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ABSTRACT

With the rapid development of generative models, detecting generated images to
prevent their malicious use has become a critical issue recently. Existing methods
frame this challenge as a binary image classification task. However, such methods
focus only on visual space, yielding trained detectors susceptible to overfitting
specific image patterns and incapable of generalizing to unseen models. In this
paper, we address this issue from a multi-modal perspective and find that fake
images exhibit more distinct discrepancies with corresponding captions compared
to real images. Upon this observation, we propose to leverage the Image-Text
Discrepancy (TIDY) in joint visual-language space for universal fake image detec-
tion. Specifically, we first measure the distance of the images and corresponding
captions in the latent spaces of CLIP, and then tune an MLP head to perform the
usual detection task. Since there usually exists local artifacts in fake images, we
further propose a global-to-local discrepancy scheme that first explores the discrep-
ancy on the whole image and then each semantic object described in the caption,
which can explore more fine-grained local semantic clues. Extensive experiments
demonstrate the superiority of our method against other state-of-the-art competitors
with impressive generalization and robustness on various recent generative models.

1 INTRODUCTION

Recent years have witnessed the rapid development of generative models, such as generative adver-
sarial networks (GANs) (Goodfellow et al., 2014; Karras et al., 2018; 2019; Brock et al., 2018; Park
et al., 2019; Zhu et al., 2017) and diffusion models (Dhariwal & Nichol, 2021; Nichol et al., 2021;
Rombach et al., 2022; Gu et al., 2022; Ramesh et al., 2022). These generative models enable users
to create high-quality synthetic images at very low cost. However, this accessibility also presents
a double-edged sword, as perpetrators can easily generate fake images for malicious use, such as
using Deepfakes 1 to mislead the public, defame celebrities, and even fabricate evidence, leading to
severe social, privacy, and security concerns (Suwajanakorn et al., 2017; Devlin & Cheetham, 2023).
Therefore, developing general and effective fake image detectors has become a critical issue.

A common approach to tackling the fake image detection problem is to frame it as a binary image
classification task, discriminating between real and fake images. Typically, a dataset of real and
fake images is used to train a binary classifier (Wang et al., 2020; 2023), but this approach often
leads to overfitting on specific image patterns, limiting the model’s generalization capability. For
instance, some detectors rely on artifacts introduced by specific model architectures (Tan et al., 2024),
which constrains their effectiveness to those particular architectures. In contrast, universal detection
methods (Ojha et al., 2023) leverage the vision encoder of Contrastive Language-Image Pre-training
(CLIP)(Radford et al., 2021) to improve the generalization of visual representations through its
zero-shot abilities. However, these methods focus solely on visual cues, neglecting the language
component, which is a key driver of CLIP’s strong generalization performance.

Given these limitations, we pose the following question: Can we develop a universal fake image
detector that generalizes to all generated images, regardless of model architectures or hyperparame-
ters? While existing detectors rely solely on visual clues, we propose to tackle this challenge from
a multimodal perspective using pre-trained vision-language models (VLMs). We first investigate

1https://github.com/deepfakes/faceswap
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Figure 1: Motivation behind our method. We show the local pattern difference between real
images and various fake images generated by different models, including GAN, diffusion model, and
deepfakes in (a). The cosine similarity between their CLIP’s image and text embeddings in (b) shows
that fake images exhibit more discrepancy than real images.

some examples of real and different fake images, including GAN, diffusion model, and deepfakes,
as shown in Fig. 1 (a). Specifically, we exploit both image patterns and corresponding generated
captions. We can observe that different generative models lead to different types of local artifacts,
which may cause visual-only detectors cannot generalize well. By incorporating cues from both
modalities and leveraging their semantic relationships, a detector would be less prone to overfitting
on low-level, visual-only patterns, thus avoiding overfitting to training images. To explore this, we
further examine real and fake images in the joint visual-language space by calculating the cosine
similarity between image and caption representations learned from CLIP. For the text space, we use
corresponding captions that provide relevant semantic clues to describe the images. As illustrated in
Fig.1 (b), real images exhibit higher image-text similarity compared to various fake images, which
can serve as a discriminative clue for detection.

