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Abstract

Recently, advancements in large language mod-001
els (LLMs) have shown an unprecedented abil-002
ity across various language tasks. This paper003
investigates the potential application of LLMs004
to slot filling with noisy ASR transcriptions,005
via both in-context learning and task-specific006
fine-tuning. Dedicated prompt designs and fine-007
tuning approaches are proposed to improve008
the robustness of LLMs for slot filling with009
noisy ASR transcriptions. Moreover, a lin-010
earised knowledge injection (LKI) scheme is011
also proposed to integrate dynamic external012
knowledge into LLMs. Experiments were per-013
formed on SLURP to quantify the performance014
of LLMs, including GPT-3.5-turbo, GPT-4,015
LLaMA-13B, LLaMA-2-13B and Vicuna-13B016
(v1.1 and v1.5) with different ASR error rates.017
The use of the proposed fine-tuning approach018
together with the LKI scheme for Vicuna-13B-019
v1.5 achieved 8.1% and 21.5% absolute SLU-020
F1 improvements compared to the strong Flan-021
T5-base baseline system on the limited data022
setup and the zero-shot setup respectively.023

1 Introduction024

Slot filling, as an important sub-task of spoken lan-025

guage understanding (SLU), is a crucial component026

in conversational AI such as spoken dialogue sys-027

tems. It requires the extraction and understanding028

of pertinent information in the user’s speech query.029

Accurate extraction of slot values from the query030

speech is indispensable for accurate response gen-031

eration and is challenging with limited annotated032

data and noisy ASR transcriptions. In particular,033

domain-specific named entities that are crucial to034

accurate information extraction, usually have high035

error rates with a generic ASR system. Although036

this problem can be mitigated by training systems037

on data in the target domain, it can be expensive038

to construct dedicated large-scale training data for039

a specific SLU task as it requires an extensive la-040

belling effort and domain expertise (Hou et al.,041

2020; Liu et al., 2020; Henderson and Vulić, 2021). 042

This data sparsity problem can be addressed by 043

transfer learning with pre-trained language mod- 044

els (PLMs) (Du et al., 2021; Fuisz et al., 2022), 045

especially with large language models (LLM). 046

Recent advancements in LLMs, such as GPT- 047

4 (Ouyang et al., 2022; OpenAI, 2023) and the 048

LLaMA series (Touvron et al., 2023a,b), have 049

been shown to exhibit human-level reasoning abil- 050

ity for natural language tasks even without task- 051

specific fine-tuning of the model parameters, which 052

is known as the emergence of LLMs. This is usu- 053

ally achieved by conditioning the model genera- 054

tion process on a prompt containing examples or a 055

task description, referred to as in-context learning. 056

Although effective, studies have also shown that 057

LLMs struggle with accurate fine-grained content 058

extraction such as slot-filling (Heck et al., 2023; 059

Zhang et al., 2023b; Pan et al., 2023; Shen et al., 060

2023), and tend to overly extrapolate beyond the 061

examples and task descriptions in the prompt, espe- 062

cially when evaluated using text-based quantitative 063

metrics. This necessitates the use of dynamic con- 064

textual knowledge to guide and confine the genera- 065

tion (Omar et al., 2023; Peng et al., 2023), as well 066

as efficient task-specific fine-tuning with limited 067

data (Zhang et al., 2023a). Moreover, as slot-filling 068

relies on the quality of ASR transcriptions (Seo 069

et al., 2022; Raju et al., 2022; Rao et al., 2021; 070

Sun et al., 2023b), it is essential to improve the 071

performance of LLMs with noisy ASR outputs. 072

This paper aims to apply LLMs for slot filling 073

with different ASR error rates under limited data 074

scenarios. A dedicated prompt design specifically 075

targeting LLMs is proposed featuring task descrip- 076

tions, linearised dynamic external knowledge and 077

multiple alternative ASR hypotheses. The task de- 078

scription, together with in-context examples, pro- 079

vides the basis of in-context learning using LLMs. 080

In addition to the one-best hypothesis, the proposed 081

prompt design can incorporate multiple hypotheses 082

1



in the form of an N -best list for a single utterance083

to improve the model’s robustness to ASR errors.084

Moreover, by leveraging a pre-defined knowledge085

base (KB) (Sun et al., 2023b), dynamic knowledge086

found in the N -best list is also linearised into text087

and used in the prompt to provide the necessary088

constraint to guide the language generation1.089

Experiments were performed using SLURP data,090

