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ABSTRACT

Reinforcement learning is a general method for learning in sequential settings, but
it can often be difficult to specify a good reward function when the task is com-
plex. In these cases, preference feedback or expert demonstrations can be used
instead. However, existing approaches utilising both together are either ad-hoc or
rely on domain-specific properties. Building upon previous work, we develop a
novel theoretical framework for learning from human data. Based on this we in-
troduce LEOPARD: Learning Estimated Objectives from Preferences And Ranked
Demonstrations. LEOPARD can simultaneously learn from a broad range of data,
including negative/failed demonstrations, to effectively learn reward functions in
general domains. It does this by modelling the human feedback as reward-rational
partial orderings over available trajectories. We find that when a limited amount of
human feedback is available, LEOPARD outperforms the current standard prac-
tice of pre-training on demonstrations and finetuning on preferences, as well as
other baselines. Furthermore, we show that LEOPARD learns faster when given
many types of feedback, rather than just a single one.

1 INTRODUCTION

Reinforcement Learning (RL) is a branch of machine learning where an agent learns a behavioural
policy by interacting with an environment and receiving rewards. These rewards are determined by
a reward function that mathematically encodes the objective of the agent. For real-world practical
applications of RL, such as robotics or Large Language Model (LLM) finetuning, the specification of
the reward function poses a difficult challenge. Two popular RL subfields try to solve this problem by
leveraging human data in order to learn what the reward function should be, typically by optimising
a parameterised function such as a neural network.

Inverse RL (IRL) utilises human-provided demonstrations of the correct behaviour and tries to learn
a reward function for which only the demonstrations, or similar behaviour, are near-optimal (Ng
et al., 2000; Ziebart et al., 2008; Wulfmeier et al., 2015). RL from Human Feedback (RLHF)
presents the human with pairs of agent–behaviour examples. For each pair, the human decides
which piece of behaviour is better, and the reward function is trained to re-produce this preference
(Christiano et al., 2017). Both methods iterate between reward model and agent training. For more
details on IRL and RLHF, see sections 2.1 and 2.2, respectively. For many applications it might be
possible and desirable to generate and learn from both of these feedback types, rather than com-
mitting to a single one. The current standard approach is to first train on demonstrations and then
finetune the resulting model with preferences (Ibarz et al., 2018; Palan et al., 2019; Bıyık et al.,
2022). Some methods have been proposed to more effectively leverage the information encoded in
both the preferences and demonstrations, but this is still largely ad-hoc or specific to certain domains
(Krasheninnikov et al., 2021; Mehta & Losey, 2023; Brown et al., 2019). We discuss these methods
further in section 2.3.

In an attempt to solve this problem for general domains—and for many types of feedback including
preferences and demonstrations—Jeon et al. (2020) propose Reward-Rational Choice (RRC). This
frames the human feedback data as Boltzmann-Rational choices according to a probability distribu-
tion which has been induced by some unknown true reward function. Learning the reward function
can then be cast as a supervised learning problem where we try to replicate these choices. Unfortu-
nately, RRC is often difficult to implement in practice. For example, in the case of demonstration
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Step 3:
Train agent via RL.
Go to step 1b and repeat.

Reward ModelLEOPARD
Encoding

RRPO Loss Minimisation

Human
Teacher

Agent

Environment

Sample 

Mixed
Demonstrations

Step 1a:
Teacher provides demonstrations of
good and bad behaviour, .

Step 1b:
Teacher samples agent's attempts and
provides pairwise preference feedback.

Preferences

Step 2:
Feedback is used to train parameters
for a reward function.

Agent Trajectories

Figure 1: High-level overview of the LEOPARD algorithm. A teacher provides ranked examples
of positive and negative demonstrations, as well as providing preference feedback over the agent’s
behaviour. This is used to train a reward model that the agent optimises via standard RL. The process
is iterative. The LEOPARD encoding is given in Equations (7) and (8), and PRRPO is detailed in
Equation (5).

feedback, they treat it as a choice over all possible behaviours. This space is incredibly difficult to
optimise over if it is very large and our reward function is non-linear, as is often the case for practi-
cal problems. Additionally, it cannot encode multiple selections for the ‘optimal choice’, nor can it
encode more complex relationships between behaviours such as rankings or dis-preference.

To address these limitations, we introduce a new theoretical framework which frames the human
feedback as reward-rational partial orderings over trajectories (RRPO). These partial orderings are
then encoded by sets of Boltzmann-Rational choices, analogous to the Plackett-Luce ranking model
(Marden, 1996). From this we derive LEOPARD: Learning Estimated Objectives from Preferences
And Ranked Demonstrations, which is outlined in Figure 1. In addition to preferences and ranked
(positive) demonstrations, LEOPARD can also learn from ranked negative/failed demonstrations.
Preferences are interpreted as they are in RRC, but positive demonstrations are interpreted as being
preferred to the agent’s current and future behaviour, or the opposite in the case of negative demon-
strations. Demonstration rankings, if available, are also cleanly translated into partial orderings.

LEOPARD can utilise a wide range of feedback types simultaneously, making it effective at learning
useful reward functions in general environments. We find that when preference and positive demon-
stration feedback is available, it outperforms the standard baseline of performing DeepIRL on the
demonstration data, and then finetuning using preferences. It also beats Adversarial Imitation Learn-
ing with Preferences (AILP), another preference and positive demonstration learning algorithm, in
three out the four environments tested on. Additionally, when only positive demonstration feedback
is available, LEOPARD outperforms or matches DeepIRL and AILP due to its ability to exploit
ranking data. Finally, we show that LEOPARD can learn more effectively when given a variety of
feedback types, rather than focussing on large amounts of a single one.

To summarise, we make the following contributions:

1. We introduce RRPO, a practical and general framework for interpreting human feedback.

2. We introduce LEOPARD, an effective and scalable method for learning from preferences,
and positive/negative ranked demonstrations.

3. We provide evidence that learning from many types of feedback can be superior to fo-
cussing on only one.
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2 RELATED WORK AND BACKGROUND

2.1 DEMONSTRATION-BASED RL

A popular paradigm for learning from demonstrations is Inverse RL (IRL), where the demonstrations
are used to learn a reward function (Ng et al., 2000). This overcomes many issues of behavioural
cloning, which aims to directly mimic the given demonstrations (Bratko et al., 1995). Many cur-
rent methods for IRL are based on the principle of maximum (causal) entropy (MaxEnt; MCE),
established by Ziebart et al. (2008; 2010). This learns a reward function that captures the fact
that the human demonstrations are optimal, but beyond this, it tries to have as much uncertainty
about the reward dynamics as possible. Assuming a deterministic environment simplifies MCE into
MaxEnt, and this assumption has been used to extend this class of methods into settings with high-
dimensional observation spaces, e.g. DeepIRL (Wulfmeier et al., 2015). Advanced extensions of
DeepIRL have been proposed, leveraging methods such as importance sampling (Finn et al., 2016),
or GAN-style architectures (Fu et al., 2018). For a more comprehensive introduction to MCE and
its derivatives, see Gleave & Toyer (2022). Our proposed algorithm does not reduce to a MaxEnt-
derived method in the demonstration only case, but is still inspired by the principle and is of a
similar form. Bayesian methods in IRL have also been explored (Ramachandran & Amir, 2007;
Brown et al., 2020), highlighting how a probabilistic framing of the inverse learning problem can be
useful.