Therefore, we propose to leverage the Image-Text Discrenpancy (TIDY) for universal fake image
detection. Specifically, we first measure the distance of images and their corresponding captions
in the joint vision-language space of a pre-trained CLIP and then tune an MLP head for detection.
Considering the semantic divergence of local and global patches (Zhang et al., 2022; Li et al., 2019)
and the artifacts in local patches of fake images (Fig. 1 (a)), we further propose a global-to-local
discrepancy scheme that mines the discrepancy on both the whole image and each semantic object
described in the caption, which could explore more fine-grained local semantic clues and benefit the
detection. Our main contributions are summarized as follows:

• We frame the fake image detection task from a multimodal image-text perspective and
find that the fake images exhibit more distinct discrepancies with corresponding captions
compared to real images in joint vision-language latent space.

• We propose TIDY to achieve universal fake image detection by measuring the distance of
images and captions in a joint vision-language space of CLIP and then tuning an MLP head
for detection. Moreover, a global-to-local discrepancy scheme is introduced to explore more
fine-grained local semantic clues.

• Extensive experiments on various generative models demonstrate the superiority of our
proposed method against other state-of-the-art competitors with impressive generalization
and robustness.

2 RELATED WORK

Fake image detection. With the rapid development of generative models, such as GAN (Goodfellow
et al., 2014; Karras et al., 2018; 2019; Brock et al., 2018; Park et al., 2019; Zhu et al., 2017) and
diffusion models (Dhariwal & Nichol, 2021; Nichol et al., 2021; Rombach et al., 2022; Gu et al.,
2022; Ramesh et al., 2022), a variety of detectors have been proposed to combat the malicious use of
AI-generated fake images. Some methods focus on the visual artifacts or traces left by generative
models in fake images, such as the noise residual (Yu et al., 2019), face boundaries (Li et al., 2020),
patch-level artifacts (Chai et al., 2020), compression traces (Agarwal & Farid, 2017) and frequency
clues (Qian et al., 2020). To train the classifier, other methods design specific representations or
augmentations, such as (Wang et al., 2020) where pre- and post-processing with data augmentation
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are carefully designed to build a universal GAN detector. To detect diffusion-generated images,
DIRE (Wang et al., 2023) introduces reconstruction error. To boost generalization, recent methods
have exploited pretrained models , such as UniFD (Ojha et al., 2023) that utilizes a pre-trained
CLIP-ViT (Radford et al., 2021) model to learn the general image representation for detection.

These methods, however, focus only on the difference on low-level visual image patterns, which may
lead to limited generalization on unseen generative models. Although some existing methods tried
to use the vision language models (VLMs), such as UniFD (Ojha et al., 2023), they also explored
only in visual space. Whereas, we find that there exists significant discrepancy between the images
and corresponding captions in a joint vision-language space at semantic level. Hence, we propose to
leverage the image-text discrepancy to achieve universal fake image detection.

Visual-language models. Recent studies have demonstrated the great potential of vision-language
models (VLMs) in learning general visual representation and aligning visual and text concepts Liu
et al. (2024); Li et al. (2022a). The pre-trained VLMs have been proven to have impressive transferring
ability to a variety of downstream tasks (Radford et al., 2021; Singh et al., 2022; Yuan et al., 2021).
The CLIP model (Radford et al., 2021) could be a milestone of VLMs, as it employs transformer-
based architecture (Dosovitskiy et al., 2021) with a contrastive pre-training strategy (Chen et al.,
2020) for both image and text representation learning. There are already some works (Ojha et al.,
2023; Cozzolino et al., 2023) that use pre-trained VLMs, such as CLIP, to learn image representation
for detection. These methods, however, use only the visual space of VLMs, which could still lead to
overfitting image patterns and cause insufficient learning without fully exploring VLMs’ multi-modal
potential. Whereas, we fully explore the multi-modal potential of VLMs by exploiting the distance
between the images and corresponding captions in joint visual-language space at the semantic level,
thus avoiding the overfitting of the visual-only image patterns and achieving improved generalization.

3 METHODOLOGY

3.1 IMAGE-TEXT DISCREPANCY REPRESENTATION

To exploit the discrepancy between image and text modalities, we first need to model the representa-
tion of these two modalities in a given visual-language latent space. CLIP (Radford et al., 2021) has
been a milestone that optimizes an aligned vision-language space via contrastive learning. Hence, we
propose to exploit the joint vision-language space of CLIP to learn the representation of image and
text modality and explore their discrepancy.