where particular attention was paid to the perfor-091

mance of in-context learning, few-shot learning and092

zero-shot learning for unseen slot types. Several093

LLMs were investigated, including GPT-3.5-turbo094

and GPT-4 for in-context learning and LLaMA and095

Vicuna models as widely-used open-source models096

for fine-tuning. Different sizes of Whisper ASR097

models were adopted as a group of generic off-098

the-shelf models to provide transcriptions with dif-099

ferent ASR error rates. The experimental results100

showed that instruction-tuned LLMs outperformed101

the baseline GPT-2 model and Flan-T5-base model102

in both in-context learning and limited data fine-103

tuning setups. Moreover, the fine-tuned Vicuna-104

13B-v1.5 model outperformed the Flan-T5-base105

by 22.4% in absolute SLU-F1 under the zero-shot106

setup, which was also close to the performance107

on seen slot types. The main contributions of this108

paper can be summarised as follows.109

• The performance on slot filling is determined110

using SLURP data for a range of widely111

used LLMs, including GPT-3.5-turbo, GPT-4,112

LLaMA and Vicuna.113

• A prompt design and data-efficient noise-robust114

fine-tuning approach for slot filling using LLMs115

with noisy ASR transcriptions is provided.116

• A linearised knowledge injection (LKI) scheme117

is proposed that incorporates contextual knowl-118

edge derived using N -best ASR hypotheses into119

the prompt for LLMs.120

2 Related Work121

2.1 LLMs122

LLMs refer to the type of LMs with billions of123

model parameters and trained on vast amounts of124

data. GPT-3 (175 billion parameters) (Brown et al.,125

2020) and PaLM (540 billion parameters) (Chowd-126

hery et al., 2022) were early examples of LLMs,127

significantly outperforming their predecessors such128

as BERT (Devlin et al., 2019) (330 million param-129

eters) and GPT-2 (Radford et al., 2019) (1.5 billion130

1Code and prompt template will be available at [URL]

parameters). One of the most prominent applica- 131

tions of LLMs is ChatGPT, which was built from 132

GPT-3.5 via reinforcement learning with human 133

feedback (RLHF) (Christiano et al., 2017) and was 134

adapted for chat applications. Later, a larger scale 135

LLM, GPT-4 (OpenAI, 2023), was built to further 136

support the visual modality. While the capability 137

of LLMs continued to expand with ever-growing 138

model sizes, “smaller” LLMs (still with tens of 139

billions of parameters) such as LLaMA (Touvron 140

et al., 2023a) were released and achieved a bet- 141

ter balance between the performance and the com- 142

puting resource required. Since LLaMA is open- 143

source, many versions of LLaMA such as Vicuna 144

(Zheng et al., 2023) have been developed with dif- 145

ferent conversation-based fine-tuning schemes. 146

With scaled-up model and training data sizes, 147

LLMs have demonstrated a superior ability for 148

solving assorted complex tasks over their prede- 149

cessors, which are known as “emergent abilities” 150

(Wei et al., 2022). One of the key capabilities of 151

LLMs is in-context learning, which has enabled 152

LLMs to perform specific tasks by providing task 153

descriptions or examples without explicitly updat- 154

ing model parameters. Early research explored 155

in-context learning by providing the schema of the 156

ontology in a spoken dialogue system. Specifi- 157

cally, in (Chen et al., 2020), domain-slot relations 158

from the dialogue ontology were encoded using 159

a graph neural network (GNN) to guide the sys- 160

tem. Later, (Hu et al., 2022) proposed an in-context 161

learning framework by summarising the dialogue 162

history into a short description, together with the 163

schema description, as the context. More recently, 164

(Ouyang et al., 2022) proposed a more powerful 165

LLM trained via RLHF that performed response 166

generation via in-context learning. 167

2.2 Slot Filling with Limited Data 168

As slot-filling often requires domain expertise for 169

labelling which makes it very expensive, data ef- 170

ficiency has been a crucial research topic. Fine- 171

tuning PLMs on a relatively small-scale task- 172

specific dataset for slot-filling has been one of the 173

main themes in this area. In particular, compared to 174

sequence tagging using pre-trained bi-directional 175

encoder systems (Henderson and Vulić, 2021), by 176

formulating slot-filling as a sequence generation 177

task, the power of language generation of LMs, 178

such as GPT-2 (Budzianowski and Vulić, 2019) or 179

T5 (Raffel et al., 2019; Wu et al., 2022; Lin et al., 180
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2021b), can be further exploited. These models181