2.2 PREFERENCE-BASED RL

RLHF (Christiano et al., 2017) use preferences—pairwise comparisons of agent behaviour—to learn
a reward function for high-dimensional RL environments via the Bradley-Terry preference model
(Bradley & Terry, 1952). A 3-step iterative procedure is used: sampling of new comparisons of
recent agent behaviour, fitting the reward model to the comparison dataset, and training of the policy
on the learnt reward function. The reward model is fitted by minimising the following loss function:

LRLHF(θ) = −
∑

(τa,τb)∈P

logPRLHF(τa ≻ τb|θ), (1)

where P is a dataset of pairs of trajectory-fragments1 in which the first is preferred and

PRLHF(τa ≻ τb|θ) =
exp(Rθ(τa))

exp(Rθ(τa)) + exp(Rθ(τb))
, (2)

where Rθ is a parameterised reward function. Wirth et al. (2017) provides a survey of other prefer-
ence based RL methods prior to RLHF.

Recently, RLHF has been used for instruction and safety-finetuning large language models (LLMs)
into chat systems (Ouyang et al., 2022; Bai et al., 2022; Bahrini et al., 2023). These are referred to
as ‘PPO-based’ to disambiguate them from other methods which finetune LLMs from preferences
without learning a reward function, such as DPO (Rafailov et al., 2024). Often the LLM is trained
on demonstrations via behavioural cloning before PPO/DPO. Concerns for the safety, reliability, and
misuse of LLMs has led to a plethora of research on how best to utilise human preferences/rankings
to train these models (Cao et al., 2024; Chaudhari et al., 2024). Despite this, there is a broad lack of
principled use of other feedback types for LLM safety and finetuning. Our method extends RLHF to
be compatible with other sources of feedback, whilst still being practically applicable to problems
like LLM finetuning.

2.3 COMBINING DEMONSTRATIONS AND PREFERENCE FEEDBACK

As mentioned in the case for LLMs, demonstration and preference feedback are typically combined
by pre-training on the demonstration data using IRL/behavioural-cloning methods, and then fine-
tuning the resulting reward model on preferences using RLHF (Ibarz et al., 2018; Palan et al., 2019;
Bıyık et al., 2022). This works well in practice, but it is unclear how to add in further reward infor-
mation, such as negative demonstrations or the relative rankings of demonstrations. Additionally,

1Contiguous subsequences of trajectories.
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information that is present only in the demonstrations might be forgotten or never used, especially if
strong regularisation is applied to the reward model, or the RL policy does not sufficiently explore
when training on the demonstrations.

More sophisticated combinations of preferences and demonstrations have been considered.
Krasheninnikov et al. (2021) sampled trajectories according to reward functions optimal for the pref-
erences, and applied MCE-IRL. This approach is computationally expensive and limited to linear
reward functions over tabular MDPs. Mehta & Losey (2023) combine preferences and demonstra-
tions alongside corrections (Bajcsy et al., 2017), but leverage domain-specific properties of robotics
and encode their demonstrations using trajectory-space perturbations. This method is not applica-
ble outside of robotics, and loses information about how demonstrations are better than most of
trajectory-space, not just better than nearby trajectories. Brown et al. (2019) and Brown & Niekum
(2019) both subsample ranked demonstrations to produce preferences for training the reward model,
giving good results but still losing information about how those demonstrations might be preferred
to other trajectories. Taranovic et al. (2022) combines a novel preference loss with adversarial imi-
tation learning. This is the closest to our work, and so we test against it as a baseline. We also note
that none of these methods can be easily extended to other types of feedback.

Our method enables learning from preference and demonstration feedback in a principled manner,
without leveraging domain-specific properties, and in a way that can be readily extended.

2.4 LEARNING FROM OTHER TYPES OF FEEDBACK

Other types of feedback have been explored in isolation, such as negative demonstrations (Xie et al.,
2019),2 improvements (Jain et al., 2015), off-signals (Hadfield-Menell et al., 2017a), natural lan-
guage (Matuszek et al., 2012), proxy reward functions (Hadfield-Menell et al., 2017b), and even the
initial state (Shah et al., 2019). Jeon et al. (2020) interpret many of these types of feedback as part
of an overarching formalism, reward-rational (implicit) choice (RRC), providing a mathematical
theory for reward learning that combines different types of feedback.

RRC interprets each piece of human feedback as a Boltzmann-Rational choice C from some (possi-
bly implicit) set of choices D with rationality coefficient β. A grounding function, ψ, maps choices
to distributions over trajectories. The expected reward over these distributions gives the value for
each choice under the Boltzmann-Rational model, according to some reward function Rθ.

PRRC(C|D, θ) =
exp
(
β · Eτ∼ψ(C)[Rθ(τ)]

)∑
C′∈D exp

(
β · Eτ∼ψ(C′)[Rθ(τ)]

) . (3)

For a deterministic ψ this simplifies to:

PRRC(C|D, θ) =
exp(βRθ(ψ(C)))∑

C′∈D exp(βRθ(ψ(C ′)))
. (4)

Many of the formalisms of feedback in RRC are not generally applicable, and practical applications
rely on finite state-spaces or linear reward functions. For example, in the case of demonstrations
it assumes access to the set of all possible trajectories, which is potentially uncountable and high-
dimensional.

Our main theoretical contribution is adapting RRC to create RRPO, a more practical and expressive
theoretical grounding of learning from general human feedback.

3 METHOD

We propose LEOPARD, a method for learning from preferences, positive demonstrations, negative
demonstrations, and partial rankings over the given demonstrations. It is practical, flexible, and
applicable to many environments. The aim is that a practitioner can give any and all feedback
possible to the learning algorithm, and this feedback can be continuously learnt from and added
to. First, we develop a general theoretical framework, reward-rational partial ordering (RRPO),
extending that of deterministic reward-rational choice (RRC, Jeon et al. (2020)). Then, we apply
this to the specific case of learning from preferences and mixed demonstrations.

2They refer to these as ‘failed demonstrations’.
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3.1 REWARD RATIONAL PARTIAL ORDERINGS

To ensure the general applicability of our theoretical formalisms, we assume that only the trajectories
our reward optimisation procedure has access to are provided directly. These could be generated dur-
ing the agent’s training or provided by the human in the case of demonstrations. This is assumed as
sensible/relevant trajectories could sit on an unknown manifold in (a high-dimensional) observation
space, crippling random-sampling based approaches.3 We’d expect that reward functions captur-
ing complex desirable behaviour would not be linear, but that they could at least be approximated
sufficiently by some differentiable parameterised function.

Our key insight is to interpret human feedback as a set of Boltzmann-Rational choices encoding
strict partial orderings over the trajectory-fragments we have direct access to, where a fragment
is a contiguous subsequence of a trajectory. For each item in the partial order, we ‘choose’ that
element out of a set containing itself and all elements strictly less than it. This is analogous to the
Plackett-Luce ranking model (Marden, 1996), and is equivalent when the ordering can be viewed as
a total ordering embedded in some larger set. Similar to RRC, each partial ordering is assumed to
be independent given the reward function. Since a partial order may encode a single element being
greater than all others with no other relations, this generalises deterministic choices of RRC.

