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Abstract
Generating multivariate time series that maintain desired characteristics while
controlling the dependency structure is an open challenge. We propose a graph-
guided time series generation model that generates both desired node and hier-
archical dependency structures. We highlight the effectiveness of the method
through pricing a correlation trade for the US Presidential Election.

1 Introduction
Time series modeling and generation remains an active research topic despite an extensive history. A
core component of this challenge is controlling the dependency structure between multiple time series.
In this paper we focus on time series from financial markets, which are driven by complex dependency
structures that are central to risk management, asset pricing and portfolio optimization. While deep
generative models have modeled characteristics of financial time series with some success, they fail to
capture conditional dependencies [1]. Similarly, other than [2, 3], these models typically lack explicit
mechanisms to incorporate desired dependency structure. Furthermore, graph and network effects
have often been touted as explanations for complex system behaviours (e.g., financial contagion)
observed in financial time series [4–7].

Current approaches such as equity factor models like BARRA [8] either require domain knowledge
or well specified dependency structures (e.g., vine copulas which are less feasible for large universes
of financial instruments, [9] demonstrates a use case for 96 stocks). Alternative methods to generate
correlated time series require well defined correlation matrices. In high-dimensional settings, this can
be difficult given noisy samples and limited sample size. Advanced approaches such as eigenvalue
clipping [10] and Ledoit-Wolf covariance regularization estimation [11] offer steps towards solutions
but can significantly alter the realised dependency structure.

In this work we offer an alternative solution to incorporating desired dependencies while retaining
desired time series characteristics. The key idea is to use a graph abstraction of the dependency
structure, allowing edge types based on this abstraction to help guide the generation process. We
use FiLM [12] convolutions to learn conditional time series generators across relational types. We
introduce a novel loss function which allows for our model to control for hierarchical relationships
and dependency structures within the generated time series. We highlight the model’s ability to
achieve desired dependency structures at both node scale and on aggregate. Lastly, we demonstrate
a practical use case of generating correlated time series, pricing correlation of US stock index and
sectors during the timeframe of the 2024 US Presidential Election.

2 Methodology
2.1 Data

We test the model on a substantial financial dataset which allows for investigation of hierarchical
graph components. The empirical dataset includes 392 tradable instruments, 2 index exchange traded
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funds (ETFs), 11 sector ETFs and 379 single stock names. For the empirical application, we use
option data from the 30th August 2024. Details of index coverage and component weightings can be
found in the appendix A.4.

2.2 Problem Formulation

We define the graph-guided time series generation problem as follows. Let G = (V, E), where
G represents the graph (the desired structural relationships), V = {1, . . . , N} is the set of nodes
(each representing a stock) and E ⊆ V × V is the set of edges abstracted from the dependency
values. To accommodate hierarchical dependencies, we introduce supernodes S, i.e., aggregated
nodes to represent the hierarchical feature (e.g., weighted sum of nodes such as a stock index) where
S = Σwi · vi ∀vi ∈ U and Σwi = 1 where U represents the set of nodes in the supernode S and
wi represents the weight of node vi feature for supernode S. We let X ∈ RT×N denote the real
multivariate time series defined over all nodes of the graph, where T is the number of time steps and
N is the number of variables (i.e., |V |). Including supernodes extends the time series to X ∈ RT×N ′

where N ′ −N = |S|. Let C be a conditioning variable (e.g., past time series of each node) which is
used to condition the generator. The joint data is then (X,C,G) ∼ PX,C,G . We define a generator
function X̃ = H(Z,C,G), where Z ∼ PZ is a latent noise variable. The goal is to learn H such that
H(Z,C,G) ∼ PX|C,G . That is, for every conditioning variable C and desired graph structure G, the
generator produces time series samples that match the true conditional distribution and desired graph
structure PH(Z,C,G) ≈ PX|C,G ∀(C,G).

