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Abstract
The rising threat of backdoor poisoning attacks
(BPAs) on Deep Neural Networks (DNNs) has
become a significant concern in recent years. In
such attacks, the adversaries strategically target
a specific class and generate a poisoned training
set. The neural network (NN), well-trained on
the poisoned training set, is able to predict any
input with the trigger pattern as the targeted label,
while maintaining accurate outputs for clean in-
puts. However, why the BPAs work remains less
explored. To fill this gap, we employ a dirty-label
attack and conduct a detailed analysis of BPAs
in a two-layer convolutional neural network. We
provide theoretical insights and results on the ef-
fectiveness of BPAs. Our experimental results on
two real-world datasets validate our theoretical
findings.

1. Introduction
The security of DNNs has become a significant concern in
recent years (Zhang et al., 2019; Nguyen et al., 2023; Zhou
& Liu, 2023; Li & Liu, 2023). Most state-of-the-art models
require huge training data (Schmidt et al., 2018; Dosovit-
skiy et al., 2021; Wang et al., 2023b), but the training data
from unreliable data sources is vulnerable to data poisoning
attacks (Shafahi et al., 2018; Cinà et al., 2021; Koh et al.,
2022), for example, BPA. BPA (Gu et al., 2017; Jha et al.,
2023) is a training-time attack, which embeds backdoors
into the NN by providing poisoned data to users. In BPA, the
adversary firstly targets a class and generates the poisoned
data with a special pattern, called a trigger pattern. The
two primary categories of BPA algorithms include clean-
label attacks (Shafahi et al., 2018; Turner et al., 2019; Barni
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et al., 2019) and dirty-label attacks (Gu et al., 2017; Chen
et al., 2017; Nguyen & Tran, 2021). The clean-label attacks
modify only the inputs, while the dirty-label attacks modify
both inputs and labels at the same time. The adversary adds
a small partition of poisoned data to the training set, and
the NN, well-trained on the poisoning training set, is conse-
quently endowed with hidden backdoors. The backdoored
NN predicts all clean data as the same as a normal model
but misbehaves when a specific trigger pattern appears.

BPA, especially dirty-label attack, can successfully com-
promise a model by merely adding a small partition of poi-
soned data to the training set. The security of DNNs has
been widely studied from a theoretical perspective in recent
years (Xu & Liu, 2022; Ma et al., 2022; Zou & Liu, 2023).
However, the theoretical reasons behind the effectiveness
of BPA algorithms remain less explored. To fill this gap,
we investigate the dirty-label attacks in a two-layer convo-
lutional neural network utilizing a multi-view data model
in this paper. To the best of our knowledge, this work is
the first to theoretically analyze the effectiveness of BPA
by studying the learning process in a convolutional neural
network.

In this paper, we provide theoretical insights on backdoor
learning, which trains the model over poisoned data. Specif-
ically, we analyze the outputs of a backdoored network, to
identify the sufficient conditions for successful BPA algo-
rithms. We compare the update rules for standard and back-
door learning to understand the difference in the training
process over clean and poisoned data. Moreover, motivated
by the technique of Shen et al. (2022), we study the dynamic
of backdoor learning, and investigate the time cost associ-
ated with learning the main features and trigger patterns of
training data. We also show the effectiveness of dirty-label
attack. A formal theoretical result is presented regarding the
effectiveness of BPA. Our results indicate that the success of
BPA relies on three key components: the number of feature
vectors in the datasets, the norm ratio of trigger pattern and
feature vector, and the percentage of poisoned data in the
training set.

Empirically, we present experimental results on two real-
world datasets to validate our theoretical insights and find-
ings. Our analysis involves a comparison of the loss of
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poisoned and clean data. Additionally, we investigate the
gradients of weights with respect to (w.r.t.) the training loss.
We also study the poisoned and clean data with the repre-
sentation of a backdoored NN. Lastly, we discuss which
components affect the success of BPA.

2. Related Work
Theoretical Analysis on Backdoor Poisoning Attack To
our best knowledge, there are only a few works theoretically
analyzing the effectiveness of BPA algorithms. Manoj &
Blum (2021) present a property of the function class, called
memorization capacity. They show that non-zero memo-
rization capacity implies the existence of a BPA to succeed.
Xian et al. (2023) show that if the hypothesis class is adap-
tive w.r.t. the distribution of poisoned data, the BPA can
successfully embed the backdoor into the NN. Wang et al.
(2023a) study the backdoor attacks from a statistical per-
spective, and they focus on the statistical risk of backdoored
model on both clean and poioned data. All of these works
study this problem from the perspective of hypothesis class,
while our work aims to investigate the BPA by analyzing
the process of backdoor learning in a two-layer convolution
neural network.

Theoretical Analysis on Learning Process Recently, a lot
of works (Allen-Zhu & Li, 2021; Jelassi & Li, 2022; Shen
et al., 2022) analyze deep learning as a feature learning
process. Allen-Zhu & Li (2021) and Wen & Li (2021)
investigate the effectiveness of adversarial training and self-
supervised contrastive learning in a two-layer ReLU neural
network based on the sparse coding model. Shen et al.
(2022) and Allen-Zhu & Li (2023) use the multi-view model
to study the knowledge distillation and data augmentation,
respectively. In this paper, inspired by Shen et al. (2022);
Allen-Zhu & Li (2023), we use a multi-view data model for
BPA.

3. Preliminaries
Consider a binary classification problem. Let Dz be the
distribution of Z = (X,Y ) over Z = X × Y . We follow
Shen et al. (2022) to use a multi-view data model. In a
multi-view data model, each data point x consists of P
non-overlapped patches x = (x1, . . . ,xP ) ∈ Rd×P , and
each patch is a vector with dimension d. We assume that
there exists K orthogonal features u1, . . . ,uK useful for
classification with the same norm. Let Du be a discrete
distribution over these features. Additionally, there exists
a main noise vector ξ ∈ Rd and background noise vectors
{ζp}P−2

p=1 in x, and the distributions of ξ and ζ are denoted
by Dξ and Dζ , respectively. Let [n] = {1, . . . , n}, We
define the feature-noise multi-view data model as follows:

Definition 3.1. Given feature distribution Du, and noise

distributions Dξ and Dζ , a data point z = (x, y) is drawn
from the distribution Dn

z which is defined as follows:

1. Draw the label y ∈ {+1,−1} uniformly.

2. Given y, arbitrarily choose two patches pu, pξ, where
pξ ̸= pu. The feature patch xpu is set as xpu =
yu, where u ∼ Du, and the noise patch is set as
xpξ = ξ, where ξ ∼ Dξ.

3. Each remaining background patch pζ ∈ [P ] \ {pu, pξ}
of x is set as xpζ = ζ, where ζ ∼ Dζ .

In this paper, we assume Du is a discrete uniform distri-
bution, i.e. ∀k ∈ [K],P[u = uk] = 1/K, and Dξ and

Dζ are two zero-mean Gaussian distributions N (0,
σ2
ξ

d Id),

N (0,
σ2
ζ

d Id). We set σζ = σξP
−1 to limit the variance of

the background noise. We use S to denote the set of data
points, and I to denote the index set of the set S. The
clean training set Str

cl consists of n independent and identi-
cally distributed (i.i.d.) data points drawn from Dn

z . Con-
sider a BPA algorithm P = (PX ,PY ) : Z → Z , where
PX : X → X generates the poisoned input from a clean
input, and PY : Y → Y modifies the label to the targeted
label. We then construct the poisoned training set Str

po by
randomly applying the backdoor attack to the data points in
Str
cl as follows:

Definition 3.2. Given a set Str
cl , the number of poisoned

data npo and a BPA algorithm P, The poisoned training set
Str
po is constructed as below:

1. Randomly select a set of an index set Sb with |Sb| =
npo from the non-targeted class, ensuring each data
point is chosen uniformly.

2. Given Sb, let zi = (xi, yi) and ẑi = (x̂i, ŷi) be the
i-th data point in Str

cl and Str
po, respectively, then for

any i ∈ [n],

ẑi =

{
P(zi) if i ∈ Ib,
zi if i /∈ Ib.

In this paper, we study the dirty-label backdoor attack. In a
dirty-label backdoor attack, the adversary firstly chooses a
label yp, and adds the trigger pattern to inputs with PX for
data points that have a different label with yp, the adversary
also flips the labels of the chosen data points to yp. Patch
attack (Gu et al., 2017; Chen et al., 2017) is one of dirty-
label backdoor attacks, which chooses a fixed patch pv , and
uses a specific trigger vector to replace pv of clean data.
Definition 3.3 (Patch attack). Given a trigger v, a user-
defined backdoor patch pv, and the targeted label yp. The
Patch attack Ppatch(·; pv,v, yp) : Z → Z is defined as:

PX
patch(x; pv,v)

p=

{
xp if p ̸= pv,
v if p = pv,

PY
patch(y; y

p)=yp.

2



A Theoretical Analysis of Backdoor Poisoning Attacks in Convolutional Neural Networks

yp,v, and pv are all user-specific in practice, and the adver-
sary aims to choose patch pv that is not related to the main
feature, for example, the corner of an image. To simplify
the problem, we assume pv is chosen to be one of the back-
ground patches, i.e., pv ∈ [P ] \ {pu, pξ}. We use Pζ to de-
note the set of background patches, and Pζ = [P ]\{pu, pξ}
for clean data while Pζ = [P ] \ {pu, pξ, pv} for poisoned
data.

We use a patch-wise convolutional neural network architec-
ture F (x) with C channels, which is defined as

F (x) =

C∑
c=1

λc

P∑
p=1

ϕ (⟨wc,x
p⟩) ,

where

ϕ(z) =


1
q z

q if |z| ≤ 1

z + 1
q if z > 1

z − 1
q if z < 1,

is the activation function. This activation function is a
smoothed version of symmetrized ReLU, and has been
adopted in a line of theoretical works (Shen et al., 2022;
Yang et al., 2023). We follow Yang et al. (2023) to use the
activation function with q = 3, and our results are easily
extended to any q > 3. For F , We follow Shen et al. (2022)
to fix the weights of the second layer as an all-one vector,
i.e.,∀c ∈ [C], λc = 1, and only consider the change of
trainable parameters {w1, . . . ,wC} of the first layer.

We use the logistic loss ℓ(F (x), y) = log
(
1 + e−yF (x)

)
as the loss function, and use gradient descent (GD) to op-
timize the parameters. The network predicts label with
y′ = sign(F (x)), where sign(·) denotes the sign function.

Gaussian initialization is used to initialize the weights of
the model, i.e. wc(0) ∼ N (0, σ0Id). Given a learning rate
η, at round t, the parameters of the network are updated by

wc(t+ 1)=wc(t)−
η

n

n∑
i=1

ℓ′(F (x̂i), yi)∇wc
ℓ(F (x̂i), yi)

=wc(t)−
η

n

n∑
i=1

P∑
p=1

yiℓ
′(F (x̂i), yi)ϕ

′(⟨wc(t), x̂
p
i ⟩) x̂

p
i . (1)

The process of backdoor learning is that the attacker firstly
generates the poisoned training set Str

po, the user then runs
GD algorithm on the poisoned training set Str

po with T

rounds to obtain F̂T . The attacker’s goal is that F̂T achieves
both high clean accuracy and high attack success rate of
poisoned data. The clean accuracy is defined as

Acc(F̂T ;Dz) = P(x,y)∼Dz
[F̂T (x) = y],

and the attack success rate, is defined as

ASR(F̂T ;Dz,P, yp)=P(x,y)∼Dz
[F̂T (P

X(x))=yp|y ̸=yp].

We use the standard asymptotic notations O,Θ,Ω in this
paper. Given f : R → R+ and g : R → R+, we denote
f ≤ O(g) if there exists x0, α ∈ R such that for all x > x0,
we have f(x) ≤ αg(x). We denote f ≥ Ω(g) if there exists
x0, α ∈ R such that for all x > x0, we have f(x) ≥ αg(x).
The notation f = Θ(g) means that f ≥ Ω(g) and f ≤ O(g).
We use f ≤ o(g) to denote that for every α > 0, there exists
x0 such that for all x > x0 we have f(x) ≤ αg(x). We use
f ≥ ω(g) to denote that for every α > 0, there exists x0

such that for all x > x0 we have f(x) ≥ αg(x). Finally, we
use Õ, Θ̃, Ω̃ to hide the log factors in O,Θ,Ω, respectively.

4. Theoretical Insights on Backdoor Learning
In this section, we show theoretical insights on backdoor
learning in two aspects: The outputs of a backdoored net-
work F and the difference of update rules between standard
and backdoor learning. We then analyze the dynamic of
backdoor learning and the effectiveness of dirty-label attack.

4.1. The Outputs of a Backdoored Network

In this subsection, we assume σξ = σζ = 0, which means
the image only contains feature and trigger vectors. We
further assume that v is orthogonal to all feature vectors{
uk
}K
k=1

. Consider a model F , and two data points (x1, y1)
and (x2, y2), where x1 belongs to the targeted class, and x2

belongs to another class, i.e., y2 ̸= y1 = yp. We suppose the
feature vectors in x1 and x2 are y1uk and y2uk, respectively.
If F is well-trained on the poisoned set Str

po with rounds T ,
we intuitively have the following results: (1) F can correctly
classify x1 and x2 with a high probability; (2) The trigger
vector has been effectively captured by F , and F predicts
P(x1) to the targeted class, i.e., y1F (x1)+y1F (P(x1)) >
y1F (x1) > 0; (3) F predicts P(x1) to the targeted class, as
well. Since yp ̸= y2, we have y2F (x2) − y2F (P(x2)) >
y2F (x2) > 0. Recall the decomposition of data points,
and vectors in

{
uk
}
k∈[K]

∪ {v} are mutually orthogonal in
pairs, ∀(x, y) ∈ {(x1, y1), (x2, y2)}, we yield that

0<y

C∑
c=1

ϕ
(〈
wc(T ),yu

k
〉)∥∥uk

∥∥2
2
<yp

C∑
c=1

ϕ(⟨wc(T ),v⟩)∥v∥22 .

(2)

ϕ(·) is an odd function, which implies that
yϕ
(〈
wc(T ), yu

k
〉)

= ϕ
(〈
wc(T ),u

k
〉)

. More-
over, for any z = (z1, . . . , zC), we have
maxc∈[C] zc ≤

∑
c∈[C] zc ≤ Cmaxc∈[C] zc, we can

focus on the max element of the output of F ’s first layer. A
sufficient condition of the inequality (2) holds is:

0<max
c∈[C]

ϕ
(〈
wc(T),u

k
〉)∥∥uk

∥∥2
2
<C max

c∈[C]
ϕ
(〈
wc(T),u

k
〉)∥∥uk

∥∥2
2

<yp max
c∈[C]

ϕ (⟨wc(T ),v⟩) ∥v∥22 .
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This result shows that if maxc wc(T ) has at least C times
larger projection in the directions of v than the projection
in the directions of uk, the network is successfully attacked
by the adversary. Additionally, this result illustrates that it
is theoretically possible for the backdoor, which is activated
only for data points with trigger patterns from the non-
targeted class, to maintain the predicted class of the network
for data points with trigger patterns from the targeted class.
We then provide theoretical insights into the effectiveness
of backdoor learning in the following subsection.

4.2. The Update Rule in Backdoor Learning

We initially illustrate the difference between standard learn-
ing and backdoor learning. We take a close look at the up-
date rule of wc in these two scenarios. In standard learning,
we can rewrite −n

η (wc(t+1)−wc(t)) due to Equation (1)
as

n∑
i=1

P∑
p=1

yiℓ
′(F (xi), yi)ϕ

′ (⟨wc(t),x
p
i ⟩)x

p
i

=
∑
i∈Itr

cl

ℓ′(F (xi), yi)ϕ
′ (⟨wc(t), yiui⟩)ui (3)

+
∑
i∈Itr

cl

yiℓ
′(F (xi), yi)ϕ

′ (⟨wc(t), ξi⟩) ξi, (4)

+
∑
i∈Itr

cl

∑
p∈Pζ

i

yiℓ
′(F (xi), yi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ζ

p
i . (5)

The update of wc can be decomposed into two parts: along
with the directions of the feature vector and noise vec-
tors. Since the distributions of ξ and ζ are both isotropic
Gaussian, Equation (4) and Equation (5) represent a lin-
ear combination of vectors pointing in different random
directions, in contrast, Equation (3) represents an average
across K orthonormal directions. Intuitively, since feature
vectors

{
uk
}
k∈[K]

are orthogonal, if K is finite, and n is
large enough, all feature vectors can be captured by the
model. In the case of backdoor learning, we can rewrite
−n

η (wc(t+ 1)−wc(t)) due to Equation (1) as

n∑
i=1

P∑
p=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), x̂
p
i ⟩) x̂

p
i

=
∑
i∈Itr

po

yiŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), yiui⟩)ui

+
∑
i∈Ib

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t),v⟩)v

+
∑
i∈Itr

po

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ξi,

+
∑
i∈Itr

po

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ζ

p
i .