achieved few-shot learning by only presenting a182

limited number of data samples, and it was also dis-183

covered that providing task descriptions in the con-184

text helps few-shot learning. Meanwhile, integrat-185

ing prior knowledge about slots, such as possible186

values of each slot, also showed improvements in187

performance (Lin et al., 2021a; Wang et al., 2022),188

especially with limited data(Sun et al., 2023b).189

LLMs have enabled unprecedented slot-filling190

performance without task-specific fine-tuning by191

only presenting the LLM with a task description192

and several examples. The LLM will generate the193

desired slot and value pairs in the standard LM194

fashion (Pan et al., 2023; Shen et al., 2023; Heck195

et al., 2023). Structured contextual knowledge can196

be linearised into plain text as a part of the context197

to further improve in-context learning ability (Xie198

et al., 2022). Despite this ability and the perfor-199

mance achieved, the quantitatively measured slot-200

filling performance across a wide range of domains201

is still far from that of state-of-the-art fine-tuned202

systems (Pan et al., 2023; Shen et al., 2023).203

3 Methodology204

3.1 Prompt Design for Slot Filling205

The prompt design is shown in Table 1, which com-206

prises five major parts: task definition, in-context207

examples, linearised knowledge injection (LKI),208

query and additional query with LKI.209

The task definition gives a brief definition for210

each slot type. It is necessary to encourage the211

generated response to focus on the slot types that212

are needed. The in-context examples provide fur-213

ther context to improve the performance. This part214

provides few-shot examples which comprise pairs215

of utterances and desired outputs in the prompt. Al-216

though in-context examples provide effective guid-217

ance on what to generate, the number of samples in218

the prompt is always limited by the context length.219

The LKI and the additional query with LKI are220

two parts that appear in pairs when an external KB221

is used. As LLMs tend to extrapolate and create222

an excessive number of slot-value pairs, these two223

KB-related parts are used to provide a strong prior224

that confines the generation of certain slots to the225

allowed set of possible values. The main query226

prompts LLMs with the question, followed by ut-227

terances from which slot values are extracted. The228

basic form of the prompt is the concatenation of229

the task definition and the query, followed by the230

utterance, with the other three parts being optional. 231

The complete pipeline for slot filling with LLMs 232

taking speech as input is shown in Fig. 1. Starting 233

with the input speech, a Whisper model is used 234

to transcribe the speech into an N -best list. The 235

prompt is then constructed according to the design, 236

with an additional global prompt for systems with 237

instruction tuning. The top K hypotheses, where 238

K = 1 by default, are used as the final part of 239

the prompt. The complete prompt is given to the 240

LLM to generate a text sequence that completes 241

the assistant response using a search algorithm as 242

shown in Eqn (1). 243

W∗ = argmax
W

P (W|WP ), (1) 244

where W is the generated token sequence and WP 245

is the prompt token sequence. Note that there is no 246

stochasticity in the generation process as the task is 247

to extract the exact information from an utterance 248

for quantitative measurements. 249

The LKI part of the prompt improves the robust- 250

ness of LLMs by constraining the generation with a 251

pre-defined KB which is especially important with 252

noisy ASR transcriptions. The external KB con- 253

tains all possible named entities for each slot type. 254

Then, for each utterance, entities that can be found 255

in the N -best list via string matching are selected 256

together with their slot types, as shown in the exam- 257

ple in Fig. 1. The selected slot values are linearised 258

into a text format to be used as part of the prompt. 259

The use of LKI not only guides the generation pro- 260

cess so that sensible values constrained by the KB 261

are generated but also makes further use of ASR 262

alternatives. For example, the name “pawel" in the 263

utterance has different substitutions (e.g. “power"), 264

and when using the top hypothesis for slot filling, 265

the LLM is unable to fill this slot with the correct 266

value. However, the name is correctly recognised 267

in the 4th-best hypothesis and provided the entry 268

in LKI. With that extra information in the prompt, 269

the LLM has a much better chance of correctly 270

performing slot filling for that entity. 271

3.2 Task-specific Finetuning 272

Task-specific finetuning is particularly useful when 273

a small amount of training data is available to lever- 274

age the few-shot learning ability of LLMs. The 275

low-rank adaptation (LoRA) (Hu et al., 2021) fine- 276

tuning method is used in this paper. 277

LoRA approximates the necessary update to a 278

full-rank parameter matrix using a low-rank ma- 279

trix, which can be decomposed into the multipli- 280

3



Table 1: Prompt design for slot filling using LLMs, including task definition, in-context examples, linearised
knowledge injection (LKI) scheme, query and the extra constraint for LKI only used for in-context learning. The
example shows K = 1 in this table.

Prompt parts Prompt template

Task definition Consider the following list of slot types provided to you in JSON format:
{“slot A": “definition of slot A", “slot B": “definition of slot B", ...}

In-context examples For example, given “utterance_1" you should extract {“slot A": “value A"},
given “utterance_2" you should extract {“slot B": “value B"}, etc.

LKI First, possible values for some slots are provided: {“slot A": “value A", ...}
Slot values not in the KB are not likely to be the correct value

Query Now consider the following sentence(s) containing one or more of the above slot types.
Extract slots belonging to that list and their values in JSON format.
i.e. {“slot type": “slot value"}, or {} if no slots found

Additional instruction If, for a slot in KB, you can not find a value in KB, select most likely values from KB instead

1. meeting power tomorrow 
2. meeting powell tomorrow 
3. meeting poel tomorrow 
4. meeting pawel tomorrow 
5. meeting pavel tomorrow 

……

Knowledge Base

“event_name”: {“meeting”},  
“device_type": {“power”},  
“person”: {“pawel”} 
……

USER: <Task definition> <In-context examples> 
<LKI><Query><Additional instruction> 
“Meeting power tomorrow” 
… … 

ASSISTANT:

Whisper LLM

Recognition (N-best list)