2.3 Loss Functions

We use a multi-objective loss function (similar to the soft constraints of [13]), which combines
maximum mean discrepancy distance [14] with a gaussian distance kernel over different time series
characteristics. Maximum mean discrepancy (MMD) compares samples from the true distribution
P and the synthetic distribution Q. Minimizing this distance under the kernel feature expansion is
equivalent to minimizing the distance between the two distributions P and Q:

MMD2(P,Q) =Ex,x′∼P [k(x, x′)] + Ey,y′∼Q [k(y, y′)]− 2Ex∼P,y∼Q [k(x, y)] , (1)

where k(x, y) = exp
(
−∥x−y∥2

2σ2

)
and kernel bandwidth parameter σ > 0. Bandwidth choice is an

open research problem, similar to [14] we average the loss term over multiple bandwidth scales1.
Loss terms are weighted to give approximately equal importance. We also included some constraint
losses for initial training steps, e.g., bounds on cumulative series sums over entire generated output.
In the final model, the cumulative loss function includes MMD over the many characteristics, e.g.,
moments of expected conditional returns and desired correlation. The equivalent supernode losses
are also calculated and added separately.

2.4 Architecture Overview

Figure 1 illustrates the graph-guided generation procedure2. The process starts by concatenating
sampled noise (z) to the conditioning data x per node. Edges are abstracted from correlation matrices,
selecting the top-k absolute correlation values as edges. These are then bucketed by value into a
relationship type r. We use this relation to guide our generation. The conditioning data x is passed
through a FiLM convolution fr. The convolution fr(x) produces synthetic data point(s) (xgen),
which are then concatenated to the conditioning vector x and the cycle continues to generate for the
desired number of synthetic data points. Pseudo-code is included in appendix F.

3 Results
3.1 Graph-Guided Time Series

Figure 2 shows the performance of the graph-guided generator at achieving desired dependencies3.
The dependency of supernodes are compared to the generated dependencies from true index nodes

1We use an additional loss to help target relatively more important correlations within the dataset. The metric
is similar to that of top-k losses used in information retrieval (see appendix C).

2In appendix B, figure 8 we detail the generation flow from the FiLM Convolution.
3Further confirming results using alternative measures can be found in appendix E.
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Conditional Data Sample Noise Desired Correlations

x = [x, z] Graph Abstraction

xgen fr(x, edges)

x z

FiLM GNN
edges

x=[x[1:],xgen]

Figure 1: Graph-Guided Autoregressive Network.

(i.e., index nodes that are treated as normal nodes). The performance from the true index nodes can be
also viewed as an inspection of the model’s performance on a smaller universe of instruments (albeit
with a stronger than normal stock correlation network). To determine the performance of the generator,
we split the desired correlation values into octiles. We examine the success rate of the graph-guided
generator at correctly generating correlation of time series. Figure 2a represents the success rates
for all nodes. We find strong agreement between generated and desired correlations, whereas past
correlations perform similar to a uniform random correlation generator (dashed black line). Figure 2b
represents the success rates for all supernodes, i.e., the correlation structure of aggregated nodes vs.
the desired dependency of the aggregated structures. There is clearly more variance here, particularly
for lower octiles (i.e., typically negative correlations). Again, on average the generated data has good
agreement between desired and generated. The past (conditioned) dependency structure also does
better than random on average, indicating that the dependency structure of aggregated financial graph
relationships are less dynamic. Lastly, figure 2c represents a subset of the graph nodes, our index
nodes. They manage to nearly exactly match the dependency structure, with success rate very close
to 1. The dashed lines for octiles 1,2,6,7,8 represent that the body of the boxplot is focused at 1.0.

(a) All Nodes (b) Supernodes (c) Index Nodes only

Figure 2: The boxplots represent how often (success rate, y-axis) an edge is classified into its desired
octile (x-axis) or neigbouring octiles, e.g., we desire correlation of stock i, j to be in octile 1, if the
generated correlation is in either octile 1 or 2, we consider this a successful generation. The red (blue)
represents the success rates of the generated (conditioning/past) correlation data. High success in the
generated data confirms accurate dependency generation. The strong performance of Index nodes
only indicates the accuracy of the model for lower dimensional graph-guided generation.

3.2 The Implied Correlation trade

In the case study below, we outline a practical demonstration of using the graph-guided generator.
We demonstrate enhanced correlation pricing over raw implied correlation of option indices for the
November expiry in 2024 that included the US Presidential election4.