Recall that Sb is the collection only contains poisoned data,
there are two main differences compared with standard learn-
ing. Firstly, The update of wc can be decomposed into three
parts. Except along with the directions of the feature vec-
tors and noise vectors, in backdoor learning, there exists an
extra direction, which is the direction of the trigger vector
from npo poisoned data. To ensure that the NN can cap-
ture the trigger vector and feature vectors simultaneously,
the inner product ⟨u,v⟩ should be bounded. For example,{
uk
}
k∈[K]

∪{v} are orthogonal, then the inner product is 0.
To guarantee that the NN can effectively capture the trigger
vector, npo can not be too small, i.e., npo ≥ Ω(1). Secondly,
since the dirty-label attack flips the labels of poisoned data
points, the update along the directions of the feature vector
can be decomposed into two components: one aligned with
ui and the other with −ui. This implies that the poisoned
data exhibits harmful effects on the learning of the feature
vectors. Even worse, Str

po contains less clean data than Str
cl ,

which may also hurt the learning of the feature vectors. In-
spired by this, npo can not be too large to safely neglect the
harmful impact of poisoned data, for example, npo ≤ o(n).
The adversary only adds a small partition of poisoned data
practically to avoid these two influences.

4.3. The Dynamics of Backdoor Learning

In this subsection, we study the dynamics of backdoor
learning. We firstly show a lemma about the norms of
⟨wc, hatx

p⟩ for different patch at the initialization:
Lemma 4.1. Given the weights of network wc initialized
as wc(0) ∼ N (0, σ0). For any k ∈ [K], with a probability
of 1− 2KC

d − 2K
eC/4 , we have:

∥v∥2 σ0/2 ≤ max
c∈[C]

|⟨wc(0),v⟩| ≤
√

log d ∥v∥2 σ0,

∥u∥2 σ0/2 ≤ max
c∈[C]

∣∣〈wc(0),u
k
〉∣∣ ≤√log d ∥u∥2 σ0.

The proof of Lemma 4.1 can be found in Ap-
pendix A. Lemma 4.1 implies that maxc∈[C] |⟨wc(0),v⟩| =
Θ̃(∥v∥2 σ0) and maxc∈[C] |⟨wc(0),u⟩| = Θ̃(∥u∥2 σ0).
We assume that σξ = σζ = 0 to avoid the effect of noises.
At the beginning of the training process, the weights of F
are closer to the initialization, and we have

d
〈
wc,u

k
〉

dt
=− 1

n

n∑
i=1

ŷiℓ
′
iϕ

′(⟨wc, x̂
p⟩)
〈
x̂p,uk

〉
=− 1

n

∑
i∈I

uk\Ib

yiyiℓ
′
iϕ

′(⟨wc, yiui⟩) ∥ui∥22 (6)

+
1

n

∑
i∈I

uk∩Ib

yiyiℓ
′
iϕ

′(⟨wc, yiui⟩) ∥ui∥22 (7)

+
1

n

∑
i∈Ib

yiℓ
′
iϕ

′(⟨wc,v⟩)
〈
v,uk

〉
, (8)
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where Suk denotes the set of training data with feature vec-
tor uk or −uk. At the initialization, F (x̂i) = o(1), and
ℓ′i = ℓ′(yiF (x̂i)) ≈ −1/2. Then we have (6) ≈ (n −
npo)K

−1n−1σ2
0

∥∥uk
∥∥4
2
, (7) ≈ −npoK

−1n−1σ2
0

∥∥uk
∥∥4
2

and (8) ≈ −npoK
−1n−1σ2

0 ∥v∥
2
2

〈
v,uk

〉
. If npo ≪ n, and〈

v,uk
〉
< (n−npo)

∥∥uk
∥∥4
2
/npo ∥v∥22, then (7) and (8) can

be ignored. Then the dynamic reduces to an ODE. Ignor-
ing the constants, let g(t) =

〈
w,uk

〉
, we have g′(t) ≈

(n − npo)K
−1n−1ϕ′(g(t)). When g(t) ≤ 1, we have

(g(t)−1)′ = (n−npo)K
−1n−1

∥∥uk
∥∥2
2

due to the definition
of ϕ. Then at Tu = nK

(n−npo)∥uk∥2
2g(0)

= nK
(n−npo)(σ0∥uk∥3

2)
,

we yield
〈
wc,u

k
〉
≥ Ω(1), which implies that uk has been

captured by the NN. Moreover, since the feature vectors{
uk
}
k∈[K]

are orthogonal with the same norm, and appear
in the data points uniformly, the NN can fit all feature vec-
tors at Tu. Furthermore, for the trigger vector v, we have

d ⟨wc,v⟩
dt

= − 1

n

n∑
i=1

ŷiℓ
′
iϕ

′(⟨wc, x̂
p⟩) ⟨x̂p,v⟩

= − 1

n

∑
i∈Ib

ŷiℓ
′
iϕ

′(⟨wc,v⟩) ∥v∥22 (9)

− 1

n

n∑
i=1

ŷiyiℓ
′
iϕ

′(⟨wc,ui⟩) ⟨v,ui⟩ . (10)

Similarly, we have (9) ≈ npon
−1σ2

0 ∥v∥
4
2, and |(10)| ≈

σ2
0 ∥u∥

2
2

∣∣〈v,uk
〉∣∣. If npo ∥v∥42 ≫ n ∥u∥22 |⟨v,u⟩|, then

(10) can be ignored. Then the dynamics reduces to an ODE.
Let g(t) = ⟨w,v⟩, we have g′(t) ≈ npon

−1 ∥v∥22 ϕ′(g(t)).
When g(t) ≤ 1, we have (g−1(t))′ = npon

−1 due to the
definition of ϕ. Then at Tv = n

npo∥v∥2
2g(0)

= n
npoσ0∥v∥3

2

, we
yield ⟨wc, y

pv⟩ ≥ Ω(1), which implies that v has been cap-
tured by the NN. Consequently, if maxk∈[K]

∣∣〈v,uk
〉∣∣ ≤

min
{
(n− npo) ∥u∥42 /npo ∥v∥22 , npo ∥v∥42 /n ∥u∥22

}
and

npo ≪ n, the feature vectors and trigger vector are both
captured by the backdoored NN. A special case of the first
condition is that

{
uk
}
k∈[K]

∪{v} are orthogonal. Although
npo is required to be small, the order of npo should have
a lower bound, since npo affects Tv. If npo is too small,

then Tv is too large. Furthermore, if ∥v∥3
2

∥u∥3
2

≫ n
npoK

, which
implies that Tv ≪ Tu, and the network firstly fits the trigger
vector and then fits the feature vector. After that, ⟨w,v⟩
increases continuously, and keeps greater than

〈
w,uk

〉
at

least until time Tu.

The trigger pattern is similar to the spurious feature, but they
are essentially different. Firstly, the label of poisoned data
points is flipped by the adversary in the dirty-label attack,
while the data with spurious features has the correct label.
Secondly, the number of poisoned data is limited, which
is to avoid being detected by the user and the spurious fea-

tures may appear in all data points. Finally, in a dirty-label
attack, the trigger vector is only added to the data points
from the non-targeted class, which is user-specific, while
the data with spurious features is not user-specific. Shen
et al. (2022) show that if the spurious feature vector appears
predominantly in one class, the network can overfit the spu-
rious feature, and use the spurious feature to classify the
data points. This result does not conflict with our analy-
sis, Moreover, we emphasise that after training the model
with only a small fraction of the poisoned data, the attacker
can successfully manipulate the outputs of the NN with the
trigger vectors.

4.4. The Effectiveness of Dirty-Label Attack

The dirty-label attack, compared with clean-label attack,
only requires a small partition of poisoned data, can effi-
ciently injure the trigger into NN. The analysis in Section 4.3
shows that it requires a large norm of trigger vector, and NN
can firstly fit the trigger vector and then fit the feature vector.
However, when maxc ⟨wc,u⟩ and maxc ⟨wc, y

pv⟩ both
achieves the order of Ω (1), it is challenging to show which
vector primarily influences the outputs of NN. We call this
stage as the late stage. In this subsection, we show another
effectiveness from dirty-label attack, which guarantee that
the trigger vector still primarily influences the outputs of NN.
We still assume that σξ = σζ = 0 to simplify the problem.
In the late stage, −ℓ′(ŷiF (xi)) ≤ O(e−ŷiF (xi)),∀i /∈ Ib.
The updates of

〈
wc,u

k
〉
> 0 when

(n− npo)e
−

∑
c ϕ(⟨wc,u

k⟩)

npo

(
1+e−

∑
c ϕ(⟨wc,uk⟩)+

∑
c ϕ(⟨wc,ypv⟩))−1 >Ω (1). (11)

Suppose
∑

c ϕ(⟨wc, y
pv⟩) > Ω

(∑
c ϕ(
〈
wc,u

k
〉
)
)
,

we yield
∑

c ϕ(⟨wc, y
pv⟩) −

∑
c ϕ(
〈
wc,u

k
〉
) >

Ω
(

1
log(n)

∑
c ϕ(
〈
wc,u

k
〉
)
)

. Otherwise, if∑
c ϕ(⟨wc, y

pv⟩) < O
(∑

c ϕ(
〈
wc,u

k
〉
)
)
, we have∑

c ϕ(
〈
wc,u

k
〉
) < O (log n) ≤ Õ (1), which shows

the effectiveness of dirty-label attack. Additionally,
the effect will be more significant if npo = Θ(n).
As a result,

〈
wc,u

k
〉

can not achieves a higher or-
der than ⟨wc, y

pv⟩ when ⟨wc, y
pv⟩ ≥ Ω (1), i.e.,∑

c ϕ(
〈
wc,u

k
〉
) ≤ Õ(

∑
c ϕ(⟨wc, y

pv⟩)). Moreover, it
can be proved that ⟨wc, y

pv⟩ still primarily influences
the outputs of NN during the learning process. When
∥v∥3

2

∥u∥3
2

≫ n
npoK

, although ⟨wc, y
pv⟩ and

〈
wc,u

k
〉

achieves
the same order, the update of ⟨wc, y

pv⟩ is still larger than〈
wc,u

k
〉
. The formal result is shown in Lemma 6.6.

5. Main Results
We show our main results in this section. The proofs of The-
orems 5.3 and 5.4 can be found in Appendix D. Our results
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depend on the following conditions about parameters.
Condition 5.1. We suppose the following conditions hold:

1. The vectors in
{
uk
}
k∈[K]

∪ {v} are mutually orthog-

onal in pairs. ∀k ∈ [K],
∥∥uk

∥∥
2
= 1.

2. The number of channels C is as the order of logarithm
of d, i.e., C = Θ(log d).

3. The network is over-parameterized, and n, P,K satis-
fies nP 2K ≤ o(

√
d).

4. The standard deviation σ0 satisfies σ0 ≤ o(1), and σξ

satisfies ω (1) ≤ σξ ≤ o
(

1
σ0

)
.

5. The size of training set is larger than the number of
useful features, i.e., n ≥ Ω

(
σ−3
0 K

)
. Moreover, in

backdoor learning, the training set only contains a
small proportion of poisoned data points, i.e., Ω(1) ≤
npo ≤ o(n). The norm of trigger vectors satisfies
Ω(1) ≤ ∥v∥2 ≤ O (σξ).

Remark 5.2. In Condition 5.1, we ignore the effect from the
angle between feature vectors

{
uk
}
k∈[K]

and trigger vector

v. We assume vectors in
{
uk
}
k∈[K]

∪ {v} are mutually
orthogonal in pairs, and this condition is possible to be
replaced by a weaker condition that the inner product of
feature vectors

{
uk
}
k∈[K]

and trigger vector v are bounded.
We suppose that C, n increases with d in different orders.
Since C = Θ(log d), and n has a lower order than

√
d,

this problem is studied in an over-parameterized case. We
suppose the upper and lower bounds for the variances σ2

ξ

and σ2
ζ , then the output of the network cannot be easily

dominated by the feature vectors at initialization. We also
assume n ≥ Ω

(
σ−3
0 K

)
such that each feature vector can

be successfully captured by NN.

Given a clean training set Str
cl , the following theorem shows

that under mild conditions, there exists round Tu such that
the well-trained NN achieves high clean accuracy and low
attack success rate.
Theorem 5.3. [standard learning] Under the Condition 5.1,
given a clean training set Str

cl with size n, there exists Tu =

Θ̃
(

K+KeC
−2

ησ0

)
such that for T1 ≥ Tu, the network F̂T1

fits
all clean data points with a high probability:

P(∀i ∈ [n], yiF̂T1(xi)≥ Ω̃(1))≥1−O
(
n2P 2KC

poly(d)

)
. (12)

Moreover, F̂T1
achieves a high clean accuracy but leaves a

low attack success rate at T1:

Acc(F̂T1
;Dz) ≥ 1−O

(
nP 2KC

poly(d)

)
, (13)

ASR(F̂T1
;Dz,P) ≤ O

(
nP 2KC

poly(d)

)
. (14)

Theorem 5.3 shows that under the data model defined in
Definition 3.1, NN can achieve a high clean accuracy after
Tu rounds of standard training. Since v has a smaller norm
than σξ at the initialization, NN can not capture the trigger
vector since poisoned data is not included in the training
set, and the feature vectors finally achieve a larger signal
than the trigger vector v and other noise vectors. When
the poisoned data is added to the training set, we have the
following result:

Theorem 5.4. [Backdoor Learning] Under the Condi-
tion 5.1, given a poisoned training set Str

po with size n, if

npo ∥v∥22 > ω(nK−1), there exists Tu = Θ̃
(

K+KeC
−2

ησ0

)
such that for T2 ≥ Tu the network F̂T2

fits both clean and
poisoned training data points with a high probability:

P(∀i ∈ [n], ŷiF̂T2
(x̂i)≥ Ω̃(1))≥1−O

(
n2P 2KC

poly(d)

)
. (15)

Furthermore, there exists Tv = Θ̃
(

n
ηnpo∥v∥3

2σ0

)
such that

F̂ achieves high attack success rate at T ′
2 ≥ Tv and achieves

high clean accuracy at T2 ≥ Tu > Tv:

Acc(F̂T2 ;Dz) ≥ 1−O

(
nP 2KC

poly(d)

)
, (16)

ASR(F̂T ′
2
;Dz,P) ≥ 1−O

(
nP 2KC

poly(d)

)
. (17)

In Theorem 5.4, we show the model, well-trained on a
poisoned training set, can simultaneously achieve high clean
accuracy and attack success rate. Moreover, note that Tu

in Theorem 5.3 and in Theorem 5.4 have the same order,
which implies that the poisoned data has limited effects
on the learning of the feature vectors for the model. The
results also indicate that the success of the backdoor attack
is influenced by the number of the feature vectors K, the
poisoning rate npo/n, and the norm ratio ∥v∥2 / ∥u∥2.