For a given image x and its corresponding caption prompt p, we feed the (x,p) into CLIP’s image
and text encoder, respectively, to obtain the visual and language representation (I,T), which can be
formulated as follows:

(I,T) = CLIP(x,p), (1)

where we use CLIP:ViT-L/14 with 768 output dimensions as our joint visual-language space.

Then we design a distance D to measure the discrepancy of (I,T) in the joint latent space. As the
pre-training objective of CLIP is the cosine similarity between two modalities, we propose to use
the subtraction of the two representations as their distance. The reason behind this design is that the
subtraction of two representations is coherent with CLIP’s objective, the cosine similarity, and our
designed distance could provide higher dimensional information in latent space than one similarity
score, such as direction, which should also contain informative clues for measuring discrepancy. We
can formulate our image-text discrepancy representation as:

D = |I�T|, (2)

where D is our designed distance to measure the discrepancy of image and text modalities. Based on
our observation in Fig. 1 (b), the D for fake images should be higher than the real images.

Thus, for a given image x, we can measure its discrepancy distance D with the corresponding
caption by first using a caption model to generate its caption p. The distance serves as a clue for
discriminating between fake and real images.

3
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Figure 2: Overview of our proposed method. We explore the discrepancy between image and text
modalities on both the global semantic clues, i.e., the whole image, full caption, and local fine-grained
semantic clues, i.e., each local semantic object. After the representation learning stage, to perform
the usual fake-image detection task, we optimize an MLP head.

3.2 GLOBAL-TO-LOCAL DISCREPANCY SCHEME

We have formulated the discrepancy between a given image x and the corresponding caption prompt
p in a joint CLIP latent space. The discrepancy with the caption is mainly focused on the information
of the whole image. This discrepancy, which we term a global discrepancy distance, could serve as
a clue for discrimination. However, it ignores some more detailed fine-grained clues that can also
contribute to detection. As shown in Fig. 1 (a), the forgery artifacts in fake images usually exist in
local areas. The performance could be further boosted if we could explore more local fine-grained
semantic clues. To this end, we further introduce a global-to-local discrepancy scheme to explore
more fine-grained local semantic forgery clues, as illustrated in Fig. 2 and described as follows.

First, for a given image x and its corresponding caption p, we denote the corresponding CLIP
representation as (I0,T0), and we define the discrepancy between the whole image and the full
caption as global distance Dg , formulated as:

Dg = |I0 �T0|, (3)

where (I0,T0) = CLIP(x,p). To further explore the fine-grained local semantic details, we focus
on each semantic object described in the original full caption. We denote each semantic object
with corresponding texts as {p1,p2, · · · ,pn}, and we employ a pre-trained object detection model
to detect each corresponding semantic object in the original image as {x1,x2, · · · ,xn} with their
grounding boxes, as shown in Fig. 2. Then, we compute the discrepancy distance of each local
semantic object formulated as:

Di
l = |Ii �Ti|, i = 1, · · · , n (4)

where (Ii,Ti) = CLIP(xi,pi) and the Di
l is the local distance of ith semantic object. Then, we

simply average all the local semantic objects as the final local distance:

Dl =
1

n
⌃n

i=1D
i
l, i = 1, · · · , n (5)

Finally, we obtain the distance that contains both global and local semantic clues by:

D = w1Dg + w2Dl, (6)

where the {w1, w2} are the hyper-parameter weights for balancing the global and local distances.

3.3 FAKE-IMAGE DETECTION TASK

After the discrepancy representation learning stage, we obtain the desired distance representation that
contains both global and local semantic clues. Then, we tune a classification head (a simple two-layer
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MLP) to perform the usual fake image detection task by predicting the label based on input distance,
which can be formulated as:

ŷ = MLP(D, ✓c), (7)
where ŷ is the predicted label and ✓c is the parameters of the MLP head. We employ a vanilla binary
cross-entropy loss function to optimize the MLP, formulated as:

L(y, ŷ) = �⌃N
i=1 (yi log(ŷi) + (1� yi) log(1� ŷi)) , (8)

where N is the mini-batch size, y is the ground-truth label, and ŷ is the corresponding prediction of
the MLP head. Note that during training, only the MLP’s parameters are optimized.

