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Abstract
Longitudinal studies follow subjects across time, showing how subjects change and which factors are
associated with interindividual variations in change. Despite its popularity, longitudinal research often
faces methodological challenges. In this study, we introduce a robust Bayesian approach using conditional
quantiles to address the nonnormality of data and population heterogeneity challenges in longitudinal
studies. By converting the problem of estimating a quantile longitudinal model into a problem of ob-
taining the maximum likelihood estimator for a modified model with the assistance of the asymmetric
Laplace distribution, Bayesian estimation methods can be conveniently used. Simulation studies have been
conducted to evaluate the numerical performance of the quantile approach.
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1. Introduction
Longitudinal studies help us understand change. Often these studies follow subjects over time,
showing how subjects change and identifying factors linked to interindividual differences in change
McArdle (1998). Over the past few decades there has been a considerable rise in attention paid to
longitudinal theory, methodology, and application in many disciplines including but not limited
to psychology, education, sociology, economics, management, political science, medicine and
marketing. Despite the popularity of longitudinal research, implementing longitudinal methods in
practice can be hampered by the presence of nonnormal data, missing observations, small sample sizes,
and population heterogeneity. Most likelihood-based model estimation methods typically rely on a
normality assumption, but empirical longitudinal data often exhibit skewness, heavy tails, or outliers
(e.g., Cain et al., 2017; Dela-Cruz et al., 2023). Failing to account for the nonnormality features in
data could result in biased parameter estimates and misleading statistical inferences (e.g., Tong et al.,
2014; Z. Zhang, 2013). Missing data may compound the issue because observed data may greatly
deviate from the population distribution (Ibrahim & Molenberghs, 2009; Jelicic et al., 2009; Little &
Rubin, 2002; Yuan & Zhang, 2012). Small sample size further leads to poor performance of model
fit criteria and can undermine statistical power leading to low reproducibility of a study’s findings
(D. M. McNeish & Harring, 2017b; Shi et al., 2021). Finally, population heterogeneity (referring
to systematic differences among individuals’ developmental trajectories or change patterns over
time) acknowledges that subgroups or individuals may exhibit distinct shapes of growth. Without
recognizing and appropriately accounting for this heterogeneity, researchers may not be able to
capture the full spectrum of developmental processes and identify factors that predict divergent
trajectories, making the estimated model inexplicable. For example, modeling children’s math ability
with a single-class growth curve, despite the presence of two subgroups that improve at different rates,
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can produce an overall trajectory that appears flat or even declining, even though each subgroup’s
performance is actually increasing. Thus, methodological extensions and advancements have been
posited to handle these and other design and data issues inherent in longitudinal studies to mitigate
the adverse consequences of ignoring them.

Statisticians and psychometricians have pointed out the disadvantages of routine procedures for
handling nonnormal data (e.g., transforming data or deleting outliers) and alternatively, recom-
mended the use of robust methods with primary objectives to provide accurate parameter and standard
error estimation leading to valid statistical inferences (e.g., Lange, Little, & Taylor, 1989). The ideas
of robust methods often fall into two categories. One is to assign a weight to each case according to
its distance from the center of the majority of data, so that extreme cases are downweighted (e.g.,
Pendergast & Broffitt, 1985; Singer & Sen, 1986; Yuan & Bentler, 1998; Zhong & Yuan, 2010).
The other category is to assume that the latent variables and/or measurement errors follow certain
nonnormal distributions, e.g., a t distribution (Tong & Zhang, 2012; Z. Zhang, 2016) or a mixture
of normal distributions (Lu & Zhang, 2014). While these robust methods are effective under certain
circumstances, methodological choices made in the process of longitudinal data analysis have a strong
influence on the findings. For example, because multivariate outliers are difficult to identify (Tong &
Zhang, 2017), data asymmetry may remain undetected, leading to the inappropriate application of
the robust method based on Student’s t distributions, which is sensitive to the skewness (Z. Zhang,
2016).

Another challenge is small sample sizes, which are prevalent in longitudinal research, as repeated
measure designs and participant attrition often limit the number of subjects. Many statisticians have
been working on the issue of small sample sizes, addressing problems of near singular covariance
matrix (e.g., Yuan & Chan, 2008), obtaining more efficient parameter estimates with nonnormally
distributed data (e.g., Shi et al., 2021; Yuan et al., 2015), improving the performance of test statistics
or defining different fit indices (e.g., Browne, 1984; Fouladi, 2000; Hu et al., 1992; D. M. McNeish &
Harring, 2017b; Tong et al., 2014), and using Bayesian methodology when population distribution
can be correctly specified (e.g., Lee & Song, 2004). When heterogeneous effects of predictors or
heterogeneous population need to be considered, the small sample size problem is more severe because
subjects are typically divided into different groups of even smaller sizes (e.g., D. M. McNeish &
Harring, 2017a).