In figure 3, we examine the Profit and Loss (PnL) of a portfolio of correlation trades. Using a simple
sizing strategy, we build a long-short flat correlation trade. For the generated model, we compare
implied correlation premium (implied correlation minus the median generated realised correlation)
in percentile terms across all the indices and generations. We average this value per index and we

4For implementation details see appendix A.2 and further details of correlation trading are outlined in
appendix A. For a detailed formal introduction see [15].
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(a) (b)

Figure 3: In figure 3a, PnL of the strategies is displayed in terms of correlation points (i.e., if we
are long correlation, the PnL represents implied correlation - realised correlation). The red, blue and
green lines represent cumulative PnL for the strategies using generated realised correlation, historical
realised correlations and implied correlation only. The bars represent the PnL per index. In figure 3b,
the y-axis represents PnL in correlation points while the x-axis the number of indices available to
trade, ranging from 2 to 12. The boxplots indicate the PnL distribution of all combinations for our 3
strategies. The PnL from generated data outperforms both other methods over all combinations. The
certainty of outperformance increasing as the number of possible indices to choose from increases.

then make a long-short basket and normalize size to 1.0 for both baskets. The classical strategy
(blue curve and bars) replicates this approach but uses historical realised correlation levels. The raw
strategy (green) is based on an index’s implied correlation distance to median implied correlation of
all indices. The strategy based on the generated correlations (red) outperforms both the classical and
raw strategies. The generated approach accumulates approximately 27% and 63% greater profit than
the classical and implied-only(raw) methods (see figure 3a). Replication of correlation swaps requires
trading many instruments. To emulate this real-world constraint, we limit the number of indices we
can trade. We examine the performance of all possible subsets to determine the robustness of the
method, i.e., we look at the PnL from all strategies using all combinations of indices where we can
trade from 2 to 12 indices (see figure 3b). The generated method outperforms the other approaches.
The outperformance is clearer as the number of indices available to trade increases. When faced with
going long or short one index (i.e., only 2 indices are available to trade), the boxplot body of the
generative generated approach (leftmost red) remains above 0, indicating that for more than 75% of
all cases, it correctly predicts the relative level of correlation premium between all pairs of indices.

4 Conclusion

In this work, we propose a novel approach to generating multivariate financial time series using
graph-guided generation. This method contributes to graph-based generative modeling, demon-
strating how to incorporate graph-guidance for high-dimensional temporal data. The generative
model demonstrates success in generating time series and producing desired correlation structure.
Importantly, it maintains hierarchical structure within the generated time series. The generative model
offers a flexible and nearly off-the-shelf time series generator for practitioners. Lastly, we showcase a
practical application, using the model to price correlation around the 2024 US presidential election.

As with any experimental work, there were many design choices. A full ablation study of these is
beyond the scope of this work, but may garner useful insights going forward. One key question is the
weighting of the loss, while the approximate equal weighting approach works well, a more systematic
method would be worth investigating, e.g., adapting gradient normalization methods of [16, 17].

Similarly, we do not identify all clear effects (other than successful dependency generation) of the
different relationship types on the generation process (appendix E.3). There is room for further
investigation here which would help in general approaches to modeling complex multivariate time
series.
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A Correlation Trade
To trade correlation between a basket of stocks and its respective index with vanilla options, one
would use a net theta (i.e., option greek that measures change in time value of option) zero portfolio
to mimic correlation swaps. This is a form of dispersion trading (trading stock index implied volatility
versus the implied volatility of the basket [15]).

A.0.1 Pricing the US Election.

A practical use case for multivariate financial time series is scenario risk or valuation. On the 5th

of November, the 45th USA presidential election results were announced. The presidential election
offers a moment in time to capture the power of expected correlations and to some degree volatility.
The contrast of policies in presidential candidates in a close race can offer exceptional dispersion
circumstances. We have demonstrated in our results how the graph-guided approach provides an
extra tool for practitioners.

A.0.2 Creating the Election correlation expectations.

We take a very naive approach to determining how correlation based on a Trump victory would
look. We look at the 10 trading days over which Trump had the greatest jump in election odds
based on the most recent betting history using implied Betfair odds (see Figure 6). The underlying
assumption is as follows, over the course of these 10 days the change in odds will be reflected in
market movements. To add some variation to the correlation matrices, we bootstrap eight trading days
without replacement to determine the expected correlation matrix, akin to the method demonstrated
in [18].

A.1 Note on option data.

The data for pricing only includes options data as of the 30th of August 2024. The November expiry
options is not included in some option names, so where needed we interpolate through the forward
volatility curve the November volatility smile. Option prices used are recorded as of 17:00 GMT.

A.2 Model Adjustments

We introduce two simple adjustments to the generator to allow for pricing the November expiry. We
ensure the conditioned time series includes returns of randomly drawn earnings events sizes, e.g.,
if stock S is announcing earnings on the 25th of October, we sample from a distribution based on
historical earnings moves for stock S and adjust the conditioning for this. Similarly, when generating,
we use the same process to ensure the stock S move is amended for earnings. On the day of the
election, all stock returns will be adjusted by an implied move (estimated from the option data).

