
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING FROM PREFERENCES AND MIXED
DEMONSTRATIONS IN GENERAL SETTINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning is a general method for learning in sequential settings, but
it can often be difficult to specify a good reward function when the task is com-
plex. In these cases, preference feedback or expert demonstrations can be used
instead. However, existing approaches utilising both together are either ad-hoc or
rely on domain-specific properties. Building upon previous work, we develop a
novel theoretical framework for learning from human data. Based on this we in-
troduce LEOPARD: Learning Estimated Objectives from Preferences And Ranked
Demonstrations. LEOPARD can simultaneously learn from a broad range of data,
including negative/failed demonstrations, to effectively learn reward functions in
general domains. It does this by modelling the human feedback as reward-rational
partial orderings over available trajectories. We find that when a limited amount of
human feedback is available, LEOPARD outperforms the current standard prac-
tice of pre-training on demonstrations and finetuning on preferences, as well as
other baselines. Furthermore, we show that LEOPARD learns faster when given
many types of feedback, rather than just a single one.

1 INTRODUCTION

Reinforcement Learning (RL) is a branch of machine learning where an agent learns a behavioural
policy by interacting with an environment and receiving rewards. These rewards are determined by
a reward function that mathematically encodes the objective of the agent. For real-world practical
applications of RL, such as robotics or Large Language Model (LLM) finetuning, the specification of
the reward function poses a difficult challenge. Two popular RL subfields try to solve this problem by
leveraging human data in order to learn what the reward function should be, typically by optimising
a parameterised function such as a neural network.

Inverse RL (IRL) utilises human-provided demonstrations of the correct behaviour and tries to learn
a reward function for which only the demonstrations, or similar behaviour, are near-optimal (Ng
et al., 2000; Ziebart et al., 2008; Wulfmeier et al., 2015). RL from Human Feedback (RLHF)
presents the human with pairs of agent–behaviour examples. For each pair, the human decides
which piece of behaviour is better, and the reward function is trained to re-produce this preference
(Christiano et al., 2017). Both methods iterate between reward model and agent training. For more
details on IRL and RLHF, see sections 2.1 and 2.2, respectively. For many applications it might be
possible and desirable to generate and learn from both of these feedback types, rather than com-
mitting to a single one. The current standard approach is to first train on demonstrations and then
finetune the resulting model with preferences (Ibarz et al., 2018; Palan et al., 2019; Bıyık et al.,
2022). Some methods have been proposed to more effectively leverage the information encoded in
both the preferences and demonstrations, but this is still largely ad-hoc or specific to certain domains
(Krasheninnikov et al., 2021; Mehta & Losey, 2023; Brown et al., 2019). We discuss these methods
further in section 2.3.

In an attempt to solve this problem for general domains—and for many types of feedback including
preferences and demonstrations—Jeon et al. (2020) propose Reward-Rational Choice (RRC). This
frames the human feedback data as Boltzmann-Rational choices according to a probability distribu-
tion which has been induced by some unknown true reward function. Learning the reward function
can then be cast as a supervised learning problem where we try to replicate these choices. Unfortu-
nately, RRC is often difficult to implement in practice. For example, in the case of demonstration

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Step 3:
Train agent via RL.
Go to step 1b and repeat.

Reward ModelLEOPARD
Encoding

RRPO Loss Minimisation

Human
Teacher

Agent

Environment

Sample

Mixed
Demonstrations

Step 1a:
Teacher provides demonstrations of
good and bad behaviour, .

Step 1b:
Teacher samples agent's attempts and
provides pairwise preference feedback.

Preferences

Step 2:
Feedback is used to train parameters
for a reward function.

Agent Trajectories

Figure 1: High-level overview of the LEOPARD algorithm. A teacher provides ranked examples
of positive and negative demonstrations, as well as providing preference feedback over the agent’s
behaviour. This is used to train a reward model that the agent optimises via standard RL. The process
is iterative. The LEOPARD encoding is given in Equations (7) and (8), and PRRPO is detailed in
Equation (5).

feedback, they treat it as a choice over all possible behaviours. This space is incredibly difficult to
optimise over if it is very large and our reward function is non-linear, as is often the case for practi-
cal problems. Additionally, it cannot encode multiple selections for the ‘optimal choice’, nor can it
encode more complex relationships between behaviours such as rankings or dis-preference.

To address these limitations, we introduce a new theoretical framework which frames the human
feedback as reward-rational partial orderings over trajectories (RRPO). These partial orderings are
then encoded by sets of Boltzmann-Rational choices, analogous to the Plackett-Luce ranking model
(Marden, 1996). From this we derive LEOPARD: Learning Estimated Objectives from Preferences
And Ranked Demonstrations, which is outlined in Figure 1. In addition to preferences and ranked
(positive) demonstrations, LEOPARD can also learn from ranked negative/failed demonstrations.
Preferences are interpreted as they are in RRC, but positive demonstrations are interpreted as being
preferred to the agent’s current and future behaviour, or the opposite in the case of negative demon-
strations. Demonstration rankings, if available, are also cleanly translated into partial orderings.

LEOPARD can utilise a wide range of feedback types simultaneously, making it effective at learning
useful reward functions in general environments. We find that when preference and positive demon-
stration feedback is available, it outperforms the standard baseline of performing DeepIRL on the
demonstration data, and then finetuning using preferences. It also beats Adversarial Imitation Learn-
ing with Preferences (AILP), another preference and positive demonstration learning algorithm, in
three out the four environments tested on. Additionally, when only positive demonstration feedback
is available, LEOPARD outperforms or matches DeepIRL and AILP due to its ability to exploit
ranking data. Finally, we show that LEOPARD can learn more effectively when given a variety of
feedback types, rather than focussing on large amounts of a single one.

To summarise, we make the following contributions:

1. We introduce RRPO, a practical and general framework for interpreting human feedback.

2. We introduce LEOPARD, an effective and scalable method for learning from preferences,
and positive/negative ranked demonstrations.

3. We provide evidence that learning from many types of feedback can be superior to fo-
cussing on only one.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK AND BACKGROUND

2.1 DEMONSTRATION-BASED RL

A popular paradigm for learning from demonstrations is Inverse RL (IRL), where the demonstrations
are used to learn a reward function (Ng et al., 2000). This overcomes many issues of behavioural
cloning, which aims to directly mimic the given demonstrations (Bratko et al., 1995). Many cur-
rent methods for IRL are based on the principle of maximum (causal) entropy (MaxEnt; MCE),
established by Ziebart et al. (2008; 2010). This learns a reward function that captures the fact
that the human demonstrations are optimal, but beyond this, it tries to have as much uncertainty
about the reward dynamics as possible. Assuming a deterministic environment simplifies MCE into
MaxEnt, and this assumption has been used to extend this class of methods into settings with high-
dimensional observation spaces, e.g. DeepIRL (Wulfmeier et al., 2015). Advanced extensions of
DeepIRL have been proposed, leveraging methods such as importance sampling (Finn et al., 2016),
or GAN-style architectures (Fu et al., 2018). For a more comprehensive introduction to MCE and
its derivatives, see Gleave & Toyer (2022). Our proposed algorithm does not reduce to a MaxEnt-
derived method in the demonstration only case, but is still inspired by the principle and is of a
similar form. Bayesian methods in IRL have also been explored (Ramachandran & Amir, 2007;
Brown et al., 2020), highlighting how a probabilistic framing of the inverse learning problem can be
useful.

2.2 PREFERENCE-BASED RL

RLHF (Christiano et al., 2017) use preferences—pairwise comparisons of agent behaviour—to learn
a reward function for high-dimensional RL environments via the Bradley-Terry preference model
(Bradley & Terry, 1952). A 3-step iterative procedure is used: sampling of new comparisons of
recent agent behaviour, fitting the reward model to the comparison dataset, and training of the policy
on the learnt reward function. The reward model is fitted by minimising the following loss function:

LRLHF(θ) = −
∑

(τa,τb)∈P

logPRLHF(τa ≻ τb|θ), (1)

where P is a dataset of pairs of trajectory-fragments1 in which the first is preferred and

PRLHF(τa ≻ τb|θ) =
exp(Rθ(τa))

exp(Rθ(τa)) + exp(Rθ(τb))
, (2)

where Rθ is a parameterised reward function. Wirth et al. (2017) provides a survey of other prefer-
ence based RL methods prior to RLHF.

