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Abstract

We investigate model-free multi-agent reinforcement learning (MARL) in environ-1

ments where off-beat actions are prevalent, i.e., all actions have pre-set execution2

durations. During execution durations, the environment changes are influenced3

by, but not synchronised with, action execution. Such a setting is ubiquitous in4

many real-world problems. However, most MARL methods assume actions are5

executed immediately after inference, which is often unrealistic and can lead to6

catastrophic failure for multi-agent coordination with off-beat actions. In order to7

fill this gap, we develop an algorithmic framework for MARL with off-beat ac-8

tions. We then propose a novel episodic memory, LeGEM, for model-free MARL9

algorithms. LeGEM builds agents’ episodic memories by utilizing agents’ indi-10

vidual experiences. It boosts multi-agent learning by addressing the challenging11

temporal credit assignment problem raised by the off-beat actions via our novel12

reward redistribution scheme, alleviating the issue of non-Markovian reward. We13

evaluate LeGEM on various multi-agent scenarios with off-beat actions, including14

Stag-Hunter Game, Quarry Game, Afforestation Game, and StarCraft II microman-15

agement tasks. Empirical results show that LeGEM significantly boosts multi-agent16

coordination and achieves leading performance and improved sample efficiency.17

1 Introduction18

In Multi-Agent Reinforcement Learning (MARL), multiple agents act interactively and complete tasks19

in a sequential decision-making manner with Reinforcement Learning (RL). It has made remarkable20

advances in many domains, including autonomous systems [8, 19, 72] and real-time strategy (RTS)21

video games [58]. By the virtue of the centralised training with decentralised execution (CTDE) [33]22

paradigm, which aims to tackle the scalability and partial observability challenges in MARL, many23

CTDE-based MARL methods are proposed [13, 49, 41, 62, 47, 63, 23, 35]. With these methods, an24

agent executes actions only via feeding its individual observations independently and optimizes its25

own policy with access to global trajectories centrally.26

Despite the recent successes of MARL, learning effective multi-agent coordination policies for27

complex multi-agent systems remains challenging. One key challenge is the off-beat actions, i.e., all28

actions have pre-set execution durations1 and during the execution durations, the environment changes29

are influenced by, but not synchronised with, action execution (an illustrative scenario is shown in30

Fig. 1). However, Dec-POMDP [32], which underpins many CTDE-based MARL methods, hinges31

on the assumption that actions are executed momentarily after inference, leading to catastrophic32

failure for centralized training on various off-beat multi-agent scenarios (OBMAS). To fill this gap,33

we study MARL in settings where off-beat actions are prevalent. Such setting is very common in34

many real-world problems. For example, in the traffic light control problem, traffic lights in the35

conjunctions of the road network have pre-set execution time which is set asynchronously.36

1In the RL literature [39, 6], action execution durations are called delays of actions. In this paper, we use the
term execution durations, which is self-consistent with off-beat actions defined in Sec. 3.
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Figure 1: An illustrative scenario: two-agent stag-hunter game, where two agents (hunters) have only partial
observations, different durations of the shoot action, and cannot communicate. The goal is to catch the stag and
they are rewarded when their shot hits – as in, completion of the action is synchronised, the stag at the same
time. Both agents can see the stag. As the shoot action durations of the two agents are different, to catch the stag,
the two agents should shoot the arrow at different timesteps given the distances. Though the scenario is easy for
human beings, it is hard for MARL agents due to the action duration. Experiment results: in this scenario, the
optimal policy for agent 0 is to shoot the arrow at timestep 0 while the optimal policy for agent 1 is to shoot
the arrow at timestep 5. Such asynchronous property of OBMAS motivates agents to learn tacit policies. The
curves show that VDN and IQL fail to learn coordination policies even in this simple scenario. With LeGEM,
MARL methods gain enhanced performances as well as improved sample efficiency.

