [2] 2023 Real Multiple 3D v - 310 -
Veh-Inf DAIR-V2X [3] 2022 Real Single 3D X - 22 20-25
V2X-Seq [4] 2023 Real Single 3D v - 15 20-25
CoPerception-UAVs [5] 2022 Joint Sim Multiple 3D v X 5.2 40,60,80
AirAir UAV3D [6] 2024  Joint Sim Multiple 3D v X 20 60
AeroCollab3D [7] 2024  Joint Sim Single 3D v X 32 50
Air-Co-Pred [8] 2024 Sim Single 3D v v 8.0 50
V2U-COOT [9] 2024 Sim Single 3D X - 9.3 80(R)&70(L)
Veh-Air  CoPeD [10] 2024 Real Single 2D X - 203 2-10
Griffin (Ours) 2025  Joint Sim Multiple 3D v v 30 20-60
Note:

o ’Cams (/Agent)’ refers to the camera numbers on each agent. ‘Occ-Aware’ (Simulation-only) flags whether annotation visibility is considered.
Altitude represents the set height of infrastructure sensors or the cruising altitude of UAVs in corresponding modes.

¢ In the Source column, ’Joint Sim’ refers to the co-simulation of CARLA and AirSim / SUMO, while ‘Sim’ refers to using only CARLA.

o T Attributes are derived from the original paper, as the V2U-COO dataset is not publicly available. *80(R)&70(L)’ in the Altitude column
represent the fixed altitudes of the right and left drones, respectively.

o The Griffin Dataset: We release Griffin, the first pub-
licly available aerial-ground cooperative 3D perception
dataset. It encompasses over 200 dynamic scenes (over
30K frames, 270K images) from CARLA-AirSim co-
simulation, with instance-aware occlusion quantifica-
tion, varying cruising altitudes, and realistic simulation
of drone dynamics under various conditions.

o Benchmark: We present a benchmarking framework for
evaluating aerial-ground cooperative 3D object detec-
tion and tracking. It includes implementations of classic
baselines and provides a suite of metrics to evaluate
accuracy, communication cost, and robustness under
varying latency conditions.

o AGILE Framework: We propose AGILE, the first
open-source Aerial-Ground Instance-LEvel intermedi-
ate fusion framework for joint detection and tracking.
Our approach demonstrates the effectiveness of aerial-
ground collaboration, maintaining perception accuracy
while adhering to practical communication constraints.

The remainder of this paper is organized as follows:
Section [II] reviews related work on cooperative perception
methods and datasets. Section [[TI details our dataset construc-
tion methods, followed by benchmark framework including
evaluation tasks and metrics in Section [V] and baseline
methods in Section [V] Experimental results and analysis are
presented in Section [VI| with conclusions in Section [VII]

II. RELATED WORK

A. Cooperative Perception

Cooperative perception systems are generally categorized
into three fusion strategies [11], [12], [13]: early, intermedi-
ate, and late fusion. Early fusion [14], [15] directly integrates
raw sensor data, which retains rich semantic information but
incurs significant bandwidth overhead. In contrast, late fusion
[3], [15] minimizes communication costs by exchanging
detection results; however, its performance degrades under
occlusion or ambiguous observations. Intermediate fusion

offers a compromise by transmitting certain network features.
Recent works [16], [17], [18] have highlighted the advan-
tages of transmitting Bird’s Eye View (BEV) features derived
from point clouds or images to enhance 3D object detection,
while studies such as [5], [19], [20] explore the transmission
of instance-level features or queries to reduce communication
overhead and alleviate bandwidth constraints.

Despite recent advancements, cooperative perception
methods designed explicitly for aerial-ground collaboration
remain underexplored, primarily due to the lack of publicly
available datasets tailored for such scenarios. Minaeian et al.
[21] were among the first to investigate this area, propos-
ing a vision-based solution for target detection and local-
ization involving multiple unmanned aerial/ground agents.
More recently, UVCPNet [9] introduced a comprehensive
framework for aerial-ground collaboration. This framework
demonstrated the effectiveness of aerial-ground cooperative
perception with substantial statistical evidence. However, the
dataset used in the study is not publicly available, which
limits the broader research community’s ability to build upon
existing work.