Recently, RLHF has been used for instruction and safety-finetuning large language models (LLMs)
into chat systems (Ouyang et al., 2022; Bai et al., 2022; Bahrini et al., 2023). These are referred to
as ‘PPO-based’ to disambiguate them from other methods which finetune LLMs from preferences
without learning a reward function, such as DPO (Rafailov et al., 2024). Often the LLM is trained
on demonstrations via behavioural cloning before PPO/DPO. Concerns for the safety, reliability, and
misuse of LLMs has led to a plethora of research on how best to utilise human preferences/rankings
to train these models (Cao et al., 2024; Chaudhari et al., 2024). Despite this, there is a broad lack of
principled use of other feedback types for LLM safety and finetuning. Our method extends RLHF to
be compatible with other sources of feedback, whilst still being practically applicable to problems
like LLM finetuning.

2.3 COMBINING DEMONSTRATIONS AND PREFERENCE FEEDBACK

As mentioned in the case for LLMs, demonstration and preference feedback are typically combined
by pre-training on the demonstration data using IRL/behavioural-cloning methods, and then fine-
tuning the resulting reward model on preferences using RLHF (Ibarz et al., 2018; Palan et al., 2019;
Bıyık et al., 2022). This works well in practice, but it is unclear how to add in further reward infor-
mation, such as negative demonstrations or the relative rankings of demonstrations. Additionally,

1Contiguous subsequences of trajectories.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

information that is present only in the demonstrations might be forgotten or never used, especially if
strong regularisation is applied to the reward model, or the RL policy does not sufficiently explore
when training on the demonstrations.

More sophisticated combinations of preferences and demonstrations have been considered.
Krasheninnikov et al. (2021) sampled trajectories according to reward functions optimal for the pref-
erences, and applied MCE-IRL. This approach is computationally expensive and limited to linear
reward functions over tabular MDPs. Mehta & Losey (2023) combine preferences and demonstra-
tions alongside corrections (Bajcsy et al., 2017), but leverage domain-specific properties of robotics
and encode their demonstrations using trajectory-space perturbations. This method is not applica-
ble outside of robotics, and loses information about how demonstrations are better than most of
trajectory-space, not just better than nearby trajectories. Brown et al. (2019) and Brown & Niekum
(2019) both subsample ranked demonstrations to produce preferences for training the reward model,
giving good results but still losing information about how those demonstrations might be preferred
to other trajectories. Taranovic et al. (2022) combines a novel preference loss with adversarial imi-
tation learning. This is the closest to our work, and so we test against it as a baseline. We also note
that none of these methods can be easily extended to other types of feedback.

Our method enables learning from preference and demonstration feedback in a principled manner,
without leveraging domain-specific properties, and in a way that can be readily extended.

2.4 LEARNING FROM OTHER TYPES OF FEEDBACK

Other types of feedback have been explored in isolation, such as negative demonstrations (Xie et al.,
2019),2 improvements (Jain et al., 2015), off-signals (Hadfield-Menell et al., 2017a), natural lan-
guage (Matuszek et al., 2012), proxy reward functions (Hadfield-Menell et al., 2017b), and even the
initial state (Shah et al., 2019). Jeon et al. (2020) interpret many of these types of feedback as part
of an overarching formalism, reward-rational (implicit) choice (RRC), providing a mathematical
theory for reward learning that combines different types of feedback.

RRC interprets each piece of human feedback as a Boltzmann-Rational choice C from some (possi-
bly implicit) set of choices D with rationality coefficient β. A grounding function, ψ, maps choices
to distributions over trajectories. The expected reward over these distributions gives the value for
each choice under the Boltzmann-Rational model, according to some reward function Rθ.

PRRC(C|D, θ) =
exp
(
β · Eτ∼ψ(C)[Rθ(τ)]

)∑
C′∈D exp

(
β · Eτ∼ψ(C′)[Rθ(τ)]

) . (3)

For a deterministic ψ this simplifies to:

PRRC(C|D, θ) =
exp(βRθ(ψ(C)))∑

C′∈D exp(βRθ(ψ(C ′)))
. (4)

Many of the formalisms of feedback in RRC are not generally applicable, and practical applications
rely on finite state-spaces or linear reward functions. For example, in the case of demonstrations
it assumes access to the set of all possible trajectories, which is potentially uncountable and high-
dimensional.

Our main theoretical contribution is adapting RRC to create RRPO, a more practical and expressive
theoretical grounding of learning from general human feedback.

3 METHOD

We propose LEOPARD, a method for learning from preferences, positive demonstrations, negative
demonstrations, and partial rankings over the given demonstrations. It is practical, flexible, and
applicable to many environments. The aim is that a practitioner can give any and all feedback
possible to the learning algorithm, and this feedback can be continuously learnt from and added
to. First, we develop a general theoretical framework, reward-rational partial ordering (RRPO),
extending that of deterministic reward-rational choice (RRC, Jeon et al. (2020)). Then, we apply
this to the specific case of learning from preferences and mixed demonstrations.

2They refer to these as ‘failed demonstrations’.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.1 REWARD RATIONAL PARTIAL ORDERINGS

To ensure the general applicability of our theoretical formalisms, we assume that only the trajectories
our reward optimisation procedure has access to are provided directly. These could be generated dur-
ing the agent’s training or provided by the human in the case of demonstrations. This is assumed as
sensible/relevant trajectories could sit on an unknown manifold in (a high-dimensional) observation
space, crippling random-sampling based approaches.3 We’d expect that reward functions captur-
ing complex desirable behaviour would not be linear, but that they could at least be approximated
sufficiently by some differentiable parameterised function.

Our key insight is to interpret human feedback as a set of Boltzmann-Rational choices encoding
strict partial orderings over the trajectory-fragments we have direct access to, where a fragment
is a contiguous subsequence of a trajectory. For each item in the partial order, we ‘choose’ that
element out of a set containing itself and all elements strictly less than it. This is analogous to the
Plackett-Luce ranking model (Marden, 1996), and is equivalent when the ordering can be viewed as
a total ordering embedded in some larger set. Similar to RRC, each partial ordering is assumed to
be independent given the reward function. Since a partial order may encode a single element being
greater than all others with no other relations, this generalises deterministic choices of RRC.

Formally, let D = {τi}i be the set of all possible fragments of trajectories we have access to,
C = {<j}j the set of human feedback, and Rθ our non-linear reward function parameterised by θ.
Note that <i is used to denote some partial ordering i. We define the likelihood of θ under RRPO as
follows:

PRRPO(C|D, θ) =
∏

(τi,<j)∈D×C

exp(βjRθ(τi))

exp(βjRθ(τi)) +
∑
τk∈D 1τk<jτi exp(βjRθ(τk))

, (5)

where βj is the rationality coefficient for feedback j. βs should be equal if the type of feedback is
the same, e.g. two pairwise preferences. Note that when the partial orderings are sparse, many terms
of the product become unity. We perform gradient descent on the negative-log of eq. (5) to find the
best θ, giving the loss function below:

LRRPO(θ) = − logPRRPO(C|D, θ). (6)

A nice property of LRRPO is that when minimised it faithfully represents the partial orderings. More
precisely, upper bounds on the loss give rise to lower bounds on all reward differences between
fragments that are related by some partial ordering. This is stated formally and proved in theorem 1
of Appendix D. As a special case, if the loss is below log 2 then all reward differences must have the
correct sign, i.e. the reward function induces an ordering compatible with all the partial orderings.

3.2 LEOPARD

Whilst we can apply the framework above to many types of feedback, we now focus on the case of
combining preferences with mixed demonstrations. By mixed demonstrations, we mean ones which
may be positive, negative and, within these two groups, we may have access to the relative rankings
of each demonstration.

A pairwise preference of τa ≻ τb is simply interpreted as a partial ordering with only τb < τa.4
Positive demonstrations are interpreted as a single partial ordering that prefers all positive demon-
strations to any agent trajectories and encodes the relative rankings of the positive demonstrations
themselves. Negative demonstrations are interpreted likewise, but these partial orderings prefer
agent trajectories over the negative demonstrations.

Formally, let Dpos, <pos, and Dneg, <neg be the sets of trajectories and partial orderings encoding
rankings from positive and negative demonstrations, respectively. Let Dagent be the set of trajec-
tories sampled from the agent’s behaviour. Let P = {(τa, τb)i}i be the set of ordered pairs of
trajectory-fragments in which the first is preferred, and Rθ our parameterised reward function. Then

3For example, consider the space of all images vs ones which are plausible 3D scenes.
4By interpreting each preference as its own partial ordering, we avoid potential issues of symmetry and

non-transitivity.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

we optimise the loss function, eq. (6), with the following:

<Pos-Demo = <pos ∪ {τa < τp|(τa, τp) ∈ Dagent ×Dpos},
<Neg-Demo = <neg ∪ {τn < τa|(τn, τa) ∈ Dneg ×Dagent},

CPref = {{τb < τa}|(τa, τb) ∈ P},

Dpref =
⋃

(τa,τb)∈P

{τa, τb},

C = {<Pos-Demo, <Neg-Demo} ∪ CPref, (7)

D =
⋃
{Dpos,Dneg,Dagent,Dpref}. (8)

Like in the case for RLHF, our dependencies on agent behaviour means we need to iterate between
sampling new preferences, optimising for eq. (6), and training the agent’s policy.5 Our algorithm is
illustrated in Figure 1 and the full training procedure is given in algorithm 1 in Appendix A, along
with details on reward model training.

