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Abstract

This paper introduces the Gaussian multi-Graphical Model, a model to construct1

sparse graph representations of matrix- and tensor-variate data. We generalize2

prior work in this area by simultaneously learning this representation across several3

tensors that share axes, which is necessary to allow the analysis of multimodal4

datasets such as those encountered in multi-omics. Our algorithm uses only a5

single eigendecomposition per axis, achieving an order of magnitude speedup over6

prior work in the ungeneralized case. This allows the use of our methodology7

on large multi-modal datasets such as single-cell multi-omics data, which was8

challenging with previous approaches. We validate our model on synthetic data9

and five real-world datasets.10

1 Introduction11

A number of modern applications require the estimation of networks (graphs) exploring the de-12

pendency structures underlying the data. In this paper, we propose a new approach for estimating13

conditional dependency graphs. Two datapoints x, y are conditionally independent (with respect to14

a dataset D) if knowing one provides no information about the other that is not already contained15

in the rest of the dataset: P(x|y,D\xy) = P(x|D\xy). For normally distributed data, conditional16

dependencies are encoded in the inverse of the covariance matrix (the ‘precision’ matrix). Two17

datapoints are conditionally dependent on each other if and only if their corresponding element in the18

precision matrix is not zero. If our dataset were in the form of a vector d, we could then model it as19

d ∼ N (0,Ψ−1) for precision matrix Ψ. This is a Gaussian Graphical Model (GGM); Ψ encodes20

the graph.21

However, datasets are often more structured than vectors. For example, single-cell RNA sequencing22

datasets (scRNA-seq) come in the form of a matrix of gene expression counts whose rows are cells23

and columns are genes. Video data naturally requires a third-order tensor of pixels to represent24

it - rows, columns, and frames. Furthermore multi-omics datasets such as those including both25

scRNA-seq and scATAC-seq may require two or more matrices to be properly represented; one for26

each modality.27

We could assume that each row of our matrix is an i.i.d. sample drawn from our model. However,28

independence is a strong and often incorrect assumption. If we wanted to make no independence29

assumptions, we could vectorize the dataset D and estimate Ψ in vec[D] ∼ N (0,Ψ−1). However,30

this produces intractably large Ψ, whose number of elements is quadratic in the product of the lengths31

of our dataset’s axes.32

Thankfully, tensors are highly structured, and we are often interested in the dependency structure33

of each axis individually - i.e. the dependencies between samples or the dependencies between34

features - rather than the dependencies between the elements of the tensor themselves. To model this,35

we can represent Ψ as some deterministic combination of the axis-wise dependencies: vec[D] ∼36
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Figure 1: The two matrices of the LifeLines-DEEP dataset. As both matrices include data for the
same people, the learned graph between people should be the same.

N (0, ζ(Ψrow,Ψcol)
−1), for some function ζ . The strategy is to estimate Ψrow,Ψcol directly, without37

computing the intractable ζ(Ψrow,Ψcol)
−1. While there are multiple choices for ζ, this paper38

considers only the Kronecker sum.39

1.1 Prior work40

The Kronecker sum BiGraphical Lasso (BiGLasso) model was first considered by Kalaitzis et al.41

[14]. BiGLasso is the multi-axis analog to graphical lasso methods [10], which are used to estimate42

covariance matrices of data drawn from a multivariate Gaussian distribution. The Kronecker sum43

of two matrices, A⊕B, can be expressed in terms of Kronecker products: A⊗ I+ I⊗B. When44

the matrices A,B are adjacency matrices of graphs, the Kronecker sum has the interpretation as45

the Cartesian product of those graphs. This sum is one choice ζ to combine the per-axis precision46

matrices into the precision matrix of the vectorized dataset, vec[D] ∼ N (0, (Ψrow ⊕Ψcol)
−1).47

Other choices for ζ have been considered, such as using the Kronecker product [23, 8], or the square48

of the Kronecker sum [24, 25]. Each method has its strengths; the benefits of a Kronecker sum49

structure are its interpretability as a graph product, stronger sparsity, and its allowance of inter-task50

transfer [14].51

The original BiGLasso model was very slow to converge to a solution, in large part due to its non-52

optimal space complexity of O(n2p2). This prohibited its use on large datasets (measuring in a53

couple hundred samples and/or features). Numerous modifications have been made to the algorithm54

to improve its speed and achieve an optimal space complexity of O(n2 + p2), such as scBiGLasso55