Formally, let D = {τi}i be the set of all possible fragments of trajectories we have access to,
C = {<j}j the set of human feedback, and Rθ our non-linear reward function parameterised by θ.
Note that <i is used to denote some partial ordering i. We define the likelihood of θ under RRPO as
follows:

PRRPO(C|D, θ) =
∏

(τi,<j)∈D×C

exp(βjRθ(τi))

exp(βjRθ(τi)) +
∑
τk∈D 1τk<jτi exp(βjRθ(τk))

, (5)

where βj is the rationality coefficient for feedback j. βs should be equal if the type of feedback is
the same, e.g. two pairwise preferences. Note that when the partial orderings are sparse, many terms
of the product become unity. We perform gradient descent on the negative-log of eq. (5) to find the
best θ, giving the loss function below:

LRRPO(θ) = − logPRRPO(C|D, θ). (6)

A nice property of LRRPO is that when minimised it faithfully represents the partial orderings. More
precisely, upper bounds on the loss give rise to lower bounds on all reward differences between
fragments that are related by some partial ordering. This is stated formally and proved in theorem 1
of Appendix D. As a special case, if the loss is below log 2 then all reward differences must have the
correct sign, i.e. the reward function induces an ordering compatible with all the partial orderings.

3.2 LEOPARD

Whilst we can apply the framework above to many types of feedback, we now focus on the case of
combining preferences with mixed demonstrations. By mixed demonstrations, we mean ones which
may be positive, negative and, within these two groups, we may have access to the relative rankings
of each demonstration.

A pairwise preference of τa ≻ τb is simply interpreted as a partial ordering with only τb < τa.4
Positive demonstrations are interpreted as a single partial ordering that prefers all positive demon-
strations to any agent trajectories and encodes the relative rankings of the positive demonstrations
themselves. Negative demonstrations are interpreted likewise, but these partial orderings prefer
agent trajectories over the negative demonstrations.

Formally, let Dpos, <pos, and Dneg, <neg be the sets of trajectories and partial orderings encoding
rankings from positive and negative demonstrations, respectively. Let Dagent be the set of trajec-
tories sampled from the agent’s behaviour. Let P = {(τa, τb)i}i be the set of ordered pairs of
trajectory-fragments in which the first is preferred, and Rθ our parameterised reward function. Then

3For example, consider the space of all images vs ones which are plausible 3D scenes.
4By interpreting each preference as its own partial ordering, we avoid potential issues of symmetry and

non-transitivity.
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we optimise the loss function, eq. (6), with the following:

<Pos-Demo = <pos ∪ {τa < τp|(τa, τp) ∈ Dagent ×Dpos},
<Neg-Demo = <neg ∪ {τn < τa|(τn, τa) ∈ Dneg ×Dagent},

CPref = {{τb < τa}|(τa, τb) ∈ P},

Dpref =
⋃

(τa,τb)∈P

{τa, τb},

C = {<Pos-Demo, <Neg-Demo} ∪ CPref, (7)

D =
⋃
{Dpos,Dneg,Dagent,Dpref}. (8)

Like in the case for RLHF, our dependencies on agent behaviour means we need to iterate between
sampling new preferences, optimising for eq. (6), and training the agent’s policy.5 Our algorithm is
illustrated in Figure 1 and the full training procedure is given in algorithm 1 in Appendix A, along
with details on reward model training.

4 EXPERIMENTS

We test our method on several environments in order to evaluate its performance across a broad
variety of domains. Additionally, we also vary the proportions and amounts of different types of
feedback used for learning to demonstrate that combining demonstrations and preferences can give
stronger performance than just relying on either one. In order to reduce the cost of testing our method
and facilitate hyperparameter tuning with many repetitions, we synthetically generate preferences,
demonstrations, and their rankings. We generate preferences by sampling using the sigmoid of the
reward difference between the two fragments under comparison as the probability of preference. We
generate demonstrations by training an agent on the ground truth reward function and then sampling
its trajectories, with their ground truth reward determining their relative rankings. For further details,
see Appendix A.2.

We experimentally evaluate LEOPARD on four environments from the Gymnasium (Towers et al.,
2024) test suite: Half Cheetah (MuJoCo), Cliff Walking (Toy Text), Lunar Lander (Box2D), and Ant
(MuJoCo). This covers a range of continuous and discrete observation and action spaces, reward
sparsities, and overall complexities. We require a finite horizon to reduce complications from the
preference and demonstration learning, so some environments required modification. These and
other environment details are given in Appendix B.

We organise our experiments into two sections. In the first, we compare our method to baselines.
For the case of preferences and positive demonstrations, we compare against Adversarial Imitation
Learning with Preferences (AILP, Taranovic et al. (2022))6 and a standard pipeline of training on
demonstrations with DeepIRL and then preference finetuning with RLHF. As an ablation, on Half
Cheetah we also test first training on preferences with RLHF, and then on demonstrations with
DeepIRL. We find that, except on Ant, LEOPARD always outperforms all baselines. On Ant, it lags
behind AILP but is still far better than the standard pipeline.

With positive demonstrations only, we show that LEOPARD either performs similarly or beats the
baselines, depending on the environment, For preferences only, our method directly reduces to
RLHF and so no comparison is needed. For LEOPARD and AILP, when training the reward model,
we keep training until the loss has loosely converged (see Appendix A.1.3 for details). This is not
possible with DeepIRL as the maximum-entropy ‘loss’ function is not bounded from below. There-
fore, we use a fixed number of training epochs for the reward model with the associated baselines,
and give results for a variety of values.

5If there were an existing set of preferences and agent trajectories, the method could be applied offline by
simply optimising for eq. (6).

6For our implementation of AILP we only use the relevant loss functions and disregard the extraneous parts
of the method. This includes initially optimising the policy to maximise visited state entropy, and sampling
preferences according to maximum entropy. Additionally, we use PPO instead of SAC, and apply our early
stopping method for reward model training. Overall this enables a fair comparison with LEOPARD, and we
note that AILP’s additional tweaks could be symmetrically applied to LEOPARD if so desired.
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In the second set of experiments, we investigate how altering the types of feedback available af-
fect reward learning performance. First, we see how well LEOPARD performs training only
with preferences or only with positive demonstrations, choosing the amount available of each to
be enough to enable learning but not enough to saturate performance. To enable a fair compar-
ison, we normally choose equivalent amounts of feedback for the preference-only and positive-
demonstration-only tests. For demonstrations, this is ndemos × trajectory-length, and for preferences
this is 2 × nprefs × preference-fragment-length.7 Occasionally, one of the feedback types produced
significantly worse performance, in which case we increased the proportion of feedback available.
Details on trajectory and fragment lengths, feedback proportions, and other hyperparameters, are
given in Appendix B.

Then, we test a 50/50 preferences / positive-demonstration mix, a 50/50 positive-demonstration
/ negative-demonstration mix, and a 50/25/25 preferences / positive-demonstrations / negative-
demonstrations mix. These tests show that often mixtures of feedback types can outperform their
single-typed counterparts, even when the total budget is fixed.

5 RESULTS

We present our results on how LEOPARD compares to common baselines, and how reward learning
under our algorithm is affected by varying the types of feedback information.
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Figure 2: Comparison of LEOPARD with baselines of AILP, DeepIRL followed by RLHF, and
RLHF followed by DeepIRL (Half Cheetah only), when positive demonstrations and preferences
are available. The lines denote the mean of the ground truth reward function, with shaded stan-
dard errors, against algorithm iterations—alternations between optimising the reward model and the
agent. Solid lines are smoothed means for clarity, dashed lines give raw values. A breakdown of the
performance of the DeepIRL-based methods for different reward model training epochs per iteration
is given in Figures 7 and 8.