6. Analysis of Standard and Backdoor
Learning

In this section, we show some key techniques used in
our proofs for the main results. We additionally denote〈
wc(t+ 1),uk

〉
−
〈
wc(t),u

k
〉

and ⟨wc(t+ 1), ypv⟩ −
⟨wc(t), y

pv⟩ as ∆t
c(u

k) and ∆t
c(v), respectively. Con-

sider the early stage of the standard learning, the updates
of ⟨wc, ξ⟩ and ⟨wc, ζ⟩ are both small, while for any k,〈
wc,u

k
〉

has a significant update. The following lemma
shows that

〈
wc,u

k
〉

is increasing:

Lemma 6.1. Under the Condition 5.1. In both standard and
backdoor learning, suppose there exists t such that ∀k ∈
[K],

〈
wc(t),u

k
〉
≤ O(C−1), |⟨wc(t), ξ⟩| ≤ Õ (σ0σξ) and

|⟨wc(t), ζ⟩| ≤ Õ (σ0σζ) for some 0 ≤ t ≤ T . We then

6



A Theoretical Analysis of Backdoor Poisoning Attacks in Convolutional Neural Networks

yield

∀k∈ [K],∆t
c(u

k)≥ Ω̃

(
η∥u∥22ϕ′(∣∣〈wc(t),u

k
〉∣∣)

K +KeC−2

)
(18)

is increasing. Furthermore, since −ℓ′ ≤ 1, we have

∀k∈ [K],∆t
c(u

k)≤Õ
(
ηK−1∥u∥22 ϕ

′(∣∣〈wc(t),u
k
〉∣∣)). (19)

As the model does not fit the noise vectors, the fea-
ture vectors primarily influence the outputs of the model.
maxc

〈
wc,u

k
〉

keeps increasing until maxc
〈
wc,u

k
〉

reaches the order of Ω̃(1). After that, ϕ′(
〈
wc,u

k
〉
) is also

of the order of Ω̃(1), and the update of maxc
〈
wc,u

k
〉

is
small as shown in the following lemma:
Lemma 6.2. Under the Condition 5.1. In standard learn-
ing, suppose there exists 0 ≤ t ≤ T such that ∀k ∈ [K],〈
wc(t),u

k
〉
≥ Ω̃(1)), we have

∀k∈ [K],∆t
c(u

k)≤Õ
(
ηK−1∥u∥22e

−maxc⟨wc(t),u
k⟩
)
. (20)

Remark 6.3. In the early stage of the learning process, for
each patch x̂p, the inner product ⟨wc, x̂

p⟩ is small, which
implies that −ℓ′ = Θ(1). The increment of ⟨wc, x̂

p⟩
strongly depends on ϕ′(⟨wc, x̂

p⟩). In the late stage, F (x)

achieves the order of Ω̃(1), which means −ℓ′ ≤ Õ(1).
maxc

〈
wc,u

k
〉

has a relatively large increment compared
to maxc ⟨wc, x̂

p⟩ for p ̸= pu, since maxc ϕ
′(
〈
wc,u

k
〉
) ≥

Ω̃(1).

We continue to analyze the process of backdoor learning.
The update of

〈
wc,u

k
〉

can be divided into two groups
since a small part of data points has the flipped label. As
we mentioned in Section 4.2, npo ≤ o(n) implies that the
increment from groups of poisoned data points, which have
the flipped label, can be ignored in the early stage, and
Lemma 6.1 holds in backdoor learning. Moreover, the trig-
ger vector, which is orthogonal to the feature vectors, can
be captured by NN in backdoor learning as ∆t

c(v) is larger
than ∆t

c(u
k).

Lemma 6.4. Under the Condition 5.1. In backdoor learning,
suppose ⟨wc(t),v⟩ ≤ O(C−1/3), |⟨wc(t), ξ⟩| ≤ Õ (σ0σξ)

and |⟨wc(t), ζ⟩| ≤ Õ (σ0σζ) for some 0 ≤ t ≤ T , we have

∆t
c(v) = Θ̃

(
npon

−1η ∥v∥22 ϕ
′ (|⟨wc(t),v⟩|)

)
(21)

is increasing.
Remark 6.5. To analyze the learning process of feature
vectors, we divide the feature vectors into K groups. We
can regard the learning of feature and trigger vectors as
a race. The number of data points containing uk is n/K
while the number of poisoned data points is npo. When
K increases, the adversary can use v with a small norm to
successfully attack the model.

Note that ∆t
c(v) has a higher order than ∆t

c(u),
which implies that ∆t

c(v) can first achieve the or-
der of Ω̃(1). In addition, in the early stage of
the process, we yield ⟨wc(0), y

pv⟩ /
〈
wc(0),u

k
〉

=

Θ̃(∥v∥2 / ∥u∥2) from Lemma 4.1. The ratio of up-

dates ∆t
c(v)/∆

t
c(u

k) ≥ Ω̃
(

npoK∥v∥2
2ϕ

′(|⟨wc(t),y
pv⟩|)

n∥u∥2
2ϕ

′(|⟨wc(t),uk⟩|)

)
≥

Ω̃
(
∥v∥22

)
. In the early stage of learning process, we have

⟨wc(t), y
pv⟩ /

〈
wc(t),u

k
〉
≥ Ω̃

(
∥v∥22

)
, i.e., v primarily

influences the outputs of the model.

After that, when maxc
〈
wc(t),u

k
〉

and maxc ⟨wc(t), y
pv⟩

both achieve the order of Ω̃(1), we yield −ℓ′ ≤ Õ(1). The
neglect effect of the groups of poisoned data may not be
ignored, which causes that the learning process of u in back-
door learning is different with in standard learning. Note
that maxc

〈
wc(t),u

k
〉

increases only if
∑

i∈I
uk\Ib

ℓ′i ≥

Ω
(∑

i∈I
uk∩Ib

ℓ′i

)
, and maxc

〈
wc(t),u

k
〉

can not achieve
a higher order than maxc ⟨wc(t), y

pv⟩. v continues to pri-
marily influence the outputs of the model in the late stage.

Lemma 6.6. Under the Condition 5.1, in backdoor
learning, suppose there exists 0 ≤ t ≤ T such
that ∀k ∈ [K],maxc∈[C]

〈
wc(t),u

k
〉

≥ Ω̃ (1) and
maxc∈[C] ⟨wc(t), y

pv⟩ ≥ Ω̃ (1), we have

max
c∈[C]

〈
wc(t),u

k
〉
≤ Õ

(
max
c∈[C]

⟨wc(t), y
pv⟩
)
. (22)

Furthermore, the trigger vector v primarily influence the
outputs of NN:

∀k∈ [K],
∑
c∈[C]

ϕ(⟨wc(t), y
pv⟩)−ϕ(

〈
wc(t),u

k
〉
)≥ Ω̃(1).

(23)

Remark 6.7. Lemma 6.6 indicates the relationship be-
tween ⟨wc(t), y

pv⟩ and
〈
wc(t),u

k
〉
. It also shows

that even if maxc ⟨wc(t), y
pv⟩ has the same order as

maxc
〈
wc(t),u

k
〉
, the outputs of NN are manipulated by

the trigger vector v. It is challenging to study the order of
⟨wc(t), y

pv⟩ −
〈
wc(t),u

k
〉

when both feature and trigger
vectors are captured by NN.

Finally, ∆t
c(u

k) and ∆t
c(v) are both upper-bounded in the

late stage of backdoor learning, as shown in the following
lemma.

Lemma 6.8. Under the Condition 5.1. Suppose there exists
0 ≤ t ≤ T such that ∀k ∈ [K],

〈
wc(t),u

k
〉
≥ Ω̃(1)) and

⟨wc(t), y
pv⟩ ≥ Ω̃ (1), we have

∀k∈ [K],∆t
c(u

k)≤Õ
(
K−1η ∥u∥22 e

−maxc⟨wc,u
k⟩
)
, (24)

∆t
c(v) ≤ Õ

(
npon

−1η ∥v∥22 e
−maxc⟨wc,y

pv⟩
)
. (25)
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Figure 1. Results about the representation vectors on CIFAR-10 under the BadNets attack. (a) The cosine similarities of the representation
vectors and the top singular vector. (b) The T-SNE plot of representation vectors. The representation vectors are centered by the average
representation vector.
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Figure 2. Top: loss of clean and poisoned data. Bottom: the norms
of the gradients of weights w.r.t. the loss of clean and poisoned
data. We evaluate the result for the initialized model at epoch 0.

7. Experiments
In the experiments, we empirically study the BPA. We use
two dirty-label backdoor attacks: BadNets (Gu et al., 2017)
and four-corner attack (Turner et al., 2019) on two real-
world datasets, MNIST and CIFAR-10 (Krizhevsky et al.,
2009). The details can be found in Appendix E.

7.1. Empirical Study about Poisoned Data

Theoretical results led us to expect that the loss of poi-
soned data decreases fast, coupled with a large norm of
the gradients in the early stages of training, and empir-
ical validation supports these expectations. In Figure 2,
we use the BadNets attack to generate the poisoned train-
ing set from CIFAR-10 with a poisoning rate of 0.05,
and the results show that the loss of poisoned data de-
creases faster than the loss of clean data in the first 5
epochs. Furthermore, we record the norm of gradients
of weights ∇wℓ̄po = 1

|Spo|
∑

i∈Ipo
∇wℓ(F (x̂i, yi)) and

∇wℓ̄cl = 1
|Scl|

∑
i∈Icl

∇wℓ(F (x̂i, yi)) with poisoned and
clean test set. The norm ∇wℓ̄po maintains a larger norm
of gradients than ∇wℓ̄cl in the first 5 epochs, as shown in
Figure 2.

Finally, we use SVD decomposition to analyze the repre-
sentations of clean and poisoned data. For a l-layer NN, the
layers from the first layer to the l− 1-th layer of the NN are
utilized as a feature extractor. Tran et al. (2018) study the
spectral signatures for poisoned data with representations
and find that the matrix of poisoned representations has a
larger spectral norm. Apart from their analysis, we study
the cosine similarities of the maximum singular vector and
representation vectors. We collect the representations of
both clean and poisoned test data as a matrix and obtain
the maximum singular vector. The cosine similarities of
the maximum singular vector and representation vectors are
shown in the results in Figure 1(a). The results show that
most of the representation vectors of poisoned data align
with the negative direction of the maximum singular vector,
and most of the representation vectors of clean data from the
targeted class have the same direction with the maximum
singular vector. Besides, the representation vectors of clean

8
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Table 1. The effects from the size of the training set and poisoning rate in MNIST. We evaluate the accuracy and attack success rate at the
last epoch. We use Bold to denote the results with ASR > 95%, which means the attacker successfully embeds the backdoor in the model.

MNIST Poisoning rate
Size 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2000
ACC 99.25 99.25 99.25 99.31 99.31 99.31 99.31 99.20 99.20 99.09
ASR 0.78 0.78 0.78 0.78 0.78 1.12 1.35 3.03 11.32 68.95
Time – – – – – – – – – –

4000
ACC 99.41 99.47 99.41 99.41 99.57 99.57 99.47 99.47 99.52 99.52
ASR 0.78 1.01 85.76 96.3 99.22 99.22 99.55 99.78 99.66 99.66
Time – – – 28 26 23 23 19 19 19

6000 ACC 99.68 99.63 99.57 99.57 99.57 99.63 99.68 99.68 99.68 99.68
ASR 0.34 84.3 95.52 98.32 98.77 98.88 99.55 99.66 99.55 99.66
Time – – 64 24 24 21 20 17 17 13

8000
ACC 99.73 99.73 99.68 99.79 99.79 99.79 99.79 99.79 99.79 99.73
ASR 6.95 98.88 99.66 99.78 99.78 99.89 99.89 99.89 99.89 99.89
Time – 25 19 19 14 13 12 11 11 11

10000
ACC 99.73 99.79 99.84 99.84 99.84 99.84 99.79 99.84 99.84 99.84
ASR 79.15 99.33 99.44 99.78 99.89 99.89 99.89 99.89 99.89 99.89
Time – 18 15 14 11 10 10 9 9 9

data from the targeted and non-targeted classes are in oppo-
site directions. It is important to note that the representation
vectors of clean data from the targeted class and poisoned
data are not clustered together. To illustrate this, the T-SNE
is used to show the relationship of poisoned and clean data.
and the results are shown in Figure 1(b). To summarize, the
changes caused by the trigger pattern are two aspects: value
and direction. Our theoretical results also consider these
two aspects.

7.2. Key Components for Backdoor Attacks

Furthermore, we delve into the key components of BPA
algorithms. We firstly adjust the size of the training set and
the poisoning rate within the range of 2000 to 10000 and
0.01 to 0.1, respectively. We keep other hyper-parameters
unchanged and show the results in Table 1. Table 1 indicate
that with an increase in the size of the training set, the low-
est poisoning rate required for a successful attack decreases.
This suggests that as the training set size grows, less poi-
soned data is needed, validating our condition regarding
npo. Additionally, given a fixed size of the training set, as
the poisoning rate increases, the accuracy remains a slight
change, implying that the negative impact of poisoned data
can be negligible. We also study the time T ⋆ such that for
any t > T , the attack success rate is always greater than
95%, and the results show that the T ⋆ decreases as the poi-
soning rate increases. We also study the effectiveness from
the norm of the trigger vector, and the results can be found
in Appendix E. Additionally, the experimental results of the
four-corner attack can be also found in Appendix E.

8. Conclusion
To comprehend the effectiveness of BPA, we conduct a
theoretical and empirical analysis in this paper. We pro-
vide theoretical insights on backdoor learning and further
show theoretical results in a two-layer convolutional neu-
ral network with the multi-view model. Empirically, we
investigate the curve of training loss and norms of gradients
w.r.t. loss for both clean and poisoned data. Moreover, we
study the components affecting the lowest poisoning rate to
succeed in BPA, and the experimental results support our
theoretical findings.

Impact Statement
The primary goal of our study is to comprehensively under-
stand the effectiveness of BPA instead of proposing a novel
BPA algorithm. A potential negative impact of our research
is that malicious attackers could design BPA algorithms
with the theoretical analysis in this paper. However, our
work can also help users to understand poisoned data points
and detect them. Our study emphasizes the importance of
enhancing the security of deep learning models as well.
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A. Theoretical Results at Initialization
Initialization is the same in both standard and backdoor learning. We first show the important lemmas, which are useful in
our proof.

Lemma A.1 (Lemma 1 in Laurent & Massart (2000)). Suppose Xi . . . , Xn are n i.i.d. Gaussian random variables with
mean 0 and variance 1. Let a1, . . . , an be non-negative. We set

|a|∞ = sup
i=1,...,n

|ai| , |a|22 =

n∑
i=1

a2i . (26)

Let

Z =

n∑
i=1

ai(X
2 − 1). (27)

Then, the following inequalities hold for any positive t:

P
[
Z ≥ 2 |a|2

√
t+ 2 |a|∞ t

]
≤ exp(−t). (28)

P
[
Z ≤ −2 |a|2

√
t
]
≤ exp(−t). (29)

Lemma A.2 (Lemma 4 in Shen et al. (2022)). Consider independently sampled Gaussian vectors z1 ∼ N (0, σ2
1Id) and

z2 ∼ N (0, σ2
2Id). For any δ ∈ (0, 1) and a large enough d, there exists constants c1, c2 such that

P
[
|⟨z1, z2⟩| ≤ c1σ1σ2

√
d log(2/δ)

]
≥ 1− δ, (30)

P
[
⟨z1, z2⟩ ≥ c2σ1σ2

√
d
]
≥ 1/4. (31)

Lemma A.3 (Proposition 2.5 in Wainwright (2019)). Suppose that the variables Xi, i = 1, . . . , n, are independent, and Xi

has mean µi and sub-Gaussian parameter σi. Then for all r ≥ 0, we have

P

[
n∑

i=1

(Xi − µi) ≥ t

]
≤ exp

{
− t2

2
∑n

i=1 σ
2
i

}
(32)

Proposition A.4. Given a standard Gaussian variable Z ∼ N (0, 1), then we have P [Z ≥ 1/2] ≥ 1/4.

A.1. Inner Product of Different Patches

With the lemmas shown in Appendix A, we can individually analyze the inner product of different components. As
the feature vectors

{
uk
}
k∈[K]

∪ {v} are orthogonal in our assumption, we have ∀i, j ∈ [K], i ̸= j,
〈
ui,uj

〉
= 0 and〈

ui,v
〉
= 0. We then analyze the inner product of ξ and v.

Lemma A.5. Given Scl = {xi, yi}ni=1 are i.i.d. drawn from the distribution Dz defined in Definition 3.1, and a trigger
vector v, with a probability of 1− 2n(P−1)

d , we have

∀i ∈ [n],−
√
log d/d ∥v∥2 σξ ≤ ⟨ξi,v⟩ ≤

√
log d/d ∥v∥2 σξ. (33)

∀i ∈ [n], p ∈ Pζ
i ,−

√
log d/d ∥v∥2 σζ ≤ ⟨ζi,v⟩ ≤

√
log d/d ∥v∥2 σζ . (34)

Proof. Since the distributions of ξ and ζ are spherically symmetric, and we have ∀i, ⟨ξi,v⟩ ∼ N (0, ∥v∥2 σξ/
√
d). Due to

Lemma A.3, given i ∈ [n], we have

P
[
|⟨ξi,v⟩| ≥

√
log d/d ∥v∥2 σξ

]
≤ 2

d
. (35)

Equation (34) can be immediately obtained by using the union bound. Similarly, given i, p, we have

P
[
|⟨ζp

i ,v⟩| ≥
√

log d/d ∥v∥2 σζ

]
≤ 2

d
. (36)

By using the union bound, we conclude our proof.