Population heterogeneity is often of interest to longitudinal researchers. For example, Morgan et
al. (2019) identified four growth trajectory classes in mathematics, reading, and science, in studying
whether and to what extent deficits in executive functions increase kindergarten children’s risk
for repeated academic difficulties across elementary schools. In practice, although multi-group
analysis can be applied to investigate population heterogeneity, latent subgroups are usually difficult
to identify a priori. When the source of population heterogeneity is unobserved, finite mixture
modeling (FMM) can be used (Muthén & Shedden, 1999). To describe different change patterns,
latent growth mixture models in the FMM framework are widely adopted (e.g., Depaoli, 2013;
S. Kim et al., 2022; Lu et al., 2011). However, determining the number of latent subgroups through
model comparison is challenging as the accuracy of class enumeration could be affected by sample size,
class separation, data distribution, model misspecification, etc. (E. S. Kim & Wang, 2017; D. McNeish
& Harring, 2017). In addition, a model with more latent subgroups is often less likely to converge
due to the larger number of parameters involved. This problem is more severe with small sample
sizes and complex models (Depaoli, 2014; S. Kim et al., 2021; D. M. McNeish & Harring, 2017a).
A promising alternative is to use quantile analysis (Geraci, 2014; Koenker, 2004). By looking at
different quantile levels, researchers can directly study different subpopulations. Selecting informative
predictors/covariates at different quantile levels can still use the entire sample while accommodating
the heterogeneous effects of the predictors/covariates. Thus, the small sample challenge could also be
mitigated.
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As an alternative to the methods discussed above for addressing nonnormality, small sample
size, and population heterogeneity issues, quantile modeling has emerged and is drawing increasing
interest among researchers (e.g., Lachos et al., 2015; Liu & Bottai, 2009; Smith et al., 2015). Modeling
conditional quantiles avoids the distributional assumptions that are required in many existing methods.
By looking at different quantile levels, researchers can focus on a subpopulation who share some
common characteristics (e.g., focus on students with low scores when studying change of math
abilities). Although quantile regression methods have been extended to many topics such as penalized
regression and time series models, the employment of quantile modeling in longitudinal research
is a field still in its infancy (Geraci, 2014; Koenker, 2004). Smith et al. (2015) is among the first to
explicitly model within-subject autocorrelation using a copula and apply the developed quantile
regression method to examine blood pressure trends. Cho et al. (2016) developed an empirical
likelihood inference procedure for quantile marginal regression that accommodated both the within-
subject correlations and informative missing at random dropouts. Tong et al. (2021) and T. Zhang
et al. (2022) proposed robust growth curve models based on conditional medians to address the
nonnormality of data, using Laplace distributions. In this paper, we extend the idea of using a Laplace
distributions and propose a quantile growth curve modeling approach using an Asymmetric Laplace
distribution. In the next section, we review traditional growth curve models and propose the new
quantile growth curve modeling approach. The numerical performance of the proposed approach
will be evaluated using a simulation study. We end this article with concluding comments and
recommendations.

2. Bayesian Quantile Growth Curve Models
2.1 A brief review of growth curve models
Growth curve models are broadly used in longitudinal research to analyze the intraindividual change
over time and interindividual differences in intraindividual change (Grimm et al., 2016; Hancock
et al., 2013; McArdle & Epstein, 1987; Meredith & Tisak, 1990). Growth curve analysis helps
researchers obtain a description of the overall growth in a population over a specific period of time.
Individual variation around the growth curve for the average individual is frequently decomposed
into between individual variation through the addition of random effects and within individual
variation including measurement error (Fitzmaurice et al., 2012). Many popular longitudinal models
in social, behavioral, and economic sciences, such as multilevel models, mixed-effects models, latent
growth models, and linear hierarchical models, can be written as various growth curve models. The
following growth curve model is presented here for the purpose of method illustration.