Figure 2 compares LEOPARD to baselines when preferences and positive demonstrations are avail-
able, and Figure 3 analyses the case where only positive demonstrations are available. For a break-
down of individual final scores see Appendix C, Table 2.

7×2 as a preference involves comparing two fragments.
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Figure 3: Comparison of LEOPARD with baselines of AILP and DeepIRL when only positive
demonstrations are available. The lines denote the mean of the ground truth reward function, with
shaded standard errors, against algorithm iterations—alternations between optimising the reward
model and the agent. Solid lines are smoothed means for clarity, dashed lines give raw values. A
breakdown of the performance of DeepIRL for different reward model training epochs per iteration
is given in Figure 9.

We find that LEOPARD greatly outperforms the DeepIRL followed by RLHF baseline when both
preferences and demonstrations are available, achieving much higher reward throughout training in
all environments. Since LEOPARD can utilise all the data all the time, preferences can be used
to aid early exploration, and demonstrations can continue to be trained against even in the latter
stages. Additionally, as it trains the reward model to rough convergence each iteration it allows
for adequate learning without over-fitting. It also beats AILP on three of the four environments,
lagging slightly behind in Ant. Despite this, we still see LEOPARD as an improvement over AILP,
since its performance with each iteration increases much more consistently. LEOPARD can exploit
the relative rankings of the demonstrations to gain even more information on the underlying reward
function compared to AILP, and the other baselines.

LEOPARD’s use of ranking data and rough convergence training allows it to often outperform, and
otherwise remain competitive with, the DeepIRL and AILP baselines when only demonstration data
is available. We see a stronger relative performance on both Half Cheetah and Lunar Lander, whilst
it is more clustered with the baselines on Cliff Walking and Ant. It is worth noting that LEOPARD
does not require the ‘reward model training epochs’ hyperparameter, which might be difficult to tune
for DeepIRL in environments that are expensive to sample from.

Note that for the analysis of the Cliff Walking environment, some outliers for the AILP8 and
‘DeepIRL then RLHF finetune’ baseline have been removed. These were due to excessively large
negative rewards from walking off the cliff many times before learning this was a bad idea, and oc-
curred with an average frequency of 25% and 28% respectively. A more detailed breakdown along
with the exact definition for outliers is given in Appendix C, Table 4.

8When training on preferences and demonstrations.
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Figure 4: Comparison of LEOPARD’s performance when varying types of feedback are available.
The lines denote the mean of the ground truth reward function, with shaded standard errors, against
algorithm iterations—alternations between optimising the reward model and the agent. Solid lines
are smoothed means for clarity, dashed lines give raw values.

In Figure 4 we show the performance of LEOPARD when learning from a variety of different feed-
back proportions, with final scores detailed in Appendix C, Table 3. In all environments, some mix
of preferences and demonstration data is top-scoring, and in two a pure feedback type is at the bot-
tom. This is most clearly seen on Cliff Walking, where more diverse feedback types always beat
their strict subsets. Interestingly, training only on preferences was better than using a full feed-
back mixture for the Half Cheetah environment, although a combination of preferences and positive
demonstrations was much better than either. Whilst the mixed demonstrations strategy was the best
for the Lunar Lander environment, the error bars there are large, and we caution against drawing
clear conclusions. For Ant, both setups involving negative demonstrations did poorly, although the
strongest performance was by preferences and positive demonstrations. We hypothesise that the
poor performance of the negative demonstration containing runs might have been caused by limited
representational capacity of the reward network to model three distributions of trajectory whilst still
providing a useful feedback signal to the agent.

6 DISCUSSION

6.1 GENERALITY OF RRPO

Reward-rational preference orderings, the basis of LEOPARD, are a generalisation of the determin-
istic reward-rational choice framework (Jeon et al., 2020), but offers several distinct advantages.
Recall that RRC frames the human feedback as a choice over some set, and then maps elements of
that set into distributions over trajectories. Instead, RRPO maps the human feedback directly into
a set of partial orderings. These two approaches have differing flexibility, and different feedback
types might lend themselves more readily to one or the other. However, as RRPO is explicit in its
construction that it operates only over directly-accessible trajectories, it becomes much more gen-
eral in a practical sense. For example, in RRC, demonstration feedback requires optimising over the
entire trajectory space, while RRPO does not.
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Furthermore, RRPO does not assume any particular properties about the space of reward functions,
nor the space of trajectories. In general, one can think of optimal trajectories as a small part of
some feasible-trajectory manifold, which itself is a small part in a larger trajectory feature space.
Methods which rely on domain-specific properties of these spaces, such as linearity or computable
perturbations, inherently limit themselves from being more broadly applied. For example, Mehta &
Losey (2023) leverages inverse kinematics models to interpret demonstration feedback (alongside
preferences) in robotics domains. Whilst effective for this application, it renders the broader method
impossible outside of robotics. RRPO and LEOPARD on the other hand, could be easily applied
to environments very different to the ones we have tested on. For example, they could be used for
Large Language Model (LLM) and foundation-model finetuning.

6.2 LIMITATIONS AND FUTURE WORK

Whilst we have tested LEOPARD on a range of environments with differently structured observation
and action spaces, a more comprehensive study would investigate an even wider range of tasks, such
as more complex robotics, Atari games, and even LLM finetuning. Furthermore, with additional
resources, it would be instructive to more closely interrogate how performance depends on the pro-
portions of different feedback used for learning. For instance, future work could vary the feedback
proportions with greater precision, and include additional repetitions.

Additionally, there are other methods that seek to learn from both preference and demonstration
data, or even negative/failed demonstrations, as detailed in sections 2.3 and 2.4. Whilst these are
less general in application than LEOPARD; a comparison of performance would still be interesting.
We have chosen the baselines of AILP and ‘DeepIRL followed by RLHF’ to test against as they have
similar simplicity and generality to our own method, as well as the latter being common practice.

We introduce RRPO as a theoretical backdrop for LEOPARD, however our investigation of its prop-
erties and encodings for many types of feedback is limited. Due to its similarity to RRC and the
Placket-Luce choice model, we do not see this as a critical failing, as it will inherit many proper-
ties from those models, and deterministic RRC formulations can be trivially encoded under RRPO.
Nevertheless, there are likely important theoretical properties and applications of RRPO that are of
relevance to reward learning that ought to be investigated.

These limitations largely stem from constraints on time and computational resources. Thus, they are
left to be resolved by future work.

6.3 CONCLUSION

We have shown that LEOPARD can perform effective reward inference, learning from many sources
of reward information simultaneously. It is more effective than standard baselines for learning from
preferences and demonstrations, and can additionally incorporate more information such as demon-
stration rankings and negative/failed demonstrations. We have also shown that using many sources
of reward information can be more beneficial than relying on only large amounts of a single type.
Whilst our empirical work is non-extensive, the generality and simplicity of the method makes it
very powerful and potentially applicable to important current problems such as high dimensional
robotics, and LLM / foundation-model finetuning. Furthermore, it opens the door to exploring the
use of a much wider range of feedback in many RL settings.
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A ALGORITHM DETAILS

The full algorithm for LEOPARD is given in algorithm 1. Initialisations follow standard neural
network initialisation methods. RandomRollouts generates trajectories by sampling random actions
and resetting the environment when necessary. TrainAgent performs standard PPO on the environ-
ment using the given reward function as the ground truth reward. Hyperparameters used for PPO are
those given in RL Baselines3 Zoo (Raffin, 2020). Details on TrainRewardModel and GetPreferences
are given in appendices A.1 and A.2.1 respectively. The generation of the demonstrations and their
rankings is detailed in appendix A.2.2.