12



A Theoretical Analysis of Backdoor Poisoning Attacks in Convolutional Neural Networks

The Lemma A.5 shows that |⟨ξi,v⟩| ≤ Õ(σξ ∥v∥2 /
√
d) and |⟨ζp

i ,v⟩| ≤ Õ(σζ ∥v∥2 /
√
d). Similarly, |⟨ξi,uj⟩| and

|⟨ζp
i ,uj⟩| can be also bounded as shown in the following lemma.

Lemma A.6. Given Scl = {xi, yi}ni=1 are i.i.d. drawn from the distribution Dz defined in Definition 3.1, with a probability
of 1− 2nK(P−1)

d , we have

∀i ∈ [n], k ∈ [K]−
√

log d/d
∥∥uk

∥∥
2
σξ ≤

〈
ξi,u

k
〉
≤
√

log d/d
∥∥uk

∥∥
2
σξ. (37)

∀i ∈ [n], p ∈ Pζ
i , k ∈ [K]−

√
log d/d

∥∥uk
∥∥
2
σζ ≤

〈
ζi,u

k
〉
≤
√
log d/d

∥∥uk
∥∥
2
σζ . (38)

Proof. Since the distributions of ξ and ζ are spherically symmetric, and we have ∀i,
〈
ξi,u

k
〉
∼ N (0,

∥∥uk
∥∥
2
σξ/

√
d). Due

to Lemma A.3, given i ∈ [n], k ∈ [K], we have

P
[∣∣〈ξi,uk

〉∣∣ ≥√log d/d
∥∥uk

∥∥
2
σξ

]
≤ 2

d
. (39)

Equation (38) can be immediately obtained by using the union bound. Similarly, given i, p, k, we have

P
[∣∣〈ζp

i ,u
k
〉∣∣ ≥√log d/d

∥∥uk
∥∥
2
σζ

]
≤ 2

d
. (40)

By using the union bound, we conclude our proof.

We then analyze the inner product of two noise vectors.
Lemma A.7. Given Scl = {xi, yi}ni=1 are i.i.d. drawn from the distribution Dz defined in Definition 3.1, with a probability
of 1− 2n2(P−1)2+2n2P

d , we have

∀i, i′ ∈ [n], i ̸= i′, |⟨ξi, ξi′⟩| ≤ a1σ
2
ξ

√
log(2d)/d, (41)

∀i ∈ [n], σ2
ξ (1 + 2

√
log d) ≤ ∥ξi∥2 ≤ σ2

ξ (1 + 2
√

log d+ 2 log d). (42)

∀i, i′ ∈ [n], p, p′ ∈ Pζ
i , i ̸= i′ or p ̸= p′,

∣∣∣〈ζp
i , ζ

p′

i′

〉∣∣∣ ≤ a1σ
2
ζ

√
log(2d)/d, (43)

∀i ∈ [n], p ∈ Pζ
i , σ

2
ζ (1 + 2

√
log d) ≤ ∥ζp

i ∥2 ≤ σ2
ζ (1 + 2

√
log d+ 2 log d). (44)

∀i, i′ ∈ [n], p ∈ Pζ
i , |⟨ξi, ζ

p
i′⟩| ≤ a1σξσζ

√
log(2d)/d, (45)

Proof. These results are the immediate result by using union bound and Lemmas A.1 to A.3. Specifically, ⟨ξi, ξi′⟩,〈
ζp
i , ζ

p′

i′

〉
and ⟨ξi, ζ

p
i′⟩ are all gaussian variables, and Lemma A.2 shows that for any i, i′ ∈ [n], there exists a constant a1

such that with a probability of 1− 2
d , we have

|⟨ξi, ξi′⟩| ≤ a1σ
2
ξ

√
log d/d. (46)

Equation (41) can be obtained by using the union bound. Similarly, with a probability of 1− 2n(P−2)
d , we have

∀i, i′ ∈ [n], p, p′ ∈ Pζ
i , i ̸= i′ or p ̸= p′,

∣∣∣〈ζp
i , ζ

p′

i′

〉∣∣∣ ≤ σ2
ζ

√
log(2d)/d. (47)

Furthermore, with a probability of 1− 2n(P−2)
d , we have

∀i, i′ ∈ [n], p ∈ Pζ
i , |⟨ξi, ζ

p
i′⟩| ≤ a1σξσζ

√
log(2d)/d (48)

Since ∥ξi∥
2
2 and ∥ζp

i ∥
2
2 are both the sum of squares of d i.i.d. Gaussian variable, ∥ξi∥

2
2

σ2
ξ

and
∥ζp

i ∥2

2

σ2
ζ

are both χ2 random

variables. given i ∈ [n], p ∈ Pζ
i , Lemma A.1 implies that

P

[
∥ξi∥

2
2

σ2
ξ

− 1 ≥ 2
√
log d+ 2 log d

]
≤ 1

d
,P

[
∥ξi∥

2
2

σ2
ξ

− 1 ≤ 2
√

log d

]
≤ 1

d
. (49)

P

[
∥ζp

i ∥
2
2

σ2
ζ

− 1 ≥ 2
√
log d+ 2 log d

]
≤ 1

d
,P

[
∥ζp

i ∥
2
2

σ2
ζ

− 1 ≤ 2
√

log d

]
≤ 1

d
. (50)

By using the union bound, we conclude our proof.
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A.2. Inner Products of Weight Vectors and Patch Vectors

Since w is initialized as wc(0) ∼ N (0, σ0), The analysis of the inner product of weight vector and patch vector is similar to
the proofs of Appendix A.1.

Lemma A.8. Given the weights of network wc, which is initialized as wc(0) ∼ N (0, σ0), Scl = {xi, yi}ni=1 are i.i.d. drawn
from the distribution Dz defined in Definition 3.1. For a trigger vector v, with a probability of 1− 2KC+2nC+2C

d − 2K+2n+2
eC/4 ,

we have for any k ∈ [K],

max
c∈[C]

|⟨wc(0),v⟩| ≤
√
log d ∥v∥2 σ0, max

c∈[C]
⟨wc(0),v⟩ ≥ ∥v∥2 σ0/2. (51)

∀k ∈ [K],max
c∈[C]

∣∣〈wc(0),u
k
〉∣∣ ≤√log d ∥u∥2 σ0, max

c∈[C]
⟨wc(0),ui⟩ ≥ ∥u∥2 σ0/2, (52)

∀i ∈ [n],max
c,k

|⟨wc(0), ξi⟩| ≤ a1σ0σξ

√
log(2d), max

c∈[C]
⟨wc(0), ξi⟩ ≥ a2σ0σξ. (53)

∀i ∈ [n], p ∈ Pζ
i ,max

c∈[C]
|⟨wc(0), ζ

p
i ⟩| ≤ a1σ0σξ

√
log(2d), max

c∈[C]
⟨wc(0), ζ

p
i ⟩ ≥ a2σ0σξ. (54)

Proof. Since the distribution of wc(0) is spherically symmetric, for any i, we have ⟨wc(0),ui⟩ ∼ N (0, σ0). Due to
Lemma A.3, we have

P
[
∃k, c,

∣∣〈wc(0),u
k
〉∣∣ ≥√log d ∥u∥2 σ0

]
≤

C∑
c=1

K∑
k=1

P
[∣∣〈wc(0),u

k
〉∣∣ ≥√log d ∥u∥2 σ0

]
≤ 2KC

d
. (55)

Meanwhile, Proposition A.4 implies that for any k,

P
[
max
c∈[C]

〈
wc(0),u

k
〉
≤

∥u∥2 σ0

2

]
≤

C∏
c=1

P
[
∥u∥2

〈
wc(0),u

k
〉
≤ σ0

2

]
≤ 2

(
3

4

)C

≤ 2Ke−C/4. (56)

Similarly, ⟨wc(0),v⟩ ∼ N (0, ∥v∥2 σ0), and we have

P
[
∃c, |⟨wc(0),v⟩| ≥

√
log d ∥v∥2 σ0

]
≤

C∑
c=1

P
[
|⟨wc(0),v⟩| ≥

√
log d ∥v∥2 σ0

]
≤ 2C

d
, (57)

P
[
max
c∈[C]

⟨wc(0),v⟩ ≤
∥v∥2 σ0

2

]
≤

C∏
c=1

P
[
⟨wc(0),v⟩ ≤

∥v∥2 σ0

2

]
≤ 2r

(
3

4

)C

≤ 2e−C/4. (58)

Recall that for any i, ξi ∼ N (0, σξ/
√
dId), with combining the Union bound and Lemma A.2, there exists constants a1

such that with a probability of 1- 2nC
d , we have

max
i∈[n],c∈[C]

|⟨wc(0), ξi⟩| ≤ a1σ0σξ

√
log(2d), (59)

For any i, there exists a constant a2 such that

P
[
max
c∈[C]

⟨wc(0), ξi⟩ ≤ a2σ0σξ

]
≤

C∏
c=1

P [⟨wc(0), ξi⟩ ≤ a2σ0σξ] ≤ 2

(
3

4

)C

≤ 2e−C/4. (60)

Using the Union bound, we have

P
[
min
i∈[n]

max
c∈[C]

⟨wc(0), ξi⟩ ≥ a2σ0σξ

]
= 1− P

[
∃i,max

c∈[C]
⟨wc(0), ξi⟩ ≤ a2σ0σξ

]
≥ 1− 2ne−C/4. (61)

Similarly, for any i ∈ [n], p ∈ Pζ
i , ζp

i ∼ N (0, σζ/
√
dId), and with a probability of 1- 2n(P−2)C

d , we have

max
i∈[n],p∈Pζ

i ,c∈[C]
|⟨wc(0), ζ

p
i ⟩| ≤ a1σ0σζ

√
log(2d), (62)
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We further have

P

[
min

i∈[n],p∈Pζ
i

max
c∈[C]

⟨wc(0), ζ
p
i ⟩ ≥ a2σ0σζ

]
= 1− P

[
∃i ∈ [n], p ∈ Pζ

i ,max
c∈[C]

⟨wc(0), ζ
p
i ⟩ ≤ a2σ0σζ

]
(63)

≥1− 2n(P − 2)e−C/4. (64)

We conclude our proof.

B. Standard and Backdoor Learning in Early Stage
Our techniques used in this section are inspired by (Shen et al., 2022). Note that standard learning is a special case that
npo = 0. In this section, we first focus on backdoor learning, and then extend our results to standard learning. In backdoor
learning, given a learning rate η, the parameters are optimized as

wc(t+ 1) = wc(t)−
η

n

n∑
i=1

∇ℓ(F (x̂i), ŷi)

= wc(t)−
η

n

n∑
i=1

P∑
p=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t),x
p
i ⟩)x

p
i

= wc(t)−
η

n

∑
i∈Itr

po

ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t), ŷiui⟩)ui −

η

n

∑
i∈Itr

po

ŷiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t),v⟩)v

− η

n

∑
i∈Itr

po

ŷiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ξi −
η

n

∑
i∈Itr

po

∑
p∈Pζ

i

ŷiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ζ

p
i (65)

= wc(t)−
η

n

∑
i/∈Ib

ℓ′(F (x̂i), yi)ϕ
′ (⟨wc(t), yiui⟩)ui +

η

n

∑
i∈Ib

ℓ′(F (xi),−yi)ϕ
′ (⟨wc(t), yiui⟩)ui

− η

n

∑
i/∈Ib

yiℓ
′(F (x̂i), yi)ϕ

′ (⟨wc(t), ξi⟩) ξi +
η

n

∑
i∈Ib

yiℓ
′(F (x̂i),−yi)ϕ

′ (⟨wc(t), ξi⟩) ξi

− η

n

∑
i/∈Ib

∑
p∈Pζ

i

yiℓ
′(F (x̂i), yi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ζ

p
i +

η

n

∑
i∈Ib

∑
p∈Pζ

i

yiℓ
′(F (xi),−yi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ζ

p
i

(66)

Equation (65) due to the decomposition of x, and Equation (66) due to the fact that ∀i ∈ Ib, ŷi = −yi.

These two versions of update rules Equations (65) and (66) have individual advantages in our analysis. For standard learning,
the update rules can be immediately obtained by setting Sb = ∅, and ∀i, ŷi = yi. The parameters are optimized in standard
learning as

wc(t+ 1) = wc(t)−
η

n

n∑
i=1

∇ℓ(F (x̂i), ŷi) = wc(t)−
η

n

n∑
i=1

P∑
p=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t),x
p
i ⟩)x

p
i

= wc(t)−
η

n

∑
i∈Itr

cl

ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t), ŷiui⟩)ui −

η

n

∑
i∈Itr

cl

ŷiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ξi

− η

n

∑
i∈Itr

cl

∑
p∈Pζ

i

ŷiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ζ

p
i (67)

Next, due to Condition 5.1, we have the following results as a corollary of Condition 5.1:
Condition B.1. Under the Condition 5.1, we further have the following results:

1. Since n > Ω(σ−3
0 K), σξ ≤ o( 1

σ0
) and nP 2K ≤ o(

√
d), we immediately have Kσ3

ξ ≤ o(n) and Kσ3
ξ ≤ o(

√
d).
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2. Since Kσ3
ξ ≤ o(

√
d), if npo ∥v∥32 > w(nK−1), we have npo ≥ w

(
nσ3

ξ

∥v∥3
2

√
d

)
.

3. npo ∥v∥22 > w(nK−1) and ∥v∥2 ≥ Ω(1) imply that npo ∥v∥32 > w(nK−1)

4. If npo ∥v∥32 > w(nK−1), since K ≤ K +KeC
−2

, we yield
(

n
ηnpo∥v∥3

2σ0

)
≤ o

(
K+KeC

−2

ησ0

)
.

5. Since n > Ω(σ−3
0 K) and σξ ≤ o( 1

σ0
), we yield K ≤ o(nσ2

0σ
−1
ξ )(1+eC

−2

)−1 which can be rewrite as
(

K+KeC
−2

ησ0

)
≤

o
(

nσ0

ησξ

)
.

6. Since npo ∥v∥22 > w(nK−1), and Kσ3
ξ ≤ o(

√
d), we have nσ3

ξ ≤ o(npo

√
d ∥v∥22).

These conditions are important in our proofs.

B.1. Theoretical Analysis on ⟨wc(t), ξ⟩ and ⟨wc(t), ζ⟩

In our analysis, we emphasis the effects from feature vectors and trigger patterns, and we assume that the noise vectors are
not fitted by NN in the whole process. To show the time T that the noise vectors are barely fitted, we show that the increase
of noise vectors is slow in backdoor learning.

Lemma B.2. Under the Condition 5.1. In both standard and backdoor learning, for t ≤ o
(

nσ0

ησξ

)
and i′ ∈ [n], we have

∀i′ ∈ [n], |⟨wc(t), ξi′⟩| ≤ Õ (σ0σξ) . (68)

Proof. Consider that standard learning is a special case, we first show the results for backdoor learning. Due to Equation (65),
we can upper bound |⟨wc(t+ 1), ξi′⟩ − ⟨wc(t), ξi′⟩| as

|⟨wc(t+ 1), ξi′⟩ − ⟨wc(t), ξi′⟩|

≤ η

n

∑
i∈Itr

po

|ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t),ui⟩) ⟨ui, ξi′⟩| (69)

− η

n

∑
i∈Ib

|ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t),v⟩) ⟨v, ξi′⟩| (70)

− η

n

∑
i∈Itr

po

|ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t), ξi⟩) ⟨ξi, ξi′⟩| (71)

− η

n

∑
i∈Itr

po

∑
p∈Pζ

i

|ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t), ζ

p
i ⟩) ⟨ζ

p
i , ξi′⟩| (72)

Due to ϕ′ ≤ 1 and −ℓ′ ≤ 1, Lemmas A.5 to A.7 imply that

|(69)| ≤ Õ

(
ησξ√
d

)
, |(70)| ≤ Õ

(
ηnpo ∥v∥2 σξ

n
√
d

)
, |(71)| ≤ Õ

(
ησ2

ξ√
d
+

ησ2
ξ

n

)
, |(72)| ≤ Õ

(
ηPσξσζ√

d

)
.