4 EXPERIMENT

4.1 EXPERIMENTAL SETUP

Dataset. Following recent works (Wang et al., 2020; Ojha et al., 2023), we first use the images
generated by following models to evaluate our method, including seven different GANs: (1) Pro-
GAN (Karras et al., 2018), (2) CycleGAN (Zhu et al., 2017), (3) BigGAN (Brock et al., 2018), (4)
StyleGAN (Karras et al., 2019), (5) StyleGAN2 (Karras et al., 2020), (6) GauGAN (Park et al., 2019),
and (7) StarGAN (Choi et al., 2018). We also follow four different diffusion models with various
settings: (8) ADM (Dhariwal & Nichol, 2021), (9) LDM (Rombach et al., 2022), (10) Glide (Nichol
et al., 2021), (11) DALLE (Ramesh et al., 2021), and one high-quality (12) deepfakes method2. To
validate the performance on more recent and challenging generative models, we evaluate on recent
DiffusionForensics (Wang et al., 2023) and GenImage (Zhu et al., 2024) dataset. As there exists an
overlap between the two datasets, we choose ADM, Glide, and (13) VQDM (Gu et al., 2022) from
GanImage, and (14) Stable-Diffusion-v1 (Rombach et al., 2022), (15) Stable-Diffusion-v2 (Rombach
et al., 2022), LDM, (16) DALLE-2, (17) Midjourney, (18) ProjGAN (Sauer et al., 2021), StyleGAN,
(19) Diff-ProjGAN (Wang et al., 2022), and 20) Diff-StyleGAN (Song et al., 2024) from Diffusion-
Forensics dataset. Following prior works, we train our model and other baselines on the images
generated by ProGAN from (Wang et al., 2020). To demonstrate our method does not highly rely on
large-scale training data, we only use a subset that contains 4,0000 fake and real images, respectively.

Evaluation metric. Following prior state-of-the-art detectors (Wang et al., 2020; 2023; Ojha et al.,
2023), we report accuracy (ACC) with a fixed 0.5 threshold and an average precision (AP) to evaluate
our method and other baseline detectors.

Baselines. We compare our method with the following state-of-the-art baseline detectors: 1) ResNet-
50 (He et al., 2016) with binary cross-entropy loss is a widely used backbone for image classification
task. 2) Swin-Transformer (Liu et al., 2021) has a hierarchical transformer with shifted windows
for downstream vision tasks. We use Swin-B/224⇥224 as our baseline. 3) Patchforensics (Chai
et al., 2020) proposes a patch-wise classifier for detection at patch-level. 4) F3Net (Qian et al., 2020)
proposes a two-stream network to mine two complementary frequency-aware clues. 5) DIRE (Wang
et al., 2023) introduces a reconstruction error representation between the original and diffusion-
reconstructed image to train the classifier. 6) CNNDet (Wang et al., 2020) carefully designs pre- and
post-preprocessing and data augmentation to detect CNN-generated images. We use Blur+JPEG (0.1)
setting as our baseline. 7) UniFD (Ojha et al., 2023) uses CLIP to extract only the image embeddings
with the nearest neighbor as classification head. 8) NPR (Tan et al., 2024) explores the artifacts
left by up-sampling layers in GAN and diffusion models to serve as discriminative clues. For a fair
comparison, we use the same CLIP:ViT-L/14 for UniFD and our method. We train the aforementioned
baselines from scratch with their released code using the same training set as ours. We categorize them
into traditional image-classification backbones (ResNet-50 and Swin-T), deepfake detectors (Patchfor
and F3Net), diffusion-generated image detectors (DIRE), and universal detectors (CNNDet, uniFD
and NPR). Note that all the above baselines are visual-only detectors.

Implementation details. We use the pre-trained CLIP:ViT-L/14 to map the images and text prompts
into 768 dimensions embeddings. The input images are center-cropped into 224 ⇥ 224, before being
fed into CLIP. A simple fully-connected MLP is employed as our classification head, with an input
dimension of 768 and an output dimension of 2, mapping the visual-language CLIP representation

2whichfaceisreal.com

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Generalization results. Accuracy (ACC) on CNNDetection and UniformerDiffusion
datasets for detecting fake images from unknown generative models. Our method achieves an average
improvement of 2.54% and 7.14% compared to recent UniFD and NPR.

Detection
method

Generative Adversarial Networks Deepfakes Diffusion Models Total

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Style-
GAN2

Gau-
GAN

Star-
GAN ADM LDM Glide DALLE Avg.