B. Multi-agent Cooperative Perception Datasets

The development of datasets exploring diverse communi-
cation modes has significantly advanced cooperative percep-
tion algorithms. Table |I| demonstrates a comparison between
recent datasets across different cooperation modes. For V2V
scenarios, OPV2V [1] provides comprehensive simulated
data with precise annotations, while V2V4Real [2] bridges
the gap to real-world scenarios using synchronized LiDAR
and camera streams. For V2I collaboration, datasets like
V2X-Sim [22], DAIR-V2X [3] and V2X-Seq [4] offer both
simulated and real-world testbed. Roadside-focused datasets
like RCooper [23] further address occlusion challenges
through infrastructure sensors.

In contrast, the cooperative perception datasets featuring
aerial perspectives from UAVs remain limited. Recent multi-
UAV datasets, such as UAV3D [6], AeroCollab3D [7], and
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Fig. 2: An example from Griffin with visualized annotation. The ground vehicle platform is equipped with four cameras
and one LiDAR, while the aerial drone platform has five cameras. Both platforms include instance segmentation ground
truth sensors, shown in the lower row. Bounding boxes represent annotations from cooperative perspectives, indicating that
one agent may be able to ‘see’ occluded objects from the other’s view, same as the case in Fig. [[L We use red circles and

arrows to highlight those cases.

Air-Co-Pred [8] primarily focus on Air-Air cooperation but
suffer from fixed altitude constraints. For datasets designed
for AGC scenarios, while some, such as GRACO [24],
are tailored for SLAM tasks, very few focus on detection
or tracking objectives. Datasets like V2U-COO [9] pioneer
vehicle-UAV cooperative perception but rely on predefined
UAV poses without realistic motion dynamics. CoPeD [10],
though large-scale, targets low-altitude robot scenarios and
directly uses unrefined automatic annotations generated by
foundation models.

Notably, most simulation datasets neglect frame-level ob-
ject visibility by including occluded objects, leading to
perception inaccuracies. This issue arises because the na-
tive interface of CARLA delivers data of all objects in
the scene regardless of visual accessibility. To address all
these gaps mentioned, our AGC dataset Griffin introduces
co-simulation for realistic multi-agent dynamics, occlusion-
aware 3D annotations with tracking IDs, and diverse altitude
settings, offering a comprehensive platform for advancing
aerial-ground collaborative perception.

III. DATA SETUP
A. Data Collection

Our aerial-ground cooperative perception data collection
framework adopts a modular architecture, as illustrated in
Fig. 3] The framework comprises two primary components:
(1) a server based on Unreal Engine 4 (UE4), which inte-
grates the CARLA and AirSim platforms, and (2) a Python
client featuring four specialized managers. Specifically, the
Traffic Manager handles vehicle planning and control, the
Aerial Manager generates drone trajectories, the Scene Man-
ager configures random environments, and the Sensor Man-
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Fig. 3: Data collection framework. Dashed lines represent
static data flows (used for scene initialization), while solid
lines denote dynamic data flows (transferred per frame).

Traffic Manager

ager manages the acquisition and processing of multi-modal
sensor data.

Sensor Setting. Our cross-platform perception system is
carefully designed to balance perception performance and
platform constraints, as depicted in Fig. ] The ground
platform is equipped with a comprehensive multi-modal suite
consisting of four wide field-of-view (FoV) RGB cameras
(108.8°, 1920x1080 resolution) positioned in cardinal direc-
tions to provide overlapping coverage. This setup is enhanced
by an 80-beam LiDAR operating at 10Hz with a vertical FoV
ranging from -25° to 15°, allowing dense 3D sensing.

For aerial operations, which must comply with size,
weight, and power (SWaP) constraints, we exclude LiDAR
payloads and instead employ a vision-centric configuration.
This setup includes five downward-oriented cameras that
match the sensor specifications of the ground platform.
Scene Setting. We select four representative maps from the



(a) Ground Vehicle Platform (b) Aerial Drone Platform

Fig. 4: Integrated Platform Designs

CARLA simulator, including two urban settings (Town03
and TownlOHD) and two suburban settings (Town06 and
Town(7). Data is collected under diverse weather conditions,
actor densities, and vehicle speeds. Furthermore, multiple
collaboration modes are designed by selecting desired hori-
zontal and vertical distances.

Based on variations in UAV cruising altitude, we divided
the dataset into three distinct categories. The Griffin-Random
set covers the widest altitude range, spanning from 20 to
60 meters above the vehicle. In contrast, Griffin-25m and
Griffin-40m focus on specific altitudes, targeting 25 + 2
meters and 40 + 2 meters respectively.

B. Data Post-processing

Spatio-temporal Alignment. There are four types of coordi-
nate systems in Griffin, including the world coordinate, ego
coordinate, sensor coordinate, and simulator coordinate, as
detailed in Table [

TABLE II: Different Coordinate Systems.