Knowledge search

Linearise 
Knowledge

Output response

Designed 
prompt

Speech Inputs
Low Rank 
Adaptation

{“event_name”: “meeting”, “person”: “pawel”} 

Linearised knowledge for LKI

Top K Hypotheses

Figure 1: Diagram illustrating the slot-filling pipeline using Whisper and LLM. The user prompt comprises parts
introduced in Table 1, followed by the top one hypothesis in the N -best list as an example. Low-rank adaptation
(LoRA) is used for fine-tuning open-source LLMs. Note that the specific format of the roles in the prompt, e.g.
ASSISTANT, is dependent on the specific LLM.

cation of two low-rank matrices. Specifically, for281

a pre-trained matrix W0 ∈ Rm×n from a specific282

attention block, its update during finetuning can be283

constrained in the form shown in Eqn. (2).284

W0 +∆W = W0 +AB (2)285

where A ∈ Rm×r and B ∈ Rr×n contain train-286

able parameters with the pre-trained parameters,287

W0, fixed, and r ≤ min(m,n). When setting r288

to be a value much smaller than the model dimen-289

sion, e.g. 8, the total number of parameters to be290

learned during fine-tuning is much reduced, which291

both improves the training efficiency and avoids292

over-fitting with a large number of parameters, es-293

pecially for LLMs. Following (Hu et al., 2021),294

LoRA is applied to the projection matrices of the295

self-attention layer in this paper.296

LLMs are trained in the standard LM fashion297

with the cross-entropy (CE) loss applied to the gen-298

erated output, i.e. the slot-value pairs in JSON299

format in Fig. 1. As the ASR system is an off-300

the-shelf Whisper model which is not fine-tuned in 301

this paper, and, given that the training and valida- 302

tion set WER are similar, the N -best list derived 303

from the training audio can be used to improve 304

the robustness of LLM to the noisy transcriptions. 305

Specifically, instead of feeding in the reference 306

transcription, the top K most likely hypotheses can 307

instead be concatenated into one single string and 308

used in the prompt during fine-tuning so that the 309

model learns to robustly extract information from 310

multiple hypotheses. In addition, LKI can be used 311

during fine-tuning so that the model is aware of the 312

knowledge provided and learns to use it. Random 313

distracting entities can also be added to the LKI 314

part to avoid the model being over-confident about 315

the accuracy of the provided knowledge. 316

4 Experimental Setup 317

4.1 Data 318

SLURP (Bastianelli et al., 2020) is a collection of 319
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25k single-turn user interactions with a home assis-320