[17], TeraLasso [12], and EiGLasso [27]. Of these, TeraLasso is notable in that it generalizes to an56

arbitrary number of axes, i.e. ζ(Ψ1, ...,Ψk) = Ψ1 ⊕ ...⊕Ψk. TeraLasso and EiGLasso, the fastest57

prior work, both rely on computing an eigendecomposition every iteration.58

All of these algorithms and models, including our own, rely on a normality assumption. We are most59

interested in the case of omics data, in which case a log-transform renders our dataset sufficiently60

Gaussian-like for our algorithm to achieve good performance. An overview of the use of GGMs in61

omics data is given by Altenbuchinger et al. [2].62

1.2 Unmet need63

Many datasets, especially those in multi-omics, are representable as a collection of matrices or tensors.64

As a case study, we consider (a subset of) the Lifelines-DEEP dataset from Tigchelaar et al. [22],65

which is summarized graphically in Figure 1.66

In this dataset, two different modalities of data were gathered from the same people: counts of67

microbial species found in their stools (metagenomics) and counts of metabolites found in their68

blood plasma (metabolomics). While different matrices, each modality shares an axis. If we were to69

estimate a graph of people on each modality independently, they would likely yield different graphs.70

This is not ideal; if our aim is to estimate the true graph of conditional dependencies, there should be71

only one resultant graph. To estimate it, we should be considering both modalities simultaneously.72
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Figure 2: (A) A hypothetical dataset whose structure cannot be reduced to a single tensor by
concatenation. Concatenating would lead to a block of missing values for a hypothetical (and
nonsensical) species by elements matrix. (B) A hypothetical single-cell RNA-sequencing dataset
procured from multiple patients. Concatenation is possible, but would lead to a very large output
graph for a modest number of patients.

One way to do this would be to concatenate the modalities, producing a matrix of people by73

"species+metabolites". This could yield interesting results, if one is interested in connections between74

individual species and a metabolite. However, it would increase the size of the output graph, which75

grows quadratically in the length of the axis. Furthermore, it is not always possible or feasible; some76

datasets may not be concatenatable. We visually demonstrate some cases where concatenation fails77

in Figure 2.78

1.3 Our contributions79

We introduce a novel method to extend the use of Gaussian Graphical Models to multi-tensor datasets.80

This extension is essential to model conditional dependencies in multimodal datasets such as those81

frequently occurring in multi-omics. We present an efficient algorithm to estimate these conditional82

dependencies. When restricted to the single-tensor case, our algorithm is much faster than previous83

algorithms that estimated conditional dependency graphs for each axis, such as TeraLasso[12] and84

EiGLasso[27].85

2 Methods86

2.1 Notation87

In prior work, a single-tensor dataset D is modelled as vec [D] ∼ N
(
0, (

⊕
ℓ Ψℓ)

−1
)

, also written88

as D ∼ NKS ({Ψℓ}ℓ).89

Our model considers multiple tensors, each with their own (potentially shared) axes. We aim to90

estimate the precision matrices Ψℓ for each axis ℓ of each tensor Dγ , indexed by γ ∈ N. To describe91

that an axis ℓ is one of the axes of a tensor Dγ , we will write ℓ ∈ γ. Some values will be indexed92

by both an axis and a tensor; for consistency we will use subscripts to denote axes (typically ℓ) and93

superscripts to denote tensors (typically γ). dγ∀ will represent the number of elements in Dγ , and94

d∀ =
∑

γ d
γ
∀.95
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An important concept is the Gram matrix Sγ
ℓ . In the single-tensor case, this is a sufficient statistic; all96

prior work first computes these matrices as the first step in their algorithm. Let matℓ [Dγ ] represent97

the "matricization" of Dγ along axis ℓ, then Sγ
ℓ = matℓ [Dγ ] matℓ [Dγ ]

T . The matricization of a98

tensor picks one axis, ℓ, to index the rows, and flattens the rest out into columns. Note that for99

a matrix M, matcolumns [M] = MT . Rather than Sγ
ℓ , we consider the "effective Gram matrices"100

Sℓ =
∑

γ|ℓ∈γ S
γ
ℓ , as these fulfill the role of the Gram matrices in the multi-tensor case.101

2.2 The model102

To properly handle sets of tensors, we propose modelling each tensor as being drawn independently103

from a Kronecker-sum normal distribution. If the tensors share an axis ℓ, then they will still be drawn104

independently - but their distributions will be parameterized by the same Ψℓ. For an arbitrary set of105

tensors, the model is:106

Dγ ∼NKS

(
{Ψℓ}ℓ∈γ

)
for Dγ ∈ {Dγ}γ

We call this model the "Gaussian multi-Graphical Model" (GmGM) as it extends Gaussian Graphical107