Name Category Type Origin
World Geodetic ENU (R)  Fixed reference point
Eco Drone FLU (R) Drone center
& Vehicle ~ FLU(R) Vehicle center
Camera RDF (R)  Camera optical center
Sensor Image RD (2D)  Top-left of the image
LiDAR FLU (R) LiDAR center
Simulator CARLA ESU (L) Fixed reference point
AirSim NED (R)  Fixed reference point
Note:

¢ Axis direction: ENU (East-North-Up), FLU (Forward-
Left-Up), RDF (Right-Down-Forward), RD (Right-
Down), ESU (East-South-Up), NED (North-East-Down).
« Handedness: R (Right-handed), L (Left-handed)

Our spatial alignment converts simulator-native 3D an-
notations into unified right-handed coordinates, with dual
output formats supporting both KITTI [25] (ego centric) and
NuScenes [26] (global reference) benchmarks.

To address the time synchronization issue, we utilize
CARLA’s synchronous mode during data recording to ensure
consistency across data captured under the same timestamp.
Additionally, during network training, we provide a code
interface to simulate specified time delays and thus evaluate
the algorithms’ robustness to communication latency.

Annotation. Griffin provides high-quality 3D annotations for
each frame, covering six object categories: pedestrian, car,
truck, bus, motorcycle, and bicycle. The annotation for each
object includes a category label, tracking ID, visibility rate,
and a 9-dimensional bounding box model defined by x, y, z,
length, width, height, roll, pitch, and yaw.

To address the common issue of occlusion judgment in ex-
isting datasets, we develop a visibility quantification method
utilizing CARLA’s instance segmentation ground truth inter-
face. During data collection, RGB and segmentation images
are recorded with identical sensor configurations to maintain
spatial-temporal alignment. In the post-processing phase, we
sample points within each target’s bounding box and project
them onto the segmentation ground truth. The visibility
rates are then calculated by comparing semantic categories
and instance IDs between sampled pixels and corresponding
targets. Targets with low visibility are filtered out to ensure
annotation precision.

C. Statistic and Scene Analysis

The dataset comprises 205 scene clips (104 for Griffin-
Random, 47 for Griffin-25m, and 54 for Griffin-40m), each
lasting approximately 15 seconds and corresponding to
around 150 frames of image data, totaling over 30,000
samples and nearly 275,000 images.
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Fig. 5: Weather Distribution. Most weather conditions are
clear at noon. Certain phenomena are either non-existent or
extremely rare, such as fog at noon.

To ensure the dataset’s diversity and generalization ca-
pability, the scene design incorporates multi-dimensional
environmental variables. In terms of weather conditions, as
shown in Fig. [3] it includes combinations of different times
of day (noon, sunset, and night), clarity levels (clear, rainy
and foggy), and wind speeds ranging from negligible to
substantial (0 ~ 9m/s).

Additionally, our dataset features multiple collaboration
modes between the ground vehicle and UAYV, resulting in
diverse relative positioning patterns. Taking Griffin-Random
as an example, the pose distribution of the drone is illustrated
in Fig.[6] The horizontal distance is randomly set within 0 ~
20 meters ahead. However, during turns or at intersections,
the drone may drift to the left or right of the vehicle’s
front, resulting in a symmetric lateral (y-axis) distribution
and a reduced longitudinal (x-axis) distance, which aligns
with expectations.
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Fig. 6: UAV Pose Distribution Analysis of Griffin-Random.
(a) Horizontal positions relative to the ego vehicle. (b)
Vertical position distribution. (c) Orientation angles relative
to the ground, in line with the dynamics of UAVs.

IV. TASK AND METRICS

Our dataset could further support multiple cooperative
perception tasks, including detection, tracking, prediction,
localization, etc. In this paper, we focus on two sequential
visual tasks: Aerial-Ground Cooperative (AGC) 3D Object
Detection and AGC 3D Object Tracking.

A. AGC 3D Object Detection

Input and Ground Truth. The input data for the AGC
3D Object Detection task includes sequential images from
multiple agents and their relative pose information. Taking
the ground vehicle node g and the aerial node a as examples:

o The sequential frames of g are denoted as {C,(ts) |
tg < Tg}, and the sequential frames of a are denoted
as {Cu(t4) | ta < T,}, where T, represents the perception
timestamp of the vehicle, T, < T, represents the capture
timestamp of the aerial images, and C(-) denotes the
capture function.