4 EXPERIMENTS

We test our method on several environments in order to evaluate its performance across a broad
variety of domains. Additionally, we also vary the proportions and amounts of different types of
feedback used for learning to demonstrate that combining demonstrations and preferences can give
stronger performance than just relying on either one. In order to reduce the cost of testing our method
and facilitate hyperparameter tuning with many repetitions, we synthetically generate preferences,
demonstrations, and their rankings. We generate preferences by sampling using the sigmoid of the
reward difference between the two fragments under comparison as the probability of preference. We
generate demonstrations by training an agent on the ground truth reward function and then sampling
its trajectories, with their ground truth reward determining their relative rankings. For further details,
see Appendix A.2.

We experimentally evaluate LEOPARD on four environments from the Gymnasium (Towers et al.,
2024) test suite: Half Cheetah (MuJoCo), Cliff Walking (Toy Text), Lunar Lander (Box2D), and Ant
(MuJoCo). This covers a range of continuous and discrete observation and action spaces, reward
sparsities, and overall complexities. We require a finite horizon to reduce complications from the
preference and demonstration learning, so some environments required modification. These and
other environment details are given in Appendix B.

We organise our experiments into two sections. In the first, we compare our method to baselines.
For the case of preferences and positive demonstrations, we compare against Adversarial Imitation
Learning with Preferences (AILP, Taranovic et al. (2022))6 and a standard pipeline of training on
demonstrations with DeepIRL and then preference finetuning with RLHF. As an ablation, on Half
Cheetah we also test first training on preferences with RLHF, and then on demonstrations with
DeepIRL. We find that, except on Ant, LEOPARD always outperforms all baselines. On Ant, it lags
behind AILP but is still far better than the standard pipeline.

With positive demonstrations only, we show that LEOPARD either performs similarly or beats the
baselines, depending on the environment, For preferences only, our method directly reduces to
RLHF and so no comparison is needed. For LEOPARD and AILP, when training the reward model,
we keep training until the loss has loosely converged (see Appendix A.1.3 for details). This is not
possible with DeepIRL as the maximum-entropy ‘loss’ function is not bounded from below. There-
fore, we use a fixed number of training epochs for the reward model with the associated baselines,
and give results for a variety of values.

5If there were an existing set of preferences and agent trajectories, the method could be applied offline by
simply optimising for eq. (6).

6For our implementation of AILP we only use the relevant loss functions and disregard the extraneous parts
of the method. This includes initially optimising the policy to maximise visited state entropy, and sampling
preferences according to maximum entropy. Additionally, we use PPO instead of SAC, and apply our early
stopping method for reward model training. Overall this enables a fair comparison with LEOPARD, and we
note that AILP’s additional tweaks could be symmetrically applied to LEOPARD if so desired.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

In the second set of experiments, we investigate how altering the types of feedback available af-
fect reward learning performance. First, we see how well LEOPARD performs training only
with preferences or only with positive demonstrations, choosing the amount available of each to
be enough to enable learning but not enough to saturate performance. To enable a fair compar-
ison, we normally choose equivalent amounts of feedback for the preference-only and positive-
demonstration-only tests. For demonstrations, this is ndemos × trajectory-length, and for preferences
this is 2 × nprefs × preference-fragment-length.7 Occasionally, one of the feedback types produced
significantly worse performance, in which case we increased the proportion of feedback available.
Details on trajectory and fragment lengths, feedback proportions, and other hyperparameters, are
given in Appendix B.

Then, we test a 50/50 preferences / positive-demonstration mix, a 50/50 positive-demonstration
/ negative-demonstration mix, and a 50/25/25 preferences / positive-demonstrations / negative-
demonstrations mix. These tests show that often mixtures of feedback types can outperform their
single-typed counterparts, even when the total budget is fixed.

5 RESULTS

We present our results on how LEOPARD compares to common baselines, and how reward learning
under our algorithm is affected by varying the types of feedback information.

0 1 2 3 4 5 6 7
Iteration

500

0

500

1000

1500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL then RLHF, best
DeepIRL then RLHF, average
RLHF then DeepIRL, best
RLHF then DeepIRL, average
AILP

(a) Half Cheetah, ndemos = 4, nprefs = 40

0 1 2 3 4 5 6 7
Iteration

2500

2000

1500

1000

500

0

500

1000
M

ea
n

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

LEOPARD
DeepIRL then RLHF, best
DeepIRL then RLHF, average
AILP

(b) Cliff Walking, ndemos = 2, nprefs = 10

0 1 2 3 4 5 6 7
Iteration

4000

3500

3000

2500

2000

1500

1000

500

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL then RLHF, best
DeepIRL then RLHF, average
AILP

(c) Lunar Lander, ndemos = 4, nprefs = 80

0 2 4 6 8 10 12 14
Iteration

2500

2000

1500

1000

500

0

500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL then RLHF, best
DeepIRL then RLHF, average
AILP

(d) Ant, ndemos = 8, nprefs = 80

Figure 2: Comparison of LEOPARD with baselines of AILP, DeepIRL followed by RLHF, and
RLHF followed by DeepIRL (Half Cheetah only), when positive demonstrations and preferences
are available. The lines denote the mean of the ground truth reward function, with shaded stan-
dard errors, against algorithm iterations—alternations between optimising the reward model and the
agent. Solid lines are smoothed means for clarity, dashed lines give raw values. A breakdown of the
performance of the DeepIRL-based methods for different reward model training epochs per iteration
is given in Figures 7 and 8.

Figure 2 compares LEOPARD to baselines when preferences and positive demonstrations are avail-
able, and Figure 3 analyses the case where only positive demonstrations are available. For a break-
down of individual final scores see Appendix C, Table 2.

7×2 as a preference involves comparing two fragments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7
Iteration

400

200

0

200

400

600

800

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
DeepIRL, average
AILP

(a) Half Cheetah, ndemos = 8

0 1 2 3 4 5 6 7
Iteration

2500

2000

1500

1000

500

0

500

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
DeepIRL, average
AILP

(b) Cliff Walking, ndemos = 4

0 1 2 3 4 5 6 7
Iteration

2000

1750

1500

1250

1000

750

500

250

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
DeepIRL, average
AILP

(c) Lunar Lander, ndemos = 8

0 2 4 6 8 10 12 14
Iteration

2000

1500

1000

500

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

LEOPARD
DeepIRL, best
DeepIRL, average
AILP

(d) Ant, ndemos = 16

Figure 3: Comparison of LEOPARD with baselines of AILP and DeepIRL when only positive
demonstrations are available. The lines denote the mean of the ground truth reward function, with
shaded standard errors, against algorithm iterations—alternations between optimising the reward
model and the agent. Solid lines are smoothed means for clarity, dashed lines give raw values. A
breakdown of the performance of DeepIRL for different reward model training epochs per iteration
is given in Figure 9.

We find that LEOPARD greatly outperforms the DeepIRL followed by RLHF baseline when both
preferences and demonstrations are available, achieving much higher reward throughout training in
all environments. Since LEOPARD can utilise all the data all the time, preferences can be used
to aid early exploration, and demonstrations can continue to be trained against even in the latter
stages. Additionally, as it trains the reward model to rough convergence each iteration it allows
for adequate learning without over-fitting. It also beats AILP on three of the four environments,
lagging slightly behind in Ant. Despite this, we still see LEOPARD as an improvement over AILP,
since its performance with each iteration increases much more consistently. LEOPARD can exploit
the relative rankings of the demonstrations to gain even more information on the underlying reward
function compared to AILP, and the other baselines.

LEOPARD’s use of ranking data and rough convergence training allows it to often outperform, and
otherwise remain competitive with, the DeepIRL and AILP baselines when only demonstration data
is available. We see a stronger relative performance on both Half Cheetah and Lunar Lander, whilst
it is more clustered with the baselines on Cliff Walking and Ant. It is worth noting that LEOPARD
does not require the ‘reward model training epochs’ hyperparameter, which might be difficult to tune
for DeepIRL in environments that are expensive to sample from.