We generate all returns based on the dependence structure of the randomly sampled conditioning time
series until the day of the election, after which we use the bespoke correlation matrices to generate
the final 8 days until expiration.

A.3 Correlation Trade Experiment Assumptions

As we do not have access to correlation swaps, we use pricing from vanilla options. We have limited
price data, accordingly we make some simplifying assumptions:

6
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• We can represent the indices reasonably with a subset of underlying stocks (See section A.4 for
the tracking error of the indices used).

• All options are European (we use this assumption to derive implied volatility and option Greeks).
• Linear interpolation over term structure and smile is accurate.
• Events are independent, instantaneous and are treated as normally distributed across the volatility

surface.
• We ignore potential dividends around the event.
• We assume all earnings over the October and November expiries can be drawn from a stock

specific log normal distribution based on earnings moves from the previous 4 years.
• To derive volatility for expiration’s where there are no listed options, we use linear interpolation

based on an earnings-free forward volatility curve,i.e. we remove the volatility of the earnings
event from the term structure.

• To derive the election earnings premium, we use this earnings-free forward curve.
• On the index side, we assume no other events than the election, e.g., we ignore the FOMC

meeting on the 7th of November.
• Implied correlation (as per [15]) can be estimated with ( σindex

σbasket
)2, where σindex is the implied

volatility of the index, σbasket is the average implied volatility within the basket.

Naturally this induces a lot of caveats, however the primary purpose is demonstration. For prac-
titioners, adjusting these assumptions (or exposures to some assumptions) should be relatively
straightforward.
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A.4 Index Tracking Error

Figure 4: The figure on the left represents the tracking error for each index, i.e., given our 392 stocks , what
is the difference between 100% index weighting and the the weighting of the stocks we have included in our
analysis. XLF (Financial ETF) has the largest tracking error. Our universe typically represents over 95% for
each of the other indices. The figure on the right , represents the square root of the number of stocks within our
universe which is part of the representative index i.e., a value of 5 indicates that we have 25 stocks within that
index. With the tracking error, this provides information on how diverse an index is. SPY is the most diverse and
the sector ETFs, XLC (communications) and XLE (energy) are the least diverse (most concentrated).

A.5 Trump vs. Harris Betfair odds

Figure 6: Implied probability of a Trump (Blue) vs. Harris (Orange) Presidential election victory from BetFair
throughout August 2024.
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Figure 5: Renormalised component weights for the indices. Components with weight less than 1%
are included in label other.
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B FiLM Inner Architecture
FiLM (Feature-wise Linear Modulation) [19] was first introduced to allow conditioning via learned
scale and shift parameters of neural networks given external information e.g., visual processing based
on a question. It was then extended to graph neural networks [12] where the expressivity of the
convolution for graph neural networks was emphasized.

FiLM offers a bridge towards the earliest mathematical modelling of financial time-series [20]. FiLM
learns a β and γ which are analogous to both µ and σ (which represent drift and scale respectively)
in financial time series. We also find strong evidence empirically (figure 7) that both drift and scale
have a strong relationship with expected correlation.

(a) 10 Trading Days (b) 40 Trading Days

Figure 7: The heatmap represents the correlation deciles i.e., 7 (bright colour) implies the average
correlation for a stock is the 70th percentile. The y-axis represents the decile of the stock’s volatility
and the x-axis represents the decile of the stock’s drift (over 10 and 40 days respectively). There is
a clear positive relationship between diffusion and correlation. The relationship with drift is more
nuanced, where there seems to be a leverage effect, particularly as volatility increases.