Algorithm 1 LEOPARD

Input
niters Number of iterations to perform
nrollout-steps Number of environment rollout steps
nprefs Number of preferences to sample
Dpos Positive demonstrations
<pos Positive demonstrations partial ordering
Dneg Negative demonstrations
<neg Negative demonstrations partial ordering

Output
π Trained agent policy
Rθ Learnt reward function

nrollout-steps-per-iter ← ⌊nrollout-steps/(niters + 1)⌋
nprefs-per-iter ← ⌊nprefs/niters⌋
Dagent ← ∅ ▷ Agent trajectory pool
P ← ∅ ▷ Preferences dataset
π ← InitialiseAgent()
Rθ ← InitialiseRewardFunction()
Dnew-trajectories ← RandomRollouts(nrollout-steps-per-iter)

for 1 to niters do
P ← P ∪ GetPreferences(nprefs-per-iter,Dnew-trajectories,Dagent)
Dagent ← Dagent ∪ Dnew-trajectories
Rθ ← TrainRewardModel(Rθ,Dpos, <pos,Dneg, <neg,Dagent,P)
π,Dnew-trajectories ← TrainAgent(π,Rθ, nrollout-steps-per-iter)

end for

A.1 REWARD MODEL TRAINING

The reward model is trained by optimising the loss function eq. (6) with the AdamW optimiser.
Batches of Dpos,Dneg,Dagent, and P are sampled as detailed in appendix A.1.1, and then encoded
via eqs. (7) and (8). Additionally, the batch loss is normalised according to the batch size, detailed
in appendix A.1.2. Instead of training for a fixed number of steps / epochs, training steps are taken
until some stopping condition is achieved, as detailed in appendix A.1.3. Together these procedures
could result in varying coverages for each data source, from potentially many ‘epochs’,9 to only
sampling a small fraction of it.

A.1.1 BATCH SAMPLING

Dpos,Dneg,Dagent, and P are independent, heterogeneous, and in general of different sizes. This
makes batch sampling non-trivial to perform. First batch sizes for each of the data sources is de-
termined, and then each one is sampled independently. As is typical, they are sampled without

9Since our data sources are of varying sizes and not partitioned into equal numbers of batches, the notion of
a training epoch - one complete pass over all training data - is not well-defined. We do however have notions
of data source specific epochs.
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replacement until empty, and then reset, potentially multiple times if that’s required to fill the batch.
Batches for <pos and <neg are simply derived from the respective batches of Dpos and Dneg.

There is a maximum batch size for the trajectory-type data sources (Di), and a maximum batch size
for P . These could be different as trajectory-fragments are typically smaller than trajectories, and
we may want to ensure a portion of (V)RAM is available for each. Batch sizes are also generated
to be somewhat proportional to the size of their respective datasets. This is important as we don’t
want to diminish the importance of a data source that has lots of data generated for it, nor over-
represent data sources with only a few data points. Once the proportionality constants are known,
the sizes are scaled so that at least one of the batch sizes is at its maximum, and none of them exceed
their maximums. Some data sources, namely Dagent, are treated as ‘in-excess’, and not taken into
account when trying to make batch sizes proportional to dataset sizes. These are simply given their
maximum size.

A.1.2 LOSS NORMALISATION ACROSS BATCH

As we want our gradient steps to be roughly unity in magnitude and independent of the batch size,
we need to normalise it. Typically, this is very easy in supervised learning—one can simply take
an average across the batch—but this is not the case for eq. (6). Expansion of the gradient of the
loss with respect to θ, and noting our reward function operates at the level of transitions within
trajectories, reveals the correct normalising factor to divide by:∑

(τi,<j)∈D×C

Length(τi) · 1∃τk∈D.τk ̸=τi∧τk<jτi .

This assumes a fixed length of fragments for each partial ordering.

A.1.3 STOPPING CONDITIONS

Generally, the reward function loss from poorly-fitted demonstration rankings are much higher than
poorly fitted preferences. This is because trajectories are typically longer than trajectory-fragments
and demonstrations generate more ‘<’ comparisons than a preference. However, the distribution of
demonstrations are typically quite far from that of the agent trajectories, which the preferences have
been generated over. This makes it much easier for the reward function to separate the demonstra-
tions from agent behaviour and thus achieve a low loss on the demonstration ordering, than it does
for it to get low loss on all the preference orderings.

The consequence of the above two facts is that if we were training on just the demonstrations, we’d
want to do at most a few epochs (to learn fast and avoid overfitting), but if we were training on just
the preferences we might want to do more (as learning is slower and overfitting less of a potential
issue). Thus, as the amount of data in each dataset varies in each iteration, it does not make sense to
have a pre-specified number of training steps, and instead a stopping condition should be used.

Our stopping condition simply checks if the training loss has loosely converged. At each step we
check if the training loss is within ±0.001 of the last step’s training loss. If this occurs 3 times in a
row, we stop training the reward model for that iteration, and return to agent training. Empirically
this strikes the balance between learning and avoiding overfitting.

A.2 SYNTHETIC FEEDBACK

A.2.1 PREFERENCES

In algorithm 1, the GetPreferences function randomly samples trajectory fragments for comparison,
with a bias to sampling from new trajectories. We are using a synthetic oracle which uses the ground
truth reward function to noisily generate preferences, simulating the imperfect human rationality.
More specifically, for each sampled pair of fragments, the sigmoid of their reward difference is used
as the parameter for a Bernoulli random variable which is then sampled to generate the preference.

A.2.2 DEMONSTRATIONS

To create demonstrations for our tasks, we simply train an agent on the ground truth reward function
(or its negation in the case of negative demonstrations). Several agents are trained, and the best
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few, nselected, are picked. From these agents, we create a list of their trajectories, ordering from
their latest attempts to their first, and interleaving each agent together with the best agent first. For
training an agent from feedback, if n demonstrations are being used, the first n demonstrations from
this list are provided. Rankings are generated automatically based on the ground truth reward of
each demonstration, making <pos and <neg total orders.10 The ground truth reward per agent step
and number selected, nselected, of all demonstrations trained are given in Figures 5 and 6 for positive
and negative demonstrations respectively.
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(b) Cliff Walking, nselected = 4

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Agent Step 1e6

1500

1000

500

0

500

1000

Gr
ou

nd
 Tr

ut
h 

Re
wa

rd

(c) Lunar Lander, nselected = 8
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(d) Ant, nselected = 8

Figure 5: Ground truth reward vs agent steps for the positive demonstrations that were trained
in every environment. We also state how many were selected as good examples to be used for
demonstration learning.

10They are not required to be total orders to apply the general method.
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(b) Cliff Walking, nselected = 8
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(c) Lunar Lander, nselected = 8
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(d) Ant, nselected = 4

Figure 6: Ground truth reward vs agent steps for the negative demonstrations that were trained in
every environment. We also state how many were selected as bad examples to be used for demon-
stration learning.

