Learning using switching synaptic plasticity rules
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Abstract

We explore networks whose synapses can independently change their governing
plasticity rule during training. The MICrONS connectome data revealed that
cortical synapses are well described by two states, corresponding to strong synapses
having developed the spine apparatus and weak synapses lacking it. The spine
apparatus, a calcium reservoir affecting synaptic dynamics, plays a significant
role in plasticity and learning, though its exact function is not fully understood.
Although the connectome data is static, synapses can dynamically gain or lose
the spine apparatus. Here, with simplifying assumptions, we model a network
whose synapses can switch between one of two learning rules: a weak, pre-post
rule governing weak synapses (Hebbian-like), and a strong, credit-assignment
rule governing strong synapses (backpropagation, BP). We explore such a system
using recurrent neural networks (RNN) and contrast our plasticity-switching RNNs
with vanilla, BP-only, RNNs. Surprisingly, we found that switching RNNs learn
faster, i.e. with fewer examples, than vanilla RNNs. We also found that the
recurrent weights matrix of the trained plasticity-switching RNNss is significantly
more antisymmetric than the vanilla RNNs’ matrix. This surprising prediction,
considering Hebbian updates are nearly symmetric, deserves further investigation
to reconcile with connectomic graph analysis.

1 Introduction

Traditional artificial neural networks rely on BP, which requires global error signals at all synapses—a
mechanism that lacks biological plausibility [Crick, 1989] Bengio et al., |2015]]. While local plasticity
rules like Hebbian learning are biologically realistic, they are typically insufficient for complex tasks
requiring precise credit assignment [Gerstner, 2011]]. This has motivated recent interest in hybrid
approaches that combine local and global learning mechanisms [Lillicrap et al., 2016, |Sacramento
et al.,[2018| [Richards and Lillicrap, [2019]].

Recent analysis of the MICrONS connectome revealed a striking bimodal distribution of synaptic
strengths in cortical pyramidal neurons [Dorkenwald et al., 2022]]. Synapses naturally segregate into
weak synapses lacking specialized structures and strong synapses with spine apparatus—a calcium
reservoir that enables sophisticated plasticity [Spacek, |1985| Jedlicka et al.| 2008|]. We hypothesize
this reflects a functional division: weak synapses use local Hebbian plasticity, while strong synapses
support credit assignment through calcium-dependent signaling [Shouval et al., [2002, |Graupner and
Brunel, 2012]. Additionally, recent theoretical work proved that, starting from unimodal distributions,
single plasticity rules can only produce final unimodal weight distributions [Pogodin et al., 2023
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Cornford et al., 2024], providing more support for the hypotheses that the bimodal distribution of
weights indicates two distinct learning rules.

Motivated by these experimental and theoretical findings, we propose neural networks with switching
plasticity rules based on synaptic strength. Weak synapses use Hebbian learning while strong synapses
use BP, providing a biologically motivated balance between local and global learning. This approach
not only explains observed bimodal distributions but also presents a novel framework for biologically
realistic learning algorithms.

2 Methods

Tasks We evaluated our switching plasticity models on cognitive tasks from [Yang et al., 2019],
focusing on two tasks with different difficulty levels that test temporal memory and credit assignment
capabilities. The delaygo task (moderate difficulty) requires maintaining a spatial location during a
delay period and responding after a go cue. A stimulus appears at one of eight locations, followed by
a delay, then a go signal prompting response at the remembered location. The multidelaydm task (high
difficulty) extends this by requiring comparison between sequentially presented stimuli with varying
delays, demanding enhanced working memory maintenance. These tasks’ temporal structure provides
natural opportunities for Hebbian plasticity to operate on correlated activity patterns, while requiring
precise credit assignment for successful performance [Yang et al.,|2019} Driscoll et al.,[2024]], making
them ideal for investigating local-global learning interactions in our switching plasticity framework.