tant, annotated with scenarios, actions and entities.321

Experiments were performed in two data setups.322

First, the official training, validation and test split323

following (Bastianelli et al., 2020) was used where324

synthesised audio files were also included. Note325

that subsets of the training set were selected, with326

e.g. 2000 samples corresponding to 8% of the full327

data, to demonstrate the limited data scenarios. In328

addition, a simulated zero-shot setup (Sun et al.,329

2023b) was used. In training, all utterances con-330

taining entities of five randomly selected ‘unseen’331

slots were held out, and the held-out set containing332

2000 utterances was used for testing.333

The KB was organised as a simple dictionary334

for SLURP, where the keys were slot types and the335

values were lists of possible named entities for that336

type. It was created by collecting named entities337

that appeared in the entire SLURP data for each338

slot type, including train, validation and test sets, as339

a simulation of a real-world task environment. The340

average size of these lists was 106: the largest list341

was person which contained 872 entities, and the342

smallest list was transport_agency, which343

only contained 2 entities.344

4.2 Models345

Six different LLMs were selected for evaluation in346

this paper: GPT-3.5, GPT-4, LLaMA(-2)-13B and347

Vicuna-13B (v1.1 and v1.5). The first two mod-348

els were chosen as the two most popular LLMs349

representing the state-of-the-art performance of350

in-context learning without parameter fine-tuning.351

The other models were chosen as widely used open-352

source models that allow task-specific fine-tuning.353

Each model is introduced below:354

GPT-3.5 was used in ChatGPT, a chatbot ap-355

plication introduced by OpenAI. Although exact356

details about its architecture and training proce-357

dures were not published, according to OpenAI, it358

used a similar architecture to Ouyang et al. (2022)359

(175B parameters) and was trained with RLHF.360

The version released on March 1st, 2023 (GPT-3.5-361

turbo-0301) was used for the experiments.362

GPT-4 went one step further from GPT-3.5 by363

having a larger scale (1050B parameters) and ad-364

ditionally accepting images as input, though only365

the text modality was explored in this paper. In the366

experiments, the version released on March 16th,367

2023 (GPT-4-0316) with a maximum sequence368

length of 4096 was used.369

LLaMA-13B, together with its improved ver- 370

sion LLaMA-2-13B, is a series of LLMs with a 371

Transformer decoder structure. The model contains 372

13B parameters and was pre-trained on one trillion 373

tokens. It includes various techniques used in train- 374

ing other LLMs such as pre-normalisation (Zhang 375

and Sennrich, 2019), the SwiGLU activation func- 376

tion (Shazeer, 2020), and rotary embeddings (Su 377

et al., 2022). 378

Vicuna-13B (version 1.1) is a fine-tuned version 379

of LLaMA which is adapted specifically to chat 380

applications. It was trained on user-shared conver- 381

sations with ChatGPT collected using a tool called 382

ShareGPT. The model contained 13B parameters. 383

The upgraded version, Vicuna-13B-v1.5, derived 384

from the LLaMA-2 model was also used in this 385

paper. The version supporting 16k tokens was used 386

to represent the long context model. 387

As baselines and performance references, the 388

GPT-2 model with 117 million parameters and the 389

FLAN-T5 base model with 250 million parameters 390

were employed that were fine-tuned on SLURP 391

with all parameters2. Four different sizes of En- 392

glish Whisper models including tiny (39M), base 393

(74M), small (244M) and medium (769M), were 394

used as the off-the-shelf ASR models. The Whisper 395

large model achieved very similar performance to 396

the medium model and for efficiency, the medium 397

model was used in the experiments. Both the refer- 398

ence and ASR transcriptions were normalised fol- 399

lowing the text normalisation scheme in (Radford 400

et al., 2022), and were scored against a normalised 401

SLURP label file3. 402

4.3 Training and Inference Configurations 403

The LLaMA and Vicuna models were fine-tuned 404

using LoRA with rank 8 which adapts 6.5M pa- 405

rameters, i.e. equivalent to 0.05% of the original 406

model parameters. During training, the LKI part 407

was organised by selecting entities that appeared in 408

the reference transcription, and adding random dis- 409

tractors found in the ASR hypotheses of the same 410

utterance. All systems were trained on a single 411

A100 GPU which took 2 hours to fine-tune a 13B 412

LLaMA model under the 2000 sample setup. 413

During inference, a greedy search algorithm was 414

used for all LLMs until the end-of-sequence to- 415

ken was output. The result was then fed to a post- 416

2GPT-2 system already achieved the previous best SLU-F1
on cascaded system (Sun et al., 2023a), and Flan-T5-base
achieved further improvements compared to GPT-2.

3The Influence of written form is analysed in Appendix B
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Table 2: SLU-F1 (Precision/Recall) of LLMs with transcriptions from different Whisper ASR systems on SLURP
test set. %WERs of Whisper systems are also provided. LLMs were evaluated using task descriptions and a one-shot
example as the prompt. GPT-2 and Flan-T5 were fine-tuned on the full SLURP training data as a reference.

Whisper Model Tiny (%) Base (%) Small (%) Medium (%) Reference (%)
WER 33.4 26.4 19.8 14.6 0.0

GPT-3.5 34.7 (32.0/38.0) 36.7 (34.1/39.7) 38.6 (35.0/42.7) 40.8 (36.3/46.7) 46.5 (40.5/54.5)
GPT-4 41.3 (43.5/39.3) 42.3 (42.1/42.5) 45.2 (43.1/47.6) 47.0 (43.7/50.9) 53.6 (49.4/58.6)
Vicuna-13B 7.6 (4.5/20.1) 7.7 (5.0/17.0) 8.1 (5.2/17.9) 8.9 (5.8/19.3) 16.5 (11.5/29.5)
Vicuna-13B-v1.5 16.6 (14.9/18.8) 17.8 (16.3/19.6) 20.7 (18.5/23.6) 19.9 (17.3/23.3) 22.4 (18.4/28.5)

GPT-2 Full data 54.9 (66.0/47.0) 58.4 (70.6/49.9) 64.0 (72.6/57.3) 65.2 (74.1/58.2) 84.8 (85.5/84.1)
Flan-T5-base Full data 56.4 (69.2/47.6) 59.1 (72.2/50.8) 64.6 (74.3/57.2) 66.5 (76.7/58.8) 86.3 (87.1/85.5)

processing stage using regular expressions to ex-417

tract slot-value pairs in JSON format from the out-418

put text. As LLMs may fail to follow the exact419

instructions, for any utterances that fail to extract420

valid JSON format text, an empty output would be421

given. The LKI part was extracted based on the N -422

best hypotheses from the corresponding Whisper423

model. Systems were evaluated using the SLU-424

F1 metric, which combines both word-level and425

character-level F1 scores to give partial credit to426

non-exact match predictions.427

5 Results and Discussion428

5.1 In-context learning with noisy ASR429

transcriptions430

The performance of LLMs on slot filling via in-431

context learning with one-shot prompts is sum-432

marised in Table 2 using different Whisper mod-433

els. Note that the LLaMA models without fine-434

tuning were not able to follow instructions and435

hence not able to perform slot filling. In general,436

LLMs yielded a higher recall rate than precision437

as they were not trained with the confined scenario438

setting and tended to pick up all possible fillers for439

each slot based on their knowledge. This problem440

became more severe when the definition of the slot441

type was rather abstract, such as event_name or442

news_topic, where LLMs tended to extract al-443

most the entire utterance as the filler. The problem444

was less severe for slots requiring a single named445

entity to fill, e.g. person. For all systems, the446

degradation in recall was more than the degradation447

in precision when the ASR error rate increased, as448

important entities tended to be incorrectly recog-449

nised by the generic Whisper systems. Note that450

the degradation due to noisy transcriptions would451

probably be much smaller with an ASR system fine-452

tuned on SLURP audio with only a slightly lower453

overall WER (Sun et al., 2023a), as it is more likely454

Table 3: SLU-F1 scores of LLMs using few-shot in-
context learning on SLURP test set with the reference
or Whisper medium model transcriptions. GPT-2 and
Flan-T5 models were fine-tuned on the number of sam-
ples indicated. Each sample took 20 tokens on average.
Vicuna-13B was unable to have 100 examples in the
prompt due to the model’s maximum context lengths.