Ego G(x, r) Network

xi xi, xj ∈ Ni, r ∈ R

βi γi x′
i βr,i,j γr,i,j x′

j

xego
i = γi ∗ x′

i + βi xnetwork
i = Σr∈R

Σj∈N (γr,i,j∗x′
j+βr,i,j)

|N |

xego
i + xnetwork

i = xgen

f1(xi) f2(xi)
fR,1(xi,r)

fR,2(xj ,r)

Figure 8: The FiLM convolution [12] involves a node centric (ego) transform and a neighbourhood (N ) and
edge-type (r) based transformation. The conditional data and concatenated sampled noise is represented by
xi. The Ego transform (left hand side) performs two operations. f1(xi) outputs a scale (γi) and shift (βi) for
the transformation of the ego features f2(xi). The network-based transformations (right hand side) includes
similar operations for neighbour-based features dependent on edge type (R). Neighbourhood representations are
averaged and added to ego node features.
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C Top-k Loss
Let Cdesired ∈ RB×N×N and Cgenerated ∈ RB×N×N be batches (B) of the desired and generated
correlation matrices for N instruments, respectively. We define the top-k structural correlation loss
as,

LTop-k =
∑
k∈K

1

log(k) + 1
· 1
B

B∑
b=1

1

N

N∑
i=1

∥∥∥M (b,i)
k − M̂

(b,i)
k

∥∥∥
1
,

where K = {1, 5, 10, . . . , 100}, M (b,i)
k is a binary mask of top-k absolute correlations in row i of

C
(b)
desired, M̂ (b,i)

k is the same for C(b)
generated and ∥·∥1 represents the L1 norm. Using varying values of k

ensures that the loss is balanced across different correlation scales.

We ran an ablation test (over 5 different seeds) to determine how conditional moments are affected
by the inclusion of the top-k loss. In general, we saw that higher conditional moments, such as
skewness and kurtosis of generated time series, are less accurate. In contrast, inclusion of this loss
improved both conditional volatility and the dependency structure, in particular for the index nodes
and supernodes. Indices represent the strongest correlations for many stocks (normal nodes). This
loss provides a more concerted way to learn the hierarchical dependency structure.

D A Note on Supernodes
We found that when the supernodes and their dependency structure are excluded, generated data has
unrealistic aggregate behaviour of stock baskets. More specifically, the aggregate variance learned
by the generator is too high variance. Including these constraints could also address the issue with
synthetic data for portfolio optimization purposes as described in [21]. The generator matches both
the behaviour of the financial time series at both a micro (idiosyncratic risks) and a macro (portfolio
risks) level.

E Additional Results
Below we outline further the performance of the graph-guided generator in terms of its capability in
achieving desired dependencies. We also examine more specifically supernodes (section E.2.1) and
compare their dependency to generated dependencies from true index nodes (i.e., that are treated as
normal nodes). The dependency performance from the true index nodes can be also viewed as an
inspection of the model’s performance on a smaller basket (albeit with stronger than normal base
correlation)5. We outline preliminary analysis of the scale and shift parameters learned per edge type
(section E.3). Lastly, we detail further results from the empirical experiment (section E.4).

E.1 Measure

To further examine how well the generated data matches the desired correlation structure we inspect
the differences of the averaged Jaccard Index between past, future and generated correlation networks.

The Jaccard Index is defined as follows; let G1 = (V,E1) and G2 = (V,E2) be two undirected
networks on the same set of nodes V , where edges are defined by thresholding correlation matrices at
some threshold τ . The edge sets are:

Ei = {(u, v) ∈ V × V | ρi(u, v) ≥ τ} , i = 1, 2,

where ρi(u, v) is the correlation between nodes u and v in network Gi.

The Jaccard Index J(G1, G2) is then defined as:

J(G1, G2) =
|E1 ∩ E2|
|E1 ∪ E2|

(2)

where | · | denotes the cardinality (number of edges). The proportion of common edges relative to the
total edges present in either network after thresholding is quantified by J(G1, G2).

5The values in the figures below are calculated over generations for the entire test dataset unless otherwise
specified.
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E.2 Dependency Performance

Figures 9 to 15 further detail the performance of the graph-guided generator in capturing the desired
dependency structure.

(a) Jaccard Index within a 10 correlation point
threshold.

(b) Jaccard Index within a 5 correlation point
threshold.

Figure 9: In Figure 9 we demonstrate the probability of generating a correct correlation within a
certain threshold i.e., p(|ρ(x,y)desired − ρ(x,y)actual | < thresh). The blue line indicates uniform
probability of generating the desired correlation. In general we see that the generated (orange) series
are more accurate for higher correlation values, better than random chance and reaching close to
50% (25%) chance of generating the desired dependency structure within the 10 (5) correlation point
threshold. The green line indicates how similar the correlation of the conditioning data is with the
desired correlation structure (typically less than random).

(a) Jaccard Index for Supernodes within a 10 cor-
relation point threshold.

(b) Jaccard Index for Supernodes within a 5 corre-
lation point threshold.