The problem of off-beat actions in MARL has yet to be investigated and tackled. Training MARL37

policies in OBMAS is challenging: (i) Each agent’s actions can have a variety of execution durations,38

which augments the order of complexity of OBMAS during decentralized execution, resulting39

in failure of the coordination; (ii) The action durations are unknown to agents during individual40

executions, and communication is constrained and not always feasible, making it non-trivial to model41

the environment; (iii) During training, both the temporal credit assignment with TD-learning [51]42

and the inter-agent credit assignment with value decomposition methods [41] cannot perform well43

due to the displaced rewards in multi-agent replay. With off-beat actions, the nonstationarity issue,44

which mainly stems from rewards’ time dependency on the agents’ past actions, is exacerbated.45

While actions durations are ubiquitous, existing works only focus on single-agent settings, i.e., delay,46

in RL. Many approaches [59, 39, 66] augment the state space with the queuing actions to be executed47

into the environment. However, such state-augmentation trick leads to exponentially increasing48

training samples with the growing action duration, making training intractable [11]. Chen et al. [10]49

extend the delayed MDP [39] and propose Delayed Markov Game for MARL. However, on one50

hand, such state-augmentation treatment is confined to short delays, e.g., one timestep delay; on51

the other hand, the delayed timestep of the actions is privileged information, which is not available52

in many scenarios. Recent works on macro-actions [67, 68] introduce asynchronous actions by53

designing macro-actions with prior environment knowledge. Macro-actions are different from options54

in hierarchical RL (HRL) [52, 3] in that the later is not manually designed but learned. The key55

difference between macro-actions and off-beat actions is that macro-actions are high-level actions56

while off-beat actions are primitive actions. Unfortunately, the inter-agent credit assignment is still57

a challenge of HRL in OBMAS and the asynchronous 2 nature of off-beat actions undermines the58

temporal credit assignment of centralized training, causing poor sample efficiency and unsatisfactory59

performance (more discussions can be found in the related works section in Sec. 7).60

We aim to address the aforementioned issues. We first propose off-beat Dec-POMDP. We then instan-61

tiate a new class of episodic memory, LeGEM, for model-free MARL algorithms. LeGEM boosts62

multi-agent learning by addressing the challenging temporal credit assignment problem raised by the63

off-beat actions via our novel levelled graph-based temporal recency reward redistribution scheme.64

Specifically, each agent maintains LeGEM and during centralized training, each agent searches the65

pivot timestep given observations from its graph. The pivot timestep is the timestep wherein the off-66

beat reward relates to the given node. The pivot timesteps of each agent are ranked, in which the final67

pivot timestep will be chosen by recency and later used for reward redistribution and target estimation68

in TD-learning. We evaluate our method on Stag-Hunter Game, Quarry Game, Afforestation Game,69

and StarCraft II micromanagement tasks. Empirical results show that our method significantly boosts70

multi-agent coordination and achieves leading performance as well as improved sample efficiency.71

2We clarify the term asynchronous: actions that simultaneously committed into the environment by all agents
in MARL will not complete their respective action durations at the same time in future timesteps.
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2 Preliminaries72

Dec-POMDP. A cooperative MARL problem can be modeled as a decentralised partially observable73

Markov decision process (Dec-POMDP) which can be formulated as a tuple ⟨S,U ,P, R,O,N , γ⟩,74

where s ∈ S denotes the state of the environment. Each agent i ∈ N := {1, ..., N} chooses an75

action ui ∈ U at each timestep, forming a joint action vector, u := [ui]
N
i=1 ∈ UN . The Markovian76

transition function can be defined as P(s′|s,u) : S×UN ×S 7→ [0, 1], transiting one state of current77

timestep to the state of next timestep conditioned on current state and joint action. Every agent shares78

the reward and the reward function is R(s,u) : S × UN 7→ R. γ ∈ [0, 1) is the discount factor.79

Due to partial observability, each agent has individual partial observation o ∈ O, according to the80

observation function O(s, i) : S × N 7→ O. The goal of each agent is to optimize its own policy81

πi(ui|τi) : T × U 7→ [0, 1] given its action-observation-reward history τi ∈ T := (O × U).82

Multi-Agent Reinforcement Learning. MARL aims to learn optimal policies for all the agents83

in the team. With TD-learning and a global Q value proxy Qtot for the optimal Q∗, {Qi}Ni=1 are84

optimized via minimizing the loss [65, 31]: θ∗ = argminθ∗ L(θ) := ED′∼D[(y
tot
t −Qtot

θ (st,ut))
2],85

where ytott = rt + γmaxu′ Qtot
θ̄

(st+1,u
′) and θ is the parameters of the agents. θ̄ is the parameter86

of the target Qtot and is periodically copied from θ. D′ is a sample from the replay buffer D.87

3 Off-Beat Dec-POMDP88

We introduce our formulation for OBMAS. We first define the off-beat actions3 for multi-agent89

scenarios; then we propose the Off-Beat Dec-POMDP. All the proofs can be found in Appx. A.90