Systems N-samples Medium (%) Ref. (%)

GPT-3.5 0 40.1 45.9
GPT-4 0 46.4 53.0
Vicuna-13B 0 7.6 12.2
Vicuna-13B-v1.5 0 17.6 18.3

GPT-3.5 1 40.8 46.5
GPT-4 1 47.0 53.6
Vicuna-13B 1 8.9 16.5
Vicuna-13B-v1.5 1 19.9 22.4

GPT-3.5 10 42.3 46.8
GPT-4 10 49.9 55.9
Vicuna-13B 10 11.8 21.4
Vicuna-13B-v1.5 10 21.3 24.9

GPT-3.5 100 47.4 53.5
GPT-4 100 57.4 65.8
Vicuna-13B-v1.5 100 25.8 31.3

GPT-2* 100 33.5 38.9
GPT-2* 2000 52.2 65.2
Flan-T5-base* 2000 55.2 68.9

to recognise domain-specific entities correctly. 455

Compared to the Vicuna-13B models contain- 456

ing 13B model parameters, GPT-3.5 and GPT-4 457

with much larger model sizes achieved much bet- 458

ter results without any further parameter updates, 459

which demonstrated the emergent ability of LLMs 460

when the model size reached a certain level. GPT-4 461

achieved around a 7% increase in SLU-F1 com- 462

pared to GPT-3.5 under different ASR conditions 463

while yielding a better balance between precision 464

and recall. While GPT-2 and Flan-T5-base with 465

task-specific fine-tuning achieved much better re- 466

sults with reference transcriptions, the performance 467

degradation of using noisy transcription is also 468

much larger compared to the non-fine-tuned LLMs. 469
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An important aspect of in-context learning is to470

offer examples so that LLM is able to learn from471

them. To investigate the effect of the number of in-472

context learning samples, the performance against473

the number of samples for different systems is474

shown in Table 3. As the number of samples in the475

prompt increased (except for the 100-sample case476

with Vicuna-13B which exceeded the maximum477

token length of the model), there was an increase478

in the SLU-F1 found in all LLMs both with ref-479

erence and noisy ASR transcriptions, at a cost of480

increasing prompt sequence lengths. In particular,481

GPT-4 achieved a larger improvement than GPT-482

3.5 when more samples were included, indicating483

its superior capability in leveraging context infor-484

mation in the prompt. Notably, GPT-4 with 100485

samples in-context learning performed much better486

than a GPT-2 model fine-tuned on the same num-487

ber of samples and also surpassed the performance488

of a Flan-T5-base model fine-tuned on 2000 sam-489

ples when using noisy transcription derived from490

the Whisper medium model. However, with 100491

samples, the length of the prompt with 100 sam-492

ples is close to 3000 while the 10-sample prompt493

which is only 1000. This significantly increased494

the inference cost with API calls.495

5.2 Task-specific fine-tuning496

Next, task-specific fine-tuning was applied to497

LLaMA-13B and Vicuna-13B v1.1 using LoRA on498

subsets of the SLURP training set for limited data499

scenarios. To begin with, SLU-F1 on the SLURP500

test set against different training set sizes was plot-501

ted as shown in Fig. 2. With 500 and 2000 train-502

ing samples representing limited data scenarios503

(2% and 8% of the full training set respectively),504

the performance of LLaMA-13B and Vicuna-13B505

achieved much better performance than GPT-2.506

The performance of Vicuna-13B was slightly worse507

than LLaMA-13B. When more samples were in-508

cluded, LLMs fine-tuned with LoRA gradually lost509

their advantage over the fully fine-tuned LMs. Fur-510

ther improvements may require full model fine-511

tuning for LLMs which necessitates distributed512

model parameters across multiple GPUs. In the513

following experiments, the 2000-sample limited514

data setup was used where LLMs achieved better515

performance than the best in-context learning per-516

formance achieved by GPT-4. A similar trend was517

observed under Whisper medium model transcrip-518

tions (see Appendix A).519

Figure 2: SLU-F1 on the standard SLURP test set us-
ing Whisper medium model transcriptions against the
number of samples in the training set for fine-tuning five
LMs. Note that 25000 represents the full training set.

Table 4: SLU-F1 (Precision/Recall) on SLURP test set
using transcriptions from the Whisper medium model
and linearised knowledge injection (LKI) in both in-
context learning and fine-tuning (indicated with FT)
setups. Fine-tuning was performed on the 2000-sample
subset, and “13B" was omitted for clarity.

