
Simplifying and Stabilizing Model Selection in
Unsupervised Domain Adaptation

Dapeng Hu1 Mi Luo3 Jian Liang4 ∗ Chuan-Sheng Foo2,1 ∗
1Centre for Frontier AI Research, A*STAR, Singapore
2Institute for Infocomm Research, A*STAR, Singapore

3National University of Singapore
4CRIPAC & MAIS, Institute of Automation, Chinese Academy of Sciences

lhxxhb15@gmail.com, romyluo7@gmail.com,
liangjian92@gmail.com, foo_chuan_sheng@i2r.a-star.edu.sg

Abstract

Ensuring reliable model selection is crucial for unleashing the full potential of
advanced unsupervised domain adaptation (UDA) methods to improve model
performance in unlabeled target domains. However, existing model selection
methods in UDA often struggle to maintain reliable selections across diverse UDA
methods and scenarios, suffering from highly risky worst-case selections. This
limitation significantly hinders their practicality and reliability for researchers and
practitioners in the community. In this paper, we introduce EnsV, a novel ensemble-
based approach that makes pivotal strides in reliable model selection by avoiding
the selection of the worst model. EnsV is built on an off-the-shelf ensemble that is
theoretically guaranteed to outperform the worst candidate model, ensuring high
reliability. Notably, EnsV relies solely on predictions of unlabeled target data
without making any assumptions about domain distribution shifts, offering high
simplicity and versatility for various practical UDA problems. In our experiments,
we compare EnsV to 8 competitive model selection approaches. Our evaluation
involves 12 UDA methods across 5 diverse UDA benchmarks and 5 popular UDA
scenarios. The results consistently demonstrate that EnsV stands out as a highly
simple, versatile, and reliable approach for practical model selection in UDA
scenarios. Code is available at https://github.com/LHXXHB/EnsV.

1 Introduction

Deep learning has achieved incredible advancements in various tasks through supervised learning
with large labeled datasets [1]. However, obtaining labels can be expensive, and deep models often
struggle to generalize to unlabeled data sampled from unseen distributions [2]. Domain adaptation [3]
tackles this challenge by transferring knowledge from a labeled source domain to a target domain
with limited labels but a similar task. Unsupervised domain adaptation [4] (UDA), particularly,
has garnered significant attention due to its practical assumption that the target domain is entirely
unlabeled, witnessing the development of many effective methods [5–8] and practical settings [9–12].

However, the successful application of UDA methods across diverse tasks relies heavily on select-
ing appropriate hyperparameters. Sub-optimal hyperparameters can cause state-of-the-art UDA
methods to underperform compared to the source model without adaptation [13, 14], emphasizing
the significance of model selection, also called hyperparameter selection or validation, in UDA.
In a typical model selection scenario, we are presented with a set of m candidate models with
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Figure 1: Overview of our model selection approach EnsV for unsupervised domain adaptation.

the weights {θi}mi=1. These models are trained using a given UDA method with a correspond-
ing set of hyperparameters {ηi}mi=1. The goal is to identify the candidate model that exhibits the
best performance on the unlabeled target domain and subsequently adopt the associated hyperpa-
rameter value for η. This model selection problem remains challenging and under-explored in
UDA due to cross-domain distribution shifts and the absence of labeled target data. Existing ap-
proaches can be categorized into two types. The first type involves leveraging labeled source data for
target-domain model selection [9, 15–17]. The second type designs unsupervised metrics based on
priors of the learned target-domain structure and utilizes them for model selection [18, 13, 14, 19].
Despite their specific designs, all these methods encounter challenges in avoiding the selection
of poor or even the worst models across various UDA methods and settings. This renders the
adaptation ineffective or even harmful, thereby constraining their adoption by researchers and
practitioners in the community [14]. For instance, in Table 1, we compare the worst-case selec-
tion statistics for all these model selection methods in standard closed-set UDA and partial-set
UDA settings, two settings extensively studied in prior works [16, 13]. The comparison reveals
that all the methods exhibit occasional or even frequent worst-case model selection situations.

Table 1: Statistics for worst-case selections
are provided across 110 closed-set UDA tasks
(potentially an additional 21 tasks on Domain-
Net [20]) and 24 partial-set UDA tasks for all
the considered model selection methods. The
statistics are presented as the count of worst-
case selections divided by the total count of
tasks. Bold font indicates the best worst-case
avoidance.

Method closed-set UDA partial-set UDA
SourceRisk [9] 16 / 110 2 / 24
IWCV [15] 15 / 110 3 / 24
DEV [16] 9 / 110 1 / 24
RV [17] 2 / 110 1 / 24
Entropy [18] 15 / 131 7 / 24
InfoMax [14] 9 / 131 12 / 24
SND [13] 33 / 131 3 / 24
Corr-C [19] 80 / 131 4 / 24
EnsV (Ours) 0 / 131 0 / 24

In this paper, we resolve this predicament by intro-
ducing EnsV, a novel ensemble-based validation ap-
proach. Our method emerges from a meticulous ex-
amination of the model selection problem, revealing
that the problem setting inherently provides an off-
the-shelf ensemble of candidate models. Surprisingly,
many existing model selection studies overlook this
"free lunch", treating each candidate model indepen-
dently. Through a straightforward theoretical analysis
of the ensemble, we observe that it strictly surpasses
the worst candidate model, grounded in a very weak
and reasonable assumption. EnsV takes an additional
step, utilizing the ensemble as a role model for di-
rectly assessing candidate models during the model
selection process. This strategy ensures the secure
avoidance of selecting the worst candidate model,
thereby enhancing the reliability of model selection.

2 Methodology

We consider a C-way image classification task to introduce the concept of unsupervised domain adap-
tation (UDA). In UDA, we typically have a labeled source domain Ds = {(xi

s, y
i
s)}

ns
i=1 comprising

ns annotated source images xs and their corresponding labels ys. Additionally, there is an unlabeled
target domain, Dt = {xi

t}
nt
i=1, containing only nt unlabeled target images xt. Despite the tasks being

similar, there exist data distribution shifts between the two domains. The primary objective of UDA
is to accurately predict the unavailable target labels, {yit}

nt
i=1, by leveraging a discriminative mapping

f(x, θ), which is learned using data from two domains. Here, θ ∈ Rd represents the weights of
the trained UDA model. When presented with an input image x, the model generates a probability
prediction vector, p = f(x, θ), where p ∈ RC and

∑C
i=1 p

i = 1.
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For model selection in UDA, we aim to determine the optimal hyperparameter η from a set of m
candidate values {ηi}mi=1. The hyperparameter η can represent the learning rate, loss coefficients,
architectural settings, training iterations, and more. By training UDA models using the m different
values of η, we obtain corresponding models with weights denoted as {θi}mi=1. In UDA, the objective
of model selection is to pinpoint the model θk that demonstrates the best performance on the unlabeled
target domain. Subsequently, we select the corresponding hyperparameter ηk as the optimal choice
for potential adaptation with unlabeled target samples from the exact target domain. We illustrate the
problem setting in Figure 1. Without loss of generality, in this paper, we assume m is greater than
1, and candidate models have different weights θ, resulting in different discriminative mappings of
f(x, θ). For clarity, we treat both θ and the model interchangeably in our presentation. This also
applies to model selection, hyperparameter selection, and validation.

2.1 Ensemble: The Overlooked "Free Lunch" in Model Selection

We first adopt a novel perspective in analyzing the challenge of model selection in UDA via the lens
of the ensemble. In this paper, unless otherwise specified, the ensemble refers to prediction-based
ensembling, i.e., 1

m

∑m
i=1 f(x, θi) for a sample x. Typically, two concerns arise with the ensemble:

one pertains to the efficiency issue caused by training multiple models, and the other relates to the lack
of diversity among candidate models. In model selection, we observe that the problem setting itself
inherently offers a range of off-the-shelf candidate models, naturally addressing the efficiency issue.
Furthermore, all candidate models are trained using a UDA method with varying hyperparameters,
yielding diverse yet effective discriminative abilities. This naturally eases the diversity concern. As a
surprising consequence, the ensemble appears to be a "free lunch" in the context of model selection
in UDA, a point that has been previously overlooked by researchers. To gain a deeper insight into the
effectiveness of the ensemble, we present a theoretical analysis grounded in the proposition below.
Proposition 1 Given negative log-likelihood (NLL) as the loss function, defined as l(p, y) = − log py ,
and considering a random target sample x with label y, the following inequality can be established
between the loss of the ensemble 1

m

∑m
i=1 f(x, θi), the averaged loss of all candidate models {θi}mi=1,

and the loss of the worst model θworst:

l(
1

m

m∑
i=1

f(x, θi), y) <
1

m

m∑
i=1

l(f(x, θi), y) < l(f(x, θworst), y).

Kindly refer to Appendix A for the proof. This proposition theoretically guarantees that the ensemble
always outperforms the worst candidate model. In contrast, as demonstrated in Table 1, existing
model selection methods cannot guarantee to avoid selecting the worst candidate model.