Network Architecture We implemented our switching plasticity model using a recurrent neural
network (RNN) architecture (Fig[T]A). The network consists of input weights (1;,,), recurrent weights
(Wree), and output weights (IW,,;) with corresponding biases. All weights and biases are trained
using BP, except recurrent weights which follow our switching plasticity rule where individual
synapses dynamically switch between local Hebbian-like updates and global BP updates based on
their strength. We simulated our models in discrete time:

ht = (1 - a)htfl +« d) (Wzn . it + Wrec : htfl + brec + nrec) } (1)
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where ¢(+) is the activation function (tanh or ReLU), o = 0.2, and we used standard hyperparameters
from previous studies [Yang et al.l 2019, Driscoll et al.| 2024]]. We analyzed networks with N =
64,128, 256, and 512 hidden units, reporting results on larger sizes due to improved robustness.

The switching mechanism operates through strength-dependent thresholds: synapses below a lower
threshold use Hebbian plasticity, while those above an upper threshold use BP. This creates a division
of labor where weak synapses rely on local plasticity (consistent with simple synaptic connections)
while strong synapses employ sophisticated credit assignment (analogous to spine apparatus-equipped
synapses). The RNN architecture allows us to isolate switching plasticity effects without confounding
factors from architectural innovations.

Training We trained vanilla (BP through time) and switching (custom) models using Adam op-
timizer [Kingma and Bal,[2017] with a learning rate of 0.0001 for 50 epochs of 500 batches, each
containing 200 concatenated task trials. We initialized weights of both model types from a uniform
distribution with a scale of 1/3/N (Fig ), that produces an initial spectrum suitable for learning

(Fig[T[O).

Switching model The switching model used a custom approach where recurrent weights are
computed as W,... = M © Wgp + (1 — M) ® Wyepp using a binary & dynamic mask M. At
each batch end, we updated M based on synaptic weights crossing switching thresholds. Inspired
by the long timescale of gaining or losing a spine apparatus, Hebbian weights approximate long-
term plasticity, unlike typical Hebbian learning in the literature used for short-term, within-trial
memory [Tyulmankov et al.; 2022 |Aitken and Mihalas| 2023|. We set a period P = 100 trials, stored
hidden activity in Hp 7 n (an array with three dimensions — the number of trials P, the number of
time steps 7', and the number of hidden units N), and computed:

AWHebb = [HP,N,l:T—l X Hp72:T,N/(T — 1)] .mean(axis = 0), (3)
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Figure 1: Model description and training metrics. A Schematic overview of the switching synaptic plasticity
model. Input weights, recurrent biases, output weights, and output biases are trained using BP. Recurrent
weights are trained using a dynamic, switching plasticity rule. The small recurrent weights are governed by
local Hebbian-like learning (blue arrows), while the large recurrent weights are governed by BP (pink arrows).
The binary, dynamic mask of the recurrent weights determines which synapses are in the weak or strong state
at any moment in time using element-wise multiplication. B Example recurrent weights distribution for the
switching model at initialization for a network with 256 recurrent neurons. The distribution is uniform with a
scale that sets the spectral radius at initialization to 1. The switching thresholds are indicated by the dashed lines
(green: hebb — BP, black: BP — hebb). The vanilla models start with the same distribution. C Spectrum of the
recurrent weight matrix at initialization (both models). Dashed line indicates the unit circle. D Validation loss as
a function of training steps across different models of size 512 (different colors), and as a function of task (top:
delaygo, bottom: multidelaydm). Shaded areas represents 95% confidence interval across 20 different random
initializations. Wilcoxon non-parametric one-sided test found p-value < 0.005 for the difference between the
“vanilla” and “switching” between 500-16, 300 (600-13, 900) training steps for delaygo (multidelaydm). E
Similar to D, but showing the spectral radius. P-value < 0.001 after 1,400 (1, 300) training steps for delaygo
(multidelaydm). F Similar to D, but showing the percentage of BP-trained weights. Vanilla models have 100%
BP-trained weights at all times. P-value < 0.000001 at all training steps for both tasks. G Example trial
(response amplitude and hidden activity) for delaygo task (top: vanilla, bottom: switching). The inputs (blue)
dictate the targets (black) after the fixation period, and the model’s response (red) needs to match the targets.
Gray boxes denote the time period where the loss function is computed.