Since |⟨wc(0), ξi′⟩| ≤ Õ(σ0σξ), n ≤ o(
√
d), ∥v∥2 < O (σξ), and σξ = Pσζ , when T ≤ o

(
nσ0

ησξ

)
, for 0 ≤ t ≤ T , we have

|⟨wc(t), ξi′⟩ − ⟨wc(0), ξi′⟩| ≤ o (σ0σξ) (73)

. As for standard learning. These results also holds for standard learning by setting Sb = ∅. Since |(70)| = 0 in standard
learning, the condition ∥v∥2 < O (σξ) can be dropped in standard learning. We conclude our proof.

The analysis of ⟨wc(t), ζ⟩ is similar to Lemma B.2.
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Lemma B.3. Under the Condition 5.1. In both standard and backdoor learning, for any t ≤ o
(

nPσ0

ησζ

)
, i′ ∈ Str

po, p′ ∈ [P ],
we have ∣∣∣〈wc(t), ζ

p′

i′

〉∣∣∣ ≤ Õ (σ0σζ) . (74)

Proof. We first show the results for backdoor learning. Due to Equation (65), we can upper bound∣∣∣〈wc(t+ 1), ζp′

i′

〉
−
〈
wc(t), ζ

p′

i′

〉∣∣∣ as

|⟨wc(t+ 1), ζp
i′⟩ − ⟨wc(t), ζ

p
i′⟩|

≤ η

n

∑
i∈Itr

po

∑
p∈Pζ

i

∣∣∣ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t),ui⟩)

〈
ui, ζ

p′

i′

〉∣∣∣ (75)

− η

n

∑
i∈Ib

∑
p∈Pζ

i

∣∣∣ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t),v⟩)

〈
v, ζp′

i′

〉∣∣∣ (76)

− η

n

∑
i∈Itr

po

∑
p∈Pζ

i

∣∣∣ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t), ξi⟩)

〈
ξi, ζ

p′

i′

〉∣∣∣ (77)

− η

n

∑
i∈Itr

po

∑
p∈Pζ

i

∣∣∣ℓ′(F (xi), ŷi)ϕ
′ (⟨wc(t), ζ

p
i ⟩)
〈
ζp
i , ζ

p′

i′

〉∣∣∣ (78)

Due to ϕ′ ≤ 1 and −ℓ′ ≤ 1, Lemmas A.5 to A.7 imply that

|(75)| ≤ Õ

(
ηPσζ√

d

)
, |(76)| ≤ Õ

(
ηnpoP ∥v∥2 σζ

n
√
d

)
, |(77)| ≤ Õ

(
ηPσξσζ√

d

)
, |(78)| ≤ Õ

(
ηPσ2

ζ√
d

+
ησ2

ζ

n

)
.

Since |⟨wc(0), ξi′⟩| ≤ σ0σξ, nP 2 ≤ o(
√
d), ∥v∥2 < O (σξ), σξ = Pσζ , when T ≤ o

(
nσ0

ησζ

)
, for 0 ≤ t ≤ T , we have

∣∣∣〈wc(t), ζ
p′

i′

〉
−
〈
wc(0), ζ

p′

i′

〉∣∣∣ ≤ o (σ0σζ) . (79)

Note that these results also hold for standard learning by setting Sb = ∅, and the condition ∥v∥2 < O (σξ) can be dropped
in standard learning since |(76)| = 0. We conclude our proof.

To summerize, note that σξ = Pσζ , which imples nσ0

ησζ
= nPσ0

ησξ
, and nPσ0

ησξ
> nσ0

ησξ
, therefore, for 0 ≤ t ≤ T ≤ o(nσ0

ησξ
), both∣∣∣〈wc(t), ξ

p′

i′

〉∣∣∣ and
∣∣∣〈wc(t), ζ

p′

i′

〉∣∣∣ are at the order of o(1) in both standard and backdoor learning.

B.2. Theoretical Analysis on ⟨wc(t),u⟩

In backdoor learning, due to the orthogonality of main features and trigger vector, the updates of main features and trigger
vector can be analyzed separately if the effects from noise vectors can be ignored, then ∀k,

〈
wc(t),u

k
〉

is increasing in both
standard and backdoor learning.

Lemma 6.1. Under the Condition 5.1. In both standard and backdoor learning, suppose there exists t such that ∀k ∈
[K],

〈
wc(t),u

k
〉
≤ O(C−1), |⟨wc(t), ξ⟩| ≤ Õ (σ0σξ) and |⟨wc(t), ζ⟩| ≤ Õ (σ0σζ) for some 0 ≤ t ≤ T . We then yield

∀k∈ [K],∆t
c(u

k)≥ Ω̃

(
η∥u∥22ϕ′(∣∣〈wc(t),u

k
〉∣∣)

K +KeC−2

)
(18)

is increasing. Furthermore, since −ℓ′ ≤ 1, we have

∀k∈ [K],∆t
c(u

k)≤Õ
(
ηK−1∥u∥22 ϕ

′(∣∣〈wc(t),u
k
〉∣∣)). (19)
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Proof. In backdoor learning, due to the update rule, we can rewrite
〈
wc(t+ 1),uk

〉
−
〈
wc(t),u

k
〉

as〈
wc(t+ 1),uk

〉
−
〈
wc(t),u

k
〉

=− η

n

n∑
i=1

ŷiyiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), yiui⟩)
〈
ui,u

k
〉
− η

n

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩)
〈
ξi,u

k
〉

− η

n

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩)
〈
ζp
i ,u

k
〉
+

η

n

∑
i∈Ib

yiℓ
′(F (xi),−yi)ϕ

′ (⟨wc(t),v⟩)
〈
v,uk

〉
=− η

n

∑
i/∈Ib,ui=uk

ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), yiui⟩)

〈
ui,u

k
〉
+

η

n

∑
i∈Ib,ui=uk

ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), yiui⟩)

〈
ui,u

k
〉

− η

n

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩)
〈
ξi,u

k
〉
− η

n

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩)
〈
ζp
i ,u

k
〉

+
η

n

∑
i∈Ib

yiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t),v⟩)
〈
v,uk

〉
. (80)

Equation (80) = 0 due to the orthogonality of feature vectors and the trigger vector. Since Lemma B.2 implies |⟨wc(t), ξi′⟩| ≤
Õ(σ0σξ) and Lemma B.3 implies |⟨wc(t), ζ

p
i′⟩| ≤ Õ(σ0σζ), we have∣∣∣∣∣ ηn

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩)
〈
ξi,u

k
〉∣∣∣∣∣ ≤ Õ

(
ησ2

0σ
3
ξd

−1/2
∥∥uk

∥∥
2

)
,∣∣∣∣∣∣ ηn

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩)
〈
ζp
i ,u

k
〉∣∣∣∣∣∣ ≤ Õ

(
ηPσ2

0σ
3
ζd

−1/2
∥∥uk

∥∥
2

)
.

When
〈
wc(t),u

k
〉
≤ O(C−1), we have maxi ŷiF (x̂i) ≤ O(C−2), and mini −ℓ′(F (x̂i), ŷi) ≥ Ω( 1

1+eC−2 ). We then have

− η

n

∑
i/∈Ib,ui=uk

ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), yiui⟩)

〈
ui,u

k
〉
≥ Ω̃

(
1

K +KeC−2 η ∥u∥
2
2 ϕ

′ (∣∣〈wc(t),u
k
〉∣∣)) , (81)

− η

n

∑
i/∈Ib,ui=uk

ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), yiui⟩)

〈
ui,u

k
〉
≤ Õ

(
K−1η ∥u∥22 ϕ

′ (∣∣〈wc(t),u
k
〉∣∣)) , (82)

and ∣∣∣∣∣∣ ηn
∑

i∈Ib,ui=uk

ϕ′ (⟨wc(t), yiui⟩)
〈
ui,u

k
〉∣∣∣∣∣∣ ≤Õ

(
npon

−1K−1η ∥u∥22 ϕ
′ (∣∣〈wc(t),u

k
〉∣∣))

≤o

(
1

K +KeC−2 η ∥u∥
2
2 ϕ

′ (∣∣〈wc(t),u
k
〉∣∣)) , (83)

where Equation (83) due to the condition npo ≤ o(n). If Kσ3
ξ ≤ o(

√
d), we have〈

wc(t+ 1),uk
〉
≥
〈
wc(t),u

k
〉
+ Ω̃

(
1

K +KeC−2 η ∥u∥
2
2 ϕ

′ (∣∣〈wc(t),u
k
〉∣∣)) , (84)

which shows
〈
wc(t),u

k
〉

is increasing. Furthermore, we have〈
wc(t+ 1),uk

〉
≤
〈
wc(t),u

k
〉
+ Õ

(
K−1η ∥u∥22 ϕ

′ (∣∣〈wc(t).u
k
〉∣∣)) . (85)

Moreover, for standard learning, we set Sb = ∅, and drop the condition npo ≤ o(n), Equation (83) still holds since the LHS
of Equation (83) is 0. We conclude our proof.

We conclude our proof.
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Lemma B.4. Under the Condition 5.1. In both standard and backdoor learning, for any k ∈ [K], suppose
〈
wc(t),u

k
〉
≤

O(C−1) and |⟨wc(t), ξ⟩| ≤ Õ (σ0σξ) for some 0 ≤ t ≤ T , there exists

Ω̃

(
K

ησ0

)
≤ Tu ≤ Õ

(
K +KeC

−2

ησ0

)
(86)

such that maxc∈[C]

〈
wc(Tu),u

k
〉
= Θ(C−1).

Proof. Lemma 6.1 shows
〈
wc(t),u

k
〉

is increasing, and starting from Θ(σ0 ∥u∥2), it takes

Tu ≤ Õ

(
r−1∑
i=0

(K +KeC
−2

)2iσ0

η(2iσ0)2

)
≤ Õ

( ∞∑
i=0

(K +KeC
−2

)2iσ0

η(2iσ0)2

)
≤ Õ

(
K +KeC

−2

ησ0

)
(87)

time steps to reach maxc∈[C]

〈
wc(T ),u

k
〉
= 2r maxc∈[C]

〈
wc(0),u

k
〉
, note that

Tu ≥ Ω̃

(
2σ0K

η(2σ0)2

)
≥ Ω̃

(
K

ησ0

)
. (88)

Thus it takes Tu to reach maxc∈[C]

〈
wc(Tu),u

k
〉
= Θ(C−1). The probability of Equation (86) holds can be immediately

obtained by using a union bound combining Lemmas A.5 to A.8.

Since Du is a discrete uniform distribution, and
∥∥uk

∥∥
2
= ∥u∥2 holds for any k. The time that NN captures each feature

vector is of the same order. Note that the lemmas shown in this subsection both hold for standard and backdoor learning, the
main reason is that npo ≤ o(n), which implies that the update rate of ⟨wc(t),u⟩ are in the same order in both standard and
backdoor learning. Practically, it is hard for users to detect the poisoned data by just comparing the loss of clean data.

B.3. Theoretical Analysis on ⟨wc(t),v⟩

In backdoor learning, the increment of ⟨wc(t),v⟩ is small. The following lemma shows that v is not learnt in standard
learning.

Lemma B.5. Under the Condition 5.1. In standard learning, for t ≤ o
(

nσ0

ησξ

)
and i′ ∈ [n], we have

max
c∈[C]

|⟨wc(0),v⟩| ≤ o(1). (89)

Proof. Due to the update rule, we can rewrite ⟨wc(t+ 1),v⟩ − ⟨wc(t),v⟩ as

⟨wc(t+ 1),v⟩ − ⟨wc(t),v⟩

=− η

n

n∑
i=1

ŷiyiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), yiui⟩) ⟨ui,v⟩ −
η

n

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ⟨ξi,v⟩

− η

n

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ⟨ζ

p
i ,v⟩

=
η

n

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ⟨ξi,v⟩ −
η

n

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ⟨ζ

p
i ,v⟩ . (90)

We can upper bound |⟨wc(t+ 1),v⟩ − ⟨wc(t),v⟩| as

|⟨wc(t+ 1),v⟩ − ⟨wc(t),v⟩| (91)

≤ η

n

n∑
i=1

|ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), ξi⟩) ⟨ξi,v⟩|+

η

n

n∑
i=1

∑
p∈Pζ

i

|ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), ζ

p
i ⟩) ⟨ζ

p
i ,v⟩| (92)

≤Õ
(
ησξd

−1/2 ∥v∥2
)
+ Õ

(
ηPσζd

−1/2 ∥v∥2
)

(93)
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When T ≤ o
(

nσ0

ησξ

)
, since Condition 5.1 shows that ∥v∥2 < O (σξ), we have

|⟨wc(T ),v⟩ − ⟨wc(0),v⟩| ≤Õ
(
ηTσξd

−1/2 ∥v∥2
)
+ Õ

(
ηTPσζd

−1/2 ∥v∥2
)

(94)

≤o
(
n−1ηTσ2

ξ

)
+ o

(
n−1ηTPσζσξ

)
≤ o(σ0σξ) (95)

Recall that at the beginning of the learning process, maxc∈[C] |⟨wc(0),v⟩| ≤ Õ(σ0 ∥v∥2), since ∥v∥2 < O (σξ), we have

∥v∥2 ≤ o
(

1
σ0

)
, we then conclude our proof.

We then analyze the update of ⟨wc(t), y
pv⟩ in backdoor learning. In backdoor learning, the analysis on ⟨wc(t), y

pv⟩ is
similar to ⟨wc(t),u⟩, since v and u are both d-dimensional vectors having the different norm. In this subsection, we assume
a different condition that ⟨wc(t), y

pv⟩ ≤ O(C−1/3) rather than ⟨wc(t), y
pv⟩ ≤ O(C−1). The motivation behind this is

that we aim to find the time that ⟨wc(t),u⟩ increases to at least Ω̃(1), while ⟨wc(t), y
pv⟩ has a larger norm than ⟨wc(t),u⟩.

We call this stage the early stage. After that, in the late stage, ⟨wc(t),u⟩ and ⟨wc(t), y
pv⟩ both achieves the order Ω̃(1),

and we study the late stage in Appendix C.

We firstly show that ⟨wc(t),v⟩ is also increasing if the effects from noise vectors can be ignored.

Lemma 6.4. Under the Condition 5.1. In backdoor learning, suppose ⟨wc(t),v⟩ ≤ O(C−1/3), |⟨wc(t), ξ⟩| ≤ Õ (σ0σξ)

and |⟨wc(t), ζ⟩| ≤ Õ (σ0σζ) for some 0 ≤ t ≤ T , we have

∆t
c(v) = Θ̃

(
npon

−1η ∥v∥22 ϕ
′ (|⟨wc(t),v⟩|)

)
(21)

is increasing.

Proof. Due to the update rule, we can rewrite ⟨wc(t+ 1),v⟩ − ⟨wc(t),v⟩ as

⟨wc(t+ 1),v⟩ − ⟨wc(t),v⟩

=− η

n

n∑
i=1

ŷiyiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), yiui⟩) ⟨ui,v⟩ −
η

n

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ⟨ξi,v⟩

− η

n

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ⟨ζ

p
i ,v⟩+

η

n

∑
i∈Ib

yiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t),v⟩) ⟨v,v⟩

=
η

n

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ⟨ξi,v⟩ −
η

n

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ⟨ζ

p
i ,v⟩

+
η

n

∑
i∈Ib

yiℓ
′(F (xi), ŷi)ϕ

′ (⟨wc(t),v⟩) ⟨v,v⟩ (96)

Since Lemma B.2 implies |⟨wc(t), ξi′⟩| ≤ Õ(σ0σξ) and Lemma B.3 implies |⟨wc(t), ζ
p
i′⟩| ≤ Õ(σ0σζ), we have∣∣∣∣∣ ηn

n∑
i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ⟨ξi,v⟩

∣∣∣∣∣ ≤ Õ
(
ησ2

0σ
3
ξd

−1/2 ∥v∥2
)

(97)∣∣∣∣∣∣ ηn
n∑

i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ⟨ζ

p
i ,v⟩

∣∣∣∣∣∣ ≤ Õ
(
ηPσ2

0σ
3
ζd

−1/2 ∥v∥2
)

(98)

When ⟨wc(t),v⟩ ≤ O(C−1/3), since C = log d, we have ŷiF (x̂i) ≤ Õ(1), and −ℓ′(F (x̂i), ŷi) ≥ Ω̃(1). We then have

− η

n

∑
i∈Ib

yiℓ
′(F (xi),−yi)ϕ

′ (⟨wc(t),v⟩) ⟨v,v⟩ = Θ̃
(
npon

−1η ∥v∥22 ϕ
′ (|⟨wc(t),v⟩|)

)
. (99)

20



A Theoretical Analysis of Backdoor Poisoning Attacks in Convolutional Neural Networks

If nσ3
ξ ≤ o(npo

√
d ∥v∥32), note that ∀i ∈ Ib, ŷ = yp we have

⟨wc(t+ 1), ypv⟩ = ⟨wc(t), y
pv⟩+ Θ̃

(
npon

−1η ∥v∥22 ϕ
′ (⟨wc(t), y

pv⟩)
)

(100)

which shows ⟨wc(t),v⟩ is increasing. Finally, by using a union bound combining Lemmas A.5 to A.8 we conclude the
proof.