Systems With LKI (%) No LKI (%)

GPT-3.5 46.8 (36.1/66.4) 40.8 (36.3/46.7)
Vicuna 21.8 (15.3/37.4) 8.9 (5.8/19.3)
Vicuna-v1.5 33.0 (27.3/41.8) 19.9 (17.3/23.3)

GPT-2 FT 57.0 (65.8/50.2) 52.2 (61.8/45.0)
Flan-T5-base FT 59.5 (68.3/52.7) 55.2 (66.3/47.3)
LLaMA FT 62.6 (71.2/55.9) 56.7 (69.2/48.0)
Vicuna FT 61.3 (70.0/54.5) 53.4 (61.5/47.2)
LLaMA-2 FT 61.8 (65.4/58.5) 57.2 (62.4/53.8)
Vicuna-v1.5 FT 63.8 (68.0/59.9) 59.3 (65.3/54.3)

Linearised knowledge injection provided im- 520

portant external information about the application 521

context. To this end, the effect of such knowledge 522

injected using the proposed LKI approach was in- 523

vestigated as shown in Table 4 for both in-context 524

learning and fine-tuning. As shown in Table 4, 525

the main effect of LKI was to improve the recall 526

as it mainly provided information for entities that 527

were not in the top-1 hypothesis. LKI for GPT-3.5 528

had a rather limited effect, as while improving the 529

recall, it decreased the precision as noise in the 530

LKI prompt introduced many irrelevant slot val- 531

ues. The influence of LKI on Vicuna-13B under 532

in-context learning almost doubled the SLU-F1, 533

although the numbers were still much lower than 534

GPT-3.5. When fine-tuned with LKI in the prompt, 535

all LMs achieved larger improvements in the over- 536

all SLU-F1, as fine-tuned models had a much lower 537

recall. Vicuna-13B-v1.5 and LLaMA-2 benefited 538

the most from LKI as they could process long con- 539

text better, and the best performance was achieved 540
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Table 5: SLU-F1 (Precision/Recall) on SLURP test
set with LLMs fine-tuned on noisy transcriptions from
Whisper medium model. The training settings indicate
the number of hypotheses concatenated and used in the
prompt. The same number of hypotheses in training was
used during inference. All LLMs were fine-tuned and
fine-tuning was performed on the 2000-sample subset.

System Training SLU-F1 (%)

GPT-2 ref 52.2 (61.8 / 45.0)
GPT-2 10-best 39.0 (62.3 / 28.3)
Flan-T5-base ref 55.2 (66.3 / 47.3)
Flan-T5-base 10-best 35.2 (59.2 / 25.1)

Vicuna-13B-v1.5 ref. 59.3 (65.3 / 54.3)
Vicuna-13B-v1.5 1-best 60.1 (69.2 / 53.2)
Vicuna-13B-v1.5 5-best 63.3 (66.1 / 60.7)
Vicuna-13B-v1.5 10-best 63.4 (65.9 / 60.9)
Vicuna-13B-v1.5 20-best 61.2 (64.3 / 58.4)
Vicuna-13B-v1.5 9-best + ref. 62.4 (66.9 / 56.1)

Vicuna-13B-v1.5 LKI 10-best 65.6 (75.3 / 58.1)

by Vicuna-13B-v1.5. As a result, the proposed LKI541

approach proved to be an effective way for dynamic542

contextual knowledge integration in LLMs.543

Fine-tuning with multiple hypotheses from the544

ASR system improves the robustness of LLMs to545

ASR errors for slot filling. The results of using546

different numbers of hypotheses are summarised in547

Table 5. As shown in the first part of Table 5, using548

the 10-best hypotheses in GPT-2 and Flan-T5-base549

confused the model and yielded much worse results550

with a severely degraded recall rate. On the other551

hand, using N -best hypotheses in the context dur-552

ing training improved the performance of LLMs,553

as demonstrated in the second part of Table 5. Al-554

though using references for training achieved better555

performance than the 1-best hypotheses, incorpo-556

rating the references into N -best lists for training557

yielded worse performance as the model still relied558

on the reference presented in the N -best list.559

The best SLU-F1 score was achieved by com-560

bining the proposed LKI with the use of noisy tran-561

scriptions for fine-tuning, yielding an overall 6.3%562

absolute SLU-F1 increase compared to using the563

1-best prompt and 8.1% absolute increase com-564

pared to the strong Flan-T5-base baseline system.565

Although the knowledge was selected based on566

the N -best hypotheses, LKI was still informative567

when the N -best list was included in the context568

and achieved a 2.2% absolute increase in SLU-F1.569

5.3 Generalisation to unseen slots570

To further demonstrate the power of the proposed571

approaches, the generalisation of various LLMs to572

unseen slot types was studied using the simulated573

Table 6: SLU-F1 (Precision/Recall) on SLURP zero-
shot test set containing unseen slots. Slot-filling systems
were finetuned using 2000 samples and the full training
set. Whisper medium outputs were used.