Note that for the analysis of the Cliff Walking environment, some outliers for the AILP8 and
‘DeepIRL then RLHF finetune’ baseline have been removed. These were due to excessively large
negative rewards from walking off the cliff many times before learning this was a bad idea, and oc-
curred with an average frequency of 25% and 28% respectively. A more detailed breakdown along
with the exact definition for outliers is given in Appendix C, Table 4.

8When training on preferences and demonstrations.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7
Iteration

500

0

500

1000

1500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

80 Prefs
40 Prefs, 4 Pos Demos
40 Prefs, 2 Pos Demos, 2 Neg Demos
8 Pos Demos
4 Pos Demos, 4 Neg Demos

(a) Half Cheetah

0 1 2 3 4 5 6 7
Iteration

2500

2000

1500

1000

500

0

500

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

20 Prefs
10 Prefs, 2 Pos Demos
10 Prefs, 1 Pos Demo, 1 Neg Demo
4 Pos Demos
2 Pos Demos, 2 Neg Demos

(b) Cliff Walking

0 1 2 3 4 5 6 7
Iteration

1200

1000

800

600

400

200

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

160 Prefs
80 Prefs, 4 Pos Demos
80 Prefs, 2 Pos Demos, 2 Neg Demos
8 Pos Demos
4 Pos Demos, 4 Neg Demos

(c) Lunar Lander

0 2 4 6 8 10 12 14
Iteration

2500

2000

1500

1000

500

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

160 Prefs
80 Prefs, 4 Pos Demos
80 Prefs, 2 Pos Demos, 2 Neg Demos
8 Pos Demos
4 Pos Demos, 4 Neg Demos

(d) Ant

Figure 4: Comparison of LEOPARD’s performance when varying types of feedback are available.
The lines denote the mean of the ground truth reward function, with shaded standard errors, against
algorithm iterations—alternations between optimising the reward model and the agent. Solid lines
are smoothed means for clarity, dashed lines give raw values.

In Figure 4 we show the performance of LEOPARD when learning from a variety of different feed-
back proportions, with final scores detailed in Appendix C, Table 3. In all environments, some mix
of preferences and demonstration data is top-scoring, and in two a pure feedback type is at the bot-
tom. This is most clearly seen on Cliff Walking, where more diverse feedback types always beat
their strict subsets. Interestingly, training only on preferences was better than using a full feed-
back mixture for the Half Cheetah environment, although a combination of preferences and positive
demonstrations was much better than either. Whilst the mixed demonstrations strategy was the best
for the Lunar Lander environment, the error bars there are large, and we caution against drawing
clear conclusions. For Ant, both setups involving negative demonstrations did poorly, although the
strongest performance was by preferences and positive demonstrations. We hypothesise that the
poor performance of the negative demonstration containing runs might have been caused by limited
representational capacity of the reward network to model three distributions of trajectory whilst still
providing a useful feedback signal to the agent.

6 DISCUSSION

6.1 GENERALITY OF RRPO

Reward-rational preference orderings, the basis of LEOPARD, are a generalisation of the determin-
istic reward-rational choice framework (Jeon et al., 2020), but offers several distinct advantages.
Recall that RRC frames the human feedback as a choice over some set, and then maps elements of
that set into distributions over trajectories. Instead, RRPO maps the human feedback directly into
a set of partial orderings. These two approaches have differing flexibility, and different feedback
types might lend themselves more readily to one or the other. However, as RRPO is explicit in its
construction that it operates only over directly-accessible trajectories, it becomes much more gen-
eral in a practical sense. For example, in RRC, demonstration feedback requires optimising over the
entire trajectory space, while RRPO does not.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Furthermore, RRPO does not assume any particular properties about the space of reward functions,
nor the space of trajectories. In general, one can think of optimal trajectories as a small part of
some feasible-trajectory manifold, which itself is a small part in a larger trajectory feature space.
Methods which rely on domain-specific properties of these spaces, such as linearity or computable
perturbations, inherently limit themselves from being more broadly applied. For example, Mehta &
Losey (2023) leverages inverse kinematics models to interpret demonstration feedback (alongside
preferences) in robotics domains. Whilst effective for this application, it renders the broader method
impossible outside of robotics. RRPO and LEOPARD on the other hand, could be easily applied
to environments very different to the ones we have tested on. For example, they could be used for
Large Language Model (LLM) and foundation-model finetuning.

6.2 LIMITATIONS AND FUTURE WORK

Whilst we have tested LEOPARD on a range of environments with differently structured observation
and action spaces, a more comprehensive study would investigate an even wider range of tasks, such
as more complex robotics, Atari games, and even LLM finetuning. Furthermore, with additional
resources, it would be instructive to more closely interrogate how performance depends on the pro-
portions of different feedback used for learning. For instance, future work could vary the feedback
proportions with greater precision, and include additional repetitions.

Additionally, there are other methods that seek to learn from both preference and demonstration
data, or even negative/failed demonstrations, as detailed in sections 2.3 and 2.4. Whilst these are
less general in application than LEOPARD; a comparison of performance would still be interesting.
We have chosen the baselines of AILP and ‘DeepIRL followed by RLHF’ to test against as they have
similar simplicity and generality to our own method, as well as the latter being common practice.

We introduce RRPO as a theoretical backdrop for LEOPARD, however our investigation of its prop-
erties and encodings for many types of feedback is limited. Due to its similarity to RRC and the
Placket-Luce choice model, we do not see this as a critical failing, as it will inherit many proper-
ties from those models, and deterministic RRC formulations can be trivially encoded under RRPO.
Nevertheless, there are likely important theoretical properties and applications of RRPO that are of
relevance to reward learning that ought to be investigated.

These limitations largely stem from constraints on time and computational resources. Thus, they are
left to be resolved by future work.

6.3 CONCLUSION

We have shown that LEOPARD can perform effective reward inference, learning from many sources
of reward information simultaneously. It is more effective than standard baselines for learning from
preferences and demonstrations, and can additionally incorporate more information such as demon-
stration rankings and negative/failed demonstrations. We have also shown that using many sources
of reward information can be more beneficial than relying on only large amounts of a single type.
Whilst our empirical work is non-extensive, the generality and simplicity of the method makes it
very powerful and potentially applicable to important current problems such as high dimensional
robotics, and LLM / foundation-model finetuning. Furthermore, it opens the door to exploring the
use of a much wider range of feedback in many RL settings.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aram Bahrini, Mohammadsadra Khamoshifar, Hossein Abbasimehr, Robert J Riggs, Maryam Es-
maeili, Rastin Mastali Majdabadkohne, and Morteza Pasehvar. Chatgpt: Applications, opportuni-
ties, and threats. In 2023 Systems and Information Engineering Design Symposium (SIEDS), pp.
274–279. IEEE, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Andrea Bajcsy, Dylan P Losey, Marcia K O’malley, and Anca D Dragan. Learning robot objectives
from physical human interaction. In Conference on robot learning, pp. 217–226. PMLR, 2017.

Erdem Bıyık, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa
Sadigh. Learning reward functions from diverse sources of human feedback: Optimally inte-
grating demonstrations and preferences. The International Journal of Robotics Research, 41(1):
45–67, 2022.

Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

Ivan Bratko, Tanja Urbančič, and Claude Sammut. Behavioural cloning: phenomena, results and
problems. IFAC Proceedings Volumes, 28(21):143–149, 1995.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783–792. PMLR, 2019.

Daniel Brown, Scott Niekum, and Marek Petrik. Bayesian robust optimization for imitation learning.
Advances in Neural Information Processing Systems, 33:2479–2491, 2020.

Daniel S Brown and Scott Niekum. Deep bayesian reward learning from preferences. arXiv preprint
arXiv:1912.04472, 2019.

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben
He, Xianpei Han, et al. Towards scalable automated alignment of llms: A survey. arXiv preprint
arXiv:2406.01252, 2024.

Shreyas Chaudhari, Pranjal Aggarwal, Vishvak Murahari, Tanmay Rajpurohit, Ashwin Kalyan,
Karthik Narasimhan, Ameet Deshpande, and Bruno Castro da Silva. Rlhf deciphered: A
critical analysis of reinforcement learning from human feedback for llms. arXiv preprint
arXiv:2404.08555, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR,
2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
forcement learning, 2018. URL https://arxiv.org/abs/1710.11248.

Adam Gleave and Sam Toyer. A primer on maximum causal entropy inverse reinforcement learning,
2022. URL https://arxiv.org/abs/2203.11409.

Dylan Hadfield-Menell, Anca Dragan, Pieter Abbeel, and Stuart Russell. The off-switch game. In
Workshops at the Thirty-First AAAI Conference on Artificial Intelligence, 2017a.

Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca Dragan. Inverse
reward design. Advances in neural information processing systems, 30, 2017b.

11

https://arxiv.org/abs/1710.11248
https://arxiv.org/abs/2203.11409

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
learning from human preferences and demonstrations in atari. Advances in neural information
processing systems, 31, 2018.

Ashesh Jain, Shikhar Sharma, Thorsten Joachims, and Ashutosh Saxena. Learning preferences
for manipulation tasks from online coactive feedback. The International Journal of Robotics
Research, 34(10):1296–1313, 2015.

Hong Jun Jeon, Smitha Milli, and Anca Dragan. Reward-rational (implicit) choice: A unifying
formalism for reward learning. Advances in Neural Information Processing Systems, 33:4415–
4426, 2020.

Dmitrii Krasheninnikov, Rohin Shah, and Herke van Hoof. Combining reward information from
multiple sources. arXiv preprint arXiv:2103.12142, 2021.

John I Marden. Analyzing and modeling rank data. CRC Press, 1996.

Cynthia Matuszek, Nicholas FitzGerald, Luke Zettlemoyer, Liefeng Bo, and Dieter Fox. A
joint model of language and perception for grounded attribute learning. arXiv preprint
arXiv:1206.6423, 2012.

Shaunak A Mehta and Dylan P Losey. Unified learning from demonstrations, corrections, and prefer-
ences during physical human-robot interaction. ACM Transactions on Human-Robot Interaction,
2023.

Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning. In Icml, vol-
ume 1, pp. 2, 2000.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
low instructions with human feedback. Advances in neural information processing systems, 35:
27730–27744, 2022.

Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk, and Dorsa Sadigh. Learning reward func-
tions by integrating human demonstrations and preferences. arXiv preprint arXiv:1906.08928,
2019.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Antonin Raffin. Rl baselines3 zoo. https://github.com/DLR-RM/
rl-baselines3-zoo, 2020.

Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In IJCAI, vol-
ume 7, pp. 2586–2591, 2007.

Rohin Shah, Dmitrii Krasheninnikov, Jordan Alexander, Pieter Abbeel, and Anca Dragan. Prefer-
ences implicit in the state of the world. arXiv preprint arXiv:1902.04198, 2019.

Aleksandar Taranovic, Andras Gabor Kupcsik, Niklas Freymuth, and Gerhard Neumann. Adversar-
ial imitation learning with preferences. In The Eleventh International Conference on Learning
Representations, 2022.

Mark Towers, Ariel Kwiatkowski, Jordan Terry, John U Balis, Gianluca De Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Markus Krimmel, Arjun KG, et al. Gymnasium: A standard
interface for reinforcement learning environments. arXiv preprint arXiv:2407.17032, 2024.

Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A survey of preference-
based reinforcement learning methods. Journal of Machine Learning Research, 18(136):1–46,
2017.

Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Deep inverse reinforcement learning.
CoRR, abs/1507.04888, 2015.

12

https://github.com/DLR-RM/rl-baselines3-zoo
https://github.com/DLR-RM/rl-baselines3-zoo

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xu Xie, Changyang Li, Chi Zhang, Yixin Zhu, and Song-Chun Zhu. Learning virtual grasp with
failed demonstrations via bayesian inverse reinforcement learning. In 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 1812–1817. IEEE, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

Brian D Ziebart, J Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
maximum causal entropy. 2010.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ALGORITHM DETAILS

The full algorithm for LEOPARD is given in algorithm 1. Initialisations follow standard neural
network initialisation methods. RandomRollouts generates trajectories by sampling random actions
and resetting the environment when necessary. TrainAgent performs standard PPO on the environ-
ment using the given reward function as the ground truth reward. Hyperparameters used for PPO are
those given in RL Baselines3 Zoo (Raffin, 2020). Details on TrainRewardModel and GetPreferences
are given in appendices A.1 and A.2.1 respectively. The generation of the demonstrations and their
rankings is detailed in appendix A.2.2.

Algorithm 1 LEOPARD

Input
niters Number of iterations to perform
nrollout-steps Number of environment rollout steps
nprefs Number of preferences to sample
Dpos Positive demonstrations
<pos Positive demonstrations partial ordering
Dneg Negative demonstrations
<neg Negative demonstrations partial ordering

Output
π Trained agent policy
Rθ Learnt reward function

nrollout-steps-per-iter ← ⌊nrollout-steps/(niters + 1)⌋
nprefs-per-iter ← ⌊nprefs/niters⌋
Dagent ← ∅ ▷ Agent trajectory pool
P ← ∅ ▷ Preferences dataset
π ← InitialiseAgent()
Rθ ← InitialiseRewardFunction()
Dnew-trajectories ← RandomRollouts(nrollout-steps-per-iter)

for 1 to niters do
P ← P ∪ GetPreferences(nprefs-per-iter,Dnew-trajectories,Dagent)
Dagent ← Dagent ∪ Dnew-trajectories
Rθ ← TrainRewardModel(Rθ,Dpos, <pos,Dneg, <neg,Dagent,P)
π,Dnew-trajectories ← TrainAgent(π,Rθ, nrollout-steps-per-iter)

end for

A.1 REWARD MODEL TRAINING

The reward model is trained by optimising the loss function eq. (6) with the AdamW optimiser.
Batches of Dpos,Dneg,Dagent, and P are sampled as detailed in appendix A.1.1, and then encoded
via eqs. (7) and (8). Additionally, the batch loss is normalised according to the batch size, detailed
in appendix A.1.2. Instead of training for a fixed number of steps / epochs, training steps are taken
until some stopping condition is achieved, as detailed in appendix A.1.3. Together these procedures
could result in varying coverages for each data source, from potentially many ‘epochs’,9 to only
sampling a small fraction of it.

A.1.1 BATCH SAMPLING

Dpos,Dneg,Dagent, and P are independent, heterogeneous, and in general of different sizes. This
makes batch sampling non-trivial to perform. First batch sizes for each of the data sources is de-
termined, and then each one is sampled independently. As is typical, they are sampled without

9Since our data sources are of varying sizes and not partitioned into equal numbers of batches, the notion of
a training epoch - one complete pass over all training data - is not well-defined. We do however have notions
of data source specific epochs.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

replacement until empty, and then reset, potentially multiple times if that’s required to fill the batch.
Batches for <pos and <neg are simply derived from the respective batches of Dpos and Dneg.

There is a maximum batch size for the trajectory-type data sources (Di), and a maximum batch size
for P . These could be different as trajectory-fragments are typically smaller than trajectories, and
we may want to ensure a portion of (V)RAM is available for each. Batch sizes are also generated
to be somewhat proportional to the size of their respective datasets. This is important as we don’t
want to diminish the importance of a data source that has lots of data generated for it, nor over-
represent data sources with only a few data points. Once the proportionality constants are known,
the sizes are scaled so that at least one of the batch sizes is at its maximum, and none of them exceed
their maximums. Some data sources, namely Dagent, are treated as ‘in-excess’, and not taken into
account when trying to make batch sizes proportional to dataset sizes. These are simply given their
maximum size.

A.1.2 LOSS NORMALISATION ACROSS BATCH

As we want our gradient steps to be roughly unity in magnitude and independent of the batch size,
we need to normalise it. Typically, this is very easy in supervised learning—one can simply take
an average across the batch—but this is not the case for eq. (6). Expansion of the gradient of the
loss with respect to θ, and noting our reward function operates at the level of transitions within
trajectories, reveals the correct normalising factor to divide by:∑

(τi,<j)∈D×C

Length(τi) · 1∃τk∈D.τk ̸=τi∧τk<jτi .

This assumes a fixed length of fragments for each partial ordering.

A.1.3 STOPPING CONDITIONS

Generally, the reward function loss from poorly-fitted demonstration rankings are much higher than
poorly fitted preferences. This is because trajectories are typically longer than trajectory-fragments
and demonstrations generate more ‘<’ comparisons than a preference. However, the distribution of
demonstrations are typically quite far from that of the agent trajectories, which the preferences have
been generated over. This makes it much easier for the reward function to separate the demonstra-
tions from agent behaviour and thus achieve a low loss on the demonstration ordering, than it does
for it to get low loss on all the preference orderings.

The consequence of the above two facts is that if we were training on just the demonstrations, we’d
want to do at most a few epochs (to learn fast and avoid overfitting), but if we were training on just
the preferences we might want to do more (as learning is slower and overfitting less of a potential
issue). Thus, as the amount of data in each dataset varies in each iteration, it does not make sense to
have a pre-specified number of training steps, and instead a stopping condition should be used.