Lemma B.6. Under the Condition 5.1. In backdoor learning, suppose maxc ⟨wc(t),v⟩ ≤ O(C−1/3) and |⟨wc(t), ξi′⟩| ≤
Õ (σ0σξ) for some 0 ≤ t ≤ T . If npo ≥ w

(
nσ3

ξ

∥v∥3
2

√
d

)
, then with a probability of at least 1−O(n

2P 2KC
d ), there exists

Ω̃

(
n

ηnpo ∥v∥22 σ0

)
≤ Tv ≤ Õ

(
n

ηnpo ∥v∥22 σ0

)
(101)

such that maxc ⟨wc(Tv),v⟩ = Θ(C−1/3).

Proof. Lemma 6.1 shows maxc ⟨wc(t), y
pv⟩ is increasing, and starting from Θ(σ0 ∥v∥2), it takes

Tv ≤ Õ

(
r−1∑
i=0

2iσ0n ∥v∥2
ηnpo ∥v∥22 (2iσ0 ∥v∥2)2

)
≤ Õ

( ∞∑
i=0

2iσ0n ∥v∥2
ηnpo ∥v∥22 (2iσ0 ∥v∥2)2

)
≤ Õ

(
n

ηnpo ∥v∥32 σ0

)
(102)

time steps to reach maxc ⟨wc(T ), y
pv⟩ = 2r maxc ⟨wc(0),v⟩, note that

Tv ≥ Ω̃

(
2nσ0 ∥v∥2

ηnpo ∥v∥22 (2σ0 ∥v∥2)2

)
≥ Ω̃

(
n

ηnpo ∥v∥32 σ0

)
. (103)

Thus it takes Tv to reach maxc ⟨wc(Tv), y
pv⟩ = Θ(C−1/3). The probability of Equation (101) holds can be immediately

obtained by using a union bound combining Lemmas A.5 to A.8.

When n
npoK∥v∥3

2

≤ o(1+ eC
−2

), which means Tu =
(

n
ηnpo∥v∥3

2σ0

)
≤ o

(
K+KeC

−2

ησ0

)
< Tv , and ⟨wc, y

pv⟩ firstly achieves

the order of Θ
(
C−1/3

)
while maxc ⟨wc,u⟩ still has a small order. Since both maxc ⟨wc(t),u⟩ and maxc ⟨wc(t),v⟩ are

increasing. At time Tu = Θ̃
(

K+KeC
−2

ησ0

)
, ⟨wc,u⟩ achieves the order of Θ

(
C−1

)
while maxc ⟨wc, y

pv⟩ is of the order at

least Θ
(
C−1/3

)
. Moreover, Condition B.1 shows Tv =

(
n

ηnpo∥v∥3
2σ0

)
≤ o

(
K+KeC

−2

ησ0

)
< o

(
nσ0

ησξ

)
, which means in the

whole early stage, NN does not fit noise vectors.

C. Standard and Backdoor Learning in the Late Stage
We go on to analyze standard and backdoor learning in the stage that the network fits all training data points.

C.1. Standard Learning in the Late Stage

After time Tu = Θ̃
(

K+KeC
−2

ησ0

)
, maxc ⟨wc,u⟩ ≥ Ω̃(1), then −ℓ′ ≤ O(1). u primarily influences the outputs of the

network, and the increment of ⟨wc,u⟩ decreases.

Lemma 6.2. Under the Condition 5.1. In standard learning, suppose there exists 0 ≤ t ≤ T such that ∀k ∈ [K],〈
wc(t),u

k
〉
≥ Ω̃(1)), we have

∀k∈ [K],∆t
c(u

k)≤Õ
(
ηK−1∥u∥22e

−maxc⟨wc(t),u
k⟩
)
. (20)
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Proof. We have ŷF (x) ≥ Ω̃(1) due to the condition maxc
〈
wc(t),u

k
〉
≥ Ω̃(1). Moreover, −ℓ′(F (x), ŷ) = 1

1+eŷF (x) =

Θ(e−ŷF (x)), which implies that∣∣∣∣∣ ηn
n∑

i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩)
〈
ξi,u

k
〉∣∣∣∣∣ ≤ Õ

(
ησξd

−1/2
∥∥uk

∥∥
2

n∑
i=1

e−ŷiF (x̂i,ŷi)

)
(104)∣∣∣∣∣∣ ηn

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩)
〈
ζp
i ,u

k
〉∣∣∣∣∣∣ ≤ Õ

(
ηPσζd

−1/2
∥∥uk

∥∥
2

n∑
i=1

e−ŷiF (x̂i,ŷi)

)
. (105)

Note that in Equations (104) and (105), we use the bound ϕ′(·) ≤ 1 to avoid to discuss the order of ⟨wc(t), ξi⟩ and
⟨wc(t), ζ

p
i ⟩. On the other hand, we have

− η

n

∑
ui=uk

ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), yiui⟩)

〈
ui,u

k
〉
= Θ̃

n−1η ∥u∥22
∑

ui=uk

e−ŷiF (x̂i,ŷi)

 . (106)

maxc
〈
wc(t),u

k
〉

is still increasing for any k ∈ [K] as Kσξ ≤ o(Kσ3
ξ ) ≤ o(

√
d), which implies that

∀i′,max
c

〈
wc(t+ 1),uk

〉
−max

c

〈
wc(t),u

k
〉
=Θ̃

n−1η ∥u∥22
∑

ui=uk

e−ŷiF (x̂i,ŷi)

 . (107)

We should to discuss the order of ŷiF (x̂i, ŷi). It is clear that ŷiF (xi, ŷi) has the same order for any i. Specifically, for a
sample point ẑ = (x̂i′ , ŷi′) with feature ui = uk. Recall the update rule of ⟨wc, ξi′⟩ as shown in Equations (69) to (72), we
have

|⟨wc(t+ 1), ξi′⟩ − ⟨wc(t), ξi′⟩| ≤ Õ
(
ηn−1σ2

ξℓ
′ (ŷi′F (x′

i))
)
. (108)

We then yield that

maxc |⟨wc(t+ 1), ξi′⟩ − ⟨wc(t), ξi′⟩|
maxc ⟨wc(t+ 1),uk⟩−maxc ⟨wc(t),uk⟩

≤ Õ

(
ηn−1σ2

ξ

K−1η ∥u∥22

)
≤ o

(
1

σξ

)
≤ o(1). (109)

Similarly, for the update rule of
〈
wc, ζ

p′

i′

〉
as shown in Equations (75) to (78), we have

∣∣∣〈wc(t+ 1), ζp′

i′

〉
−
〈
wc(t), ζ

p′

i′

〉∣∣∣ ≤ Õ
(
ηPn−1σ2

ζℓ
′ (ŷi′F (x′

i))
)
, (110)

and

maxc

∣∣∣〈wc(t+ 1), ζp′

i′

〉
−
〈
wc(t), ζ

p′

i′

〉∣∣∣
maxc ⟨wc(t+ 1),uk⟩−maxc ⟨wc(t),uk⟩

≤ Õ

(
ηn−1σ2

ζ

K−1η ∥u∥22

)
≤ o

(
1

P 2σξ

)
≤ o(1). (111)

As a result, in the late stage, both ⟨wc(t), ξ⟩ and ⟨wc(t), ζ⟩ increase slower than ⟨wc(t),u⟩, for a sample point ẑ = (x̂i, ŷi)

contains feature uk, we then have ŷF (x) = Θ̃(maxc
〈
wc(t),u

k
〉
) and

(107)=Θ̃
(
K−1η ∥u∥22 e

−maxc⟨wc(t),u
k⟩
)

(112)

We conclude our proof.
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C.2. Backdoor Learning in the Late Stage

In the early stage, since ∆t
c(u

k) < O(∆t
c(v)), maxc ⟨wc, y

pv⟩ firstly achieves the order of Ω̃(1), and maxc ⟨wc, y
pv⟩ has

a higher order than maxc ⟨wc,u⟩ at least until Tu = Θ̃
(

K+KeC
−2

ησ0

)
. After Tu, maxc ⟨wc,u⟩ also achieves the order of

Ω̃(1), and the following lemma shows trigger vector primarily influences the outputs of the model.

Lemma 6.6. Under the Condition 5.1, in backdoor learning, suppose there exists 0 ≤ t ≤ T such that ∀k ∈
[K],maxc∈[C]

〈
wc(t),u

k
〉
≥ Ω̃ (1) and maxc∈[C] ⟨wc(t), y

pv⟩ ≥ Ω̃ (1), we have

max
c∈[C]

〈
wc(t),u

k
〉
≤ Õ

(
max
c∈[C]

⟨wc(t), y
pv⟩
)
. (22)

Furthermore, the trigger vector v primarily influence the outputs of NN:

∀k∈ [K],
∑
c∈[C]

ϕ(⟨wc(t), y
pv⟩)−ϕ(

〈
wc(t),u

k
〉
)≥ Ω̃(1). (23)

Proof. Recall the decomposition as shown in Equation (96), we have∣∣∣∣∣ ηn
n∑

i=1

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ξi⟩) ⟨ξi,v⟩

∣∣∣∣∣ ≤ Õ

(
ησξd

−1/2 ∥v∥2
n∑

i=1

e−ŷiF (x̂i,ŷi)

)
(113)∣∣∣∣∣∣ ηn

n∑
i=1

∑
p∈Pζ

i

ŷiℓ
′(F (x̂i), ŷi)ϕ

′ (⟨wc(t), ζ
p
i ⟩) ⟨ζ

p
i ,v⟩

∣∣∣∣∣∣ ≤ Õ

(
ηPσζd

−1/2 ∥v∥2
n∑

i=1

e−ŷiF (x̂i,ŷi)

)
(114)

Since nPσζ = nσξ ≤ o(nσ3
ξ ) ≤ o(npo

√
d ∥v∥32), we have

∆t
c(v) = ⟨wc(t+ 1), ypv⟩ − ⟨wc(t), y

pv⟩ = Θ

(
npon

−1η ∥v∥22
∑
i∈Ib

e−ŷiF (x̂i,ŷi)

)
(115)

As for
〈
wc(t),u

k
〉
, since npo ≤ o(n), Equations (104) and (105) still hold, and we yield

− η

n

∑
i/∈Ib,ui=uk

ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), yiui⟩)

〈
ui,u

k
〉
= Θ̃

n−1η ∥u∥22
∑

i/∈Ib,ui=uk

e−ŷiF (x̂i,ŷi)

 (116)

and

− η

n

∑
i∈Ib,ui=uk

ℓ′(F (x̂i), ŷi)ϕ
′ (⟨wc(t), yiui⟩)

〈
ui,u

k
〉
=Θ̃

n−1η ∥u∥22
∑

i∈Ib,ui=uk

e−ŷiF (x̂i,ŷi)

 (117)

For Ω̃
(

n
ηnpo∥v∥3

2σ0

)
≤ T ≤ Õ

(
K+KeC

−2

ησ0

)
, maxc ⟨wc, y

pv⟩ ≥ Ω̃(1) while maxc
〈
wc(t),u

k
〉
≤ Õ(1), it is easy to

check that maxc ⟨wc(t), y
pv⟩ primarily influences the outputs of the NN, and we study this problem when maxc ⟨wc(t),u⟩

and maxc ⟨wc(t), y
pv⟩ both achieve the order of Ω̃(1).

After Tu = Θ̃
(

K+KeC
−2

ησ0

)
, maxc ⟨wc(t), y

pv⟩ achieve the order of Ω̃(1) and ∆t
c(v) decreases. Given k, when

maxc ⟨wc(t), y
pv⟩ > o(maxc

〈
wc(t),u

k
〉
), the outputs are manipulated by v. We discuss when maxc ⟨wc(t), y

pv⟩ ≤
O(maxc

〈
wc(t),u

k
〉
).

We prove that ∀k ∈ [K],
∑

c∈[C] ϕ(⟨wc(t), y
pv⟩) −

∑
c∈[C] ϕ(

〈
wc(t),u

k
〉
) ≥ Ω̃(1) using an induction. Given k, we

suppose that there exists T such that (1) maxc ⟨wc(T ), y
pv⟩ = Θ̃(maxc

〈
wc(T ),u

k
〉
), (2)

∑
c∈[C] ϕ(⟨wc(T ), y

pv⟩) −∑
c∈[C] ϕ(

〈
wc(T ),u

k
〉
) ≥ Ω̃(1), (3) maxc

〈
wc(T ),u

k
〉
≥ Ω̃(1). We show that at T + 1, these conditions still hold.
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At this time, n−1η ∥u∥22
∑

i/∈Ib,ui=uk e−ŷiF (x̂i,ŷi) < o
(
n−1η ∥u∥22

∑
i∈Ib,ui=uk e−ŷiF (x̂i,ŷi)

)
, if Kσ3

ξ ≤ o(
√
d), we

have

∆T
c (u

k) =
〈
wc(T + 1),uk

〉
−
〈
wc(T ),u

k
〉
= Θ̃

n−1η ∥u∥22

 ∑
i/∈Ib,ui=uk

e−ŷiF (x̂i,ŷi) −
∑

i∈Ib,ui=uk

e−ŷiF (x̂i,ŷi)

 .

(118)

The ratio of updates can be written as

∆T
c (u

k)

∆T
c (v)

=Θ̃

n−1η
∥∥uk

∥∥2
2

(∑
i/∈Ib,ui=uk e−ŷiF (x̂i,ŷi) −

∑
i∈Ib,ui=uk e−ŷiF (x̂i,ŷi)

)
n−1η ∥v∥22

∑
i∈Ib

e−ŷiF (x̂i,ŷi)

 (119)

≤Õ

(
n−1η

∥∥uk
∥∥2
2

∑
i/∈Ib,ui=uk e−ŷiF (x̂i,ŷi)

n−1η ∥v∥22
∑

i∈Ib
e−ŷiF (x̂i,ŷi)

)
+ Õ

n−1η
∥∥uk

∥∥2
2

(∑
i∈Ib,ui=uk e−ŷiF (x̂i,ŷi)

)
n−1η ∥v∥22

∑
i∈Ib

e−ŷiF (x̂i,ŷi)

 (120)

≤O

(
n ∥u∥22

npoK ∥v∥22

)
+O

(
∥u∥22

K ∥v∥22

)
≤ o (1) + o

(npo

n

)
≤ o(1). (121)

The last two inequalities due to the conditions npo ∥v∥22 ≥ ω(nK−1), and npo ≤ o(n). Equation (121)
shows that at T + 1, the three conditions still hold. Furthermore, Equations (109) and (111) hold when∑

c∈[C] ϕ(⟨wc(T ), y
pv⟩) −

∑
c∈[C] ϕ(

〈
wc(T ),u

k
〉
) ≥ Ω̃(1), which means both ⟨wc(T ), ξ⟩ and ⟨wc(T ), ζ⟩ increase

slower than maxc∈[C]

〈
wc(T ),u

k
〉
, maxc∈[C]

〈
wc(T ),u

k
〉

increase slower than maxc∈[C] ⟨wc, y
pv⟩. We then have

∀i ∈ Ib, ŷiF (x̂i) = ypF (x̂i) ≥ Ω̃(1), and ∀i /∈ Ib, ŷiF (x̂i) = yiF (x̂i) ≥ Ω̃(1).