Figure 10: Similar to figure 9, figure 10 shows the threshold based Jaccard index for the desired
supernode structure. In general, the generated relationships are quite accurate and improves with the
level of correlation (as above). This also demonstrates that the conditional correlation structure for
these supernodes is more stable at higher correlation levels.
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(a) 20 Day Generation Correlation Probability Ma-
trix

(b) 60 Day Generation Correlation Probability Ma-
trix

Figure 11: The matrices in figure 11 represent the probability of a desired correlation octile (midpoint
value on x-axis) coinciding with a generated correlation octile (midpoint value on y-axis). The
diagonal represents the true positive rate. The octiles are based on the desired correlation matrix. In
general we see near total probability in each octile and it’s neighbours. This result improves with
longer generation periods (figure 11b).

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 12: The histograms in figure 12 represent the conditional (orange), desired (blue) and
generated (green) correlations for different generations. The generated correlations match the desired
correlation distributions quite well. The generator is able to match a wide variety of correlation
distributions.
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(a) The cumulative density function (CDF) of the
index nodes correlation structure.

(b) The cumulative density function of the gener-
ated time series correlation structure.

Figure 13: Figure 13 demonstrates how closely aligned the generated correlation matrices are
to the desired correlation matrices. The x-axis represents the percentile level and the y-axis the
corresponding correlation value. The blue (desired) and green (generated) CDFs track closely, while
the orange (past) provides a baseline (random case) to the desired correlations.

E.2.1 Supernode Behaviour

Figures 14 and 15 reflect supernode behaviour i.e., how the graph-guided generator performs at
capturing aggregate dependency structure.

(a) General Jaccard Index (b) Supernode Jaccard Index

Figure 14: Figure 14a displays the Jaccard Index of all generated instruments, while figure 14b
displays the Jaccard Index of the supernodes. The y-axis is the Jaccard Index number (level of
agreement, higher is better) and the x-axis is the correlation percentile (i.e., edges only exist above
this correlation threshold). The results echo those in figures 9 to 13, both figures demonstrate superior
performance (generated, orange line) to both random chance (blue line) and using conditioning
data correlation structure (green line). The supernode dependency structure has a minium value of
approximately 60%, i.e., in the worst case the generated model gets 60% success rate of edges in
correlation threshold networks.
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(a) Supernode Correlation Probability. (b) Generated index correlation probability.

Figure 15: As in figure 11, Figure 15 shows the probabilities of generating an edge correlation in
the correct octile (values on the diagonal). On the left is the supernode dependency structure and
on the right is the generated index structure. While the supernode structure does not perform as
perfectly as the index nodes, it still performs well. The correlation distribution for index nodes is
a narrower distribution, octiles four to eight all have average values above 60% correlation. The
primary difference in performance is in the negative correlations (octiles 1 and 2), the supernode
generations finds it more difficult to capture the aggregated dependency as accurately.

E.3 Scale (γ) and shift (β) for different relationships

The histograms in figure 16 represent the the average β and γ learned from the last layer of the
generative model over different seeds (i.e., the conditional scale and shift parameters generated from
the FiLM convolution). While averaging the values in the last layer is an oversimplification of the
mechanism at hand, it is interesting to examine nonetheless. For a more detailed analysis, more
context is required i.e. conditioning data, volatility etc.

Figure 16: The histograms in figure 16 represent the distribution of the β (left figure) and γ (right
figure) values. To interpret these values, we make two assumptions. Firstly, the intermediate
representation of the time series acts similarly to financial time series in general. Secondly, our
learned parameters β and γ reflect a drift and volatility effect respectively. Both parameters have
similar distribution over all edge types. The β parameter is approximately log-normally distributed
with a mean around zero, i.e., on average, there is no drift effect. The γ is more normally distributed
with on average a positive effect. The γ values indicate that on average we do see positive spillover
from the both ego node (i.e., autocorrelation) and from neighbouring nodes. To determine the true
effect of β and γ, we would require the conditional data and perhaps a better representation of the
intermediate layer.

E.4 November Expiry Correlation Trade Results

Below we include further results from the empirical application outlined in section 3.2 in the main
text. We examine the generated correlations versus both implied and realised. We also examine the
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max moves generated by each supernode versus the implied event size and realised event size (figure
17). In figure 18, we examine the realised correlation generated before and after the US election
event. Lastly in figure 19, we demonstrate how well the generated data fits the true realised implied
correlation premium vs. using only the implied level and using the implied level versus historic
realised levels.