2.2 Ensemble as a Role Model for Model Selection

When tackling model selection in UDA, recent trends have favored target-domain specific methods [13,
14, 18, 19]. These methods typically utilize unlabeled data to indirectly gauge specific properties of
target predictions output by each candidate model, often enjoying high simplicity and effectiveness.
In contrast, we initially consider a straightforward upper-bound model selection solution. This
involves selecting models based on their accuracy, measured against the unattainable target ground
truth {yit}

nt
i=1. The ideal solution implies that if we can obtain a reliable approximation of the

true target labels, we can directly use it for accurate model selection. To achieve this, we employ
the previously mentioned off-the-shelf ensemble as a reliable role model and select the model
that generates predictions closest to this role model among all candidates. These two direct steps
constitute an elegantly simple model selection approach known as ensemble-based validation (EnsV).
We present a comprehensive illustration of EnsV in Figure 1.

Step 1: Ensemble as a role model. To begin with, for each unlabeled target sample x, we consider
the ensemble 1

m

∑m
i=1 f(x, θi) as a reliable estimation of its ground truth. This enables us to obtain

reliable predictions for all target data, denoted as { 1
m

∑m
i=1 f(xj , θi)}nt

j=1. These ensembles serve as
our role model, providing guidance for accurate model selection in the subsequent step.

Step 2: Model selection. In this step, we utilize the role model to assess all candidate models and
select the one with the highest similarity. For simplicity, EnsV involves a direct measurement of
accuracy between the role model { 1

m

∑m
i=1 f(xj , θi)}nt

j=1 and the predictions made by each candidate
model, such as {f(xj , θi)}nt

j=1 for the model with weights θi. We then select the model θk with the
highest accuracy and determine the optimal value ηk for the hyperparameter η.
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Table 2: Closed-set UDA (CDA) accuracy (%) on DomainNet-126. bold: Best value.

Method CDAN [6] BNM [8] ATDOC [26]
→ C → P → R → S avg → C → P → R → S avg → C → P → R → S avg

Entropy [18] 67.09 65.80 74.42 59.34 66.66 63.36 64.28 74.31 48.69 62.66 63.75 61.85 79.60 52.17 64.34
InfoMax [14] 67.09 65.80 74.42 59.34 66.66 67.05 64.28 74.31 55.67 65.33 63.75 61.85 79.60 52.17 64.34
SND [13] 67.09 64.68 74.42 59.34 66.38 56.56 54.50 74.31 42.37 56.93 63.75 61.85 79.60 47.00 63.05
Corr-C [19] 57.35 62.88 74.42 54.63 62.32 59.75 63.41 77.62 42.37 60.79 59.98 62.27 74.42 53.69 62.59
EnsV 65.88 65.27 74.44 57.42 65.75 67.86 66.06 77.62 57.69 67.31 70.30 68.44 80.01 61.73 70.12
Worst 57.35 60.76 73.44 51.41 60.74 55.79 54.50 74.31 42.37 56.74 59.98 61.85 74.42 47.00 60.81
Best 67.09 65.80 74.44 59.34 66.66 67.86 66.50 78.68 58.49 67.88 70.30 68.44 80.38 62.23 70.34

3 Experiments

Setup. We use diverse and widely-used UDA benchmarks: Office-31 [21], Office-Home [22],
VisDA [23], DomainNet-126 [20], and GTAV [24]-to-Cityscapes [25]. As for baselines, we assess
all the model selection methods listed in Table 4 (Appendix). Kindly refer to Appendix B for the
introduction of these model selection methods and Appendix C for detailed computations. With these
validation methods, we perform model selection for various UDA methods across different UDA
settings. For CDA, we consider ATDOC [26], BNM [8], CDAN [6], MCC [27], MDD [28], and
SAFN [7]. For partial-set UDA, we consider PADA [10] and SAFN [7]. For OPDA, we consider
DANCE [11]. For SFUDA, we consider SHOT [12] and DINE [26]. For segmentation, we consider
AdaptSeg [29] and AdvEnt [30]. Detailed hyperparameter settings are provided in Appendix D.

Table 3: OPDA H-score [31] (%) on Office-Home. SFUDA accuracy (%) on Office-31 and VisDA.

Method DANCE [11] SHOT [12] DINE [26]
→Ar →Cl →Pr →Re avg →A →D →W avg T→V

Entropy [18] 32.00 39.48 27.52 38.08 34.27 71.67 90.76 88.68 83.70 71.99
InfoMax [14] 32.00 39.48 27.52 38.01 34.25 71.67 90.76 88.68 83.70 71.99
SND [13] 15.05 4.33 23.75 16.79 14.98 71.67 90.76 88.68 83.70 74.43
Corr-C [19] 29.60 4.33 23.75 16.79 18.62 71.58 90.76 90.19 84.18 71.99
EnsV 77.01 51.36 78.81 68.65 68.96 74.85 94.78 91.82 87.15 74.43
Worst 15.05 4.33 15.17 16.79 12.84 71.56 90.76 88.68 83.67 71.99
Best 77.01 66.29 78.81 69.81 72.98 75.06 94.78 93.33 87.72 76.17

Results. For closed-set UDA (CDA), we compare all target-specific validation methods on the
large-scale benchmark DomainNet-126 (Table 2). EnsV consistently keeps the leading performance,
while other approaches exhibit high instability. In OPDA with label shift, we choose a typical method
DANCE for validation on Office-Home (Table 3). Prior model selection works have not explored this
challenging setting, resulting in poor selections. In contrast, our EnsV achieves selections close to
the best. For source-free UDA (SFUDA), we choose SHOT and DINE (Table 3). EnsV consistently
maintains near-best selections, while other target-specific approaches occasionally make near-worst
selections. Kindly refer to Appendix E for the full results and analysis of our EnsV method.

4 Discussions

Limitations. While EnsV consistently avoids worst-case selections, it encounters challenges related
to poor model selection performance in two specific scenarios: (i) The task of selecting the sole
optimal candidate from a pool where the majority are extremely poor, and (ii) Deciding between a
single poor model and a high-performing model.

Conclusions. Following a thorough empirical comparison of existing UDA model selection methods,
several key conclusions emerge: (i) The significance of model selection in impacting UDA methods’
deployment performance becomes evident. Relying on fixed hyperparameters or limited analyses falls
short. We stress the importance of increased attention and transparent reporting of validation methods,
aligning with recommendations in [16, 13, 14]. (ii) Existing model selection methods prove unreliable
in diverse UDA methodologies and real-world settings like open-set and source-free UDA. These
methods struggle to maintain effectiveness, presenting a substantial risk to the successful application
of UDA in various scenarios. (iii) Our EnsV distinguishes itself with exceptional performance
across various UDA scenarios, including open-partial-set UDA and source-free UDA, consistently
avoiding worst-case selections. As a post-hoc method, EnsV leverages an off-the-shelf ensemble of
pre-existing candidate models, eliminating the need for extra memory and time. We believe EnsV
can serve as a simple, versatile, and highly reliable model selection approach in UDA studies.
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A Proof of Proposition 1

Given the use of negative log-likelihood (NLL) as the loss function, defined as l(p, y) = − log py.
We first prove the first inequality using Jensen’s inequality, which states that for a real-valued, convex
function φ with its domain as a subset of R and numbers t1, . . . , tn in its domain, the inequality
φ
(
1
n

∑n
i=1 ti

)
≤ 1

n

∑n
i=1 φ(ti) holds. Given that − log is a convex function, and assuming m > 1

with candidate models having different weights θ, resulting in distinct discriminative mappings of
f(x, θ), we can strictly obtain l( 1

m

∑m
i=1 f(x, θi), y) < 1

m

∑m
i=1 l(f(x, θi), y) without the equal

situation. Next, we leverage the property of inequalities to prove the second inequality. Here, θworst

denotes the worst candidate model, i.e., the one with the largest loss. For any other candidate
model θi, we have l(f(x, θi), y) < l(f(x, θworst), y). This ensures that 1

m

∑m
i=1 l(f(x, θi), y) <

1
m

∑m
i=1 l(f(x, θworst), y), or more explicitly, 1

m

∑m
i=1 l(f(x, θi), y) < l(f(x, θworst), y). Substi-

tuting the NLL loss with any strongly convex loss function would still uphold the proposition. This
proposition theoretically guarantees that the ensemble strictly outperforms the worst candidate model.

B Related Work

Table 4: Comparing mainstream methods for model selection in unsupervised domain adaptation.