Models to estimate multiple graphs from a set of tensors. In this paper, we will make the assumption108

that no tensor in our set contains the same axis twice - notably, covariance matrices would violate109

this assumption. Any tensor with a repeated axis would naturally be interpretable as a graph - such110

datasets are rare, and if one already has a graph the need for an algorithm such as this is diminished.111

As an example, we model the LifeLines-DEEP dataset Dmetagenomics and Dmetabolomics indepen-112

dently as:113

Dmetagenomics ∼NKS (Ψpeople,Ψspecies)

Dmetabolomics ∼NKS (Ψpeople,Ψmetabolites)

2.3 The algorithm114

Here, we present an algorithm to compute the maximum likelihood estimate (MLE) jointly for all115

parameters Ψℓ of the GmGM. The general idea is to produce an analytic estimate for the eigenvectors116

of Ψℓ, and then iterate to solve for the eigenvalues; this is summed up graphically in Figure 3.117

In the supplementary material, we derive the following:118

p({Dγ}) =

∏
γ

√∣∣∣⊕ℓ∈γ Ψℓ

∣∣∣
(2π)

d∀
2

e
−1
2

∑
ℓ tr[ΨℓSℓ] (pdf of GmGM)

NLL [{Dγ}] ∝
∑
ℓ

tr [ΨℓSℓ]−
∑
γ

log

∣∣∣∣∣∣
⊕
ℓ∈γ

Ψℓ

∣∣∣∣∣∣ (negative log likelihood)

From this, we can observe that the effective Gram matrices Sℓ form a set of sufficient statistics for119

our distribution. Furthermore, the log-likelihood is the sum of log-likelihoods in the single-axis case,120

thus preserving convexity of the loss function.121

Theorem 1. Let VℓeℓV
T
ℓ be the eigendecomposition of Sℓ (where Vℓ ∈ Rdℓ×dℓ and eℓ ∈ Rdℓ×dℓ122

is a diagonal matrix). Then Vℓ are the eigenvectors of the maximum likelihood estimate of Ψℓ.123

Theorem 1 is critical to allowing efficient estimation of Ψℓ, as it not only allows us to extract the124

computationally intensive eigendecomposition operation from the iterative portion of the algorithm,125

but also reduces the number of parameters to be linear in the length of an axis.126

To find the eigenvalues Λℓ of Ψℓ, we produce the second theorem:127
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Theorem 2: Iterate until Convergence

For each dataset , compute intermediate values 

And use this to update our estimate of the eigenvalues 

Figure 3: A graphical overview of how the GmGM algorithm works. We use γ to represent an
arbitrary modality, and ℓ to represent an arbitrary axis. Proofs are given in the supplementary
material.

Theorem 2. Let {Gγ
ℓ } be matrices such that the expression

⊕
ℓ∈γ G

γ
ℓ is the best Frobenius-norm128

approximation of
(⊕

ℓ∈γ Λ
t
ℓ

)−1

. Then, for a learning rate µt, gradient descent can be performed129

with the update equation Λt+1
ℓ = Λt

ℓ − µt

[
eℓ −

∑
γ|ℓ∈γ G

γ
ℓ

]
. As Ψℓ is positive definite, µt must130

be chosen to prevent Λt
ℓ from becoming negative.131

While the definition of Gγ
ℓ is technical, it is analogous to the notion of the blockwise-trace from132

Kalaitzis et al. [14] and projK from Greenewald, Zhou, and Hero III [12]. Proofs of Theorems 1133

and 2, along with a method to compute Gγ
ℓ , are given in the supplementary material. Overall, our134

algorithm is described in the pseudocode at the top of the next page.135

For regularization, one can choose to either keep the top p% of edges, or keep the top k edges per136

vertex (for parameters p, k). The incorporation of more advanced regularizers, such as Lasso, would137

require an eigen-recomposition on each iteration, which would be much slower. As we demonstrate138

empirically in Section 3, it is not necessary to use advanced regularizers to recover the graph structure139

to the same precision as prior work.140
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The GmGM algorithm
Input: {Dγ

i }, tolerance
Output: {Ψℓ}

1: for 1 ≤ ℓ ≤ K

2: Sℓ ←
∑

γ|ℓ∈γ
1
nγ

∑nγ

i matℓ [Dγ
i ] matℓ [Dγ

i ]
T

3: Vℓ ← eigenvectors[Sℓ]
4: eℓ ← eigenvalues[Sℓ]
5: end for
6: Λ← [1 ... 1]