Definition 1 (Off-Beat Actions). Off-beat action ũ ∈ U characterizes OBMAS where the action
ũi taken by agent i has execution duration mũi

∼ A(m|ũi, i) , A ∈ A, m ∈ {0, 1, 2, · · · ,M}
and M ≤ T , where T is the maximum duration and A is the action duration distribution. It is a
distribution and takes ũi and the index of the agent as parameters. A can be either stochastic or
deterministic. The joint off-beat action is ũ = [ũi]

N
i=1. The execution duration is decided at the time

the action was committed to the environment. Thus, the execution duration of an action ũt initiated
at timestep t is mt = {mt

ũt
i
}Ni=1.

91

Note that for each agent, mt
ũt
i

4 can be different. At timestep t, there are at least 1 action 5 and at most92

N actions being initiated (committed to the environment for execution), leading to asynchronicity of93

the joint actions. Next, we propose the Off-Beat Dec-POMDP for OBMAS and discuss its properties.94

Definition 2 (Off-Beat Dec-POMDP). Off-Beat Dec-POMDP extends Dec-POMDP, such that
(1) state space is S; (2) joint action space is UN ; (3) action duration space is AN ;
(4) transition function is P(s′|s, ũ,m) : S ×UN ×S ×AN 7→ [0, 1], and m is the action durations
of the joint action;
(5) the reward function is R(s, ũ,m) : S × UN ×AN 7→ R;
(6) we call a reward r as off-beat reward when any its mũi ≥ 1, mũi ∈ m, and r ̸= 0.

95

In OBMAS, at each timestep t, the environment receives actions that agent initiates for execution96

in the environment. The initiated actions ũt are instantaneous actions inferred by agents’ policies97

given individuals’ observations. The joint reward is the consequence of the committed joint actions98

of current timestep and previous timesteps, depending on the actions’ duration. The asynchronicity99

is an inherent feature of the environment, which is different from asynchronicity incurred by com-100

munication delays in many video games (asynchronous gameplay6). We discuss some properties of101

Off-Beat Dec-POMDP below.102

3Asynchronicity is prevalent in real-world multi-agent scenarios, including asynchronicity in observations,
actions and communication, etc. In this paper, we focus on the asynchronicity of actions in multi-agent scenarios.
For brevity, we name the asynchronicity of actions in MARL as off-beat.

4We will omit t in the rest of the paper for brevity.
5We note that agents have a special NO-OP action available.
6https://www.whatgamesare.com/2011/08/synchronous-or-asynchronous-definitions.

html
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Remark 1. When the durations for all actions are identical, off-beat Dec-POMDP reduces to103

Delayed Dec-POMDP and there is no off-beat actions in it.104

Remark 2. There exists ũ that is synchronous since duration of agents’ actions can be m = 0.105

When m of all actions is zero, off-beat Dec-POMDP reduces to Dec-POMDP.106

In Delayed Dec-POMDP, actions have the same delayed timesteps, which is different from off-107

beat actions where actions have different action durations or delays. In order to investigate the108

problem, we consider the deterministic setting of the transition function and the reward function.109

Remark 3 (Non-episodic Reward). In our formulation, the reward is not episodic reward [16].110

Remark 4 (Non-Markovian Reward). With off-beat actions, the Markovian property of the reward111

function R(s, ũ,m) does not hold.112

With off-beat actions, the shared rewards can be readily displaced, causing non-Markovian rewards.113

Solving Off-Beat Dec-POMDP is challenging as discussed in Sec. 1. We propose our methods to114

tackle aforementioned challenges.115

4 The Journey is the Reward: A Collective Mental Time Travel Method116

We propose two methodological elements for Off-Beat MARL. The first, LeGEM, presented in117

this section, is a form of episodic memory that facilitates discovery of a pivotal timestep for off-118

beat rewards; and the second, presented in Sec. 5, is redistribution of the off-beat reward to the pivot119

timestep when the relevant off-beat actions were initialised.120

4.1 LeGEM: A Levelled Graph Episodic Memory for Off-Beat MARL121

Human learning relies on retrospecting our detailed memory of the past [55, 48]. For example,122

while exploring a new scenic area, we do not just remember a multitude of specific spots there,123

but can recall the paths that connect them with junctions and turns. However, there is no MARL124

method that can explicitly recall the past and identify key states that lead to future rewards. Such125