B ENVIRONMENT DETAILS

Here we give details on versions / modifications made for each environment, as well as environment-
specific hyperparameters summarised in table 1.

Environment Traj Len Pref Len niters nrollout-steps Rng Seeds Pref-time : Demo-time

Half Cheetah 1k 50 8 8M 32 1:1
Cliff Walking 250 25 8 256k 16 1:1
Lunar Lander 250 50 8 8M 24 8:1
Ant 1k 50 16 16M 12 1:1

Table 1: Environment specific hyperparameters. ‘Traj Len’ refers to the fixed trajectory length
for that environment, ‘Pref Len’ is the length of preference fragments - the contiguous trajectory
subsequences that are used to generate preferences. Both are measured in environment timesteps.

B.1 HALF CHEETAH

The v4 version is used out-of-the-box, trajectories are 1k timesteps and preference fragments are 50
timesteps. 8 iterations are used with a total of 8M environment rollout steps. Results are averaged
over 32 different seeds.

B.2 CLIFF WALKING

The v0 version is modified to have a fixed horizon of 250 timesteps and a custom reward function.
Preference fragments are 10 timesteps, and 8 iterations are used with a total of 256k environment
rollout steps. Results are averaged over 16 different seeds.
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The standard version has a reward of -1 every timestep with the episode terminating when the end is
reached. Walking off the cliff gives -100 reward and returns the agent to the start. Our fixed horizon
version of this is the same except reaching the end state does not terminate the environment, and
instead grants 5 reward per timestep spent there. This was based on what lead to good learning with
PPO and access to the reward function directly.

As the reward function is sparse, for sampling preferences only, a shaped version of it is used to
simulate human intuition on what behaviours are closer to optimal. The penalty for walking off
cliffs remains the same, but otherwise the agent receives a weighted reward of -1 and 5 depending
on how close in L1 norm it is to the start/end state respectively.

B.3 LUNAR LANDER

The v2 version is modified to have a fixed horizon of 250 timesteps and a custom reward function.
Preference fragments are 50 timesteps, and 8 iterations are used with a total of 16M environment
rollout steps. Results are averaged over 24 different seeds.

The reward function used is mostly the same as in the Gymnasium version, except instead of termi-
nating on game over or the lander not being awake (i.e. landed), a -1 or +1 reward is issued each
timestep respectively. Note that as seen in figs. 2 to 4, this can lead to very large negative rewards.

B.4 ANT

V4 version with terminate_when_unhealthy=False so that there are more maximum
length trajectories. Trajectories are 1k timesteps and preference fragments are 50 timesteps. Re-
sults are averaged over 12 different seeds.

C SUPPLEMENTARY RESULTS

Method RM epochs Final Ground Truth Reward ± std error
per iter Half Cheetah Cliff Walking Lunar Lander Ant

LEOPARD (ours) - 1460 ± 228 763 ± 118 -231 ± 138 -382 ± 303
AILP - -91 ± 20 678 ± 167 -2271 ± 421 220 ± 151
DeepIRL then RLHF 1 511 ± 118 113 ± 184 -1565 ± 212 -1733 ± 159
DeepIRL then RLHF 2 492 ± 159 79 ± 188 -1652 ± 236 -1539 ± 213
DeepIRL then RLHF 4 1269 ± 208 33 ± 144 -748 ± 149 -1522 ± 192
DeepIRL then RLHF 8 718 ± 176 98 ± 168 -1292 ± 282 -1337 ± 216
RLHF then DeepIRL 1 156 ± 138 - - -
RLHF then DeepIRL 2 229 ± 228 - - -
RLHF then DeepIRL 4 769 ± 242 - - -
RLHF then DeepIRL 8 599 ± 196 - - -

LEOPARD (ours) - 797 ± 242 667 ± 120 -201 ± 147 -439 ± 157
AILP - -102 ± 23 536 ± 141 -376 ± 125 -396 ± 139
DeepIRL 1 31 ± 170 472 ± 161 -1154 ± 221 -698 ± 299
DeepIRL 2 205 ± 146 810 ± 162 -664 ± 172 -1303 ± 229
DeepIRL 4 661 ± 180 737 ± 107 -1140 ± 230 -271 ± 476
DeepIRL 8 385 ± 159 977 ± 78 -720 ± 229 -827 ± 213

Table 2: Final ground truth reward with standard error for LEOPARD against a variety of baselines.
(Top) 50/50 mix of preferences and positive demonstrations with baselines of AILP, performing
DeepIRL followed by RLHF, and performing RLHF followed by DeepIRL (Half Cheetah only). See
Figure 2 for reward vs algorithm iteration. (Bottom) Only positive demonstrations with baselines
of AILP and DeepIRL. See Figure 3 for reward vs algorithm iteration. ‘RM epochs per iter’ is the
number of training epochs for the reward model on each iteration of the algorithm, required to be
fixed for DeepIRL. Best in column for section.
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Feedback types Final Ground Truth Reward ± std error
Half Cheetah Cliff Walking Lunar Lander Ant

Preferences 1225 ± 219 289 ± 147 -213 ± 110 -980 ± 242
Positive demonstrations 797 ± 242 667 ± 120 -201 ± 147 -439 ± 157
Preferences and positive demos 1460 ± 228 763 ± 118 -232 ± 138 -383 ± 303
Positive and negative demos 1072 ± 206 792 ± 104 -67 ± 81 -2598 ± 44
Prefs, pos and neg demos 1097 ± 183 1015 ± 30 -182 ± 110 -2463 ± 69

Table 3: Final ground truth reward with standard error for LEOPARD across a variety of mixture of
types of feedback. For details on feedback amounts per environment and the reward vs algorithm
iteration see Figure 4. Best in column.
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(a) Half Cheetah, ndemos = 4, nprefs = 40
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(b) Cliff Walking, ndemos = 2, nprefs = 10
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(c) Lunar Lander, ndemos = 4, nprefs = 80
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(d) Ant, ndemos = 8, nprefs = 80

Figure 7: Breakdown of the DeepIRL followed by RLHF baseline, for different numbers of epochs
that the reward model was trained for per algorithm iteration. The lines denote the mean of the
ground truth reward function, with shaded standard errors, against algorithm iterations. Solid lines
are smoothed means for clarity, dashed lines give raw values.