Let yi = (yi1, . . . , yiTi )
′ be a Ti × 1 vector where yij is an observation for individual i at time j

(i = 1, . . . , N; j = 1, . . . , Ti, N is the sample size and Ti is the total number of measurement occasions
for the ith individual). A typical form of unconditional growth curve models can be expressed as

yi = Λiηi + ϵi, (1)
ηi = α + ζi, (2)

where Λi is a factor loading matrix determining the growth trajectories for individual i, ηi is a vector
of individual growth factors, and ϵi is a vector of intraindividual measurement errors. The growth
factors in vector ηi, vary across individuals and are often decomposed into mean growth factors,
α, and random effects, ζi. Traditional growth curve models typically assume that both ϵi and ζi
follow multivariate normal distributions, i.e., ϵi ∼ MN(0,Θi) and ζi ∼ MN(0,Ψ). In practice, the
intraindividual measurement error structure could be simplified to Θi = σ2

ϵjI or Θi = σ2
ϵI. The first

simplification allows for time-specific residual variances and no correlation between time-points;
while the second simplification makes an even stronger assumption of homogeneity of variance
across time. When coupled with the random effects, the intraindividual measurement error structure
is often relegated to something simple like one of these two structures.
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Special forms of growth curve models can be derived from Equations (1)-(2). For example, if

Λi = Λ =


1 0
1 1
...

...
1 T – 1

 ,ηi =
(

Li
Si

)
,α =

(
αL
αS

)
, and Ψ =

(
σ2

L σLS
σLS σ2

S

)
,

all individuals are measured at a common set of T time points, and the model represents a linear
growth curve model with random intercept (initial level) Li and random slope (rate of change) Si.
The average intercept and slope across all individuals are αL and αS , respectively. In Ψ, σ2

L and σ2
S

represent the variability (or interindividual differences) around the mean intercept and the mean
slope, respectively, and σLS represents the covariance between the latent intercept and slope. Growth
curve modeling can be used to investigate systematic change over time (α) and interindividual
variability in this change (Ψ).

2.2 Quantile growth curve models
When either the normality assumption of intraindividual measurement errors or of the random
effects is violated, traditional growth curve modeling which focuses on the conditional means may
lead to inefficient estimation of model parameters which could very well be biased (Yuan & Zhang,
2012; Yuan et al., 2004). Quantile growth curve modeling (QGCM) has been proposed, mostly
because modeling conditional quantiles avoids the distributional assumptions that is required in many
existing methods. The robustness of quantiles is well documented in the statistical literature such as
Koenker (2005). A special quantile, the median, has the breakdown point of 50%, meaning that it
can still be estimated when as many as 50% observations are outliers, whereas the breakdown point
of the mean is 0%. While the mean only measures the location of the data distribution, quantiles
describe the whole distribution of the data. Another advantage of quantiles is their interpretability.
In a study cohort, different levels of quantiles are associated with different subjects in the data, while
the conditional mean may not be associated with any of them. Thus, the proposed robust quantile
modeling is more interpretable than the traditional mean-based method, especially when the data
distribution is not normal.

Defining quantiles for growth curves is challenging because quantiles can be specified at either
the level-one model in Equation (1) or the level-two model in Equation (2) (T. Zhang et al., 2022).
If the research purpose is to find effective covariates/predictors, we can define the quantiles in the
level-two model. For a given quantile level of latent growth parameters, we can estimate the growth
model and investigate which predictors are more important at that level. If we are interested in the
growth trajectories for individuals at a specific level of the dependent variables, the quantiles are
defined in the level-one model. In this paper, we focus on the latter case as it is more fundamental to
the initial stages of growth curve modeling (see, e.g., Harring & Blozis, 2022).

For the model in Equations (1)-(2), the corresponding quantile growth curve model at the τ
quantile is

yi = Λiηiτ + ϵi, with Qτ(ϵi|ζi) = 0,
ηiτ = ατ + ζi,

where Qτ(ϵi|ζi) represents the τ quantile of ϵi given ζi, and the random effects ζi are assumed to be
mutually independent and follow some multivariate distribution fζ(0,Ψ) with mean 0. To estimate
the parameters in this model, we need to minimize the sum of the l1 norm objective functions
described by Koenker and Bassett (1978).