“mental time travel” [24] ability is vital for tackling the challenges in OBMAS. Inspired by the recent126

progress in RL with episodic memory [18, 5, 17] that is based on the memory prosthesis proposed127

by neuroscientists [55, 48], we propose our method of episodic memory representation for MARL.128

Unlike previous episodic memory methods that train a parameterized memory by either augmenting129

the policy inputs for execution [18] or regularizing the TD learning [17] for RL, our method utilizes130

the levelled graph data structure [4], a well established structure for data storage and retrieval, to131

represent an agent’s individual episodic memory.132
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We propose our novel episodic memory, Levelled Graph Episodic133

Memory method (LeGEM), via the levelled graph data structure.134

LeGEM memorizes each agent’s past trajectories which are partial135

observations and the unilateral action of the agent. During training,136

each agent i collects its individual trajectories τi. We then define τi137

of agent i as τi = [(o0i , ũ
0
i , r

0), · · · , (oT−1
i , ũT−1

i , rT−1)], where T is138

the length of the trajectory and the triplet (oti, ũ
t
i, r

t) represents the139

observation, action and reward of timestep t. Note that rt is globally140

shared between agents. We define agent i’s LeGEM as a directed graph141

ϕt
i ∈ Φi where Φi is the set of graphs of agent i and ϕt

i is the t-th graph142

of Φi, t ∈ {0, · · · , T − 1}. Each ϕt
i consists of a tuple of (Ψ,Ξ) where143

Ψ is the set of nodes and Ξ represents the set of edges that connect144

nodes in the graph. To model an agent’s behaviour explicitly and make145

the trajectories of agents easy to represent, we create T graphs for each146

agent and let Φi = {ϕt
i}

T−1
t=0 where T is the maximum level of all graphs and the maximum length147

of the episode as well. The maximum level of ϕt
i is t + 1. The node contains key, visit count and148

pointers connecting the precursors (node at the previous level) and the successors (node at the next149

level). Unlike many parameterized episodic memory using state/observation as the key [18, 24], we150

resort to afterstate [36]. That is, we use agent i’s observation oti and action at timestep t, ũt
i, to define151

the key (oti, ũ
t
i). We provide an example to showcase the relationship between sub-graph and the152

graph in Fig. 2. For complex and continuous state scenarios, for example StarCraft II scenarios, we153
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Algorithm 1: SearchPivotTimesteps (ρ)

1 Input: τ , Φ, Υ and Search (scheme I or II);
2 Initialize: κ: an empty list to store pivot timesteps;
// Length of τ and τi are equal.

3 l← length(τi)-1;
4 for t← 0 to length(τ)-1 do
5 if rt ̸= 0 (rt ∈ τ) then

// Off-beat reward
6 for i← 1 to N do
7 Get τi from τ ;
8 ϕl

i ← Φi[l];
9 ψ ← ϕl

i.getNode(o
t
i, ũ

t
i);

10 Find all the paths Λt,l
i from node ψ to

the node at level 0;
11 Get the discretized episode return rl,i;
12 Get the index ω from Υ with rl,i;
13 eit ← Search(ω,Λt

i, τi, r
l,i,Υ,Φi);

14 Get et (Eqn. 1) and append et to κ;
15 Return: κ.

Algorithm 2: Search Scheme I

1 Input: ω, Λt,l
i , τi, rl,i, Υ and Φi;

2 Initialize: ei
t: a list whose values are all t

and its size is the number of paths in Λt,l
i ;

3 ϕl,ω
i ← Φl,Ω

i [ω];
4 vc← VisitCount(Λt,l

i ) (Alg. 4);
5 foreach path Λt,l

i [j] ∈ Λt,l
i do

6 ei,j,↓t ← UL(Λt,l
i [j], vc, τi) (Alg. 5);

7 ei,j,↑t ← LU(Λt,l
i [j], vc, τi) (Alg. 6);

8 if ei,j,↓t ̸= −1 then
9 ei

t[j]← ei,j,↓t ;
10 else if ei,j,↑t ̸= −1 then
11 ei

t[j]← ei,j,↑t ;
12 else
13 ei

t[j]← t;
14 eit ← Summarize(ei

t) (Alg. 7) ;
15 Return: eit.

use SimHash [9] to discretize the key (oti, ũ
t
i). This technique has been widely used in commercial154

search engines and RL [54]. Visit count indicates the total visits made by agent i to the node. It initial155

value is 1. Note that nodes are bidirectional since it is helpful for searching (see Sec. 4.2).156