« The relative pose of the drone with respect to the vehicle
is denoted as M,_,,.

The detection output comprises precisely localized objects
within the surrounding traffic area, represented as 3D bound-
ing boxes (with position, dimensions, and orientation) along
with their semantic labels and confidence scores. The ground
truth set GT represents all actual objects in the scene that
should be detected, and is formally defined as:

GT = (GT, UGT,)NR (1)

where GT, and GT, are the ground truth from the vehicle and
the drone respectively, and R denotes the region of interest
centered around the ego vehicle.

Evaluation Metrics. For comprehensive evaluation, we em-
ploy standard metrics in 3D object detection [26]: Average
Precision (AP) to assess detection quality at various thresh-
olds, alongside Average Translation Error (ATE), Average
Scale Error (ASE), Average Orientation Error (AOE), and
Average Velocity Error (AVE) to measure prediction accu-
racy of object position, size, orientation, and velocity, re-
spectively. To evaluate communication costs for cooperative

methods, we additionally utilize Bytes per second (BPS)
as a key metric. This suite of metrics provides a thorough
assessment of detection performance.

B. AGC 3D Object Tracking

Input and Ground Truth. The AGC 3D Object Tracking
task supports two prevalent paradigms. For the joint detec-
tion and tracking method, the input consists of raw sensor
data frames from both agents, following the same format
previously defined for the detection task. For the tracking-
by-detection approach, the input is prediction results from
the AGC detection stage, including the detected 3D bounding
boxes and confidence scores. The formulation of the input
data for the latter method remains similar to the detection
task, except that the capture function C(-) is replaced by the
bounding box prediction function B(-).

The outputs and corresponding ground truth sets GT of
both paradigms include the target’s category, 3D bound-
ing box, and, critically, a unique tracking ID that persists
throughout the tracking sequence.

Evaluation Metrics. To evaluate tracking performance, we
utilize established metrics [26] in the 3D multi-object track-
ing domain, including: Average Multi-Object Tracking Accu-
racy (AMOTA) and Average Multi-Object Tracking Precision
(AMOTP) to assess overall tracking quality across different
detection confidence thresholds, and Mostly Tracked trajec-
tories (MT), Mostly Lost trajectories (ML) and ID Switches
(IDS) to quantify identity preservation. These metrics col-
lectively characterize the key aspects of tracking baselines.

V. BASELINE FRAMEWORK

We implement a series of baseline methods for AGC 3D
object detection and tracking, so as to establish performance
references for subsequent research. As illustrated in Fig.
existing cooperative perception methods can generally
be categorized into early fusion, intermediate fusion, and
late fusion paradigms. This benchmark implements all three
categories, including our proposed AGILE (Aerial-Ground
cooperative Instance-LEvel fusion) method. Together, these
methods form a comprehensive framework for aerial-ground
cooperative perception.
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Fig. 7: Different Fusion Stages for cooperative perception

A. AGILE Framework

We first present AGILE, an instance-level intermediate
fusion framework for joint detection and tracking tasks.



TABLE III: Detection and tracking performance under various latency conditions on the Griffin-25m dataset.

Detection Metrics Tracking Metrics Comm. Cost
Fusion Stage ~ Method  Latency (ms) (" ypp™ " A0F | AMOTA 1 AMOTP | MT T ML | IDS |  BPS |
No Fusion - 0 0.366 0.398  0.492 0.363 1.295 16 49 5 0

0 0.626 0.385 0.795 0.653 0.869 34 16 38

Early Fusion Concat 200 0.510 0.502 0.776 0.561 1.044 25 21 34 ~3x108
400 0416 0522 0.714 0.418 1.189 19 32 26
0 0.412 0.484 0.708 0.435 1.130 21 35 23

Instance Fusion ~ AGILE 200 0.396 0.484 0.705 0.410 1.165 16 36 20 ~6x10°
400 0.373 0.505 0.709 0.366 1.212 15 40 12
0 0.377 0.357 0.511 0.369 1.078 14 55 16

Late Fusion = Hungarian 200 0.363 0.362  0.498 0.357 1.060 15 55 11 ~1x10*
400 0.339 0.350 0.458 0.310 1.129 15 58 11

As depicted in Fig. [/| (2.a), most existing intermediate
fusion approaches [5], [27], [13], [28], [29] utilize Bird’s
Eye View (BEV) features as the bridge for fusion. These
methods spatially align BEV representations from different
perspectives and merge features from overlapping regions.
While effective for V2V or V2I cooperation, this paradigm
faces significant challenges in aerial-ground scenarios. The
substantial dynamic pitch and roll angles of UAVs cause the
generated BEV feature plane to deviate from being parallel
to the actual ground, compromising fusion accuracy.