Method covariate
shift

label
shift

w/o
source data

w/o
hyperparameters

w/o
extra training

worst-case
avoidance

SourceRisk [9] ✗ ✗ ✗ ✗ ✓ ✗
IWCV [15] ✓ ✗ ✗ ✗ ✗ ✗
DEV [16] ✓ ✗ ✗ ✗ ✗ ✗
RV [17] ✓ ✗ ✗ ✗ ✗ ✗
Entropy [18] ✓ ✗ ✓ ✓ ✓ ✗
InfoMax [14] ✓ ✗ ✓ ✓ ✓ ✗
SND [13] ✓ ✓ ✓ ✗ ✓ ✗
Corr-C [19] ✓ ✗ ✓ ✓ ✓ ✗
EnsV (Ours) ✓ ✓ ✓ ✓ ✓ ✓

Unsupervised domain adaptation (UDA) is initially studied in a closed-set setting (CDA) where
only covariate shift [15] is considered as the domain shift, and the two domains share the same
label set. Recent research has explored many real-world UDA scenarios by incorporating label shift,
where the two domains have distinct label sets. This includes partial-set UDA (PDA) [10], where
several source classes are missing in the target domain, open-set UDA (ODA) [32], where the target
domain contains samples from unknown classes, and open-partial-set UDA (OPDA) [11], where there
are only some overlaps in the label sets across domains. More recently, source-free UDA settings
(SFUDA) [33, 12] have been explored, where only the source model instead of source data is available
for target adaptation, potentially addressing privacy concerns in the source domain. Subsequently, in
the context of black-box domain adaptation [34], the privacy of the source domain is fully safeguarded.
Specifically, the research community has made significant efforts to develop effective UDA methods
in image classification [9, 6] and semantic segmentation [29, 30], which can be seen through two
distinct research directions. The first direction focuses on aligning the distributions across domains by
minimizing specific discrepancy measures [35–39] or using adversarial learning to maximize domain
confusion [9]. Especially, adversarial learning has become a popular approach and has been explored
at different levels for domain alignment, including image-level [40], manifold-level [9, 41, 6], and
prediction-level [5, 29, 30, 28]. The second direction focuses on target-oriented learning, aiming
to learn a good structure for the target domain. This includes self-training approaches [42, 12, 26]
and target-specific regularizations [7, 8, 27]. To thoroughly assess the efficacy of model selection
baselines, we opt for a diverse set of UDA methods across various UDA scenarios in our model
selection experiments and then utilize these baselines to choose the appropriate hyperparameters for
different UDA methods.

Model selection in UDA is significant in the practical deployment of UDA methods but remains
relatively under-explored. Efforts to address this challenge can be broadly categorized into two lines.
Early approaches to model selection in UDA focused on estimating the target domain risk through
labeled source data. SourceRisk [9] utilized a hold-out labeled source validation set to guide model
selection based on source risk. To mitigate the impact of domain shift on source estimation, [15]
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introduced Importance-Weighted Cross-Validation (IWCV), which re-weights source risk using a
source-target density ratio estimated in the input space. Building upon this, [16] improved IWCV by
introducing Deep Embedded Validation (DEV), which estimates the density ratio in the feature space
and offers lower variance. [17] proposed a novel Reverse Validation approach (RV) that leveraged
reversed source risk for selection. However, source-based validation methods often necessitate
additional model training to handle domain shifts, rendering them cumbersome and less reliable. In
contrast, recent model selection methods have shifted their focus exclusively to unlabeled target data,
employing specifically designed metrics for model selection. For instance, [18] introduced the mean
Shannon’s Entropy of target predictions as a model selection metric, promoting confident predictions.
[14] proposed the use of Input-Output Mutual Information Maximization (InfoMax)[43] as a metric,
augmented with class-balance regularization over Entropy. [13] introduced Soft Neighborhood
Density (SND), a novel metric focusing on neighborhood consistency. [19] presented Corr-C, a class
correlation-based metric that evaluates both class diversity and prediction certainty simultaneously.
Our EnsV approach aligns with the latter line of research. EnsV approaches the model selection
problem from a novel perspective, leveraging the power of the off-the-shelf ensemble. Importantly, it
operates without making any assumptions about cross-domain distribution shifts or the learned target-
domain structure, making it suitable for a variety of UDA scenarios. A comprehensive comparison,
as presented in Table 4, underscores that EnsV stands out as a simple and versatile approach.

Ensemble methods, which harness the collective power of a pool of models through prediction
averaging, have been extensively studied in the machine learning community for enhancing model
performance [44–47] and improving model calibration [48, 49]. In the era of deep learning, the
efficiency of ensembling has garnered significant attention due to the high training cost of deep
models. Efficient solutions have been proposed, such as using partially shared parameters [50–52]
and leveraging intermediate snapshots [53–55]. Recently, weight averaging has gained attention as
an efficient alternative to prediction averaging during inference [56–60]. In addition, diversity is
considered crucial for effective ensembles. Various approaches have been explored to achieve diverse
checkpoints, including bootstrapping [61], random initializations [62], tuning hyperparameters [63,
64, 57], and combining multiple strategies [65]. Different from existing ensemble applications, our
work innovatively and elegantly applies ensemble to help address the open problem of unsupervised
model selection in domain adaptation.

C Model Selection Baselines

Let {pit}
nt
i=1 represent the target probability output, and let P ∈ Rnt×C denote the prediction matrix.

We introduce the practical computation involved in the existing model selection approaches.

Source risk. The Source risk approach (SourceRisk) [9] utilizes a hold-out source validation set to
select the model θk with the best performance on this set as the final choice. However, this method is
limited in its ability to handle significant domain shifts between domains and introduces additional
hyperparameters during the splitting of the validation set.

Importance-weighted source risk. Directly taking source risk as target risk is unreliable due to
domain distribution shifts between domains. To address this challenge, [15] propose Importance-
Weighted Cross Validation (IWCV), which re-weights the source risk using a source-target density
ratio estimated in the input space. [16] further enhance IWCV by introducing Deep Embedded
Validation (DEV), which estimates the density ratio in the feature space using a domain discriminator
and controls the variance. Both IWCV and DEV rely on the importance weighting technique [66],
which assumes that the target distribution is included in the source distribution [15], making the
weighting unreliable in scenarios with severe covariate shift and label shift. In addition, both IWCV
and DEV involve hyperparameters in extra model training for the density ratio estimation.

Reversed source risk. Building upon the concept of reverse cross-validation [67], [17] propose a
novel Reverse Validation approach (RV). This method first conducts source-to-target adaptation to
obtain a UDA model, which enables the acquisition of pseudo labels for the target unlabeled data.
Subsequently, Reverse Validation performs a reversed adaptation from the pseudo-labeled target to the
source and utilizes the source risk in this reversed adaptation task for validation. Reverse Validation
heavily relies on the symmetry between domains and is unable to handle label shift. Additionally,
this approach involves hyperparameters for dataset splitting.
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Entropy. [18] propose using the mean Shannon’s Entropy of target predictions as a validation metric,
which encourages confident predictions. The motivation behind this is that the decision boundary
should avoid crossing high-density regions in the target structure [68, 69]. Lower Entropy scores
indicate better model performance for this metric.

Entropy = − 1

nt

nt∑
i=1

C∑
j=1

Pij logPij , InfoMax = −
C∑

j=1

p̄ log p̄+
1

nt

nt∑
i=1

C∑
j=1

Pij logPij

Information maximization. The Entropy score only considers sample-wise certainty, which can
be misleading when confident predictions are biased towards a small fraction of classes [13]. To
address this challenge, [14] utilize input-output mutual information maximization (InfoMax) [43] as a
validation metric. In contrast to Entropy, InfoMax includes an additional class-balance regularization
by encouraging the averaged prediction p̄ = 1

nt

∑nt
i=1 Pij , p̄ ∈ RC to have a large entropy. Higher

InfoMax scores indicate better model performance according to this metric.

Neighborhood consistency. [13] introduce Soft Neighborhood Density (SND), a novel metric that
focuses on neighborhood consistency. SND leverages softmax predictions as features and constructs a
sample-sample similarity matrix. This matrix is transformed into a probabilistic distribution using the
softmax function: S = softmax(PPT /τ), S ∈ Rnt×nt . Here, τ is a small temperature parameter
that sharpens the distribution, enabling the differentiation between nearby and distant samples. SND
promotes high neighborhood consistency by encouraging samples to have similar predictions to other
points in their neighborhood, resulting in larger SND scores.

SND = − 1

nt

nt∑
i=1

nt∑
j=1

Sij logSij , Corr-C =
sum(diag(PTP ))

∥PTP∥F

Class correlation. [19] introduce Corr-C, a class correlation-based metric that evaluates class
diversity and prediction certainty simultaneously. Corr-C calculates the cosine similarity between the
class correlation matrix and an identity matrix. Lower Corr-C scores are indicative of better model
performance based on this metric.

D Hyperparameter Configurations

In our experiments, we adopt the setting of previous studies [16, 13] by tuning a single hyperparameter
for various UDA methods. The comprehensive hyperparameter settings can be found in Table 5. For
MCC [27] and MDD [28], we also explore different bottleneck dimensions: 256, 512, 1024, 2048.
Additionally, in semantic segmentation tasks, we consider the training iteration following SND [13].

E Full Experiments

E.1 Setup

Datasets. Our experiments encompass diverse and widely-used image classification benchmarks:
(i) Office-31[21] with 31 classes and 3 domains (Amazon (A), DSLR (D), and Webcam (W)); (ii)
Office-Home[22] with 65 classes and 4 domains (Art (Ar), Clipart (Cl), Product (Pr), and Real-
World (Re)); (iii) VisDA[23] with 12 classes and 2 domains (training (T) and validation (V)); and
(iv) DomainNet-126[20, 5] with 126 classes and 4 domains (Real (R), Clipart (C), Painting (P),
and Sketch (S)). Additionally, we conduct experiments in synthetic-to-real semantic segmentation,
specifically targeting the transfer from GTAV[24] to Cityscapes[25].