followed by zeroing the diagonal and Wiepy < 6 - Wrepy + A © AWgepp, with § = 0.9999. “x
represents matrix multiplication along the last two axes. Subscripts denote appropriate transposes
and time-shifts of the stored hidden activity. The learning rate A was independently BP-trained for
each synapse, concurrently with the BP recurrent weights, and was initialized from a pre-trained
distribution optimized across network sizes and random initializations.
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Figure 2: Post-training analysis. A Example synaptic weight distribution of trained models (left: vanilla,
right: switching). The switching thresholds are shown on the switching model weights distribution. B Example
spectrum of the recurrent weight matrix after training (left: vanilla, right: switching). C Symmetry metric as
a function of training steps for different models (red, blue), and for different weight subsets of the switching
models (green, yellow) for delaygo. The shaded area represents 95% confidence interval across 20 different
random initializations. Wilcoxon non-parametric one-sided test found p-value < 0.0001 for the difference
between the “vanilla” and “switching” after 750(500) training steps for delaygo (multidelaydm).

3 Results

Training and performance The switching model outperformed the vanilla in both training speed
and final loss across tasks (Fig[ID), with more pronounced improvement on the harder task. Training
the Hebbian learning rate A was crucial for performance improvement, allowing adaptive adjustment
of Hebbian update strength. Without training )\, the switching model did not outperform vanilla.

The switching model’s spectral radius increased faster during early training (Fig[IE), suggesting
more effective learning across longer time scales. Switching models used 20 - 25% fewer BP-trained
recurrent weights than vanilla models, consistent with more efficient learning through reduced
sophisticated credit assignment requirements. Both models performed well qualitatively (Fig[I|G).
Decreasing the Hebbian update period P improved early training performance, suggesting that the
interaction between weight subsets is crucial for flexible learning dynamics.

Qualitative examples show that both models performed well and had similar dynamics (Fig[IG).
The switching model’s advantages stem from leveraging distinct functional weight subsets for more
efficient information processing. We also found that decreasing the Hebbian update period P
improved early training performance (data not shown), suggesting that interactions between the two
weight subsets are crucial for flexible and adaptive learning dynamics.

Properties of switching models Post-training recurrent weight distributions reveal distinct patterns
(Fig[2]A). The vanilla model exhibits a unimodal weight distribution, as expected. The switching
model shows a multi-modal distribution, indicating that the switching mechanism promotes formation
of distinct functional weight subsets. The switching model also has a more expanded and uniform
spectrum compared to vanilla models (Fig[2B).

sym skew
The symmetry metric W € [—1,41] [Hu et all 2021] (sym and skew are the

symmetric and skew-symmetric parts of the matrix) shows that the switching model is significantly
more anti-symmetric than the vanilla model (Fig[2IC). This is surprising given that Hebbian updates
are nearly symmetric (7 H in Eq. [3|is symmetric, and the minimal temporal shift only slightly
affects that), and suggests that interaction between the two plasticity rules leads to more complex
weight structure. This finding represents a new hypothesis about cortical connectivity patterns
deserving further investigation.

4 Discussion

Our switching plasticity model demonstrates several key findings that bridge neuroscience and
machine learning. Our model successfully reproduces biologically observed bimodal weight distri-
butions while achieving better learning performance compared to vanilla models. Networks using
switching plasticity showed faster learning and more efficient use of sophisticated credit assignment
mechanisms, using 20-25% fewer BP-trained weights. The emergence of antisymmetric connectivity



patterns represents a novel prediction about cortical organization, while the model’s ability to leverage
distinct functional weight subsets suggests fundamental advantages of hybrid learning mechanisms.

Future work should explore excitatory-inhibitory networks respecting Dale’s principle and more
sophisticated spine apparatus dynamics with calcium-dependent switching. Key limitations include
our binary switching mechanism that may not capture the continuous spectrum of synaptic states,
the biologically implausible reliance on global error signals, and alternative explanations for the
observed bimodal weight distributions, such as gating mechanisms. The efficiency of switching
networks suggests promising applications in resource-constrained machine learning and neuromorphic
computing, while our antisymmetric connectivity predictions provide testable hypotheses for future
connectomic studies.

TL;DR We propose a biologically-inspired neural network model where synapses dynamically
switch between local Hebbian learning (weak synapses) and global backpropagation (strong synapses),
successfully reproducing experimentally observed bimodal weight distributions while achieving
superior learning performance compared to standard backpropagation-only networks.
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