Finally, at T = Tu = Θ̃
(

K+KeC
−2

ησ0

)
,
∑

c∈[C] ϕ(
〈
wc(T ),u

k
〉
) > maxc ϕ(

〈
wc(T ),u

k
〉
) ≥ Ω

(
1
C

)
while∑

c∈[C] ϕ(
〈
wc(T ),u

k
〉
) < Cϕ(maxc

〈
wc(T ),u

k
〉
) < O

(
1
C2

)
for any k ∈ [K]. Therefore, using the induction, af-

ter T ≥ Tu, we have ∀k ∈ [K],
∑

c∈[C] ϕ(⟨wc(T ), y
pv⟩) − ϕ(

〈
wc(T ),u

k
〉
) ≥ Ω̃(1), and v primarily influences the

outputs of the NN. Equation (115) implies that there exists T ′
u ≥ Ω

(
nepoly(d)

ηnpo∥v∥2
2

)
to reach that maxc∈[C] ⟨wc, y

pv⟩ > ω(1),

and maxc ⟨wc, y
pv⟩ > o(maxc

〈
wc,u

k
〉
), which means v still primarily influences the outputs in the late stage.

Additionally, maxc
〈
wc(t),u

k
〉

continues to increase when ∆t
c(u

k) ≥ 0, which means ∑
i/∈Ib,ui=uk

e−ŷiF (x̂i,ŷi)

 ≥ Ω

 ∑
i∈Ib,ui=uk

e−ŷiF (x̂i,ŷi)

 , (122)

∑
c∈[C] ϕ(⟨wc(t), y

pv⟩)− ϕ(
〈
wc(t),u

k
〉
) ≥ Ω̃(1) implies that

∑
i/∈Ib,ui=uk e−ŷiF (x̂i,ŷi)∑
i∈Ib,ui=uk e−ŷiF (x̂i,ŷi)

= Θ

(
(n− npo)e

−maxc⟨wc(t),u
k⟩

npoe−maxc⟨wc(t),ypv⟩

)
. (123)

By rewriting Equation (122), we have

max
c

〈
wc(t),u

k
〉
≤ Õ

(
max

c
⟨wc(t), y

pv⟩
)
. (124)

The inequality holds due to Ω (1) ≤ npo ≤ o(n). We conclude our proof.

We immediately have the following lemma, which shows that both ∆t
c(u

k) and ∆t
c(v) are upper bounded in the late stage.
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Lemma 6.8. Under the Condition 5.1. Suppose there exists 0 ≤ t ≤ T such that ∀k ∈ [K],
〈
wc(t),u

k
〉
≥ Ω̃(1)) and

⟨wc(t), y
pv⟩ ≥ Ω̃ (1), we have

∀k∈ [K],∆t
c(u

k)≤Õ
(
K−1η ∥u∥22 e

−maxc⟨wc,u
k⟩
)
, (24)

∆t
c(v) ≤ Õ

(
npon

−1η ∥v∥22 e
−maxc⟨wc,y

pv⟩
)
. (25)

Proof. Equation (118) can be further bounded as

∆t
c(u

k) =Θ̃

n−1η ∥u∥22

 ∑
i/∈Ib,ui=uk

e−ŷiF (x̂i,ŷi) −
∑

i∈Ib,ui=uk

e−ŷiF (x̂i,ŷi)


≤Õ

n−1η ∥u∥22

 ∑
ui=uk

e−ŷiF (x̂i,ŷi)


≤Õ

n−1η ∥u∥22

 ∑
ui=uk

e−maxc⟨wc,u
k⟩
 = Õ

(
K−1η ∥u∥22 e

−maxc⟨wc,u
k⟩
)
.

The last inequality due to Lemma 6.6. Similarly, Equation (115) can be upper bounded as

∆t
c(v) ≤ O

(
n−1η ∥v∥22

∑
i∈Ib

e−ŷiF (x̂i,ŷi)

)
≤ Õ

(
npon

−1η ∥v∥22 e
−maxc⟨wc,y

pv⟩
)
. (125)

D. Proofs for Main Results
Theorem 5.3. [standard learning] Under the Condition 5.1, given a clean training set Str

cl with size n, there exists

Tu = Θ̃
(

K+KeC
−2

ησ0

)
such that for T1 ≥ Tu, the network F̂T1

fits all clean data points with a high probability:

P(∀i ∈ [n], yiF̂T1
(xi)≥ Ω̃(1))≥1−O

(
n2P 2KC

poly(d)

)
. (12)

Moreover, F̂T1
achieves a high clean accuracy but leaves a low attack success rate at T1:

Acc(F̂T1
;Dz) ≥ 1−O

(
nP 2KC

poly(d)

)
, (13)

ASR(F̂T1
;Dz,P) ≤ O

(
nP 2KC

poly(d)

)
. (14)

Proof. We can regard standard learning as a special case for backdoor learning with npo = 0. Condition B.1 shows that

25



A Theoretical Analysis of Backdoor Poisoning Attacks in Convolutional Neural Networks(
K+KeC

−2

ησ0

)
≤ o

(
nσ0

ησξ

)
, at Tu = Θ̃

(
K+KeC

−2

ησ0

)
, for a clean training sample, the output can be rewritten as:

ŷiF (x̂i;Tu) =
∑
c∈[C]

ŷiϕ (⟨wc(Tu), x̂
p
i ⟩)

=
∑
c∈[C]

⟨wc(Tu),ui⟩+
∑
c∈[C]

ŷiϕ (⟨wc(Tu), ξi⟩) +
∑
c∈[C]

∑
p∈Pζ

i

ŷiϕ (⟨wc(Tu), ζ
p
i ⟩)

≥
∑
c∈[C]

ϕ (⟨wc(Tu),ui⟩)−
∑
c∈[C]

ϕ (|⟨wc(Tu), ξi⟩|)−
∑
c∈[C]

∑
p∈Pζ

i

ŷiϕ (|⟨wc(Tu), ζ
p
i ⟩|)

≥max
c∈[C]

ϕ (⟨wc(Tu),ui⟩)− C max
c∈[C]

ϕ (|⟨wc(Tu), ξi⟩|)− CP max
c∈[C],p∈Pζ

i

ϕ (|⟨wc(Tu), ζ
p
i ⟩|)

≥Ω

(
1

C3

)
− CO

(
σ3
0σ

3
ξ

)
− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) (126)

Using the union bound, we obtain Equation (12). Equation (126) shows that all the training data points have been fit by

hypothesis F at time Tu = Θ̃
(

K+KeC
−2

ησ0

)
. We further evaluate the performance of F on the population distribution. Given

a data point z = (x, y) sampled from Dz, since the training data is i.i.d. drawn from Dz, we have a similar result with
Equation (131). We can regard {(x, y)} as another clean set S ′

cl with size 1.By using a union bound combining Lemmas A.5

to A.8, with a probability of 1−O
(

nP 2K2C
poly(d)

)
, we have

yFTu(x) =
∑
c∈[C]

yiϕ (⟨wc(Tu), x̂
p⟩) ≥ Ω

(
1

C3

)
− CO

(
σ3
0σ

3
ξ

)
− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) (127)

The probability of Equation (127) holds is 1−O
(

nP 2KC
poly(d)

)
rather than 1−O

(
n2P 2KC

poly(d)

)
since the size of S ′

cl is 1 instead
of n.

In the late stage, for T ≥ Tu, maxc∈[C] ⟨wc(T ),ui⟩ ≥ Ω̃ (1), Equations (109) and (111) imply that ŷiF (x̂i;T ) =∑
c∈[C] ŷiϕ (⟨wc(T ), x̂

p
i ⟩) ≥ Ω̃ (1) for each training data zi = (x̂i, ŷi) and yFTu(x) ≥ Ω̃ (1) for a clean test data

z = (x, y).

We then evaluate the attack fail rate for poisoned data P(z) = (PX(x),PY (y)) in both the early and late stages. For true
label y, the output of NN can be rewritten as:

yF (PX(x);T ) =
∑
c∈[C]

yϕ (⟨wc(T ), x̂
p⟩) +

∑
c∈[C]

∑
p∈Pζ

i

yϕ (⟨wc(T ), ζ
p⟩)

=
∑
c∈[C]

⟨wc(T ),u⟩+
∑
c∈[C]

yϕ (⟨wc(T ),v⟩) +
∑
c∈[C]

yϕ (⟨wc(T ), ξ⟩)−
∑
c∈[C]

∑
p∈Pζ

i

yϕ (|⟨wc(T ), ζ
p⟩|)

≥
∑
c∈[C]

ϕ (⟨wc(T ),u⟩)−
∑
c∈[C]

ϕ (|⟨wc(T ),v⟩|)−
∑
c∈[C]

ϕ (|⟨wc(T ), ξ⟩|)

≥max
c∈[C]

ϕ (⟨wc(T ),u⟩)− C max
c∈[C]

ϕ (|⟨wc(T ),v⟩|)− C max
c∈[C]

ϕ (|⟨wc(T ), ξ⟩|)− CP max
c∈[C],p∈Pζ

i

ϕ (|⟨wc(T ), ζ
p⟩|) (128)

For 0 ≤ T ≤ Tu ≤ o
(

nσ0

ησξ

)
, Lemma B.2 implies maxc∈[C] |⟨wc(T ), ξi′⟩| ≤ Õ(σ0σξ), Lemma B.3 implies

maxc∈[C] |⟨wc(T ), ζ
p
i′⟩| ≤ Õ(σ0σζ), Lemma B.5 implies that maxc∈[C] ϕ (|⟨wc(Tu),v⟩|) ≤ o(1), we have

(128) ≥Ω

(
1

C3

)
− Co(1)− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) (129)

This implies that PY (y)F (PX(x);T ) = −yF (PX(x);T ) ≤ −Ω̃ (1). For T > Tu, Equations (109) and (111) imply that
for any k, uk has a faster rate than noise vectors. As for v, recall that ∥v∥2 ≤ O(σξ), Equation (93) implies that for any
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k ∈ [K],

maxc |⟨wc(t+ 1),v⟩ − ⟨wc(t),v⟩|
maxc ⟨wc(t+ 1),uk⟩−maxc ⟨wc(t),uk⟩

≤ Õ

(
ηd−1/2σξ ∥v∥2 + ηd−1/2Pσζ ∥v∥2

K−1η ∥u∥22

)
≤ o(1). (130)

Consequently, u primarily influences the outputs of NN, and we have PY (y)F (PX(x);T ) = −yF (PX(x);T ) ≤ −Ω̃ (1)
for T > Tu. We conclude our proof.

Theorem 5.4. [Backdoor Learning] Under the Condition 5.1, given a poisoned training set Str
po with size n, if npo ∥v∥22 >

ω(nK−1), there exists Tu = Θ̃
(

K+KeC
−2

ησ0

)
such that for T2 ≥ Tu the network F̂T2

fits both clean and poisoned training
data points with a high probability:

P(∀i ∈ [n], ŷiF̂T2
(x̂i)≥ Ω̃(1))≥1−O

(
n2P 2KC

poly(d)

)
. (15)

Furthermore, there exists Tv = Θ̃
(

n
ηnpo∥v∥3

2σ0

)
such that F̂ achieves high attack success rate at T ′

2 ≥ Tv and achieves
high clean accuracy at T2 ≥ Tu > Tv:

Acc(F̂T2
;Dz) ≥ 1−O

(
nP 2KC

poly(d)

)
, (16)

ASR(F̂T ′
2
;Dz,P) ≥ 1−O

(
nP 2KC

poly(d)

)
. (17)

Proof. Condition B.1 shows that Tv = Θ̃
(

n
ηnpo∥v∥3

2σ0

)
≤ o

(
K+KeC

−2

ησ0

)
and Tu = Θ̃

(
K+KeC

−2

ησ0

)
≤ o

(
nσ0

ησξ

)
, which

means that the NN firstly fits the trigger vector, and then fits all feature vectors. The effects of noise vectors can be always
ignored. Based on the results in Appendix B, for a clean training sample, the output can be rewritten as:

ŷiFT (x̂i) =
∑
c∈[C]

ŷiϕ (⟨wc(T ), x̂
p
i ⟩)

=
∑
c∈[C]

⟨wc(T ),ui⟩+
∑
c∈[C]

ŷiϕ (⟨wc(T ), ξi⟩) +
∑
c∈[C]

∑
p∈Pζ

i

ŷiϕ (⟨wc(T ), ζ
p
i ⟩)

≥
∑
c∈[C]

ϕ (⟨wc(T ),ui⟩)−
∑
c∈[C]

ϕ (|⟨wc(T ), ξi⟩|)−
∑
c∈[C]

∑
p∈Pζ

i

ŷiϕ (|⟨wc(T ), ζ
p
i ⟩|)

≥max
c∈[C]

ϕ (⟨wc(T ),ui⟩)− C max
c∈[C]

ϕ (|⟨wc(T ), ξi⟩|)− CP max
c∈[C],p∈Pζ

i

ϕ (|⟨wc(T ), ζ
p
i ⟩|) (131)

In the early stage, for Tu = Θ̃
(

K+KeC
−2

ησ0

)
, we have

(131) ≥ Ω

(
1

C3

)
− CO

(
σ3
0σ

3
ξ

)
− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) .

In the late stage, for T ≥ Tu, Equations (109) and (111) imply that both ⟨wc(t), ξi⟩ and
〈
wc(t), ζ

p′

i

〉
increase slower than

maxc∈[C] ⟨wc(t),u⟩, and we have ŷiFT (x̂i) ≥ Ω̃ (1).
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For a backdoor training sample (x̂i, ŷi), the output can be rewritten as:

ŷiFT (x̂i) =
∑
c∈[C]

ŷϕ (⟨wc(T ), x̂
p
i ⟩) +

∑
c∈[C]

∑
p∈Pζ

i

ŷiϕ (⟨wc(T ), ζ
p
i ⟩)

=
∑
c∈[C]

⟨wc(T ),ui⟩+
∑
c∈[C]

ŷiϕ (⟨wc(T ),v⟩) +
∑
c∈[C]

ŷiϕ (⟨wc(T ), ξi⟩)−
∑
c∈[C]

∑
p∈Pζ

i

ŷiϕ (|⟨wc(T ), ζ
p
i ⟩|)

≥
∑
c∈[C]

ŷiϕ (⟨wc(T ),v⟩)−
∑
c∈[C]

ϕ (⟨wc(T ),ui⟩)−
∑
c∈[C]

ϕ (|⟨wc(T ), ξi⟩|)

≥max
c∈[C]

ŷiϕ (⟨wc(T ),v⟩)− C max
c∈[C]

ϕ (⟨wc(T ),ui⟩)− C max
c∈[C]

ϕ (|⟨wc(T ), ξi⟩|)− CP max
c∈[C],p∈Pζ

i

ϕ (|⟨wc(T ), ζ
p
i ⟩|) .

(132)

In the early stage, for Tv ≤ T ≤ Tu, maxc∈[C] ϕ (⟨wc(T ),ui⟩) is at most of the order of O
(

1
C3

)
, we have

(132) ≥ Ω

(
1

C

)
−O

(
1

C2

)
− CO

(
σ3
0σ

3
ξ

)
− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1)

while in the late stage, for T > Tu ,when maxc∈[C] ⟨wc(T ),ui⟩ and maxc∈[C] ⟨wc(T ), y
pv⟩ reach the same order of Θ̃(1),

Lemma 6.6 implies that
∑

c∈[C] ⟨wc(T ), y
pv⟩ − ⟨wc(T ),ui⟩ ≥ Ω̃(1) until maxc∈[C] ⟨wc(T ), y

pv⟩ reach a higher order

than maxc∈[C] ⟨wc(T ),ui⟩, and we also have ŷiFT (x̂i) ≥ Ω̃ (1) for T > Tu.

By using a union bound combining Lemmas A.5 to A.8, we obtain Equation (12). Equations (131) and (132) shows that all
the training data points have been fit by hypothesis F at time T ≥ Tu. We further evaluate the performance of F on the
population distribution. Given a data point z = (x, y) sampled from Dz, since the training data is i.i.d. drawn from Dz,
we have a similar result with Equation (131). We can regard {(x, y)} as another clean training set with size 1, so with a
probability of 1−O

(
nP 2KC
poly(d)

)
, we have

yFT (x) =
∑
c∈[C]

yiϕ (⟨wc(T ), x̂
p⟩) ≥ Ω

(
1

C3

)
− CO

(
σ3
0σ

3
ξ

)
− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) (133)

For a poisoned data P(z) = (PX(x),PY (y)), with a probability of 1−O
(

nP 2KC
poly(d)

)
, we have

PY (y)FT (P
X(x)) =

∑
c∈[C]

PY (y)ϕ (⟨wc(T ),x
p⟩) (134)

≥


Ω
(
1
C

)
− o (1)− CO

(
σ3
0σ

3
ξ

)
− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) if Tv ≤ T < Tu

Ω
(
1
C

)
−O

(
1
C2

)
− CO

(
σ3
0σ

3
ξ

)
− CP−2O

(
σ3
0σ

3
ξ

)
≥ Ω̃ (1) if T = Tu

Ω̃ (1) if T > Tu.