Our stopping condition simply checks if the training loss has loosely converged. At each step we
check if the training loss is within ±0.001 of the last step’s training loss. If this occurs 3 times in a
row, we stop training the reward model for that iteration, and return to agent training. Empirically
this strikes the balance between learning and avoiding overfitting.

A.2 SYNTHETIC FEEDBACK

A.2.1 PREFERENCES

In algorithm 1, the GetPreferences function randomly samples trajectory fragments for comparison,
with a bias to sampling from new trajectories. We are using a synthetic oracle which uses the ground
truth reward function to noisily generate preferences, simulating the imperfect human rationality.
More specifically, for each sampled pair of fragments, the sigmoid of their reward difference is used
as the parameter for a Bernoulli random variable which is then sampled to generate the preference.

A.2.2 DEMONSTRATIONS

To create demonstrations for our tasks, we simply train an agent on the ground truth reward function
(or its negation in the case of negative demonstrations). Several agents are trained, and the best

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

few, nselected, are picked. From these agents, we create a list of their trajectories, ordering from
their latest attempts to their first, and interleaving each agent together with the best agent first. For
training an agent from feedback, if n demonstrations are being used, the first n demonstrations from
this list are provided. Rankings are generated automatically based on the ground truth reward of
each demonstration, making <pos and <neg total orders.10 The ground truth reward per agent step
and number selected, nselected, of all demonstrations trained are given in Figures 5 and 6 for positive
and negative demonstrations respectively.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

500

0

500

1000

1500

2000

2500

3000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(a) Half Cheetah, nselected = 4

0 100000 200000 300000 400000 500000
Agent Step

8000

6000

4000

2000

0

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(b) Cliff Walking, nselected = 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

1500

1000

500

0

500

1000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(c) Lunar Lander, nselected = 8

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

0

1000

2000

3000

4000

5000
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

(d) Ant, nselected = 8

Figure 5: Ground truth reward vs agent steps for the positive demonstrations that were trained
in every environment. We also state how many were selected as good examples to be used for
demonstration learning.

10They are not required to be total orders to apply the general method.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

4000

3500

3000

2500

2000

1500

1000

500

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(a) Half Cheetah, nselected = 8

5000 10000 15000 20000 25000 30000
Agent Step

10000

8000

6000

4000

2000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(b) Cliff Walking, nselected = 8

0 50000 100000 150000 200000 250000 300000 350000 400000
Agent Step

1600

1500

1400

1300

1200

1100

1000

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(c) Lunar Lander, nselected = 8

0 50000 100000 150000 200000 250000 300000 350000 400000
Agent Step

2500

2000

1500

1000

500

Gr
ou

nd
 Tr

ut
h

Re
wa

rd

(d) Ant, nselected = 4

Figure 6: Ground truth reward vs agent steps for the negative demonstrations that were trained in
every environment. We also state how many were selected as bad examples to be used for demon-
stration learning.

B ENVIRONMENT DETAILS

Here we give details on versions / modifications made for each environment, as well as environment-
specific hyperparameters summarised in table 1.

Environment Traj Len Pref Len niters nrollout-steps Rng Seeds Pref-time : Demo-time

Half Cheetah 1k 50 8 8M 32 1:1
Cliff Walking 250 25 8 256k 16 1:1
Lunar Lander 250 50 8 8M 24 8:1
Ant 1k 50 16 16M 12 1:1

Table 1: Environment specific hyperparameters. ‘Traj Len’ refers to the fixed trajectory length
for that environment, ‘Pref Len’ is the length of preference fragments - the contiguous trajectory
subsequences that are used to generate preferences. Both are measured in environment timesteps.

B.1 HALF CHEETAH

The v4 version is used out-of-the-box, trajectories are 1k timesteps and preference fragments are 50
timesteps. 8 iterations are used with a total of 8M environment rollout steps. Results are averaged
over 32 different seeds.

B.2 CLIFF WALKING

The v0 version is modified to have a fixed horizon of 250 timesteps and a custom reward function.
Preference fragments are 10 timesteps, and 8 iterations are used with a total of 256k environment
rollout steps. Results are averaged over 16 different seeds.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

The standard version has a reward of -1 every timestep with the episode terminating when the end is
reached. Walking off the cliff gives -100 reward and returns the agent to the start. Our fixed horizon
version of this is the same except reaching the end state does not terminate the environment, and
instead grants 5 reward per timestep spent there. This was based on what lead to good learning with
PPO and access to the reward function directly.

As the reward function is sparse, for sampling preferences only, a shaped version of it is used to
simulate human intuition on what behaviours are closer to optimal. The penalty for walking off
cliffs remains the same, but otherwise the agent receives a weighted reward of -1 and 5 depending
on how close in L1 norm it is to the start/end state respectively.

B.3 LUNAR LANDER

The v2 version is modified to have a fixed horizon of 250 timesteps and a custom reward function.
Preference fragments are 50 timesteps, and 8 iterations are used with a total of 16M environment
rollout steps. Results are averaged over 24 different seeds.

The reward function used is mostly the same as in the Gymnasium version, except instead of termi-
nating on game over or the lander not being awake (i.e. landed), a -1 or +1 reward is issued each
timestep respectively. Note that as seen in figs. 2 to 4, this can lead to very large negative rewards.

B.4 ANT

V4 version with terminate_when_unhealthy=False so that there are more maximum
length trajectories. Trajectories are 1k timesteps and preference fragments are 50 timesteps. Re-
sults are averaged over 12 different seeds.

C SUPPLEMENTARY RESULTS

Method RM epochs Final Ground Truth Reward ± std error
per iter Half Cheetah Cliff Walking Lunar Lander Ant

LEOPARD (ours) - 1460 ± 228 763 ± 118 -231 ± 138 -382 ± 303
AILP - -91 ± 20 678 ± 167 -2271 ± 421 220 ± 151
DeepIRL then RLHF 1 511 ± 118 113 ± 184 -1565 ± 212 -1733 ± 159
DeepIRL then RLHF 2 492 ± 159 79 ± 188 -1652 ± 236 -1539 ± 213
DeepIRL then RLHF 4 1269 ± 208 33 ± 144 -748 ± 149 -1522 ± 192
DeepIRL then RLHF 8 718 ± 176 98 ± 168 -1292 ± 282 -1337 ± 216
RLHF then DeepIRL 1 156 ± 138 - - -
RLHF then DeepIRL 2 229 ± 228 - - -
RLHF then DeepIRL 4 769 ± 242 - - -
RLHF then DeepIRL 8 599 ± 196 - - -

LEOPARD (ours) - 797 ± 242 667 ± 120 -201 ± 147 -439 ± 157
AILP - -102 ± 23 536 ± 141 -376 ± 125 -396 ± 139
DeepIRL 1 31 ± 170 472 ± 161 -1154 ± 221 -698 ± 299
DeepIRL 2 205 ± 146 810 ± 162 -664 ± 172 -1303 ± 229
DeepIRL 4 661 ± 180 737 ± 107 -1140 ± 230 -271 ± 476
DeepIRL 8 385 ± 159 977 ± 78 -720 ± 229 -827 ± 213

Table 2: Final ground truth reward with standard error for LEOPARD against a variety of baselines.
(Top) 50/50 mix of preferences and positive demonstrations with baselines of AILP, performing
DeepIRL followed by RLHF, and performing RLHF followed by DeepIRL (Half Cheetah only). See
Figure 2 for reward vs algorithm iteration. (Bottom) Only positive demonstrations with baselines
of AILP and DeepIRL. See Figure 3 for reward vs algorithm iteration. ‘RM epochs per iter’ is the
number of training epochs for the reward model on each iteration of the algorithm, required to be
fixed for DeepIRL. Best in column for section.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Feedback types Final Ground Truth Reward ± std error
Half Cheetah Cliff Walking Lunar Lander Ant

Preferences 1225 ± 219 289 ± 147 -213 ± 110 -980 ± 242
Positive demonstrations 797 ± 242 667 ± 120 -201 ± 147 -439 ± 157
Preferences and positive demos 1460 ± 228 763 ± 118 -232 ± 138 -383 ± 303
Positive and negative demos 1072 ± 206 792 ± 104 -67 ± 81 -2598 ± 44
Prefs, pos and neg demos 1097 ± 183 1015 ± 30 -182 ± 110 -2463 ± 69

Table 3: Final ground truth reward with standard error for LEOPARD across a variety of mixture of
types of feedback. For details on feedback amounts per environment and the reward vs algorithm
iteration see Figure 4. Best in column.