200 steps 200 w/ CFG 100 steps 100 & 27 50 & 27 100 & 10

ResNet-50 99.87 75.33 67.20 79.83 71.98 68.85 97.75 64.85 65.75 66.55 66.70 67.70 75.65 79.20 76.55 55.75 73.72
Swin-T 99.77 91.91 89.04 83.36 81.55 88.44 86.14 70.48 75.34 83.24 75.73 83.84 67.23 73.09 73.14 78.29 81.29

Patchfor 92.68 72.90 65.81 82.11 81.98 59.13 88.75 58.30 63.54 65.54 64.56 65.30 61.09 62.84 63.46 57.25 69.08
F3Net 99.85 71.56 77.54 90.46 80.72 60.28 99.79 54.88 64.93 77.44 76.59 77.29 84.29 86.14 85.59 75.09 78.90

DIRE 99.83 67.67 81.75 84.23 75.73 80.80 79.40 55.45 70.10 69.50 74.60 71.15 83.55 85.60 85.90 67.30 77.04

CNNDet 99.58 80.08 64.70 84.40 78.18 77.05 92.50 78.90 57.25 54.65 56.35 55.00 60.55 64.45 62.15 56.65 70.15
UniFD 99.65 93.00 95.70 85.85 75.55 99.45 95.30 81.55 75.20 94.05 78.45 94.15 79.65 81.70 79.25 86.20 87.17
NPR 99.90 77.58 78.90 93.30 96.43 75.20 99.60 64.55 74.70 81.70 82.40 82.55 81.45 83.55 85.45 63.85 82.57

TIDY 99.92 93.06 94.17 92.49 82.03 90.83 97.86 86.56 77.29 92.92 80.26 93.33 87.29 89.38 88.44 89.48 89.71

Table 2: Generalization results. Average precision (AP) on CNNDetection and UniformerDiffusion
datasets for detecting fake images from unknown generative models. Our method achieves an average
improvement of 1.69% and 8.02% compared to recent UniFD and NPR.

Detection
method

Generative Adversarial Networks Deepfakes Diffusion Models Total

Pro-
GAN

Cycle-
GAN

Big-
GAN

Style-
GAN

Style-
GAN2

Gau-
GAN

Star-
GAN ADM LDM Glide DALLE mAP

200 steps 200 w/ CFG 100 steps 100 & 27 50 & 27 100 & 10

ResNet-50 99.99 83.11 77.42 98.23 96.23 78.92 99.88 67.49 76.34 78.99 78.06 79.31 84.67 87.92 86.53 58.99 83.26
Swin-T 99.99 99.42 95.80 92.24 98.34 96.87 99.76 76.62 84.99 92.14 86.55 92.33 74.70 80.46 81.53 87.08 89.93

Patchfor 98.16 81.81 74.77 89.60 90.37 65.66 96.05 63.37 71.12 75.49 74.72 75.33 69.56 70.56 71.85 68.32 77.30
F3Net 99.99 79.20 89.83 99.03 99.02 66.86 100.0 58.16 75.00 87.92 84.17 87.46 92.39 93.89 93.44 84.99 86.96

DIRE 99.99 76.49 91.24 96.12 94.59 86.74 99.87 53.32 79.74 77.37 82.59 79.08 91.69 93.87 93.85 74.98 85.72

CNNDet 99.99 90.77 87.57 99.26 98.62 92.70 98.01 98.54 72.98 69.93 70.37 70.97 77.45 83.15 80.63 61.96 84.56
UniFD 99.99 99.77 98.90 98.19 97.64 99.94 99.62 96.99 87.00 97.14 89.11 96.98 89.69 91.02 89.65 93.76 95.34
NPR 100.0 97.28 86.93 98.98 99.42 78.85 100.0 61.04 88.31 89.61 90.03 90.14 89.02 90.78 92.01 71.77 89.01

TIDY 100.0 99.88 99.31 99.17 99.09 99.95 99.96 97.93 87.27 97.87 91.56 98.06 94.75 96.55 95.55 95.52 97.03

into real/fake predictions. To generate the caption of input images, we use BLIP-2 (blip2-opt-
2.7b) (Li et al., 2023), and to detect each local semantic object, we use GLIP (glip-Swin-L) (Li et al.,
2022c). We train the classification head by 50 epochs with vanilla binary cross-entropy loss. An
Adamw (Loshchilov & Hutter, 2018) optimizer with 1e� 3 learning rate and 1e� 3 weight decay is
employed to optimize the training process. We empirically set both the weights {w1, w2} of global
and local distance to 1.0. All experiments are conducted on NVIDIA A100.