(135)

we conclude our proof.

E. Description of Experiments and More Empirical Results
In our experiments, we use two datasets, MNIST and CIFAR-10. MNIST contains grayscale handwritten digits with 10
classes, while CIFAR-10 contains color images with 10 classes. For MNIST, we collect the data points from classes 0 and 5
as a binary classification task. The background of data in MNIST is all black, which means the background noise is absent.
For CIFAR-10, we sample the data points from classes ’Airplane’ and ’Bird’ as a binary classification task. Different from
MNIST, the features and backgrounds in CIFAR-10 are complex. We train a LeNet-5 with 80 epochs on the MNIST and a
ResNet-18 with 100 epochs on the CIFAR-10. The clean images and the poisoned images with trigger pattern are shown in
Figure 3.
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(a) Targeted (b)Non-Targeted (c) Badnets (d) Four-Corner

Figure 3. Clean and Poisoned Data in MNIST and CIFAR-10. (a) A clean image from the targeted class. (b) A clean image from the
non-targeted class. (c) The Poisoned image generated by BadNets (d) The Poisoned image generated by the four-corner attack. We show
the images from MNIST in the first row while the images from CIFAR-10 are in the second row.

E.1. More Analysis about Poisoned Data

We show the results of the cosine similarities of the maximum singular vector and representation vectors under the four-
corner attack in Figure 4(a). We observe a similar result that the direction of poisoned data from the non-targeted class
is closer to the clean data from the target class than from the non-target class. Moreover, we show the results of the
visualization of representation vectors with T-SNE in Figure 4(b). It has a similar distribution to the results under the
BadNets attack. We further show the results under the BadNets and four-corner attack on MNIST in Appendix E.1 and
Appendix E.1, respectively. The results in MNIST are similar to that in CIFAR-10.

E.2. More Results on the Key Components for Backdoor Attacks

We change the norm of the trigger vector. We employ a linear combination of the original patch and the trigger pattern
instead of simply reducing the norm v, as it is a more natural approach for color images. Decreasing the norm alone may
result in the patch becoming closer to a pure black patch. However, a black patch can also be perceived as a specific trigger,
especially when the background of the image is not entirely black. The generalized Patch attack is defined as follows:

Definition E.1 (Generalized Patch attack). Given a trigger v, a user-defined backdoor patch pv, and the targeted label yp.
The generalized patch attack Ppatch(·; pv,v, yp, α) : Z → Z is defined as:

PX
patch(x; pv,v, α)

(p) =

{
x(p) if p ̸= pv,
αv+(1−α)x(p) if p = pv,

and PY
patch(y; y

p) = yp.

We manipulate the hyper-parameter α to control the norm of the trigger pattern. We use 6000 training data and fix
the poisoning rate as 0.1 in both MNIST and CIFAR-10. We use BadNets attack, and adjust α within the range
{0.0, 0.25, 0.5, 0.75, 1.0}. As shown in Table 2, as α grows up, the accuracy of the model remains a minimal change.
Beyond α > 0.5, the attacker successfully embeds the backdoors in NN in MNIST and CIFAR-10. The time T ⋆ decreases
as α increases, which shows that α significantly influences the effectiveness of the trigger pattern, playing a vital role in the
backdoor attack. The complete results of Table 2 can be found in Tables 3 and 8

Next, we also evaluate the relationship between the size of the training set and poisoning rate and the relationship between α
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Figure 4. Results about the representation vectors on CIFAR-10 under the four-corner attack. (a) The cosine similarities of the
representation vectors and the top singular vector. (b) The T-SNE plot of representation vectors. The representation vectors are centered
by the average representation vector.
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Figure 5. Results about the representation vectors on MNIST under the BadNets attack. (a) The cosine similarities of the representation
vectors and the top singular vector. (b) The T-SNE plot of representation vectors. The representation vectors are centered by the average
representation vector.

and poisoning rate under the four-corner attack on MNIST, the results are shown in Tables 4 and 5, respectively. In Table 4
the time at the poisoning rate is used with 0.09 and size equals 2000, is larger than the results of the time at the poisoning
rate used with 0.08 and size equals 2000. We find that this is due to that we choosing a high threshold and strict condition
that for any t ≥ T , the ASR should be always greater than 95%. If we use a smaller threshold, for example, 80%, this
phenomenon is absent. Similar phenomena are caused by this threshold as well.

Finally, we show the results about the relationship between the size of the training set and poisoning rate under the BadNets
attack and four-corner attack on CIFAR-10 in Table 6 and Table 7, respectively. The relationship between α and poisoning
rate under the BadNets attack and four-corner attack on CIFAR-10 are shown in Table 8 and Table 9. In these tables, we find
similar phenomenons with that in MNIST.
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Figure 6. Results about the representation vectors on MNIST under the four-corner attack. (a) The cosine similarities of the representation
vectors and the top singular vector. (b) The T-SNE plot of representation vectors. The representation vectors are centered by the average
representation vector.

Table 2. Ablation study on the norm of trigger pattern. We evaluate the accuracy and attack success rate at the last epoch. We show the
time when the attacker succeeds.

MNIST CIFAR-10
α ACC ASR Time ACC ASR Time

0.0 99.52 0.56 – 86.20 16.10 –
0.25 99.57 0.56 – 88.60 87.90 –
0.5 99.52 98.88 25 89.25 99.90 5
0.75 99.63 99.66 17 87.60 99.90 4
1.0 99.68 99.44 13 89.10 100.00 3

Table 3. The effects from α and poisoning rate in MNIST. We use BadNets attack and evaluate the accuracy and attack success rate at the
last epoch.

MNIST Poisoning rate
α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.0
ACC 99.63 99.68 99.57 99.57 99.52 99.52 99.52 99.47 99.52 99.52
ASR 0.34 0.34 0.45 0.45 0.56 0.56 0.56 0.67 0.56 0.56
Time – – – – – – – – – –

0.25
ACC 99.63 99.68 99.57 99.57 99.52 99.52 99.57 99.47 99.52 99.57
ASR 0.34 0.34 0.45 0.45 0.56 0.56 0.56 0.67 0.56 0.67
Time – – – – – – – – – –

0.5
ACC 99.63 99.63 99.57 99.57 99.52 99.47 99.52 99.52 99.52 99.52
ASR 0.34 0.34 0.56 0.56 0.90 88.12 96.86 98.32 98.88 99.22
Time – – – – – – 52 30 30 25

0.75
ACC 99.63 99.68 99.52 99.52 99.52 99.57 99.63 99.63 99.63 99.63
ASR 0.34 0.56 75.11 97.09 97.87 98.09 98.77 99.55 99.66 99.66
Time – – – 36 31 24 24 22 18 17

1.0
ACC 99.63 99.57 99.57 99.57 99.57 99.63 99.68 99.68 99.68 99.68
ASR 0.34 85.20 94.06 98.43 98.88 98.88 99.22 99.44 99.44 99.66
Time – – – 27 20 18 15 15 13 13
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Table 4. The effects from the size of the training set and poisoning rate in MNIST. We use four-corner attack and evaluate the accuracy
and attack success rate at the last epoch.

MNIST Poisoning rate
Size 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2000
ACC 99.25 99.25 99.31 99.36 99.41 99.36 99.36 99.36 99.31 99.36
ASR 0.90 2.47 44.51 84.30 93.39 96.41 97.76 98.54 99.22 99.44
Time – – – – – 35 32 27 30 22

4000
ACC 99.63 99.57 99.57 99.52 99.63 99.52 99.52 99.52 99.52 99.52
ASR 5.94 91.14 97.20 97.65 99.10 99.22 99.44 99.55 99.66 99.66
Time – – 29 25 25 14 14 13 23 12

6000
ACC 99.52 99.57 99.57 99.52 99.52 99.47 99.47 99.41 99.41 99.41
ASR 73.32 93.61 96.86 98.77 98.99 99.22 99.33 99.44 99.44 99.55
Time – – 29 23 14 11 9 9 9 9

8000
ACC 99.57 99.63 99.63 99.63 99.63 99.57 99.63 99.63 99.63 99.63
ASR 87.89 97.42 99.10 98.99 99.89 99.89 100.00 100.00 100.00 100.00
Time – 20 20 9 9 8 8 7 7 7

10000
ACC 99.68 99.68 99.68 99.63 99.68 99.79 99.73 99.73 99.68 99.79
ASR 94.84 98.77 98.99 99.66 99.78 99.89 99.89 100.00 100.00 100.00
Time 61 18 13 13 10 7 6 6 10 6

Table 5. The effects from α and poisoning rate in MNIST. We use four-corner attack and evaluate the accuracy and attack success rate at
the last epoch.

MNIST Poisoning rate
α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.0
ACC 99.68 99.63 99.57 99.57 99.47 99.52 99.52 99.47 99.41 99.47
ASR 0.34 0.34 0.45 0.45 0.67 0.56 0.56 0.67 0.78 0.67
Time – – – – – – – – – –

0.25
ACC 99.63 99.68 99.52 99.57 99.52 99.52 99.52 99.57 99.41 99.47
ASR 0.34 0.34 0.56 0.56 0.78 32.29 77.91 93.61 96.52 98.54
Time – – – – – – – – 41 29

0.5
ACC 99.68 99.57 99.63 99.57 99.57 99.57 99.57 99.52 99.57 99.57
ASR 0.45 24.55 93.61 96.86 97.76 98.65 99.10 99.55 99.66 99.55
Time – – – 26 23 22 19 18 18 15

0.75
ACC 99.63 99.63 99.57 99.52 99.57 99.52 99.47 99.47 99.52 99.47
ASR 20.96 90.47 95.85 98.65 98.65 99.10 99.33 99.33 99.55 99.55
Time – – 30 27 18 16 14 14 18 14

1.0
ACC 99.52 99.57 99.57 99.52 99.52 99.47 99.47 99.41 99.41 99.41
ASR 73.32 93.61 96.86 98.77 98.99 99.22 99.33 99.44 99.44 99.55
Time – – 29 23 14 11 9 9 9 9
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Table 6. The effects from the size of the training set and poisoning rate in CIFAR-10. We use BadNets attack and evaluate the accuracy
and attack success rate at the last epoch.

CIFAR-10 Poisoning rate
Size 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2000
ACC 84.65 86.65 85.85 84.00 83.80 85.10 84.05 86.10 83.70 84.45
ASR 15.50 33.20 82.50 98.90 94.00 99.00 99.70 99.80 99.70 99.90
Time – – – 21 – 21 5 5 5 4

4000
ACC 87.95 87.10 87.55 88.05 87.25 87.45 87.95 87.30 87.25 87.60
ASR 16.00 93.70 96.70 99.60 99.50 99.90 99.90 99.90 100.00 99.90
Time – – 28 12 5 5 4 4 3 3

6000
ACC 88.90 88.85 88.60 88.50 88.60 89.35 88.60 88.40 89.00 89.10
ASR 41.10 90.40 99.10 99.80 99.70 99.90 99.70 100.00 100.00 100.00
Time – – 19 4 7 3 4 3 1 3

8000
ACC 90.20 90.55 90.30 90.50 89.40 89.85 89.95 90.50 89.40 89.55
ASR 83.70 99.70 99.70 99.60 100.00 100.00 99.80 100.00 100.00 100.00
Time – 6 4 12 4 3 3 1 1 1

10000
ACC 91.15 90.15 91.00 91.10 90.70 91.15 90.65 90.90 90.85 90.40
ASR 98.70 99.60 99.80 100.00 100.00 100.00 100.00 99.90 100.00 100.00
Time 24 9 4 4 3 3 3 3 1 1

Table 7. The effects from the size of the training set and poisoning rate in CIFAR-10. We use four-corner attack and evaluate the accuracy
and attack success rate at the last epoch.

CIFAR-10 Poisoning rate
Size 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

2000
ACC 86.00 86.20 84.70 85.50 85.05 85.40 87.15 86.35 84.90 85.65
ASR 27.00 94.50 99.70 100.00 99.80 99.90 100.00 99.70 99.90 99.90
Time – – 11 4 5 4 4 6 4 4

4000
ACC 87.45 87.25 88.45 87.30 87.15 87.45 86.90 87.60 88.45 88.05
ASR 80.30 99.20 100.00 99.80 100.00 100.00 99.90 100.00 100.00 100.00
Time – 4 29 3 3 3 3 3 3 3

6000
ACC 89.15 87.95 88.50 88.95 89.70 89.15 89.20 89.75 88.55 89.60
ASR 94.00 99.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
Time – 11 1 3 1 1 1 3 1 1

8000
ACC 90.15 90.00 91.10 90.00 90.60 90.70 90.40 90.10 89.55 90.25
ASR 97.90 100.00 100.00 100.00 99.90 100.00 100.00 100.00 100.00 100.00
Time 18 8 1 1 1 1 1 1 1 1

10000
ACC 90.95 90.50 90.95 91.45 90.70 90.95 90.45 91.05 91.40 90.80
ASR 96.10 100.00 100.00 99.80 100.00 100.00 100.00 100.00 100.00 100.00
Time 40 9 1 1 1 1 1 1 1 1
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Table 8. The effects from α and poisoning rate in CIFAR-10. We use BadNets attack and evaluate the accuracy and attack success rate at
the last epoch.

CIFAR-10 Poisoning rate
α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.0
ACC 89.15 88.85 88.60 88.45 87.05 87.85 87.25 87.20 87.90 86.20
ASR 11.50 11.20 11.70 12.20 14.80 14.50 16.00 15.90 15.40 16.10
Time – – – – – – – – – –

0.25
ACC 88.80 87.70 88.45 88.60 87.55 88.10 88.65 88.05 88.05 88.60
ASR 11.30 13.00 12.10 15.40 26.50 30.50 55.20 90.30 87.00 87.90
Time – – – – – – – – – –

0.5
ACC 89.05 88.25 88.50 88.95 88.75 89.00 89.55 89.00 87.90 89.25
ASR 12.30 14.90 56.50 96.40 95.30 98.80 99.30 99.70 99.90 99.90
Time – – – 20 27 14 8 5 6 5

0.75
ACC 88.65 89.50 89.45 89.25 89.70 89.80 90.05 89.55 88.85 87.60
ASR 19.40 44.80 96.20 97.80 99.10 99.70 99.60 99.90 100.00 99.90
Time – – 20 10 9 6 4 4 4 4

1.0
ACC 88.90 88.85 88.60 88.50 88.60 89.35 88.60 88.40 89.00 89.10
ASR 41.10 90.40 99.10 99.80 99.70 99.90 99.70 100.00 100.00 100.00
Time – – 19 4 7 3 4 3 1 3

Table 9. The effects from α of the training set and poisoning rate in CIFAR-10. We use four-corner attack and evaluate the accuracy and
attack success rate at the last epoch.

CIFAR-10 Poisoning rate
α 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.0
ACC 87.60 88.30 88.65 87.85 87.30 87.20 86.25 87.40 87.15 86.10
ASR 12.50 12.80 14.90 12.90 13.80 14.40 18.10 16.10 16.70 18.50
Time – – – – – – – – – –

0.25
ACC 88.75 88.05 87.60 89.85 89.20 88.90 88.50 88.45 89.45 90.15
ASR 12.60 18.40 37.80 92.60 99.40 99.30 98.60 99.60 99.80 100.00
Time – – – – 8 5 20 4 5 3

0.5
ACC 89.55 89.05 89.25 88.90 89.75 88.65 88.55 89.00 88.30 89.40
ASR 33.00 98.00 99.50 99.90 99.70 99.80 100.00 99.90 100.00 99.90
Time – 11 9 3 4 18 3 3 3 3

0.75
ACC 90.25 88.75 90.00 89.40 89.75 89.80 90.55 89.15 89.20 89.55
ASR 57.70 99.90 99.70 99.80 99.60 100.00 99.90 100.00 100.00 100.00
Time – 17 7 3 7 3 3 1 1 3

1.0
ACC 89.15 87.95 88.50 88.95 89.70 89.15 89.20 89.75 88.55 89.20
ASR 94.00 99.90 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.90
Time – 11 1 3 1 1 1 3 1 1
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