UDA methods. In our experiments, we assess all the model selection methods listed in Table 4.
With these validation methods, we perform model selection for various UDA methods across different
UDA settings. For CDA, we consider ATDOC [26], BNM [8], CDAN [6], MCC [27], MDD [28], and
SAFN [7]. For PDA, we consider PADA [10] and SAFN [7]. For OPDA, we consider DANCE [11].
For SFUDA, we consider the white-box method SHOT [12] and the black-box method DINE [34].
For domain adaptive semantic segmentation, we consider AdaptSeg [29] and AdvEnt [30]. During
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Table 5: Overview of the UDA methods validated and their associated hyperparameters

UDA method UDA Type Hyperparameter Search Space Default Value

ATDOC [26] closed-set loss coefficient {0.02, 0.05, 0.1,
0.2self-training λ 0.2, 0.5, 1.0, 2.0}

BNM [8] closed-set loss coefficient {0.02, 0.05, 0.1,
1.0output regularization λ 0.2, 0.5, 1.0, 2.0}

CDAN [6] closed-set loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

MCC [27] closed-set temperature {1.0, 1.5, 2.0,
2.5output regularization T 2.5, 3.0, 3.5, 4.0}

MDD [28] closed-set margin factor {0.5, 1.0, 2.0,
4.0output alignment γ 3.0, 4.0, 5.0, 6.0}

SAFN [7] closed/partial-set loss coefficient {0.002, 0.005, 0.01,
0.05feature regularization λ 0.02, 0.05, 0.1, 0.2}

PADA [10] partial-set loss coefficient {0.05, 0.1, 0.2,
1.0feature alignment λ 0.5, 1.0, 2.0, 5.0}

DANCE [11] open-partial-set loss coefficient {0.02, 0.05, 0.1,
0.05self-supervision η 0.2, 0.5, 1.0, 2.0}

SHOT [12] source-free loss coefficient {0.03, 0.05, 0.1,
0.3hypothesis transfer β 0.3, 0.5, 1.0, 3.0}

DINE [26] black-box loss coefficient {0.05, 0.1, 0.2,
1.0knowledge distillation β 0.5, 1.0, 2.0, 5.0}

AdaptSeg [29] closed-set loss coefficient {0.0001, 0.0003, 0.001,
0.0002output alignment λ 0.003, 0.01, 0.03}

AdvEnt [30] closed-set loss coefficient {0.0001, 0.0003, 0.001,
0.001output alignment λ 0.003, 0.01, 0.03}

Table 6: CDA accuracy (%) on Office-Home (Home). bold: Best value.

Method ATDOC [26] BNM [8] CDAN [6]
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg

SourceRisk [9] 66.63 52.54 78.57 76.61 68.59 62.44 50.74 77.53 74.76 66.37 55.00 42.65 69.50 68.81 58.99
IWCV [15] 67.97 54.03 78.31 79.26 69.89 66.56 48.16 74.09 73.28 65.52 61.31 41.24 67.17 71.93 60.41
DEV [16] 67.39 54.23 77.78 79.39 69.70 65.76 56.39 73.92 77.59 68.41 67.23 57.04 68.76 76.91 67.49
RV [17] 68.68 56.13 78.93 79.64 70.85 68.25 56.75 78.08 78.67 70.44 67.66 56.74 76.01 77.68 69.52
Entropy [18] 63.67 55.83 76.54 78.36 68.60 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
InfoMax [14] 63.67 55.63 77.61 78.36 68.82 66.28 54.49 74.15 77.64 68.14 67.66 57.56 76.37 77.45 69.76
SND [13] 63.67 55.63 76.54 77.54 68.34 66.28 54.49 74.15 77.64 68.14 67.94 57.56 76.96 77.68 70.04
Corr-C [19] 63.51 50.39 73.89 73.88 65.42 58.10 45.37 68.97 70.59 60.76 53.84 41.21 64.96 67.65 56.91
EnsV 68.70 58.05 79.81 80.41 71.74 68.61 57.38 78.08 79.54 70.90 67.88 57.56 77.39 78.19 70.25
Worst 62.89 50.39 73.89 73.88 65.26 58.10 45.37 68.96 70.59 60.75 53.80 41.21 64.78 67.65 56.86
Best 68.97 58.35 80.27 80.58 72.04 68.93 57.51 78.43 79.57 71.11 68.19 57.90 77.44 78.19 70.43

Method MCC [27] MDD [28] SAFN [7] Home
→Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg →Ar →Cl →Pr →Re avg AVG

SourceRisk [9] 66.57 56.53 79.55 80.90 70.89 62.53 54.43 75.27 75.55 66.94 63.54 51.34 73.66 74.54 65.77 66.26
IWCV [15] 68.69 58.93 80.37 80.08 72.02 64.20 56.50 73.78 74.28 67.19 64.31 52.36 72.31 74.29 65.82 66.81
DEV [16] 68.81 58.07 78.54 80.10 71.38 64.42 56.94 76.85 75.94 68.54 63.15 50.47 71.20 74.54 64.84 68.39
RV [17] 70.40 58.80 80.63 80.39 72.56 66.57 55.75 76.60 76.90 68.96 64.31 50.13 73.77 74.93 65.78 69.68
Entropy [18] 69.29 59.33 80.63 80.96 72.55 66.54 57.63 77.27 77.45 69.72 59.85 46.41 72.51 73.18 62.99 68.63
InfoMax [14] 66.58 58.48 79.12 80.81 71.25 66.54 57.74 77.27 77.45 69.75 64.56 49.71 73.77 73.18 65.31 68.84
SND [13] 69.05 55.61 79.72 79.10 70.87 51.34 38.01 77.61 68.46 58.86 57.90 46.41 67.04 68.18 59.88 66.02
Corr-C [19] 69.05 55.61 79.72 79.10 70.87 47.79 31.69 63.40 60.63 50.88 62.66 46.41 68.83 68.18 61.52 61.06
EnsV 69.92 59.50 80.30 80.86 72.65 66.46 57.81 77.61 76.51 69.60 65.91 52.18 74.51 75.57 67.04 70.36
Worst 62.72 54.63 76.19 78.19 67.93 47.79 31.69 63.40 60.63 50.88 57.90 46.41 67.04 68.18 59.88 60.26
Best 70.68 59.95 80.93 81.02 73.14 66.75 58.36 77.61 77.45 70.04 66.59 53.14 74.90 75.57 67.55 70.72

selection, we explore 7 candidate values for each hyperparameter. Specifically, we select the loss
coefficient for ATDOC, BNM, CDAN, PADA, SAFN, DANCE, SHOT, DINE, AdaptSeg, and AdvEnt,
while the margin is selected for MDD and the temperature for MCC. Additionally, we perform two
complex two-hyperparameter validation tasks. For classification, we select the bottleneck dimension
among 4 options in MCC and MDD, whereas for segmentation, we select the training iteration among
8 options in AdaptSeg and AdvEnt.

Implementation details. We train UDA models using the Transfer Learning Library2 on a single
RTX TITAN 16GB GPU with a batch size of 32 and a total number of iterations of 5000. Unless
specified, checkpoints are saved at the last iteration.We adopt ResNet-101 [70] for VisDA and
segmentation tasks, ResNet-34 [70] for DomainNet, and ResNet-50 [70] for other benchmarks. We

2https://github.com/thuml/Transfer-Learning-Library
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Table 7: CDA accuracy (%) on Office-31 (Office) and VisDA.