4.2 COMPARISON TO STATE-OF-THE-ART

Generalization to unknown models. We begin by evaluating the detectors’ generalization to
unknown generative models, which is a critical challenge in this field. We train all the detectors
with the same training dataset and then evaluate them on the aforementioned testing datasets. First,
we evaluate them on the CNNDet (Wang et al., 2020) and UniformerDiffusion (Ojha et al., 2023)
datasets, and the ACC/AP results are shown in Tab. 1&2. From the results, we observe that naive
detectors, such as ResNet-50 and Swin-T, cannot achieve the desired performance on the unknown
generative models. The detector designed for CNN-generated images, such as CNNDet, suffers from
diffusion-generated images, as well as the detector designed for diffusion-generated images, such as
DIRE, as it struggles to detect GAN-generated images. The universal detectors, including UniFD and
NPR, achieve considerable performance on various unseen models. But, they still encounter slight
performance drops on specific models, such as StyleGAN2 for UniFD and DALLE for NPR, which
we assume is caused by the unseen model architectures or different image distributions. Whereas,
our proposed method achieves impressive performance on various kinds of generative models, with
an average improvement of 12.31% AP compared to DIRE, 1.69% compared to UniFD, and 8.02%
compared to NPR. This provides evidence for our assumption that a universal detector should not
rely on specific generated image data thus proving the superiority of our method by exploring the
discrepancy in joint vision-language space.

To further support the impressive generalization of our method on various generative models, we
conduct experiments on other recent DiffusionForensics and GenImage datasets. The ACC/AP results

6
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Table 3: Generalization results on more unknown models. Detection accuracy and average
precision (ACC/AP) averaged over real and fake images to more unknown diffusion models and
generative adversarial networks from DiffusionForensics and GenImage datasets.

Detection
method

Diffusion Models Generative Adversarial Networks Total

ADM Glide VQDM SD-v1 SD-v2 LDM DALLE-2 Mid.
Proj-
GAN

Style
GAN

Diff-
ProjGAN

Diff-
StyleGAN Avg.

ResNet-50 68.00/79.95 71.50/83.00 52.35/54.89 76.45/79.75 74.65/79.91 58.60/84.95 73.47/76.41 90.27/83.17 50.40/81.19 55.80/93.47 50.65/81.13 93.95/94.99 68.01/81.07
Swin-T 62.68/80.77 58.73/74.22 66.18/81.55 53.48/61.24 64.47/73.94 81.69/94.96 76.18/77.61 90.79/80.03 50.88/71.29 69.78/86.71 50.23/55.72 87.79/91.69 67.74/77.48

Patchfor 56.96/63.91 58.98/65.57 64.24/75.47 73.14/89.44 76.14/88.66 81.38/92.71 82.65/94.95 91.56/97.97 63.86/80.11 64.57/80.10 64.54/79.85 84.89/94.60 71.91/83.61
F3Net 72.29/81.20 73.39/82.53 66.13/76.12 78.14/93.37 80.19/89.11 87.89/97.40 90.79/96.81 87.29/95.28 72.49/96.97 88.10/95.35 65.98/95.71 92.49/99.25 79.60/91.59

DIRE 75.25/85.47 81.45/90.49 66.85/76.79 74.05/81.80 73.10/88.97 80.65/98.48 73.87/94.63 63.91/86.80 61.40/51.16 75.60/88.25 61.40/55.44 79.85/94.59 72.28/82.74

CNNDet 56.45/72.39 57.90/74.36 54.20/61.73 50.25/74.85 50.05/64.16 53.65/78.37 66.80/63.15 90.82/91.42 56.00/88.07 82.15/98.65 55.25/85.57 95.35/99.87 64.07/79.38
UniFD 73.15/85.62 61.95/72.57 84.30/93.07 74.20/93.91 65.25/90.48 85.00/90.19 96.50/98.71 73.00/95.44 88.80/97.61 80.70/96.49 87.90/94.98 83.85/97.35 79.55/92.20
NPR 70.80/81.72 71.95/88.82 67.80/71.91 81.25/88.85 76.40/88.95 80.45/84.97 66.67/71.32 90.91/87.25 79.45/97.36 85.95/96.18 84.65/99.02 95.75/99.12 79.34/87.96