Method RM epochs per iter Cliff Walking Outliers

LEOPARD (ours) - 0
AILP (demonstrations and preferences) - 4
AILP (demonstrations only) - 0
DeepIRL only 1, 2, 4, 8 0
DeepIRL then RLHF 1 5
DeepIRL then RLHF 2 7
DeepIRL then RLHF 4 2
DeepIRL then RLHF 8 4

Table 4: Outliers for Cliff Walking that were removed from the main analysis. This is defined
as having less than -3000 reward on any iteration from the second onwards. Note there were 16
random seeds in total. Values for LEOPARD and DeepIRL only given as a total across all relevant
experiments.
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Figure 8: Breakdown of the RLHF followed by DeepIRL baseline for Half Cheetah (ndemos = 4,
nprefs = 40), for different numbers of epochs that the reward model was trained for per algorithm
iteration. The lines denote the mean of the ground truth reward function, with shaded standard
errors, against algorithm iterations. Solid lines are smoothed means for clarity, dashed lines give
raw values.
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(a) Half Cheetah, ndemos = 8
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(b) Cliff Walking, ndemos = 4
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(c) Lunar Lander, ndemos = 8
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(d) Ant, ndemos = 16

Figure 9: Breakdown of the DeepIRL baseline, for different numbers of epochs that the reward
model was trained for per algorithm iteration. The lines denote the mean of the ground truth reward
function, with shaded standard errors, against algorithm iterations. Solid lines are smoothed means
for clarity, dashed lines give raw values.
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D MAIN PROOFS

Here we more stringently define and prove the theoretical result from the end of section 3.1, and
then prove the models considered in Appendix E do not satisfy it.
Theorem 1. Upper bounds on RRPO loss give lower bounds on reward difference of related frag-
ments. For all ϵ > 0, if LRRPO ≤ ϵ, then for all τa, τb ∈ D2 where there exists a <x∈ C such that
τa <x τb, we have the following:

Rθ(τb)−Rθ(τa) > −
1

βx
log(eϵ − 1), (9)

where βx is the rationality coefficient of <x.

Proof. We will prove this by contrapositive, that is if:

Rθ(τb)−Rθ(τa) ≤ −
1

βx
log(eϵ − 1), (10)

for some ϵ > 0, and there exists a <x such that τa <x τb, then LRRPO > ϵ.

Assume eq. (10) and that the relevant <x exists. Consider eq. (6):

LRRPO(θ) = − logPRRPO(C|D, θ)

= −
∑

(τi,<j)∈D×C

log
exp(βjRθ(τi))

exp(βjRθ(τi)) +
∑
τk∈D 1τk<jτi exp(βjRθ(τk))

=
∑

(τi,<j)∈D×C

log
exp(βjRθ(τi)) +

∑
τk∈D 1τk<jτi exp(βjRθ(τk))

exp(βjRθ(τi))

=
∑

(τi,<j)∈D×C

log

(
1 +

∑
τk∈D 1τk<jτi exp(βjRθ(τk))

exp(βjRθ(τi))

)
.

Consider the term (τb, <x), and bring it outside the summation.

LRRPO(θ) = log

(
1 +

∑
τk∈D 1τk<xτb exp(βxRθ(τk))

exp(βxRθ(τb))

)
+

∑
(τi,<j)∈D×C

(τi,<j )̸=(τb,<x)

log (1 + ...) .

The remaining terms are strictly positive, and 1τa<xτb = 1.

LRRPO(θ) > log

(
1 +

exp(βxRθ(τa)) + ...

exp(βxRθ(τb))

)
= log

(
1 + exp(βxRθ(τa)− βxRθ(τb)) +

...

exp(βxRθ(τb))

)
> log (1 + exp(βx(Rθ(τa)−Rθ(τb)))) ,

by ignoring terms that are strictly positive. Sub in eq. (10).

LRRPO(θ) > log

(
1 + exp

(
βx

(
1

βx
log(eϵ − 1)

)))
= log (1 + eϵ − 1)

= ϵ,

as required.

Consider a special case where ϵ = log 2, eq. (9) becomes:

Rθ(τb)−Rθ(τa) > −
1

βx
log
(
elog 2 − 1

)
= 0,

∴ Rθ(τb) > Rθ(τa).
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E ALTERNATIVE RRC-DERIVED APPROACHES

RRPO and LEOPARD are very simple and natural extensions of existing work, however, they are
not trivially so. Building off RRC, there are several approaches to preference and demonstration
learning that appear natural and are simple, and yet are deficient. Here we explore two of them in
the preference and ranked positive demonstrations only setting.

Let the notation be as defined in section 3.2. We will assume that preferences, positive demonstra-
tion selection, and the rankings over the positive demonstrations are all independent. Our overall
likelihood function shall be:

PFeedback(C|D, θ) = PPos-Demo(Dpos ≻ Dagent|Dpos,Dagent, θ)

· PRank(<pos |Dpos, θ)

·
∏

(τa,τb)∈P

PRLHF(τa ≻ τb|θ), (11)

where PRank is something sensible.

We consider two potential candidates for PPos-Demo derived via RRC in a simple manner:

PSum-of-Choices(...) =
∑
τ∈Dpos

PRRC(Cτ |Dpos ∪ Dagent, θ), (12)

PChoose-Best-Average(...) = PRRC(CAvg(Dpos)|{Avg(Dpos),Avg(Dagent)}, θ). (13)

Thus:

PSum-of-Choices(...) =

∑
τ∈Dpos

exp(Rθ(τ))∑
τ∈Dpos

exp(Rθ(τ)) +
∑
τ∈Dagent

exp(Rθ(τ))
, (14)

PChoose-Best-Average(...) =
exp

(
1

|Dpos|
∑
τ∈Dpos

Rθ(τ)
)

exp
(

1
|Dpos|

∑
τ∈Dpos

Rθ(τ)
)
+ exp

(
1

|Dagent|
∑
τ∈Dagent

Rθ(τ)
) , (15)

with

LSoC = − logPSum-of-Choices, (16)
LCBA = − logPChoose-Best-Average. (17)

Rationality coefficients are omitted since they are not critical to this analysis. We shall show that
these models have undesirable theoretical properties, and poorer empirical performance compared
to LEOPARD.

E.1 THEORETICAL PROPERTIES

Neither PSum-of-Choices nor PChoose-Best-Average have the property that upper bounds on their negative-
log-likelihood give rise to lower bounds on reward differences between demonstrated trajectories and
ones sampled from the agent, unlike PRRPO. We prove this in theorems 2 and 3 in Appendix E.2.1.
Whilst this may not seem too critical, its combination with the potential effects of PRank, and its
interaction with exploration in RL, can cause a very undesirable failure mode.

Imagine an environment where three distinct behaviours are possible, A, B, and C. We prefer C to
B, and B to A, so we provide a demonstration of B and C each, τb, τc, and express via the ranking
model that τc ≻ τb. This ranking is fitted by assigning high reward to C, and low to B. Our agent is
initialised generating from A. Our demonstration model, seeing τc have high reward, does not lower
the reward of A that much, and does not mind that τb has low reward. We’re left with low loss and
yet a reward model that could prefer A to B.

Now consider that our environment has some unfavourable dynamics. Policies that generate A, are
quite different from those that generate C, with B being somewhere between the two. Thus, to
eventually generate C, our policy will first need to explore B. However, our reward model gives it
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lower reward when it tries this, and so the agent sticks to what it thinks is best, behaviour A, much
to our disappointment.

Whilst a little contrived, the above story highlights a certain failure mode that could occur if one
combined demonstration rankings with a demonstration model that does not satisfy theorem 1. If it
did satisfy it, such as for RRPO and LEOPARD, then low loss cannot be achieved unless the reward
model prefers B to A, preventing the issue.

Alleviating this problem by omitting the rankings is suboptimal, as we lose information. However,
PSum-of-Choices suffers further. It is shown in Appendix E.2.2 that the gradient of LSoC with respect to
θ can be expressed in the following form.

− ∂

∂θ
LSoC =

∑
τa∈Dagent

PRRC(Ca|T , θ)

 ∑
τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∂

∂θ
Rθ(τa)

 , (18)

where Ci is the human choice for τi, and T = Dpos ∪ Dagent. We see that the reward of agent
trajectories are pushed down proportional to the probability that they would be chosen out of the
combined set of trajectories. This makes sense—if our reward model thinks highly of specific agent
trajectories, it ought to adjust its beliefs so that it no longer favours them.