Method ATDOC [26] BNM [8] CDAN [6]
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V

SourceRisk [9] 72.56 88.96 87.80 83.11 67.79 72.92 90.36 89.43 84.24 70.51 63.90 91.16 89.06 81.37 64.50
IWCV [15] 72.56 86.14 86.54 81.75 67.79 72.92 85.54 89.43 82.63 76.94 63.90 69.08 58.74 63.91 64.50
DEV 72.56 86.14 86.54 81.75 70.34 72.92 85.54 89.43 82.63 76.94 63.90 91.16 88.30 81.12 64.50
RV [17] 74.93 89.96 87.23 84.04 77.37 70.71 88.55 89.43 82.90 74.58 73.27 91.16 88.30 84.24 76.02
Entropy [18] 73.29 86.14 87.80 82.41 62.85 72.67 85.54 83.14 80.45 58.36 71.62 91.16 89.06 83.95 80.46
InfoMax [14] 73.29 86.14 87.80 82.41 76.49 70.52 85.54 83.14 79.73 58.36 71.62 91.16 88.30 83.69 80.46
SND [13] 73.29 92.37 87.80 84.49 77.37 74.44 85.54 83.14 81.04 69.65 71.55 92.37 88.55 84.16 80.46
Corr-C [19] 71.05 90.96 84.40 82.14 67.79 67.16 84.34 78.99 76.83 70.51 58.29 67.67 59.62 61.86 64.50
EnsV 74.83 90.96 87.80 84.53 73.36 74.87 90.36 89.43 84.89 74.58 73.20 92.77 88.55 84.84 79.05
Worst 71.05 86.14 84.40 80.53 62.85 67.16 84.34 78.99 76.83 23.08 58.29 67.67 57.11 61.02 64.50
Best 75.31 92.37 87.80 85.16 77.37 75.52 90.36 89.43 85.10 76.94 73.38 92.77 89.06 85.07 80.46

Method MCC [27] MDD [28] SAFN [7] Office VisDA
→A →D →W avg T→V →A →D →W avg T→V →A →D →W avg T→V AVG AVG

SourceRisk [9] 73.11 90.96 91.07 85.05 80.46 75.72 91.06 86.23 84.34 72.25 69.20 83.73 87.17 80.03 70.71 83.02 71.04
IWCV [15] 73.11 91.16 88.55 84.27 81.48 75.49 91.16 89.18 85.28 72.25 69.32 86.55 80.38 78.75 66.33 79.43 71.55
DEV [16] 72.70 89.16 93.08 84.98 81.48 75.65 91.16 89.18 85.33 72.25 68.21 86.55 80.38 78.38 66.33 82.36 71.97
RV [17] 73.97 89.06 93.08 85.37 82.22 74.46 92.57 86.79 84.61 77.23 68.69 90.83 87.17 82.23 66.33 83.90 75.62
Entropy [18] 73.93 90.56 93.46 85.98 82.22 76.31 92.57 90.82 86.57 78.95 68.23 91.57 85.66 81.82 70.20 83.53 72.17
InfoMax [14] 73.93 89.16 88.55 83.88 81.48 76.50 92.57 90.82 86.63 78.95 68.23 91.57 87.42 82.41 70.20 83.13 74.32
SND [13] 73.93 91.97 93.46 86.45 69.35 76.50 92.17 90.82 86.50 78.95 68.23 89.96 85.66 81.28 58.15 83.99 72.32
Corr-C [19] 73.93 91.37 93.46 86.25 69.35 74.25 91.57 85.66 83.83 72.25 68.39 86.75 80.38 78.51 62.52 78.24 67.82
EnsV 73.75 90.56 91.45 85.25 82.22 75.92 92.57 90.82 86.44 77.23 69.67 90.96 87.17 82.60 73.96 84.76 76.73
Worst 70.56 86.75 87.17 81.49 69.35 73.06 87.35 85.66 82.02 72.25 67.27 83.73 80.38 77.13 58.15 76.50 58.36
Best 74.42 91.97 93.46 86.62 82.23 76.52 92.57 92.20 87.10 78.95 70.06 91.57 87.42 83.02 75.30 85.34 78.54

Table 8: PDA accuracy (%) on Office-Home.

Method PADA [10] SAFN [7]
→ Ar → Cl → Pr → Re avg → Ar → Cl → Pr → Re avg

SourceRisk [9] 57.21 41.90 64.48 71.89 58.87 66.82 54.71 74.41 76.48 68.11
IWCV [15] 59.65 50.51 66.84 72.96 62.49 69.36 53.91 71.78 76.38 67.86
DEV [16] 66.88 49.29 72.40 70.46 64.76 69.36 54.94 73.95 76.06 68.58
RV [17] 57.79 40.87 63.87 70.83 58.34 68.98 52.74 72.83 77.14 67.92
Entropy [18] 60.08 46.51 53.16 62.47 55.56 71.75 55.62 76.36 76.59 70.08
InfoMax [14] 60.08 51.40 60.20 66.67 59.59 63.67 51.74 69.64 73.62 64.67
SND [13] 67.80 50.71 59.46 67.13 61.27 71.75 51.74 76.36 78.36 69.55
Corr-C [19] 61.34 45.65 54.90 62.25 56.04 71.23 55.70 76.94 79.13 70.75
EnsV 68.54 55.60 69.86 78.23 68.06 70.98 56.12 75.67 78.48 70.31
Worst 56.29 39.76 50.49 59.31 51.46 62.48 49.91 68.50 73.62 63.63
Best 69.33 55.86 74.55 79.59 69.83 73.37 58.09 77.35 79.33 72.03

repeat trials with three random seeds and report the mean for results. Source-based validation methods
allocate 80% of the source data for training and the remaining 20% for validation.

E.2 Comprehensive Comparison Results

Consistent with prior model selection studies [16, 13, 14], we extensively compare our EnsV with 8
other methods in standard UDA settings, including CDA and PDA. Averaged results are presented
for UDA tasks sharing the same target domain. ‘Worst’ refers to the selection with the lowest
target-domain performance, while ‘Best’ indicates the opposite.

CDA : We provide model selection results for 6 typical closed-set UDA methods on Office-Home,
Office-31, and VisDA in Tables 6 and 7. EnsV method consistently outperforms other validation
methods in terms of the average selection accuracy on each benchmark and furthermore, consistently
achieves near-best results. Among existing methods, we find the reverse validation (RV) approach is
consistently the best among the three benchmarks. However, RV requires extra model re-training,
making it impractical when compared to the efficient target-specific validation methods.

PDA : For partial-set UDA with label shift of missing classes, we conduct hyperparameter selections
for two different UDA methods on Office-Home (Table 8). Notably, existing methods, except for
DEV and SND, suffer from frequent low-accuracy selections. In contrast, EnsV consistently achieves
high-accuracy selections and, on average, outperforms both DEV and SND.

E.3 Comparison with Target-Specific Baselines

Recent advancements in UDA model selection [13, 14] indicate that validation using only unlabeled
target data achieves superior performance compared to source-based methods, with increased sim-
plicity. Eliminating the reliance on source data facilitates easy application in various real-world
UDA scenarios, extending beyond conventional closed-set settings. We particularly compare EnsV
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with other target-specific validation methods on the large-scale benchmark DomainNet and in two
practical UDA settings: OPDA and SFUDA.

CDA : We compare all target-specific validation methods on the large-scale benchmark DomainNet-
126 (Table 2). EnsV consistently keeps the leading validation performance, while other approaches
exhibit high instability.

OPDA : In open-partial-set UDA with label shift of unknown classes, we choose a typical method
DANCE for validation on Office-Home (Table 3) and measure the H-score [31, 71]. Previous
validation works have not studied this challenging setting [13], and all of them suffer from poor
model selections. In contrast, EnsV consistently achieves high-accuracy selections, close to the best.

SFUDA : In source-free UDA (SFUDA), where source-based validation methods are not applicable,
we select SHOT for the white-box setting on Office-31 and DINE for the black-box setting on VisDA
(Table 3). EnsV consistently maintains near-best selections, while other target-based approaches
frequently make worst-case selections.

Table 9: Two-hyperparameters validation accuracy (%) on Office-Home.

Method MDD [28] MCC [27] Home
Ar → Cl Cl → Pr Pr → Re Re → Ar avg Ar → Cl Cl → Pr Pr → Re Re → Ar avg AVG

SourceRisk [9] 55.99 73.15 78.77 69.39 69.33 57.91 76.84 81.13 72.89 72.19 70.76
IWCV [15] 37.89 72.92 80.42 58.43 62.42 46.09 77.74 80.68 74.45 69.74 66.08
DEV [16] 52.60 72.11 53.36 67.70 61.44 59.47 76.84 81.94 74.08 73.08 67.26
RV [17] 57.59 72.25 80.83 70.79 70.37 59.13 76.84 82.03 71.98 72.50 71.44
Entropy [18] 57.21 73.19 80.06 72.31 70.69 59.75 77.77 82.37 74.33 73.56 72.13
InfoMax [14] 57.59 72.92 80.06 72.31 70.72 59.70 78.73 82.58 70.33 72.84 71.78
SND [13] 38.10 56.45 70.03 65.10 57.42 53.49 74.97 77.25 74.12 69.96 63.69
Corr-C [19] 30.17 44.74 57.15 50.76 45.71 44.90 56.75 74.32 67.61 60.90 53.31
EnsV 56.91 72.74 80.93 71.16 70.44 60.39 78.71 82.28 74.91 74.07 72.26
Worst 30.17 39.81 53.36 50.76 43.53 43.02 56.75 73.47 67.24 60.12 51.83
Best 57.59 73.35 80.93 72.52 71.10 61.10 78.94 83.04 75.36 74.61 72.86

E.4 Further Analysis

Validation with two-hyperparameters. We conduct practical two-hyperparameters model selection
experiments on classification tasks (Table 9) and segmentation tasks (Table 11). Most validation
studies focus on classification, with limited attention [13] to segmentation. We find EnsV achieves
near-optimal selections on both tasks, outperforming other generic methods like Entropy and SND.
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Figure 2: Qualitative comparisons of two-hyperparameters validation for MCC on Ar → Cl.