TIDY 87.24/93.00 79.11/90.59 86.93/93.87 80.52/94.11 77.86/89.90 89.79/97.58 91.19/98.82 89.75/98.08 92.29/97.99 89.01/96.55 88.13/96.03 95.52/99.34 87.29/95.49

are shown in Tab. 3. From these results, we can observe that our proposed universal detector achieves
impressive generalization to more unknown GAN and diffusion models, when compared to other
state-of-the-art competitors.

Robustness to unseen perturbations. The robustness to unseen perturbations is also a critical
concern for current fake image detectors, as there are various post-preprocessing perturbations in real-
scenario applications, such as compression. To address this issue, we evaluate all detectors’ robustness
against three common types of perturbations on images generated from ProGAN (the same as the
training set), including Gaussian Noise, Gaussian Blur, and JPEG Compression following (Wang et al.,
2020; 2023). For each perturbation, we consider three different severity levels: � = 0.001, 0.005, 0.01
for Gaussian Noise, � = 1, 2, 3 for Gaussian Blur, and quality = 75, 50, 25 for JPEG Compression.
The results are shown in Fig. 3. We observe that our method suffers less from the three different
perturbation types, with only a very slight performance drop compared to other baselines, especially
under Gaussian Noise and Gaussian Blur. This indicates that leveraging the joint visual-language
latent space of a pre-trained CLIP model can lead to a more robust representation for detecting fake
images than using only visual image patterns.

Figure 3: Robustness results to unseen perturbations. Average precision (AP) of different methods
when detecting real/fake images under three different types of perturbations with three different
severity levels: Gaussian Noise (� = 0.001, 0.005, 0.01), Gaussian Blur (� = 1, 2, 3), and JPEG
Compression (quality = 75, 50, 25) (from left to right).

4.3 ABLATION STUDY

Vision-language modalities vs. single modality. To validate that multi-modalities could lead to
improved detection compared to single modality, we first conduct an ablation study on different
modalities of the training the detector . We use the following different variants: (i) only text, (ii)
only image, and (iii) both (our TIDY). Note that, for both single-modality and multi-modalities
settings, the embeddings used to train the MLP header are from the same CLIP architecture with
768 dimensions. The results are shown in Fig. 4. From the results, we observe that using only text
performs worse than using only images, which could attribute to that all forgery clues or artifacts
in images are ignored. Our method achieves improved performance compared to using only image
or only text modality. This provides more evidence of our method’s superiority, as it explores the
vision-language discrepancy in a joint latent space instead of training on only a single modality.
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Figure 4: Ablation study on different modalities. The average precision (AP(%)) is reported. We
observe that our method equipped with multi-modalities achieves improved performance compared
to using only one single modality.

Figure 5: Ablation study on different distances. The average precision (AP(%)) is reported. We
observe that our proposed local and global distances could both achieve impressive performance, and
the performance is further boosted with equipped both.

Effect of different distances. To demonstrate that both our designed global and local distances
contribute to the improved performance of the detection, we conduct an ablation study on our
proposed global-to-local discrepancy scheme by employing the following variants: (i) only-local
distance, (ii) only-global distance, and (iii) both distances. The results are shown in Fig 5. We observe
that using only the local or global distance could achieve both an impressive performance, and the
performance is further boosted when both are employed. The results support our hypothesis that the
discrepancy exists in both the whole image and local areas. Exploring both global and more detailed
fine-grained discrepancy clues leads to further improvements. This also provides more evidence of
the effectiveness and superiority of our proposed method, as it uses the vision-language discrepancy
from global to local perspective.