0 1 2 3 4 5 6 7
Iteration

500

0

500

1000

1500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(a) Half Cheetah, ndemos = 4, nprefs = 40

0 1 2 3 4 5 6 7
Iteration

1500

1000

500

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(b) Cliff Walking, ndemos = 2, nprefs = 10

0 1 2 3 4 5 6 7
Iteration

4000

3500

3000

2500

2000

1500

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(c) Lunar Lander, ndemos = 4, nprefs = 80

0 2 4 6 8 10 12 14
Iteration

2600

2400

2200

2000

1800

1600

1400

1200

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(d) Ant, ndemos = 8, nprefs = 80

Figure 7: Breakdown of the DeepIRL followed by RLHF baseline, for different numbers of epochs
that the reward model was trained for per algorithm iteration. The lines denote the mean of the
ground truth reward function, with shaded standard errors, against algorithm iterations. Solid lines
are smoothed means for clarity, dashed lines give raw values.

Method RM epochs per iter Cliff Walking Outliers

LEOPARD (ours) - 0
AILP (demonstrations and preferences) - 4
AILP (demonstrations only) - 0
DeepIRL only 1, 2, 4, 8 0
DeepIRL then RLHF 1 5
DeepIRL then RLHF 2 7
DeepIRL then RLHF 4 2
DeepIRL then RLHF 8 4

Table 4: Outliers for Cliff Walking that were removed from the main analysis. This is defined
as having less than -3000 reward on any iteration from the second onwards. Note there were 16
random seeds in total. Values for LEOPARD and DeepIRL only given as a total across all relevant
experiments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7
Iteration

600

400

200

0

200

400

600

800

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

Figure 8: Breakdown of the RLHF followed by DeepIRL baseline for Half Cheetah (ndemos = 4,
nprefs = 40), for different numbers of epochs that the reward model was trained for per algorithm
iteration. The lines denote the mean of the ground truth reward function, with shaded standard
errors, against algorithm iterations. Solid lines are smoothed means for clarity, dashed lines give
raw values.

0 1 2 3 4 5 6 7
Iteration

600

400

200

0

200

400

600

800

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(a) Half Cheetah, ndemos = 8

0 1 2 3 4 5 6 7
Iteration

3000

2000

1000

0

1000

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(b) Cliff Walking, ndemos = 4

0 1 2 3 4 5 6 7
Iteration

3000

2500

2000

1500

1000

500

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(c) Lunar Lander, ndemos = 8

0 2 4 6 8 10 12 14
Iteration

2500

2000

1500

1000

500

0

M
ea

n
Gr

ou
nd

 Tr
ut

h
Re

wa
rd

Epochs=1
Epochs=2
Epochs=4
Epochs=8

(d) Ant, ndemos = 16

Figure 9: Breakdown of the DeepIRL baseline, for different numbers of epochs that the reward
model was trained for per algorithm iteration. The lines denote the mean of the ground truth reward
function, with shaded standard errors, against algorithm iterations. Solid lines are smoothed means
for clarity, dashed lines give raw values.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D MAIN PROOFS

Here we more stringently define and prove the theoretical result from the end of section 3.1, and
then prove the models considered in Appendix E do not satisfy it.
Theorem 1. Upper bounds on RRPO loss give lower bounds on reward difference of related frag-
ments. For all ϵ > 0, if LRRPO ≤ ϵ, then for all τa, τb ∈ D2 where there exists a <x∈ C such that
τa <x τb, we have the following:

Rθ(τb)−Rθ(τa) > −
1

βx
log(eϵ − 1), (9)

where βx is the rationality coefficient of <x.

Proof. We will prove this by contrapositive, that is if:

Rθ(τb)−Rθ(τa) ≤ −
1

βx
log(eϵ − 1), (10)

for some ϵ > 0, and there exists a <x such that τa <x τb, then LRRPO > ϵ.

Assume eq. (10) and that the relevant <x exists. Consider eq. (6):

LRRPO(θ) = − logPRRPO(C|D, θ)

= −
∑

(τi,<j)∈D×C

log
exp(βjRθ(τi))

exp(βjRθ(τi)) +
∑
τk∈D 1τk<jτi exp(βjRθ(τk))

=
∑

(τi,<j)∈D×C

log
exp(βjRθ(τi)) +

∑
τk∈D 1τk<jτi exp(βjRθ(τk))

exp(βjRθ(τi))

=
∑

(τi,<j)∈D×C

log

(
1 +

∑
τk∈D 1τk<jτi exp(βjRθ(τk))

exp(βjRθ(τi))

)
.

Consider the term (τb, <x), and bring it outside the summation.

LRRPO(θ) = log

(
1 +

∑
τk∈D 1τk<xτb exp(βxRθ(τk))

exp(βxRθ(τb))

)
+

∑
(τi,<j)∈D×C

(τi,<j)̸=(τb,<x)

log (1 + ...) .

The remaining terms are strictly positive, and 1τa<xτb = 1.

LRRPO(θ) > log

(
1 +

exp(βxRθ(τa)) + ...

exp(βxRθ(τb))

)
= log

(
1 + exp(βxRθ(τa)− βxRθ(τb)) +

...

exp(βxRθ(τb))

)
> log (1 + exp(βx(Rθ(τa)−Rθ(τb)))) ,

by ignoring terms that are strictly positive. Sub in eq. (10).

LRRPO(θ) > log

(
1 + exp

(
βx

(
1

βx
log(eϵ − 1)

)))
= log (1 + eϵ − 1)

= ϵ,

as required.

Consider a special case where ϵ = log 2, eq. (9) becomes:

Rθ(τb)−Rθ(τa) > −
1

βx
log
(
elog 2 − 1

)
= 0,

∴ Rθ(τb) > Rθ(τa).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E ALTERNATIVE RRC-DERIVED APPROACHES

RRPO and LEOPARD are very simple and natural extensions of existing work, however, they are
not trivially so. Building off RRC, there are several approaches to preference and demonstration
learning that appear natural and are simple, and yet are deficient. Here we explore two of them in
the preference and ranked positive demonstrations only setting.

Let the notation be as defined in section 3.2. We will assume that preferences, positive demonstra-
tion selection, and the rankings over the positive demonstrations are all independent. Our overall
likelihood function shall be:

PFeedback(C|D, θ) = PPos-Demo(Dpos ≻ Dagent|Dpos,Dagent, θ)

· PRank(<pos |Dpos, θ)

·
∏

(τa,τb)∈P

PRLHF(τa ≻ τb|θ), (11)

where PRank is something sensible.

We consider two potential candidates for PPos-Demo derived via RRC in a simple manner:

PSum-of-Choices(...) =
∑
τ∈Dpos

PRRC(Cτ |Dpos ∪ Dagent, θ), (12)

PChoose-Best-Average(...) = PRRC(CAvg(Dpos)|{Avg(Dpos),Avg(Dagent)}, θ). (13)

Thus:

PSum-of-Choices(...) =

∑
τ∈Dpos

exp(Rθ(τ))∑
τ∈Dpos

exp(Rθ(τ)) +
∑
τ∈Dagent

exp(Rθ(τ))
, (14)

PChoose-Best-Average(...) =
exp

(
1

|Dpos|
∑
τ∈Dpos

Rθ(τ)
)

exp
(

1
|Dpos|

∑
τ∈Dpos

Rθ(τ)
)
+ exp

(
1

|Dagent|
∑
τ∈Dagent

Rθ(τ)
) , (15)

with

LSoC = − logPSum-of-Choices, (16)
LCBA = − logPChoose-Best-Average. (17)

Rationality coefficients are omitted since they are not critical to this analysis. We shall show that
these models have undesirable theoretical properties, and poorer empirical performance compared
to LEOPARD.

E.1 THEORETICAL PROPERTIES

Neither PSum-of-Choices nor PChoose-Best-Average have the property that upper bounds on their negative-
log-likelihood give rise to lower bounds on reward differences between demonstrated trajectories and
ones sampled from the agent, unlike PRRPO. We prove this in theorems 2 and 3 in Appendix E.2.1.
Whilst this may not seem too critical, its combination with the potential effects of PRank, and its
interaction with exploration in RL, can cause a very undesirable failure mode.

Imagine an environment where three distinct behaviours are possible, A, B, and C. We prefer C to
B, and B to A, so we provide a demonstration of B and C each, τb, τc, and express via the ranking
model that τc ≻ τb. This ranking is fitted by assigning high reward to C, and low to B. Our agent is
initialised generating from A. Our demonstration model, seeing τc have high reward, does not lower
the reward of A that much, and does not mind that τb has low reward. We’re left with low loss and
yet a reward model that could prefer A to B.

Now consider that our environment has some unfavourable dynamics. Policies that generate A, are
quite different from those that generate C, with B being somewhere between the two. Thus, to
eventually generate C, our policy will first need to explore B. However, our reward model gives it

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

lower reward when it tries this, and so the agent sticks to what it thinks is best, behaviour A, much
to our disappointment.