Given a τi with the length of T , if the node is already in the graph at level t, we then increase the157

visit count by 1. Otherwise, we create a new node for level t of the graph and update its pointers.158

Meanwhile, sub-graphs will be also created and updated. The process of updating LeGEM is in Alg.159

3. We provide an example of Alg. 3 in Fig. 9, Appx. B.1. It is worth noting that τi is generated via160

the interaction of the agent with the environment, and there is no extra interaction needed to collect τi.161

The generated trajectories are saved in the experience replay and later sampled for MARL training.162

4.2 Multi-Agent Collective Mental Time Travel with LeGEM163

With structured agent’s past experiences, it can be used to search the pivot timestep when actions164

that triggered the rewarded state were executed. For example, with LeGEM, we can find the pivot165

timestep, et = 5, when agent 1 shoots the arrow in Fig. 1.166

Fact 1. (Action-Reward Association) When an off-beat reward rt exists in the trajectory τi (i ∈167

{1, · · · , N}), rt ∈ τi, off-beat action ut′ exists (t′ < t) in the trajectory set {τj}Nj=1, where {τj}Nj=1168

constitutes the global trajectory of all agents.169

As the reward function and transition function are deterministic in our setting, Fact 1 holds. Intuitively,170

once we find an off-beat reward in a trajectory, we are sure that the action which triggered the reward171

can be found in the trajectory. With more experiences collected by the agents, such pattern is obvious172

and significant. It motivates us to propose a method to leverage the association property of the173

off-beat action-reward data and search the pivot timestep for timesteps when off-beat rewards occur,174

which can further help to redistribute the reward backward to mitigate the temporal credit assignment175

issue (c.f. Sec. 5). Therefore, we first propose a search method to search the pivot timestep and then176

propose a proximal ranking method to estimate the pivot timestep that invokes the future reward.177

Collective Mental Time Travel. The displaced rewards in the replay buffer hinder multi-agent178

learning. It is essential for each agent to search the pivot timestep when the potential off-beat action179

that triggered the rewarded state was committed to the environment. Therefore, we propose two180

search schemes to find the pivot timestep for all agents given an off-beat reward.181

Scheme I: For agent i, given rt ∈ τi, episode return rl,i of τi, ϕl
i = Φi[l] and ϕl,ω

i = Φl,Ω
i [ω] ,182

agent i searches from the node (the key is (oti, ũ
t
i) and oti ∈ τi, ut

i ∈ τi) at level t in sub-graph ϕl,ω
i to183

find the pivot timestep et for rt. Concretely, we propose our bi-directional search method. The first184

one is called Low-Up (LU) search, which traverses from the given node at level t upwards to the node185

at level 0. The second one is named Up-Low (UL) search which traverses from the node at level 0186

downwards to the given node at level t. LU traversing ends when the pattern of increasing visit count187
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ends and the corresponding level is the candidate pivot timestep. On the contrary, UL traversing188

ends when the pattern of decreasing visit count ends and the corresponding level is the candidate189

pivot timestep. In Alg. 2, we first get visit count (Line 4) and then apply UL traversing (Line 6)190

and LU traversing (Line 7). We summarize the results (Line 14) by select the pivot timestep that191

has the maximum count. UL traversing has a higher searching priority than its counterpart. The192

reason is that there exists pattern that the visit count is decreasing from the node at level 0 and193

such pattern ends at the pivot timestep. In practise, it works well in scenarios whose trajectories are194

single-off-beat-reward trajectories (there is only one off-beat reward) and the accuracy of Scheme I is195

over 90% in grid world scenarios. For scenarios, especially complex scenarios, whose trajectories are196

multiple-off-beat-reward trajectories, we apply Scheme II. We put Alg. 4, Alg. 5, Alg. 6 and Alg. 7 in197

Appx. B.1 as these algorithms are intuitive and easy to understand literally. The time complexity is198

O(n ·m) (a slight notation abuse) where n is the size of each Λt,l
i and m (1 ≤ m ≤ n) is the average199

distance between the level of the given node to the level of the node at the pivot timestep.200

Scheme II: Scheme II is a simplified version of scheme I for scenarios that have multiple-off-beat-201

reward trajectories, which searches the pivot timestep by finding the nearest timestep in the most202

visited path. The node of the nearest timestep has the maximum visitcount in that path. Despite the203

simplicity, it works effective and the time complexity is O(n) where n is the number of paths in Λt,l
i .204