(a) Generated Realised Correlation (b) Generated Max Absolute Daily Move

Figure 17: In figure 17a we can see that the realised correlations in general match up well with the
realised (dashed yellow lines). The implied correlation tends to have a premium over the realised
correlation. In figure 17b, we compare the roughly estimated implied event move with the true largest
index move over the period, with the distribution of supernode moves. The body of the distributions
also track realisations quite well with the exception of XLF (Finance sector ETF) . Tracking error
(i.e., the difference between the true ETF and the approximation from our universe of stocks) may be
the potential source of error for XLF. XLF is the index with the largest tracking error, see figure 4 for
more details.

Figure 18: Figure 18 displays the distribution of pre (left) and post (right) election realised correlation
for each index from the generated time series. The change in realised correlations across indices is
mixed. The true realised correlations post-election match better with the generated data, the majority
of realised correlations are within the body of the distributions. The pre-event distributions (i.e.,
completely random correlation distributions) tend to overestimate the true realised correlation before
the event. A more informed use of conditional correlations prior to the event may improve this, e.g.,
using implied volatility closer to event time or amending pre-event average correlation levels to match
those of previous election levels.
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Figure 19: The left plot of figure 19 compares the percentile of implied correlation per generated
distributions of realised correlations (y-axis) vs. the realised correlation premium (x-axis) over the
expiry. The middle figure compares the percentile of implied correlation per historical distributions of
realised correlations (y-axis) vs. the realised correlation premium (x-axis) over the expiry. The right
figure plots raw implied correlation (y-axis) vs. the realised correlation premium (x-axis). The red
line represents best fit and the shaded area represents 95% confidence intervals using bootstrapping.
The dashed line represents the median values across all the indices. All figures highlight greater
likelihood of a negative realised correlation for higher percentiles (raw implied correlation). However,
without calibration we find that generated percentiles would have proved a more robust method for
bet sizing correlation trades, see figure 3a.

F Pseudo Code

In this section we provide pseudo codes for algorithms described in the main text. Algorithm 1 refers
to the base graph neural network structure. Algorithm 2 outlines the generation process. Algorithm 3
details the training procedure. Algorithm 2 is inspired by the method defined in [22].

Algorithm 1 NET-GNN with FiLMConv Layers

1: Input: Node features x (i.e., the concatenated feature vector and sampled noise), edge indices e,
edge types r

2: Initialize GNN with R FiLMConv layers
3: for r = 1 to R do
4: x← PReLU(FiLMConvr(x, e))
5: end for
6: Output: Final node representation x

Algorithm 2 AR-FNN

1: Input: Graph data G = (x, e, r), latent noise z, shared noise zshared, correlated edge noise zedge,
jump noise zjump, edge types r, event volatility v (optional), post-event edges epost,post event
edge types rpost, event time Tevent.

2: Project node input: x← PReLU(lin_proj(x))
3: Apply FiLMConv GNN to process structural graph: h← NET(x, e)
4: Concatenate node features: h← [h ∥ z ∥ zshared]
5: if event-based conditioning is enabled, T ≥Tevent then
6: Apply GNN to v using edges epost and types rpost

7: else
8: Apply GNN to v using edges e and types r
9: end if

10: Output: Generated data point x̂
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Algorithm 3 Training Procedure for Graph-Guided Generator

1: Initialize generator G = AR-FNN(·) with input/output dims and hyperparameters
2: Initialize optimizer Gopt (Adam) and scheduler
3: for epoch = 1 to num_epochs do
4: for each batch in training loader do
5: Randomly sample time window q ∈ {5, 10, 20, 40, 100}
6: Generate latent vectors: z, zjump, and zshared
7: Compute current correlation matrix corr(xreal)
8: Sample desired correlation matrix Cdesired
9: if correlation conditioning is enabled then

10: Transform noise z to match Cdesired using correlated noise model
11: end if
12: Compute edge types from desired correlation matrix.
13: if events enabled then
14: Repeat steps above to compute post-event edge attributes and correlations
15: end if
16: Select top-k strongest correlations using Cdesired
17: Extract valid edge indices and values→ (edge_index, edge)
18: if events enabled then
19: Also extract valid edge indices and values for post-event edges.
20: end if
21: Input xreal, z, and edge data to G to generate xfake
22: end for
23: end for
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