Alternatively, drawing on prior research [30], [31], AGILE
adopts the instance-level intermediate fusion paradigm, as
shown in Fig. [/] (2.b). Instance-level object queries are
generated from BEV features, with each query comprising a
feature vector encoding the target’s semantic and geometric
attributes, along with an explicit 3D reference point (typically
the target’s center position). These queries dynamically focus
on potential targets in the scene via spatial attention mech-
anisms, offering fine-grained representations for subsequent
cross-view cooperation. Compared to dense BEV features,
these sparse instance queries are more straightforward to
align across perspectives and thus better suited for aerial-
ground cooperative scenarios.

Specifically, AGILE employs BEVFormer [32] as the
backbone network to generate independent BEV features
from both the aerial and ground views. Following Track-
Former’s design [33], instance queries are then derived
from the BEV features for each perspective. These queries
undergo temporal propagation and updating across frames,
corresponding to persistently tracked instances. New queries
are initialized per frame for emerging targets, while queries
for targets exiting the field of view are discarded. This
paradigm enables feature-level tracking, simultaneously pro-
ducing detection results and tracking IDs.

For the aerial view, we leverage flight altitude information
to estimate the ground position within the drone’s coordi-
nate system, guiding the initialization positions of instance
reference points. These queries first interact with the UAV-
maintained BEV features to update their features, reference
points, and confidence scores. High-confidence queries are
then passed to the ground platform.

In the ground vehicle view, transmitted queries are ex-
plicitly aligned by projecting their reference points to the

vehicle coordinate system. Additionally, we implement the
implicit alignment approach from UniV2X [31], where query
features concatenated with rotation matrices are processed
through a three-layer multilayer perceptron network (MLP)
for feature refinement. Cross-perspective query matching
is then performed based on Euclidean distances between
reference points and feature similarities. Matched query pairs
undergo feature fusion via another three-layer MLP, while
unmatched high-confidence queries are preserved. Together,
these queries are used to generate detection boxes and
tracking IDs, optimized end-to-end by computing the loss
against ground truth trajectories.

B. Early Fusion

The early fusion method integrates raw images from
drones and vehicles at the data level. After transforming
drone camera extrinsics to the vehicle coordinate system,
all images are concatenated and fed into BEVFormer [32] to
generate unified BEV features. The downstream architecture
mirrors AGILE, offering it joint detection and tracking
capability. Although communication costs limit its practical
applicability, this method preserves maximal input informa-
tion integrity. Its performance can be considered the upper
bound of cooperative perception capabilities under identical
testing conditions.

C. Late Fusion

The late fusion method first applies BEVFormer [32] in-
dependently to generate detection boxes from both aerial and
ground perspectives. These results are then fused via Hungar-
ian matching based on Euclidean distances between bound-
ing boxes. We further implement a tracking-by-detection
baseline using AB3DMOT [34], employing Kalman filtering
for motion prediction and the Hungarian algorithm for cross-
frame association.

VI. EXPERIMENTS
A. Implementation Details

We evaluated our approach with Griffin-25m, Griffin-40m,
and Griffin-Random, each divided into training and validation
sets at an 8:2 ratio. The cooperative perception evaluation is
conducted within a 102.4m x 102.4m area centered on the
vehicle. For a fair comparison, all baseline methods adopt



the same backbone network and training/testing strategies.
The target categories are merged into three classes: vehicles,
pedestrians, and two-wheelers. The BEVFormer components
in AGILE, early fusion, and late fusion frameworks are all
implemented based on ResNet-50. All networks are trained
using the AdamW optimizer with a learning rate of 2e-4
and a batch size of 8, distributed across 4 NVIDIA 3090
GPUs. Due to space limitations, only representative metrics
are discussed in the paper, while the complete experiment
results and corresponding model weights are available in our
GitHub repository.

B. Results and Analysis

Table |I1I] presents the detection and tracking performance
for car class under various latency conditions on the Griffin-
25m dataset. The comparison includes no fusion (ground
view only), early fusion, late fusion baselines, and our
proposed AGILE framework.