Whilst a little contrived, the above story highlights a certain failure mode that could occur if one
combined demonstration rankings with a demonstration model that does not satisfy theorem 1. If it
did satisfy it, such as for RRPO and LEOPARD, then low loss cannot be achieved unless the reward
model prefers B to A, preventing the issue.

Alleviating this problem by omitting the rankings is suboptimal, as we lose information. However,
PSum-of-Choices suffers further. It is shown in Appendix E.2.2 that the gradient of LSoC with respect to
θ can be expressed in the following form.

− ∂

∂θ
LSoC =

∑
τa∈Dagent

PRRC(Ca|T , θ)

 ∑
τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∂

∂θ
Rθ(τa)

 , (18)

where Ci is the human choice for τi, and T = Dpos ∪ Dagent. We see that the reward of agent
trajectories are pushed down proportional to the probability that they would be chosen out of the
combined set of trajectories. This makes sense—if our reward model thinks highly of specific agent
trajectories, it ought to adjust its beliefs so that it no longer favours them.

However, the demonstration trajectories are also pushed up in reward proportional to the probability
that they would be chosen. That is to say, the better the reward model thinks the demonstrated
trajectory is, the more it thinks it should increase its reward, a positive feedback loop! In practice,
the reward model is going to have some initial preferences over the demonstrated trajectories due to
its initialisation. Since this will be random, it will most likely be incorrect. It will then proceed to
reinforce its own incorrect beliefs and lock-in its own ranking of the demonstrations. This means
our reward model will not provide correct rewards to guide the agent towards better behaviour in
the trajectory space around the demonstrations. Furthermore, if it generalises from these incorrect
beliefs, it could also become wrong about other parts of trajectory space, further reducing the quality
of the reward signal for the agent.

E.2 CHAPTER PROOFS AND DERIVATIONS

E.2.1 REWARD BOUNDS

Theorem 2. Upper bounds on Sum-of-Choices loss do not give lower bounds on reward difference
between demonstrations and agent trajectories. For all ϵ > 0, if LSoC ≤ ϵ, we cannot guarantee
that

Rθ(τp)−Rθ(τa) > f(ϵ) (19)

for all τp, τa ∈ Dpos ×Dagent, where f is a function of type R+ → R.

Proof. We will prove this by example.

Consider

Dpos = {τ1, τ2},
Dagent = {τa},
Rθ(τ1) = r1,

Rθ(τ2) = r2,

Rθ(τa) = ra.

We now expand eq. (16) with eq. (14) and the above.

LSoC(θ) = − log

(
er1 + er2

er1 + er2 + era

)
= log

(
1 +

era

er1 + er2

)
.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Assume LSoC ≤ ϵ, therefore

log

(
1 +

era

er1 + er2

)
≤ ϵ,

ra ≤ log ((eϵ − 1)(er1 + er2)) .

Let

ra = log ((eϵ − 1)(er1 + er2)) .

Consider r1 − ra, substituting in the above expression:

r1 − ra = r1 − log((eϵ − 1)(er1 + er2))

= r1 − log(eϵ − 1)− log(er1 + er2)

≤ r1 − log(eϵ − 1)− r2,

as log(x+ y) ≥ log(y) for positive x and y. Thus, we see that for a fixed r1 and ϵ, we can choose
r2 and ra such that LSoC ≤ ϵ, but r1 − ra can be arbitrarily negative.

Theorem 3. Upper bounds on Choose-Best-Average loss do not give lower bounds on reward dif-
ference between demonstrations and agent trajectories. For all ϵ > 0, if LCBA ≤ ϵ, we cannot
guarantee that

Rθ(τp)−Rθ(τa) > f(ϵ) (20)

for all τp, τa ∈ Dpos ×Dagent, where f is a function of type R+ → R.

Proof. We will proceed similarly to the above, assuming the same notation.

Expanding eq. (17) with eq. (15).

LCBA(θ) = − log

(
exp

(
1
2 (r1 + r2)

)
exp

(
1
2 (r1 + r2)

)
+ exp(ra)

)

= log

(
1 +

exp(ra)

exp
(
1
2 (r1 + r2)

))

= log

(
1 + exp

(
ra −

1

2
(r1 + r2)

))
.

Assume LCBA ≤ ϵ, therefore

log

(
1 + exp

(
ra −

1

2
(r1 + r2)

))
≤ ϵ,

ra ≤ log(eϵ − 1) +
1

2
(r1 + r2).

Let

ra = log(eϵ − 1) +
1

2
(r1 + r2).

Consider r1 − ra, substituting in the above expression:

r1 − ra = r1 − log(eϵ − 1)− 1

2
(r1 + r2).

Again, we see that for a fixed r1 and ϵ, we can choose r2 and ra such that LSoC ≤ ϵ, but r1− ra can
be arbitrarily negative.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E.2.2 LOSS GRADIENTS

Here we will show that the gradient with respect to θ of LSoC can be expressed in the form given in
eq. (18) of appendix E.1.

First we give a simplification of deterministic RRC with β = 1 and ψ(x) = x for all x, and some
additional notation:

C : ()→ D,

PRRC(Ci|D, θ) =
eRθ(τi)∑

τj∈D e
Rθ(τj)

,

T = Dpos ∪ Dagent.

Now we derive some useful identities.

∂

∂θ
log
∑
τ∈D

eRθ(τ) =
∂
∂θ

∑
τi∈D e

Rθ(τi)∑
τj∈D e

Rθ(τj)

=
∑
τi∈D

∂
∂θ e

Rθ(τi)∑
τj∈D e

Rθ(τj)

=
∑
τi∈D

eRθ(τi)∑
τj∈D e

Rθ(τj)

∂

∂θ
Rθ(τi)

=
∑
τi∈D

PRRC(Ci|D, θ)
∂

∂θ
Rθ(τi), (21)

PRRC(Ci|A, θ) =
eRθ(τi)∑

τj∈A e
Rθ(τj)

=
eRθ(τi)∑

τj∈A e
Rθ(τj)

∑
τk∈A∪B e

Rθ(τk)∑
τk∈A∪B e

Rθ(τk)

=
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)
, (22)

PRRC(Ci|A, θ)− PRRC(Ci|A ∪ B, θ) =
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)
− PRRC(Ci|A ∪ B, θ)

=
PRRC(Ci|A ∪ B, θ)

(
1−

∑
τj∈A PRRC(Ci|A ∪ B, θ)

)
∑
τj∈A PRRC(Cj |A ∪ B, θ)

=
PRRC(Ci|A ∪ B, θ)

∑
τk∈B PRRC(Ck|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)

=
∑
τk∈B

PRRC(Ck|A ∪ B, θ)
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)

=
∑
τk∈B

PRRC(Ck|A ∪ B, θ)PRRC(Ci|A, θ) (23)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Now we use these identities to derive the special form of the gradient of LSoC.

− ∂

∂θ
LSoC =

∂

∂θ
log

∑
τ∈Dpos

eRθ(τ)∑
τ∈Dpos

eRθ(τ) +
∑
τ∈Dagent

eRθ(τ)

=
∂

∂θ
log

∑
τ∈Dpos

eRθ(τ) − ∂

∂θ
log
∑
τ∈T

eRθ(τ)

=
∑

τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∑
τi∈T

PRRC(Ci|T , θ)
∂

∂θ
Rθ(τi)

=
∑

τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∑
τp∈Dpos

PRRC(Cp|T , θ)
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τp∈Dpos

(PRRC(Cp|Dpos, θ)− PRRC(Cp|T , θ))
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τp∈Dpos

∑
τa∈Dagent

PRRC(Ca|T , θ)PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τa∈Dagent

PRRC(Ca|T , θ)

 ∑
τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∂

∂θ
Rθ(τa)

 . (24)

26

	Introduction
	Related Work and Background
	Demonstration-Based RL
	Preference-Based RL
	Combining Demonstrations and Preference Feedback
	Learning From Other Types of Feedback

	Method
	Reward Rational Partial Orderings
	LEOPARD

	Experiments
	Results
	Discussion
	Generality of RRPO
	Limitations and Future Work
	Conclusion

	Algorithm Details
	Reward Model Training
	Batch Sampling
	Loss Normalisation Across Batch
	Stopping Conditions

	Synthetic Feedback
	Preferences
	Demonstrations

	Environment Details
	Half Cheetah
	Cliff Walking
	Lunar Lander
	Ant

	Supplementary Results
	Main Proofs
	Alternative RRC-Derived Approaches
	Theoretical Properties
	Chapter Proofs and Derivations
	Reward Bounds
	Loss Gradients