Qualitative comparison. We perform a qualitative comparison between two state-of-the-art target-
based model selection methods, Entropy and SND, and our EnsV. In Figure 2, we present the rankings
of the 28 candidate checkpoints in ascending order based on the respective selection metric of each
approach. On the left side, we show the rankings according to the real target accuracy and denote the
accuracy for each candidate model. Our EnsV demonstrates a high level of consistency with the real
target accuracy, while the other methods exhibit significant deviations. This highlights the superior
reliability of our EnsV over other methods.

Robustness to architectures. Architecture plays a significant role in the ensemble. In our exper-
iments, we assess the effectiveness of EnsV using various ResNet backbone variants and observe
consistent success across different scales. For further study, we conduct validation experiments using
the ViT-B [72] architecture on the R→S task with BNM. The validation results, presented in Table 10,
demonstrate that EnsV achieves the best selection. However, all other target-based methods except
SND make the worst selection.

14



0 5 10 15 20 25

# of models (ascending accuracy)

30

35

40

45

50

55

Ac
cu

ra
cy

(%
)

Worst
Best
Median

SND
Ensemble
EnsV (Ours)

Figure 3: MDD on Ar→Cl.

Table 10: ViT results.

Method BNM [8]
Entropy [18] 28.21
InfoMax [14] 28.21
SND [13] 52.42
Corr-C [19] 28.21
EnsV 55.16
Worst 28.21
Best 55.16

Table 11: Segmentation mIoU
(%).

Method AdaptSegt AdvEnt
SourceRisk [9] 39.52 39.08
Entropy [18] 39.47 38.41
SND [13] 40.69 40.02
EnsV 40.69 40.67
Worst 35.32 34.22
Best 42.20 41.78

Performance of role models. The effectiveness of our ensemble-based validation method, EnsV,
relies on the performance of the role model. We evaluate the target performance of role models
for various UDA methods in 4 UDA settings on Office-Home and present the results in Table 12.
Through a comparison of ensemble performance with model selection performance in our empirical
experiments, we demonstrate that the ensemble consistently exhibits high performance. The success
of EnsV can be attributed to the robust role model provided by the ensemble. For a comprehensive
study, we further present the results of the weight-based ensemble [57], denoted as ‘W-Avg,’ and the
EnsV variant based on this ensemble, denoted as ‘EnsV-W.’ While the weight-based ensemble also
shows competitiveness, it requires all candidate models to share the same architecture and lacks a
theoretical guarantee. Thus, we recommend the simple and generic prediction-based ensemble.

Table 12: Accuracy (%) of the ensemble on Office-Home.

Method CDA PDA OPDA SFUDA
ATDOC [26] BNM [8] CDAN [6] MCC [27] MDD [28] SAFN [7] PADA [10] SAFN [7] DANCEDANCE [11] SHOT [12]

W-Avg 72.04 70.48 69.30 72.77 69.39 66.65 67.46 70.11 64.97 71.82
Ensemble 72.13 70.86 70.32 72.82 69.80 67.12 68.23 70.71 69.31 71.94
EnsV-W 71.72 70.74 69.81 72.70 69.23 67.38 68.21 71.91 66.85 71.74
EnsV 71.74 70.90 70.25 72.65 69.60 67.04 68.06 70.71 68.96 71.88
Worst 65.26 60.75 56.86 67.93 50.88 59.88 51.46 63.63 12.84 67.21
Best 72.04 71.11 70.43 73.14 70.04 67.55 69.83 72.03 72.98 72.05

Robustness to bad candidates. The robustness of the ensemble to bad checkpoints is critical for
its effectiveness. We conduct two-hyperparameter validation experiments using MDD on Ar→Cl
to assess this. In the worst-case scenario where we have only one good checkpoint and several bad
checkpoints, the ensemble results may be heavily influenced by the bad checkpoints, leading to poor
selections. To analyze this, we rank the 28 candidate checkpoints based on their true target accuracy.
Starting with the best and worst checkpoints, we gradually introduce more bad checkpoints into the
ensemble. By observing the ensembling and validation performance in Figure 3, we study the impact
of bad checkpoints. Despite the presence of bad checkpoints, both the prediction-average Ensemble
and our EnsV consistently prioritize selections above the median, demonstrating their resilience. In
contrast, the state-of-the-art method SND falls short in surpassing the median selection.

E.5 Task-Level Results

In our evaluation, we conduct hyperparameter selection for both classification and segmentation
tasks. For open-set experiments, we utilize the H-score (%) [71, 31] metric, which combines the
accuracy of known classes and unknown samples. For semantic segmentation tasks, we employ
the mean intersection-over-union (mIoU) (%) [29, 30] metric. For all other classification tasks,
we measure the accuracy (%). For clarity, we consolidate the results of UDA tasks with the same
target domain. For example, in the case of the Office-Home dataset, UDA tasks including ‘Cl→Ar’,
‘Pr→Ar’, and ‘Re→Ar’ share the common target domain ‘Ar.’ As a result, we have averaged the
results of these three UDA tasks and reported the averaged value in the tables within our main text
under the row labeled ‘→ Ar’. Furthermore, it’s important to distinguish between the ‘avg’ row,
which signifies the average results within each UDA method’s rows to the left of the ‘avg’ row, and
the ‘AVG’ row, which represents the averaged results across all ‘avg’ rows associated with different
UDA methods. Consequently, the ‘AVG’ row can be considered more reliable and representative for
drawing conclusions. Please refer to Table 13 to Table 27 for the specific task-level validation results.
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Table 13: Accuracy (%) of a closed-set UDA method ATDOC [26] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 51.43 77.31 78.17 66.87 74.36 75.60 61.85 48.06 76.06 71.16 58.14 84.05 68.59
IWCV [15] 55.88 76.57 78.88 66.25 74.50 78.33 65.60 48.06 80.58 72.06 58.14 83.87 69.89
DEV [16] 51.43 76.55 78.88 66.25 74.36 77.67 64.77 51.29 81.62 71.16 59.98 82.43 69.70
RV [17] 56.38 76.12 80.01 66.25 76.80 78.33 67.82 55.62 80.58 71.98 56.40 83.87 70.85
Entropy [18] 55.88 74.14 78.88 59.25 74.52 77.67 64.19 54.39 78.54 67.57 57.23 80.96 68.60
InfoMax [14] 55.88 74.14 78.88 59.25 77.74 77.67 64.19 54.39 78.54 67.57 56.61 80.96 68.82
SND [13] 55.88 74.14 78.88 59.25 74.52 75.21 64.19 54.39 78.54 67.57 56.61 80.96 68.34
Corr-C [19] 51.41 72.00 76.04 59.37 69.36 69.54 61.85 48.04 76.06 69.30 51.71 80.31 65.42
EnsV-W 57.85 76.57 81.04 66.25 79.48 78.52 67.94 55.62 82.17 71.9 59.24 84.03 71.72
EnsV 57.85 76.57 80.54 66.25 78.82 78.52 67.94 57.07 82.17 71.9 59.24 84.03 71.74
Worst 51.41 72.00 76.04 59.25 69.36 69.54 61.85 48.04 76.06 67.57 51.71 80.31 65.26
Best 58.01 77.31 81.04 66.91 79.48 78.52 67.94 57.07 82.17 72.06 59.98 84.03 72.04

Table 14: Accuracy (%) of a closed-set UDA method BNM [8] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 56.93 77.00 77.74 57.64 73.33 69.36 56.45 42.38 77.19 73.22 52.90 82.26 66.37
IWCV [15] 46.46 77.00 79.30 63.86 61.34 62.54 63.95 42.38 78.01 71.86 55.65 83.92 65.52
DEV [16] 57.75 71.62 79.30 57.64 67.90 75.46 66.21 54.04 78.01 73.42 57.37 82.25 68.41
RV [17] 58.67 77.00 79.30 65.68 73.33 75.46 65.64 52.05 81.25 73.42 59.54 83.92 70.44
Entropy [18] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
InfoMax [14] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
SND [13] 53.40 67.04 78.04 63.41 71.44 73.93 63.58 52.69 80.95 71.86 57.37 83.96 68.14
Corr-C [19] 46.46 67.06 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.76
EnsV-W 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 57.59 83.92 70.74
EnsV 58.67 77.00 80.61 66.21 73.33 76.75 66.21 53.93 81.25 73.42 59.54 83.92 70.90
Worst 46.46 67.04 74.82 49.73 61.34 62.54 56.45 42.38 74.41 68.11 47.26 78.51 60.75
Best 58.67 77.00 80.61 67.16 74.16 76.75 66.21 54.04 81.36 73.42 59.82 84.12 71.11