The pseudo code is shown in Alg. 8 in Appx. B.1.205

Given a node at level t, agents collectively search from the node to find the pivot time step (Line 13206

in Alg. 1). The visit count is vital for search methods. In MARL, we use ϵ-greedy [31] for agents to207

explore the environment and collect individual trajectories. The collected trajectories will be used to208

build the memory and train the policy. We apply annealing to ϵ (in Appx. E).209

Ranking the Pivot Timesteps. With our two search schemes, we can search the pivot timesteps210

for each global trajectory τ = {(st, ũt, rt, st+1)}T−1
t=0 . We define the pivot timesteps κ of each211

global trajectory τ as κ = {et}T−1
t=0 , 0 ≤ et ≤ t, where et indicates the pivot timestep of t when212

rt is the consequence of actions committed before timestep t. We first get et by aggregating all the213

searching outcomes (Line 13 in Alg. 1). Then, each agent gets κi = {eit}T−1
t=0 . In order to subserve214

the inter-agent credit assignment [13, 41], κ can be collectively calculated via proximity:215

et = min
eit

[
t− e1t , · · · , t− eNt

]
, i ∈ {1, · · · , N} (1)

The pseudo code is shown in Alg. 1. For each sampled global trajectory τ , we extract τi for each216

agent in Line 7; then we get et for each agent and aggregate κ in line 14 and line 15, respectively.217

5 Reward Redistribution for Off-Beat Multi-Agent Reinforcement Learning218

Searching in LeGEM leverages the collective intelligence [25, 15] in OBMAS. We utilize TD learning219

to train MARL policies. The TD error is the difference between the TD target and the prediction.220

TD targets can be estimated with n-step target, TD(λ) and other techniques [12, 56]. Unfortunately,221

current n-step target and TD(λ) methods are far from accurate estimating TD targets. They even222

incur underestimation with off-beat trajectories. In essence, to train MARL policies in OBMAS, one223

should accurately estimate the TD target where the reward plays the key role [46, 70]. We resolve the224

aforementioned conundrum by redistributing rewards to their pivot timesteps. The key idea is that we225

can pull the outcome of one joint off-beat action back to the timestep when it was committed to the226

environment, which can dramatically enhance learning despite the long-term reward delays incurred227

by off-beat actions. We utilize et to update the reward of the transit (set , ũet , ret , set+1):228

r̂et = 1(et ≥ t) · ret + 1(et < t) · rt, (2)
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where 1(·) is the indicator function.Such update rule is conducted iteratively from t = 0 to t = T − 1.229

β is a very small positive hyperparameter. To stabilize learning and circumvent the overestimation230

of the TD target, rt is also updated after Eqn. 2 via rt = (1 − 1(et < t) · (1 − β)) · rt. It also231

avoids aggregated biased/wrong estimation of TD target being back propagated in Bellman Equation.232

Formally, we define the reward redistribution operator as ΠΦ, i.e., et = ΠΦρ(r
t, s, ũ), and then233

define the Off-Beat Bellman operator Γ:234

(ΓQtot)(s, ũ) := E[ΠΦR(s, ũ,m) + γmax
ũ′

Qtot(s′, ũ′)] (3)

With the Off-Beat Bellman operator Γ, we propose its contraction property.235

Proposition 1. Γ : Q 7→ Q is a γ-contraction.236

Therefore, we can utilize r̂et for centralized training in TD-learning:237

LTD(θ) := ED′∼D[(ŷtot
et −Q

tot
θ (set , ũet))2], where ŷtotet = r̂et + γmax

ũ′
Qtot

θ̄ (set+1, ũ′). (4)

Our method can be easily incorporated into any model-free MARL method for OBMAS. We present238

the pseudo code of incorporating our method into model-free MARL methods in Alg. 9, Appx. E.239

We also provide a pictorial view of our framework in Fig. 3 to show the whole pipeline.240

6 Experiments241

We perform experiments on various multi-agent scenarios with off-beat actions. We introduce242

off-beat actions in Stag-Hunter Game, Quarry Game, Afforestation Game and StarCraft II microman-243

agement tasks [44] and use them as testbeds in our experiments. We aim to answer the following244

questions: Q1: Can our LeGEM improve the multi-agent coordination of many MARL methods245

in OBMAS? Q2: Can our LeGEM outperform previous parameterized episodic memory (EM) for246

MARL? Q3: Can bootstrapping method of RL help? Q4: Can our LeGEM outperform the multi-agent247

exploration and multi-agent risk-sensitive (Ex-Risk) methods?248
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Figure 4: The test catch rate of the stag on the Stag-Hunter Game with off-beat actions.