Specification of our proposed model is based on the Asymmetric Laplace (AL) distribution,
which has a relationship with the l1 norm objective function. The probability density function for
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ω ∼ AL(µ,σ, τ) is p(ω|µ,σ, τ) ∼ τ(1 – τ)
σ

exp
{

– 1
σρτ(ω – µ)

}
, where ρτ(·) is the asymmetrically

weighted l1 loss function, µ ∈ R is the location parameter, σ ∈ R+ is the scale parameter, and
0 < τ < 1 is the skewness parameter. It is verified that the location parameter µ is the τ quantile of ω
such that p(ω ≤ µ) = τ (Yu & Zhang, 2005). The AL distribution is employed in our method because
it can convert the problem of estimating a quantile growth curve model into a problem of obtaining
the maximum likelihood estimator (MLE) for a transformed model (Geraci, 2014). Suppose that
yi ∼ AL(µi,σ, τ), the likelihood function for n observations is

L(µi,σ|y, τ) ∼ τn(1 – τ)n

σn exp

{
–

n∑
i=1

[
1
σ
ρτ(yi – µi)

]}
,

where µi is a function of model parameters, e.g., µi = x
′
iατ. Maximization of the likelihood is

equivalent to the minimization problem

min
α

n∑
i=1

ρτ(yi – x
′
iατ).

Thus, for a fixed quantile level τ, it is convenient to estimate model parameters at the τ quantile from
the transformed model yi = x

′
iατ + eiτ, where eiτ ∼ AL(0,σ, τ). Since maximizing the likelihood

of the AL distribution is still challenging from the frequentist perspective, Bayesian methods and data
augmentation techniques are used for parameter estimation given their flexibility and computational
power. Two augmented variables are included to construct the AL distribution: W ∼ exp(σ) and

Z ∼ N(0, 1). Then, y = µ + ξW + νZ
√
σW follows the AL distribution, where ξ =

1 – 2τ
τ(1 – τ)

and

ν2 =
2

τ(1 – τ)
.

With the auxiliary AL distribution, QGCM at the τ quantile is equivalent to

yij ∼ AL(µij,σ, τ),

µij = Λ
′
ijατ + Λ

′
ijζij,

and ζi may follow a multivariate Laplace distribution. Gibbs sampling, a widely used Monte Carlo
Markov Chain (MCMC) method is applied to obtain parameter estimates and standard errors from
the posterior distributions of the parameters to facilitate statistical inference. We first obtain the
conditional posterior distributions for parameters (e.g., Tong et al., 2021). By iteratively drawing
samples from the conditional posterior distributions, we obtain the empirical marginal distributions
of the model parameters and make statistical inference based on the empirical marginal distributions.

Note that the proposed QGCM is often very challenging to estimate due to the fact that quantile
regression does not have a parametric likelihood. AL distribution is used as the “working" likelihood
to get around the difficulty. Such a strategy has been used in the literature (e.g., Yang et al., 2016). It
provides unbiased marginal quantile estimation.

3. A Simulation Study
We now present a simulation study to evaluate the numerical performance of the proposed QGCM.
Following the simulation study in Tong et al. (2021), data were simulated based on a linear growth
curve model in Equations (1)-(2) with 4 measurement occasions. The population parameter values
were: α = (αL,αS)′ = (6.2, 1.5)′, Ψ = ((σ2

L,σLS)′, (σLS,σ2
S)′) = ((0.5, 0)′, (0, 0.1)′), and ϵi followed

a multivariate normal distribution with its variance related to the latent coefficients so that the
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latent coefficients were different at different quantile levels. The theoretical population parameter
values can be easily calculated at each quantile level. Note that the covariance between the latent
intercept and slope was fixed to 0 in this study because Tong et al. (2021) showed that σLS did not
affect the performance of the median-based growth curve modeling. Three potentially influential
factors were manipulated in the simulation, including sample size (N = 50, 100, and 300), type of
nonnormal data (normal data, data with outliers, and data with leverage observations), and percentage
of outliers/leverage observations (5%, 15%, and 30%).

For each simulation condition, 500 datasets were generated. For each dataset, we fitted a traditional
linear growth curve model as well as quantile growth curve models at quantile levels 0.25, 0.5, and
0.75. We then assessed the performance of the Bayesian estimation for QGCM and compared the
performance of QGCM with traditional linear growth curve modeling in terms of relative bias and
mean squared errors of the parameter estimates. Note that when data are symmetrically distributed,
QGCM at the 0.5 quantile level is expected to perform similarly to traditional growth curve modeling.