However, the demonstration trajectories are also pushed up in reward proportional to the probability
that they would be chosen. That is to say, the better the reward model thinks the demonstrated
trajectory is, the more it thinks it should increase its reward, a positive feedback loop! In practice,
the reward model is going to have some initial preferences over the demonstrated trajectories due to
its initialisation. Since this will be random, it will most likely be incorrect. It will then proceed to
reinforce its own incorrect beliefs and lock-in its own ranking of the demonstrations. This means
our reward model will not provide correct rewards to guide the agent towards better behaviour in
the trajectory space around the demonstrations. Furthermore, if it generalises from these incorrect
beliefs, it could also become wrong about other parts of trajectory space, further reducing the quality
of the reward signal for the agent.

E.2 CHAPTER PROOFS AND DERIVATIONS

E.2.1 REWARD BOUNDS

Theorem 2. Upper bounds on Sum-of-Choices loss do not give lower bounds on reward difference
between demonstrations and agent trajectories. For all ϵ > 0, if LSoC ≤ ϵ, we cannot guarantee
that

Rθ(τp)−Rθ(τa) > f(ϵ) (19)

for all τp, τa ∈ Dpos ×Dagent, where f is a function of type R+ → R.

Proof. We will prove this by example.

Consider

Dpos = {τ1, τ2},
Dagent = {τa},
Rθ(τ1) = r1,

Rθ(τ2) = r2,

Rθ(τa) = ra.

We now expand eq. (16) with eq. (14) and the above.

LSoC(θ) = − log

(
er1 + er2

er1 + er2 + era

)
= log

(
1 +

era

er1 + er2

)
.
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Assume LSoC ≤ ϵ, therefore

log

(
1 +

era

er1 + er2

)
≤ ϵ,

ra ≤ log ((eϵ − 1)(er1 + er2)) .

Let

ra = log ((eϵ − 1)(er1 + er2)) .

Consider r1 − ra, substituting in the above expression:

r1 − ra = r1 − log((eϵ − 1)(er1 + er2))

= r1 − log(eϵ − 1)− log(er1 + er2)

≤ r1 − log(eϵ − 1)− r2,

as log(x+ y) ≥ log(y) for positive x and y. Thus, we see that for a fixed r1 and ϵ, we can choose
r2 and ra such that LSoC ≤ ϵ, but r1 − ra can be arbitrarily negative.

Theorem 3. Upper bounds on Choose-Best-Average loss do not give lower bounds on reward dif-
ference between demonstrations and agent trajectories. For all ϵ > 0, if LCBA ≤ ϵ, we cannot
guarantee that

Rθ(τp)−Rθ(τa) > f(ϵ) (20)

for all τp, τa ∈ Dpos ×Dagent, where f is a function of type R+ → R.

Proof. We will proceed similarly to the above, assuming the same notation.

Expanding eq. (17) with eq. (15).

LCBA(θ) = − log

(
exp

(
1
2 (r1 + r2)

)
exp

(
1
2 (r1 + r2)

)
+ exp(ra)

)

= log

(
1 +

exp(ra)

exp
(
1
2 (r1 + r2)

))

= log

(
1 + exp

(
ra −

1

2
(r1 + r2)

))
.

Assume LCBA ≤ ϵ, therefore

log

(
1 + exp

(
ra −

1

2
(r1 + r2)

))
≤ ϵ,

ra ≤ log(eϵ − 1) +
1

2
(r1 + r2).

Let

ra = log(eϵ − 1) +
1

2
(r1 + r2).

Consider r1 − ra, substituting in the above expression:

r1 − ra = r1 − log(eϵ − 1)− 1

2
(r1 + r2).

Again, we see that for a fixed r1 and ϵ, we can choose r2 and ra such that LSoC ≤ ϵ, but r1− ra can
be arbitrarily negative.
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E.2.2 LOSS GRADIENTS

Here we will show that the gradient with respect to θ of LSoC can be expressed in the form given in
eq. (18) of appendix E.1.

First we give a simplification of deterministic RRC with β = 1 and ψ(x) = x for all x, and some
additional notation:

C : ()→ D,

PRRC(Ci|D, θ) =
eRθ(τi)∑

τj∈D e
Rθ(τj)

,

T = Dpos ∪ Dagent.

Now we derive some useful identities.

∂

∂θ
log
∑
τ∈D

eRθ(τ) =
∂
∂θ

∑
τi∈D e

Rθ(τi)∑
τj∈D e

Rθ(τj)

=
∑
τi∈D

∂
∂θ e

Rθ(τi)∑
τj∈D e

Rθ(τj)

=
∑
τi∈D

eRθ(τi)∑
τj∈D e

Rθ(τj)

∂

∂θ
Rθ(τi)

=
∑
τi∈D

PRRC(Ci|D, θ)
∂

∂θ
Rθ(τi), (21)

PRRC(Ci|A, θ) =
eRθ(τi)∑

τj∈A e
Rθ(τj)

=
eRθ(τi)∑

τj∈A e
Rθ(τj)

∑
τk∈A∪B e

Rθ(τk)∑
τk∈A∪B e

Rθ(τk)

=
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)
, (22)

PRRC(Ci|A, θ)− PRRC(Ci|A ∪ B, θ) =
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)
− PRRC(Ci|A ∪ B, θ)

=
PRRC(Ci|A ∪ B, θ)

(
1−

∑
τj∈A PRRC(Ci|A ∪ B, θ)

)
∑
τj∈A PRRC(Cj |A ∪ B, θ)

=
PRRC(Ci|A ∪ B, θ)

∑
τk∈B PRRC(Ck|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)

=
∑
τk∈B

PRRC(Ck|A ∪ B, θ)
PRRC(Ci|A ∪ B, θ)∑

τj∈A PRRC(Cj |A ∪ B, θ)

=
∑
τk∈B

PRRC(Ck|A ∪ B, θ)PRRC(Ci|A, θ) (23)
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Now we use these identities to derive the special form of the gradient of LSoC.

− ∂

∂θ
LSoC =

∂

∂θ
log

∑
τ∈Dpos

eRθ(τ)∑
τ∈Dpos

eRθ(τ) +
∑
τ∈Dagent

eRθ(τ)

=
∂

∂θ
log

∑
τ∈Dpos

eRθ(τ) − ∂

∂θ
log
∑
τ∈T

eRθ(τ)

=
∑

τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∑
τi∈T

PRRC(Ci|T , θ)
∂

∂θ
Rθ(τi)

=
∑

τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∑
τp∈Dpos

PRRC(Cp|T , θ)
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τp∈Dpos

(PRRC(Cp|Dpos, θ)− PRRC(Cp|T , θ))
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τp∈Dpos

∑
τa∈Dagent

PRRC(Ca|T , θ)PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)

−
∑

τa∈Dagent

PRRC(Ca|T , θ)
∂

∂θ
Rθ(τa)

=
∑

τa∈Dagent

PRRC(Ca|T , θ)

 ∑
τp∈Dpos

PRRC(Cp|Dpos, θ)
∂

∂θ
Rθ(τp)−

∂

∂θ
Rθ(τa)

 . (24)
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