Table 15: Accuracy (%) of a closed-set UDA method CDAN [6] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 43.41 62.51 75.51 43.96 61.59 57.70 53.75 37.53 73.22 67.28 47.01 84.39 58.99
IWCV [15] 43.18 62.51 77.81 44.71 54.61 56.14 65.14 37.53 81.85 74.08 43.02 84.39 60.41
DEV [16] 57.16 71.75 77.81 62.46 55.64 71.08 65.14 56.54 81.85 74.08 57.43 78.89 67.49
RV [17] 57.16 71.75 77.78 63.62 72.92 73.40 65.14 54.50 81.85 74.21 58.56 83.37 69.52
Entropy [18] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
InfoMax [14] 57.55 72.43 77.74 63.62 72.92 73.40 65.27 56.66 81.20 74.08 58.47 83.76 69.76
SND [13] 57.55 72.43 77.78 64.61 73.73 73.40 65.14 56.66 81.85 74.08 58.47 84.73 70.04
Corr-C [19] 43.14 63.05 73.61 43.96 54.58 56.12 51.75 37.50 73.22 65.80 43.00 77.25 56.91
EnsV-W 57.18 73.30 77.78 63.37 73.89 73.38 65.14 55.44 81.36 73.88 58.56 84.39 69.81
EnsV 57.55 73.71 78.33 64.61 73.73 74.39 65.14 56.56 81.85 73.88 58.56 84.73 70.25
Worst 43.14 62.51 73.61 43.96 54.58 56.12 51.63 37.50 73.22 65.80 43.00 77.25 56.86
Best 57.55 73.71 78.33 64.61 73.89 74.39 65.76 56.66 81.85 74.21 59.50 84.73 70.43

Table 16: Accuracy (%) of a closed-set UDA method MCC [27] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 57.23 78.19 81.75 60.65 76.50 78.79 64.15 53.15 82.17 74.91 59.20 83.96 70.89
IWCV [15] 60.02 78.15 81.34 68.73 78.51 77.85 64.15 57.85 81.04 73.18 58.92 84.46 72.02
DEV [16] 57.16 78.15 81.34 69.10 73.01 76.80 64.15 57.85 82.17 73.18 59.20 84.46 71.38
RV [17] 59.34 78.53 80.70 69.10 77.83 78.22 67.20 57.85 82.24 74.91 59.20 85.54 72.56
Entropy [18] 59.31 78.53 81.59 66.87 77.83 78.79 67.20 57.85 82.51 73.79 60.82 85.54 72.55
InfoMax [14] 60.02 74.66 81.75 64.98 78.24 78.49 64.15 54.52 82.19 70.62 60.89 84.46 71.25
SND [13] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
Corr-C [19] 53.56 77.43 79.46 67.28 76.48 76.80 65.06 54.34 81.04 74.82 58.92 85.24 70.87
EnsV-W 59.31 77.86 81.59 69.10 78.51 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.70
EnsV 59.31 77.86 81.59 69.10 77.83 78.79 66.87 57.85 82.19 73.79 61.35 85.22 72.65
Worst 53.56 73.44 79.25 60.65 73.01 75.76 59.74 53.15 79.55 67.78 57.18 82.11 67.93
Best 60.02 78.53 81.75 69.22 78.51 78.79 67.90 58.49 82.51 74.91 61.35 85.74 73.14

Table 17: Accuracy (%) of a closed-set UDA method MDD [28] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 54.85 73.35 77.05 58.76 69.95 72.23 60.03 51.02 77.36 68.81 57.42 82.50 66.94
IWCV [15] 56.40 69.52 76.59 58.76 67.40 69.43 61.89 56.43 76.82 71.94 56.68 84.43 67.19
DEV [16] 57.71 75.42 77.05 58.76 72.99 70.51 63.95 56.43 80.26 70.54 56.68 82.14 68.54
RV [17] 58.05 75.42 76.59 63.54 69.95 73.74 63.95 51.02 80.38 72.23 58.17 84.43 68.96
Entropy [18] 57.73 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.72
InfoMax [14] 58.05 74.54 78.22 64.07 72.99 73.74 63.95 55.85 80.38 71.61 59.31 84.28 69.75
SND [13] 58.05 75.42 77.05 44.99 72.99 48.06 37.08 21.60 80.26 71.94 34.39 84.43 58.86
Corr-C [19] 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
EnsV-W 54.89 75.42 78.01 61.89 72.99 72.23 63.08 56.43 79.66 72.23 60.02 83.96 69.23
EnsV 56.40 75.42 77.05 64.07 72.99 72.23 63.08 57.02 80.26 72.23 60.02 84.43 69.60
Worst 39.08 59.74 69.61 44.99 54.58 48.06 37.08 21.60 64.22 61.31 34.39 75.87 50.88
Best 58.05 75.42 78.22 64.07 72.99 73.74 63.95 57.02 80.38 72.23 60.02 84.43 70.04
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Table 18: Accuracy (%) of a closed-set UDA method SAFN [7] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 50.78 69.72 76.06 59.66 70.29 69.86 60.90 46.07 77.71 70.05 57.16 80.96 65.77
IWCV [15] 50.24 69.72 77.28 62.63 67.24 69.86 58.84 49.69 75.72 71.45 57.16 79.97 65.82
DEV [16] 51.07 69.72 76.64 59.66 67.24 71.26 58.84 49.69 75.72 70.95 50.65 76.64 64.84
RV [17] 51.07 71.41 76.64 62.63 68.44 70.44 58.84 44.49 77.71 71.45 54.82 81.46 65.78
Entropy [18] 45.93 69.72 75.49 55.29 67.22 68.35 54.26 43.30 75.69 70.00 49.99 80.60 62.99
InfoMax [14] 50.47 69.72 75.49 62.46 70.98 68.35 61.23 43.30 75.69 70.00 55.37 80.60 65.31
SND [13] 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Corr-C [19] 45.93 69.72 70.60 55.29 60.13 62.50 61.23 43.30 71.43 71.45 49.99 76.64 61.52
EnsV-W 51.73 72.07 76.64 64.65 70.98 71.26 63.66 50.52 77.48 70.99 57.16 81.46 67.38
EnsV 51.07 72.27 77.30 63.58 70.29 71.70 62.71 49.69 77.71 71.45 55.78 80.96 67.04
Worst 45.93 64.36 70.60 55.29 60.13 62.50 54.26 43.30 71.43 64.15 49.99 76.64 59.88
Best 51.73 72.27 77.30 64.65 70.98 71.70 63.66 50.52 77.71 71.45 57.16 81.46 67.55

Table 19: Accuracy (%) of closed-set UDA methods on Office-31.

Method ATDOC [26] BNM [8] CDAN [6]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceRisk [9] 88.96 87.80 73.65 71.46 80.47 90.36 89.43 73.13 72.70 81.41 91.16 89.06 66.33 61.46 77.00
IWCV [15] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 69.08 58.74 66.33 61.46 63.90
DEV [16] 86.14 86.54 73.65 71.46 79.45 85.54 89.43 73.13 72.70 80.20 91.16 88.30 66.33 61.46 76.81
RV [17] 89.96 87.23 74.28 75.58 81.76 88.55 89.43 74.90 66.52 79.85 91.16 88.30 76.18 70.36 81.50
Entropy [18] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 74.26 78.50 91.16 89.06 72.88 70.36 80.87
InfoMax [14] 86.14 87.80 73.87 72.70 80.13 85.54 83.14 71.07 69.97 77.43 91.16 88.30 72.88 70.36 80.68
SND [13] 92.37 87.80 73.87 72.70 81.69 85.54 83.14 74.62 74.26 79.39 92.37 88.55 72.88 70.22 81.01
Corr-C [19] 90.96 84.40 71.88 70.22 79.37 84.34 78.99 67.80 66.52 74.41 67.67 59.62 58.15 58.43 60.97
EnsV-W 92.37 87.80 74.65 75.01 82.46 88.55 89.43 75.43 75.29 82.18 92.77 88.55 76.18 70.22 81.93
EnsV 90.96 87.80 74.65 75.01 82.11 90.36 89.43 75.43 74.30 82.38 92.77 88.55 76.18 70.22 81.93
Worst 86.14 84.40 71.88 70.22 78.16 84.34 78.99 67.80 66.52 74.41 67.67 57.11 58.15 58.43 60.34
Best 92.37 87.80 75.04 75.58 82.70 90.36 89.43 75.75 75.29 82.71 92.77 89.06 76.18 70.57 82.15

Table 20: Accuracy (%) of closed-set UDA methods on Office-31.