T

7: µ← 1
8: while not converged
9: for 1 ≤ ℓ ≤ K

10: Gγ
ℓ ← projKS

[(⊕
ℓ′∈γ Λℓ

)−1
]

11: Λ′
ℓ ← Λℓ − µ

[
eℓ −

∑
γ|ℓ∈γ G

γ
ℓ

]
12: end for
13: for 1 ≤ ℓ ≤ K
14: Λℓ ← Λ′

ℓ
15: end for
16: for γ
17: if

∑
ℓ∈γ minΛℓ < tolerance then

18: decrease µ so that this result is sufficiently far from zero
19: end if
20: end for
21: end while
22: for 1 ≤ ℓ ≤ K
23: Ψℓ ← VℓΛℓV

T
ℓ

24: end for

3 Results141

We tested our algorithm on synthetic data and five real-world datasets. Explanations of data generation,142

collection, preprocessing, and regularization are given in the supplementary material.143

3.1 Synthetic Data144

We verified that our algorithm was indeed faster on matrix-variate data compared to prior work145

(Figure 4) on our computer (Ubuntu 20.04 with Intel Core i7 Processor and 8GB RAM). Our results146

on matrix data are encouraging - extrapolating the runtimes, datasets up to size 16,000 by 16,000147

could have their graphs estimated in less than an hour. Larger datasets would require more than 6GB148

of memory for our algorithm to run, pushing the limits of RAM. Our algorithm was not significantly149

faster on higher-order tensor data (see the supplementary material). This is due to the complexity of150

computing the Gram matrices, which grows exponentially with the number of axes.151

In addition to these speed improvements, we show that we perform equivalently to state-of-the-art152

on matrix data (Figure 5a). On higher-order tensor data, we are outperformed by TeraLasso, which153

is able to achieve near-perfect recovery of the graphs. We believe this is due to our algorithm’s use154

of thresholding rather than a more advanced regularization technique. Since our speed gains are155

not significant relative to TeraLasso, on higher-order tensor data without shared axes one should156

prefer TeraLasso to GmGM. Finally, we demonstrate that taking into account shared axes does indeed157

improve performance (see blue line, Figure 5b). Prior work could not take this into account.158

3.2 Real Data159

We tested our method on various real datasets. These include two video datasets (COIL-20 [19] and160

EchoNet-Dynamic [20]), a transcriptomics dataset (E-MTAB-2805 [5]), and two multi-omics datasets161

(LifeLines-DEEP [22] and a 10x Genomics dataset [1]).162
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(a) (b)

Figure 4: A comparison of the runtimes of our algorithm against (a) bi-graphical and (b) tensor-
graphical prior work. Runtimes were averaged over 5 runs.

(a) (b)

Figure 5: (a) Precision-recall curves comparing various algorithms on synthetic 50x50 matrix data.
(b) Precision-recall curves comparing our algorithm on two 50x50 matrices with one shared axis. We
considered both modalities simultaneously (blue) and an individual modality (red, orange). In both
subfigures, each edge of the true graphs was generated independently with probability 1

5 .

(a) (b)

Figure 6: The estimated precision matrices on the E-MTAB-2805 dataset (a) and the EchoNet-
Dynamic dataset (b). Yellow represents an edge and purple represents the lack of an edge. The
E-MTAB-2805 cells have been grouped together by cell cycle stage, in the order G, S, and G2/M.
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Figure 7: Assortativity with increasing regulatization in the LifeLines-DEEP dataset, comparing our
method with the Zero-inflated Log-Normal (ZiLN) model. In one case we show the performance of
our algorithm restricted to the metagenomics dataset (a) and when augmented with the metabolomics
dataset (b). In both cases, ZiLN is only trained on the metagenomics dataset, as it is a single-axis
model.