Bayesian estimation of QGCM was conducted using JAGS with the rjags R package (Plummer,
2017). The following priors were used for model inferences: p(α) = MN(0, 103 × I) , p(Ψ) =
InvWishart(2, I2), and p(σ2) = InvGamma(.01, .01). The number of MCMC iterations was set to
10, 000, and the first half of the iterations was discarded for burn-in.

3.1 Results
Table 1 presents the estimation results for the fixed effects as well as the correlation between the latent
intercept and latent slope. At different quantile levels, the estimated parameter values are very close
to the true population parameter value (with the absolute relative bias of the estimates all below 5%)
at various levels of sample size. Note that the absolute relative bias is calcuated as the proportional
absolute difference between the estimated parameters and their true population values. In general,
less than 10% is considered an acceptable bias, and less than 5% is considered unbiased (Hoogland
& Boomsma, 1998). Our simulation results, which show absolute relative bias below 5% for all
parameters, indicate that the Bayesian estimation method with the augmented asymmetric Laplace
distribution performs well and yields accurate parameter estimates.

Unlike traditional linear growth curve models, which estimate the conditional mean trajectory
(i.e., the average latent intercept and slope along with their variances and covariance), the quantile
growth curve models target conditional quantiles of the outcome (e.g., the median, the 25th and
75th percentiles). This shift in focus yields parameter estimates that vary across quantiles, revealing
distinct patterns of change rather than just the average trend. In our simulation, the expected initial
value of the outcome is approximately 5.75 at the 0.25 quantile, 6.21 at the median, and 6.68 at the
0.75 quantile, while the corresponding growth rates are 1.29, 1.50, and 1.71, respectively. Examining
these trajectories across multiple quantile levels provides a more complete picture of population
heterogeneity in change patterns than mean-based models alone.

When data are nonnormal, we further investigated the robustness feature of QGCM. In particular,
we compared traditional mean-based growth curve modeling with the QGCM at the median level
(τ = 0.5). As shown in Figure 1, for both nonnormal data scenarios (i.e., data contain outliers or
leverage observations), QGCM at the median level consistently produced smaller relative estimation
bias at different sample size levels and percentage of outlying observations levels.

4. Discussion
Quantile modeling has been increasingly used because of its flexibility and capability to handle
nonnormal data, small sample size and population heterogeneity. We defined two types of QGCM
with different interpretations. In this study, we focused on QGCM where growth trajectories
for individuals at a specific level of the dependent variables were investigated. The simulation
study systematically evaluated the numerical performance of the QGCM and showed that the
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Table 1. Parameter estimates for QGCM for normal data

τ Population αL/αS/ρLS N α̂L α̂S ρ̂LS

0.25 5.72 / 1.29 / 0 50 5.75 1.29 -0.01

100 5.75 1.29 -0.01

300 5.74 1.29 -0.04

0.5 6.20 / 1.50 / 0 50 6.21 1.50 0.03

100 6.21 1.50 0.03

300 6.20 1.50 0.00

0.75 6.68 / 1.71 / 0 50 6.67 1.71 -0.02

100 6.68 1.71 -0.03

300 6.68 1.71 -0.03

Figure 1. Relative bias for the estimated average latent slope and latent slope at the 0.5 quantile. Cond1: data contain outliers;
Cond2: data contain leverage observations.
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Bayesian estimation with the augmented asymmetric Laplace distribution can effectively estimate
this sophisticated model. Note that we did not study the other type of QGCM where the quantiles
are defined at the level-two model. For researchers who are interested in studying growth patterns
for individuals whose growth is faster or slower and investigate which interventions have effects on
the rate of change for them, respectively, QGCM with quantiles defined at the level-two model
should be used. Future research needs to be conducted toward this direction.

We would also like to note that the data generated in our study were continuous in nature. One
key advantage of quantile analysis is its flexibility and interpretability across various data types. While
our focus was on continuous nonnormal data, the application of QGCM to other forms of nonnormal
data, such as ordinal and categorical variables, remains an important area for future investigation.
Further research is needed to evaluate the performance, assumptions, and potential adaptations of
QGCM in these alternative contexts.

Furthermore, our simulation study focused on a growth curve model where all subjects were
measured at a common set of measurement occasions without missing values. Theoretically, the
proposed Bayesian QGCM approach can be applied for individual-varying time metrics (e.g., unique
measurement schedules or idiosyncratic time points) and missing data. The performance of the
Bayesian QGCM should be investigated in these scenarios in the future.
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