System 2000 samples (%) Full (%)

Flan-T5-base 25.2 (28.7 / 22.4) 25.1 (28.3 / 22.6)
+ LKI 36.5 (42.2 / 32.2) 32.4 (38.3 / 28.0)

LLaMA-2-13B 32.6 (42.7 / 26.3) 32.1 (40.7 / 26.5)
+ LKI 54.3 (66.7 / 45.7) 57.0 (70.5 / 47.8)

+ 10-best 56.5 (58.6 / 54.5) 58.2 (74.3 / 47.8)

Vicuna-13B-v1.5 37.0 (41.0 / 33.7) 36.5 (42.7 / 31.9)
+ LKI 57.0 (66.1 / 50.1) 61.6 (76.4 / 51.7)

+ 10-best 58.0 (68.3 / 50.3) 64.0 (80.5 / 53.1)

zero-shot setup. The SLU-F1 of LLaMA-2-13B 574

and Vicuna-13B-v1.5 on the held-out test set are 575

shown in Table 6 compared to Flan-T5-base. 576

As shown in Table 6, when trained on 2000 577

samples, Vicuna-13B-v1.5 achieved 12% absolute 578

SLU-F1 improvement compared to the Flan-T5- 579

base model, as LLMs were better at leveraging 580

the task description part in the prompt design. In 581

addition, such improvement was further increased 582

to 21.5% when LKI and N -best hypotheses were 583

applied, indicating that LLMs were much better at 584

using external knowledge provided in the context. 585

However, providing further in-domain training sam- 586

ples did not provide as much improvements to the 587

performance in this out-of-domain test set. It is 588

also worthwhile highlighting that LLMs with the 589

proposed approaches achieved a performance close 590

to that on the standard test set even though the ma- 591

jority of slot types in the zero-shot test set have 592

never appeared in training. 593

6 Conclusions 594

This paper investigated the performance of LLMs 595

for slot filling with noisy transcriptions from 596

speech. It quantified the performance of six dif- 597

ferent LLMs using ASR transcriptions from four 598

different sizes of Whisper ASR models and pro- 599

posed a dedicated prompt design, a noise-robust 600

fine-tuning approach and a linearised knowledge 601

integration (LKI) scheme. The proposed prompt 602

design with few-shot examples enabled GPT-4 to 603

outperform a GPT-2 model fine-tuned on 20 times 604

more data. With fine-tuning, the Vicuna-13B-v1.5 605

model achieved an absolute 8.1% and 21.5% SLU- 606

F1 increase using both the noise-robust fine-tuning 607

and the LKI scheme compared to a strong fully 608

fine-tuned Flan-T5-base model on few-shot and 609

zero-shot scenarios respectively. 610
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7 Limitation611

The main limitation of using LKI and N -best hy-612

potheses for training is the context length of LLMs.613

When sequence length becomes much longer by614

incorporating more examples or more hypotheses,615

the efficacy of long context is inherently limited616

by the effective spans of the attention mechanisms617

in LLMs. Even with the Vicuna-13B-v1.5 model618

which supports a sequence length of 4k tokens, a619

clear reduction in improvements was found when620

adding much more information into the context.621

Therefore, future work needs to be done on improv-622

ing the effectiveness of the context instead of only623

increasing the maximum allowed sequence length.624

Due to resource constraints, experiments were625

only conducted on the SLURP corpus. Further626

studies will be carried out in the future on other627

speech-based slot-filling corpora using LLMs.628

8 Ethics Statement629

The approaches in this paper do not give rise to630

any additional risks beyond the ones directly in-631

herited from the models. The ASR system might632

work more poorly for speakers from particular de-633

mographics and with particular accents. The frame-634

work also inherits the biases from all the language635

models used for experiments in this paper.636
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A Training set sizes 840

Figure 3: Variation of SLU-F1 on SLURP test set un-
der reference ASR transcriptions against the number of
samples in the training set for fine-tuning LLMs.

The influence of training set sizes on different 841

LLMs and GPT-2 under Whisper medium ASR 842

transcription is shown in Fig. 3. 843

B Influence of written form 844

Table 7: SLU-F1 comparison between written form
(after Whisper text normalisation) and spoken form on
standard SLURP test set using GPT-2 and Flan-T5-base
model on reference transcriptions.

System SLU-F1

GPT-2 Spoken 89.5
GPT-2 84.8

Flan-T5-base Spoken 90.3
Flan-T5-base 86.3

As shown in Table 7, written form in general 845

had a lower SLU-F1 than spoken form. This was 846

mainly because numbers that used to appear as 847

several words were converted to a single word in 848

written form (e.g. radio ninety-three point five ⇒ 849

radio 93.5). As a result, the written form SLU-F1 850

was closer to the measurement of the F1 score of 851

entire entities, and fewer partial credits were given 852

to partly correct answers. This became more obvi- 853

ous when ASR transcriptions were used, causing 854

a larger degradation than spoken form when using 855

noisy transcriptions. Such degradation more hon- 856

estly reflected the actual performance as a mistake 857

in a word of a number, unlike other typo-like mis- 858

takes in names, would result in a different number. 859
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