The E-MTAB-2805 dataset consists of transcriptomics data for individual cells split into three groups163

by their stage in the cell cycle (G, S, and G2/M). If our estimated precision matrices had a 3x3164

block-diagonal structure, this would indicate that it had recreated this grouping. This is not what we165

see, but we do see a 3x3 block matrix structure (Figure 6a). We found that cells in the DNA synthesis166

stage (S) had few connections between them, and that there were many connections between the G1167

and G2/M stages. This result is biologically plausible, as cells in the synthesis stage are the most168

variable.169

The results on EchoNet-Dynamic (Figure 6b) are much more encouraging, as we would expect a170

periodic structure due to the beating of the heart. A precision matrix with repeating diagonals is what171

we would expect to see in this case, which is what our algorithm produces. In the supplementary172

material, we further verify that this corresponds to a heartbeat by using the repetition to accurately173

predict the opening of the mitral valve in the video.174

The duck video in the COIL-20 dataset was considered in the original BiGLasso paper [14], in which175

they showed that their algorithm could recover the ordering of the frames of the video. To do this they176

had to heavily downsample the image (to a 9x9 image with half the frames), and flatten the rows and177

frames into a single axis. Due to the speed improvements of our algorithm, and its ability to handle178

tensor-variate data, we were able to run our algorithm on the raw, unprocessed data and achieve a179

similar result in negligible time. Specifically, the reconstruction of the frames had an accuracy of180

99%.181

Prior work by Prost, Gazut, and Brüls [21] used assortativity to assess their validity of the species182

graph estimated by their model on the LifeLines-DEEP metagenomics dataset. Assortativity repre-183

sents the tendency of related species to cluster together in the graph. A random graph would have184

an assortativity of zero, but we would expect moderate assortativity in the true network as similar185

species may fulfill similar roles in the gut microbiome. Our assortativity is comparable to prior work186

(Figure 7). We also found that our graphs were more robust to noise than prior work; we analyze this187

in the supplementary material.188

Finally, we tested our approach on a 10x Genomics single-cell (RNA+ATAC) dataset taken from a189

B Cell lymphoma tumour. We demonstrate that the clusters we find (using Louvain clustering[3])190

on the graph remain visually cohesive when projected into lower-dimensional space by UMAP[18]191

(Figure 8). In particular, the disconnected “islands” in UMAP correspond to their own cluster on the192

graph as well. As these island-clusters were arrived at independently through two methods, UMAP193

and our algorithm, it increases our confidence in the validity of the clustering. In the supplementary194
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(a) (b)

Figure 8: Two plots of the same cells from the 10x Genomics dataset, displayed via UMAP [18] (a)
and the Fruchterman-Reingold layout algorithm[11] (b). Colors are based on Louvain clustering[3]
of the graph, and represent the same clustering in both figures.

material, we verify that these clusters do represent distinct groups via a GO term enrichment analysis.195

Our overall approach has been implemented in Python. All of the code to run the algorithm and196

recreate the experiments has been made publicly available on GitHub; https://github.com/NeurIPS-197

GmGM-Paper/GmGM.198

4 Limitations199

Our method uses thresholding rather than more sophisticated regularizers. However, there is no200

fundamental barrier preventing our algorithm from allowing regularizers at the cost of an eigen-201

recomposition per iteration. This would increase the asymptotic complexity of the iterative portion202

of our algorithm, making it questionable whether any gains in precision would be worth the loss in203

efficiency.204

Our method assumes that no tensor has a repeated axis (i.e. a matrix of people by people rather than205

people by species). If there is a repeated axis, one can no longer analytically find the eigenvectors of206

the MLE, at least by our methods. This is not a substantial issue, as such datasets are uncommon and207

already represent graphs. Rather than extending the algorithm to work with repeated-axis tensors, it208

would be more fruitful to extend it to work with priors.209

When considering multi-tensor datasets, it may be the case that two axes only partially overlap. For210

example, the full LifeLines-DEEP dataset contains a second (follow-up) metagenomics dataset for a211

third of the study participants; two thirds of the patients are missing from this dataset. We do not212

make an attempt to handle this type of missing data, even though missing data shows up in many213

applications. The lack of ability to handle missing data is a major limitation of our algorithm. It is214

nontrivial to extend the algorithm to handle this case, as it renders Theorem 1 ineffective and hence215

removes the speed advantage we attained. Prior work has not addressed this problem, as it only exists216

in multi-tensor datasets and we are the first to consider this case.217

5 Conclusion218

We have created a novel model, GmGM, which successfully generalizes Gaussian graphical models219

to the common scenario of multi-tensor datasets. Furthermore, we demonstrated that our algorithm is220

significantly faster than prior work focusing on Gaussian tensor-graphical models such as EiGLasso221

and TeraLasso while still preserving state-of-the-art performance. These speed improvements allow222

tensor-graphical models to be applied to datasets with axes of length in the thousands. Finally, we223

demonstrated the application of our algorithm on five real-world datasets to prove its efficacy.224
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