Effect of different training datasets. To evaluate whether our detector is universal when training
data changes, we conduct experiments by using different generative models and image sources as the
training set. We consider both the GAN and diffusion models. Specifically, we evaluate the following
two variants: (i) ADM (Dhariwal & Nichol, 2021) trained on ImageNet (Russakovsky et al., 2015),
and (ii) ProGAN (Karras et al., 2018) trained on LSUN. Note that, unless specifically stated ,the real
images for training our detector are the same as when training the generative models. The results

Figure 6: Ablation study on different training datasets. The average precision (AP(%)) is reported.
Our proposed TIDY achieves impressive results, regardless of the generative models (e.g., GAN or
diffusion models) and image source (e.g., ImageNet or LSUN).
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are shown in Fig. 6. We observe that our method, when trained on diffusion-generated images can
achieve impressive performance on GANs, and the same for detecting diffusion-generated images,
when trained on GAN-generated images. Additionally, different training datasets can achieve similar
impressive performance, irrespective of the generative models or image sources. This provides more
evidence that our proposed detector is universal to unseen generative models, irrespective of different
training datasets, i.e., generative models or image sources.

Figure 7: Ablation study on different CLIP architectures. The results indicate that the detection
performance benefits from a larger CLIP backbone architecture.

Figure 8: Ablation study on different caption models. Our method is robust to different caption
models, which indicates that the discrepancy between image and caption is a general phenomenon.

Effect of different CLIP architectures. We conduct experiments to investigate the effect of different
CLIP backbone architectures. We consider the following different architectures: (i) CLIP:ResNet-50,
(ii) CLIP:ViT-B/16, and (iii) CLIP:ViT-L/14. We only change the CLIP architecture while keeping
other settings the same and Fig. 7 shows the average precision of these variants to unseen generative
models. From the results, we observe that variations in CLIP spaces could influence the performance.
Specifically, the transformer-based CLIP architecture performs better than ResNet-50, which could be
explained by its large-scale architecture and the long-range receptive field introduced by the attention
blocks. ViT-L/14 also achieves higher performance than ViT-B/16, which could also be attributed to
the larger backbone architecture.

Effect of different caption models. We conduct further ablations to demonstrate our method’s
effectiveness when employing different caption models. Specifically, we consider following different
caption models: (i) LLaVA Liu et al. (2024), (ii) BLIP Li et al. (2022b), and (iii) BLIP-2 Li et al.
(2023). Note that the prompt we use for LLaVA is: ”Please generate a one-sentence caption for the
input image.” The results are shown in Fig. 8 and we observe that our method still achieves impressive
performance when employing a different caption model, with only a slight drop compared to BLIP-2.
This indicates that our observation and method are general and applicable to different caption models.

4.4 VISUALIZATION

To analyze whether our proposed representation could effectively distinguish the real and fake images
in latent space, we visualize the distance representation by using t-SNE (Laurens & Hinton, 2008) on
different models, including ProGAN (Karras et al., 2018) for a GAN model, LDM (Rombach et al.,
2022) for a diffusion model, and StarGAN (Choi et al., 2018) for a generated face for deepfakes. The
results are shown in Fig. 9. From the results, we first observe that our designed representations of real
and fake images are clustered with a clear discrepancy margin in latent space for all three different
generative models. This indicates that our representation has strong discriminability in distinguishing

9
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GAN Deepfakes Diffusion Model

Figure 9: The t-SNE visualization of our representation. The real and fake images are clustered
with a clear discrepancy margin in latent space, which indicates our representation preserves strong
discriminability in distinguishing fake images from real ones.

between real and fake images. This provides more evidence about the effectiveness of our designed
representation on the universal fake image detection task.

5 CONCLUSION

In this paper, we find that fake images exhibit significant discrepancies between images and corre-
sponding captions compared to real images in joint visual-language space. Upon this observation, we
reframe the fake image detection from a multimodal image-text perspective and propose TIDY to
achieve universal fake image detection. Specifically, we first measure the distance between images
and corresponding captions in a joint visual-language space of pre-trained CLIP and then tune an
MLP head for detection. Considering the semantic divergence of local and global patches, and the
artifacts in local patches of fake images, we further introduce a global-to-local discrepancy scheme to
mine more fine-grained local semantic clues. Specifically, we propose to explore the discrepancy on
the whole image and each semantic object described in the caption. Extensive experiments demon-
strate our method’s superiority against other state-of-the-art competitors in detecting various fake
images with impressive generalization and robustness. We hope our method could provide insight on
how to formulate the AI-generated image detection task from a multi-modal perspective and also
foundations on how to leverage large pre-trained models to detect AI-generated content (AIGC) for
future research. In the future, we aim to extend our idea and method to other AIGC detection tasks
and facilitate the development of AIGC safety.
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