Performance Improvement by Cooperation. Cooperative
methods significantly outperform the no-fusion baseline,
validating the effectiveness of aerial-ground collaboration.
Under zero latency conditions, all fusion methods exhibit
distinct improvements compared to the no-fusion approach.
The early fusion method achieves a 71% increase in AP for
detection and a 79.9% boost in AMOTA for tracking, but
its communication cost far exceeds other methods, limiting
its practical applicability. AGILE provides a more tempered
improvement, with a 12.6% gain in AP, a 19.8% increase
in AMOTA, and much reduced communication overhead.
Late Fusion, though offering only a 3.0% AP gain, low-
ers communication costs by three orders of magnitude.
Overall, AGILE demonstrates a favorable trade-off between
performance and communication cost in both detection and
tracking, highlighting the advantages of instance-level fusion
for temporal association.

Robustness to Communication Latency. With increasing
communication latency, the performance of all fusion meth-
ods declines, but AGILE demonstrates the highest robustness
to latency. Although early fusion still achieves the highest
precision at each latency level, it suffers the most significant
percentage drop, as -33.6% in AP and -36.0% in AMOTA
at 400ms latency. AGILE and late fusion exhibit similar
percentage decreases in performance; however, AGILE con-
sistently outperforms late fusion across all latency conditions.
These results indicate that AGILE is more robust to latency
interference, making it well-suited for dynamic communica-
tion environments in real-world scenarios.

Generalization to Flight Altitude Changes. Table
presents the detection and tracking performance of different
methods across datasets, highlighting the impact of UAV
altitude on cooperative perception. The results demonstrate
that cooperative perception methods are sensitive to changes
in UAV altitude, with performance varying significantly
across different flight heights.

On the Griffin-25m dataset, thanks to the suitable tar-
get scales observed from the UAV perspective, cooperative

TABLE 1V: Detection and tracking performance across
datasets with varying UAV altitudes. The values in paren-
theses indicate the relative improvement compared to the No
Fusion method. Comparing the performance improvement
of the same method across different datasets reflects its
robustness to UAV altitude variations.

Dataset Fusion Stage AP 1 AMOTA 1
No Fusion 0.366 0.363
Grfin2sm e ion 0415 (12.66) 0433 (1954
Late Fusion 0.377 (+3.0%) 0.369 (+1.7%)
No Fusion 0.351 0.371
Griffin-40m Early Fusion  0.495 (+41.0%) 0.543 (+46.4%)

Instance Fusion 0.359 (+2.3%)
Late Fusion 0.354 (+0.9%)

0.397 (+7.0%)
0.387 (+4.3%)

No Fusion 0.465
Early Fusion  0.580 (+24.7%)
Instance Fusion 0.408 (-12.3%)
Late Fusion 0.375 (-19.4%)

0.491
0.646 (+31.6%)
0.426 (-13.2%)
0.394 (-19.8%)

Griffin-Random

methods achieve their maximum improvements over the no-
fusion baseline. On Griffin-40m, the increased altitude of
40m reduces the target scale and increases depth estimation
difficulty, leading to a reduction in fusion gains. AGILE
and the late fusion method show marginal gains of only
2.3% and 0.9% in AP, and 7.0% and 4.3% in AMOTA,
respectively. This reduction suggests that fusion algorithms,
particularly those operating at later stages, struggle to detect
and track small ground targets from higher altitudes. Notably,
on Griffin-Random with random UAV altitudes between 20m
and 60m, both AGILE and late fusion underperform the
no-fusion baseline, likely due to inconsistent target scales
and disrupted cross-view alignment caused by the varying
altitudes. These results highlight the need for more adaptive
fusion mechanisms to handle dynamic changes in UAV
perspectives.

VII. CONCLUSION

This paper introduces a novel framework for aerial-ground
cooperative 3D detection and tracking in autonomous driv-
ing. It introduces the Griffin dataset, a multi-modal collection
with occlusion-aware annotations and drone dynamics sim-
ulation, and AGILE, an efficient instance-level intermediate
fusion method for joint detection and tracking tasks.

Experiments confirm the efficacy of cooperative perception
while revealing several limitations of current methods, such
as the generalization capability across varying UAV altitudes
and the trade-off between communication bandwidth and
perception performance.

Future research can focus on three key directions: (1)
developing altitude-adaptive fusion mechanisms capable of
handling dynamic aerial perspectives; (2) incorporating
scale-awareness into cooperative perception frameworks to
address altitude-related challenges; and (3) bridging the
simulation-to-reality gap for reliable real-world deployments.
Addressing these challenges will be crucial for achieving


https://github.com/wang-jh18-SVM/Griffin
https://github.com/wang-jh18-SVM/Griffin

robust aerial-ground cooperative perception in dynamic and
unpredictable real-world conditions.
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