Method MCC [27] MDD [28] SAFN [7]
A → D A → W D → A W → A avg A → D A → W D → A W → A avg A → D A → W D → A W → A avg

SourceRisk [9] 90.96 91.07 73.33 72.89 82.06 91.06 86.23 76.68 74.76 82.18 83.73 87.17 68.96 69.44 77.33
IWCV [15] 91.16 88.55 73.33 72.89 81.48 91.16 89.18 76.68 74.30 82.83 86.55 80.38 68.96 69.68 76.39
DEV [16] 89.16 93.08 73.33 72.06 81.91 91.16 89.18 76.68 74.62 82.91 86.55 80.38 68.96 67.45 75.84
RV [17] 89.06 93.08 74.42 73.52 82.52 92.57 86.79 73.94 74.97 82.07 90.83 87.17 68.76 68.62 78.85
Entropy [18] 90.56 93.46 74.83 73.02 82.97 92.57 90.82 78.03 74.58 84.00 91.57 85.66 67.20 69.26 78.42
InfoMax [14] 89.16 88.55 74.16 73.70 81.39 92.57 90.82 78.03 74.97 84.10 91.57 87.42 67.20 69.26 78.86
SND [13] 91.97 93.46 74.83 73.02 83.32 92.17 90.82 78.03 74.97 84.00 89.96 85.66 67.20 69.26 78.02
Corr-C [19] 91.37 93.46 74.83 73.02 83.17 91.57 85.66 73.91 74.58 81.43 86.75 80.38 67.09 69.68 75.98
EnsV-W 90.56 91.07 74.16 73.70 82.37 92.57 90.82 77.53 74.30 83.80 91.57 87.17 70.22 69.12 79.52
EnsV 90.56 91.45 73.80 73.70 82.38 92.57 90.82 77.53 74.30 83.80 90.96 87.17 70.22 69.12 79.37
Worst 86.75 87.17 71.18 69.93 78.76 87.35 85.66 73.91 72.20 79.78 83.73 80.38 67.09 67.45 74.66
Best 91.97 93.46 74.83 74.01 83.57 92.57 92.20 78.03 75.01 84.45 91.57 87.42 70.43 69.68 79.78

Table 21: Accuracy (%) of a closed-set UDA method CDAN [6] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [18] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
InfoMax [14] 58.04 64.78 74.42 69.39 68.65 60.63 62.94 65.55
SND [13] 58.04 64.78 74.42 69.39 68.65 60.63 60.70 65.23
Corr-C [19] 58.04 57.73 74.42 56.98 65.07 51.23 60.70 60.60
EnsV-W 55.15 60.98 73.86 60.99 65.07 55.50 60.27 61.69
EnsV 56.73 64.67 74.44 67.08 67.97 58.12 62.57 64.51
Worst 51.59 57.73 73.44 56.98 63.06 51.23 58.46 58.93
Best 58.04 64.78 74.44 69.39 68.65 60.63 62.94 65.55

Table 22: Accuracy (%) of a closed-set UDA method BNM [8] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [18] 56.42 61.57 74.31 65.15 65.15 40.95 63.42 61.00
InfoMax [14] 56.42 68.95 74.31 65.15 65.15 54.93 63.42 64.05
SND [13] 43.78 61.57 74.31 51.55 54.40 40.95 54.59 54.45
Corr-C [19] 43.78 60.03 77.62 59.47 67.19 40.95 59.64 58.38
EnsV-W 58.48 68.42 77.62 66.05 67.79 57.65 64.34 65.76
EnsV 57.73 69.63 77.62 66.10 67.79 57.65 64.34 65.84
Worst 43.78 60.03 74.31 51.55 54.40 40.95 54.59 54.23
Best 58.48 69.63 78.68 66.10 67.79 58.50 65.20 66.34

Table 23: Accuracy (%) of a closed-set UDA method ATDOC [26] on DomainNet-126.

Method C → S P → C P → R R → C R → P R → S S → P avg
Entropy [18] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
InfoMax [14] 46.43 65.98 79.60 61.52 64.24 57.92 59.46 62.16
SND [13] 46.43 65.98 79.60 61.52 64.24 47.58 59.46 60.69
Corr-C [19] 54.71 60.63 74.42 59.33 64.58 52.66 59.95 60.90
EnsV-W 63.12 69.57 78.33 67.93 69.32 60.85 66.33 67.92
EnsV 62.11 71.14 80.01 69.45 69.79 61.35 67.10 68.71
Worst 46.43 60.63 74.42 59.33 64.24 47.58 59.46 58.87
Best 63.12 71.14 80.38 69.45 69.79 61.35 67.10 68.90
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Table 24: Accuracy (%) of a partial-set UDA method PADA [10] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 45.03 68.85 81.89 43.25 46.83 57.26 57.12 36.42 76.53 71.26 44.24 77.76 58.87
IWCV [15] 55.58 65.10 84.54 51.42 61.29 53.01 57.02 35.16 81.34 70.52 60.78 74.12 62.49
DEV [16] 54.81 78.15 78.02 58.13 61.29 50.14 67.86 35.16 83.21 74.66 57.91 77.76 64.76
RV [17] 43.22 65.10 81.89 42.70 48.74 52.79 57.21 35.16 77.80 73.46 44.24 77.76 58.34
Entropy [18] 40.12 40.11 55.94 52.43 37.25 50.14 57.30 47.22 81.34 70.52 52.18 82.13 55.56
InfoMax [14] 54.81 69.24 78.02 52.43 37.25 50.14 57.30 47.22 71.84 70.52 52.18 74.12 59.59
SND [13] 40.12 40.11 55.94 58.13 56.13 64.11 70.62 51.22 81.34 74.66 60.78 82.13 61.27
Corr-C [19] 40.12 40.11 55.94 54.18 46.89 53.01 58.59 38.93 77.80 71.26 57.91 77.70 56.04
EnsV-W 55.58 77.25 86.14 58.13 60.17 67.86 73.00 37.97 84.04 76.77 57.91 83.75 68.21
EnsV 54.81 69.24 86.53 58.13 56.13 64.11 70.62 51.22 84.04 76.86 60.78 84.20 68.06
Worst 40.12 40.11 55.94 41.41 37.25 50.14 56.93 34.87 71.84 70.52 44.30 74.12 51.46
Best 55.58 78.15 86.53 58.13 61.29 68.19 73.00 51.22 84.04 76.86 60.78 84.20 69.83

Table 25: Accuracy (%) of a partial-set UDA method SAFN [7] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
SourceRisk [9] 59.40 77.14 81.34 63.97 67.00 71.29 65.60 46.21 76.81 70.89 58.51 79.10 68.11
IWCV [15] 52.24 74.45 82.16 70.98 62.41 70.18 63.45 53.49 76.81 73.65 56.00 78.49 67.86
DEV [16] 55.22 74.45 80.07 70.98 67.00 71.29 63.45 51.70 76.81 73.65 57.91 80.39 68.58
RV [17] 53.67 71.60 81.34 67.58 67.00 73.27 65.70 48.54 76.81 73.65 56.00 79.89 67.92
Entropy [18] 58.93 74.90 80.73 70.98 74.12 69.80 70.16 50.09 79.24 74.10 57.85 80.06 70.08
InfoMax [14] 51.82 67.62 76.97 64.65 65.77 69.80 59.69 50.09 74.10 66.67 53.31 75.52 64.67
SND [13] 51.82 74.90 80.73 70.98 74.12 75.10 70.16 50.09 79.24 74.10 53.31 80.06 69.55
Corr-C [19] 59.40 77.20 82.16 67.58 72.89 75.10 70.16 55.70 80.12 75.94 52.00 80.73 70.75
EnsV-W 59.40 77.20 82.16 71.72 72.89 74.82 72.45 55.70 80.73 75.94 59.16 80.73 71.91
EnsV 55.22 76.30 81.28 67.58 70.31 74.05 70.16 54.63 80.12 75.21 58.51 80.39 70.31
Worst 51.52 67.62 76.97 61.07 62.35 69.80 59.69 46.21 74.10 66.67 52.00 75.52 63.63
Best 59.40 77.20 82.16 71.72 74.12 75.10 72.45 55.70 80.73 75.94 59.16 80.73 72.03

Table 26: H-score [71, 31] (%) of an open-partial-set UDA method DANCE [11] on Office-Home.

Method Ar → Cl Ar → Pr Ar → Re Cl → Ar Cl → Pr Cl → Re Pr → Ar Pr → Cl Pr → Re Re → Ar Re → Cl Re → Pr avg
Entropy [18] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.53 25.39 33.75 39.37 34.27
InfoMax [14] 38.29 26.08 36.51 32.92 17.10 32.19 37.69 46.40 45.33 25.39 33.75 39.37 34.25
SND [13] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 25.39 0.00 28.40 14.98
Corr-C [19] 1.00 0.00 12.73 0.00 42.84 1.95 19.77 11.99 35.69 69.02 0.00 28.40 18.62
EnsV-W 67.00 75.15 66.57 67.87 67.35 59.05 66.41 62.59 69.40 59.86 67.54 73.40 66.85
EnsV 38.40 76.96 66.57 71.76 75.17 69.99 77.42 48.15 69.40 81.84 67.54 84.31 68.96
Worst 1.00 0.00 12.73 0.00 17.10 1.95 19.77 11.99 35.69 25.39 0.00 28.40 12.84
Best 67.00 76.96 66.57 71.76 75.17 69.99 77.42 64.32 72.87 81.84 67.54 84.31 72.98

Table 27: Accuracy (%) of a source-free UDA method SHOT [12] on Office-31.

Method A → D A → W D → A W → A avg
Entropy [18] 90.76 88.68 71.21 72.13 80.69
InfoMax [14] 90.76 88.68 71.21 72.13 80.69
SND [13] 90.76 88.68 71.21 72.13 80.69
Corr-C [19] 90.76 90.19 71.21 71.96 81.03
EnsV-W 94.78 91.82 75.15 74.55 84.08
EnsV 94.78 91.82 75.15 74.55 84.08
Worst 90.76 88.68 71.21 71.92 80.64
Best 94.78 93.33 75.58 74.55 84.56
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