6.1 Experiment Setup249

hunter 0
hunter 1

stag

farmer 0 farmer 1 farmer 2
agent 0

bomb

agent 1quarry

forest

sandstorm

Quarry Game Afforestation Game

Stag-Hunter Game
desert

Figure 5: Stag-Hunter Game, Quarry Game and Afforesta-
tion Game. More information can be found in Appx. C.

Categories Methods

MARL (Q1)
QMIX [41], VDN [49]
IQL [53], QTRAN [47]
QPLEX [60]

EM (Q2) EMC [71]

Bootstrap (Q3) N-step &λ-Return [51]

Ex-Risk (Q4) MAVEN [28], EMC [71]
RMIX [38]

Table 1: Baseline algorithms.

250

Baselines and scenarios. We list all baselines in table 1, including the corresponding research251

questions to be answered. We implement our method on PyMARL [44] and use 10 random seeds252

to train each method on all environments. We do not use macro-action methods [67, 68] as the253

baseline because it is hard to make a fair comparison between macro-actions methods and our method.254

As discussed in Sec. 1, macro-actions rely on manually designed macro-actions, i.e., designing255

the macro-actions by utilizing the simulator settings and domain knowledge, which is different256

from learning options [52, 3]. Designing macro-actions is not feasible in scenarios where domain257

knowledge and simulator settings are unknown, such as the OBMAS scenarios. In OBMAS, the agent258

has no idea of the durations of other agents’ actions, which is challenging for designing macro-actions.259

We conduct experiments on Stag-Hunter Game, Quarry Game, Afforestation Game (Fig. 5) and260

StarCraft II micromanagement tasks [44] where off-beat action are introduced.261
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Training settings. We use opensourced code of baselines publicly by the corresponding authors on262

Github in all experiments. We resort to mean-std values as our performance evaluation measurement263

in all figures where the bold line and the shaded area indicate the mean value and one standard264

deviation of the episode return, respectively. Readers can refer to Appx. C, D, E and F for more265

information on our environment, baselines, training method, training platform and empirical results.266
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Figure 6: The test task completion rate of the Quarry Game with off-beat actions.
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Figure 7: Performance of MARL methods

6.2 Experiment Results267

The Effectiveness of LeGEM. We answer Q1. With LeGEM, MARL methods get enhanced268

performance as shown in Fig. 4. Without LeGEM, all methods perform poorly in Stag-Hunter Game;269

IQL and VDN’s final final results are even 0. By incorporating LeGEM, all of them can get converged270

performance and improved sample efficiency. We are also interested in finding if LeGEM could271

reinforce the performance of simple methods. As depicted in Fig. 7, with LeGEM, both VDN and272

QMIX outperforms QPLEX, which is a state-of-the-art MARL method armed with various advanced273

techniques, including attention network [57], dueling network [64] and advantage function.274

Performance of Episodic Memory method. We answer Q2 by presenting the performance curves275

of EMC in Fig. 7. EMC is an episodic memory MARL method with curiosity-driven exploration. It276

utilizes the episodic memory from RL [74, 17].With LeGEM, QMIX outperforms EMC. EMC even277

fails to converge in Stag-Hunter Game.278

Table 2: Results (mean and std) of n-step return (left) and TD(λ) (right) on Stag-Hunter Game.
n 1 5 10 15 λ 0.8 0.9 0.99 1

QMIX 60.0± 40% 0± 0 0± 0 0± 0 QMIX 100± 0% 100± 0% 89± 10% 61± 37%

VDN 0± 0 0± 0 0± 0 0± 0 VDN 0± 0 0± 0 0± 0 0± 0

Performance of n-step return and TD(λ) methods. To answer Q3, we use n-step return and279

TD(λ) to estimate the TD-target. As shown in Table. 2, with n-step return, both QMIX and VDN280

fail to learn good policies even with n = 15. Surprisingly, with TD(λ), QMIX can achieve good281

performance with λ ∈ {0.8, 0.9, 0.99, 1}. However, we cannot find such outcome on VDN and there282

is no guarantee of good results on using TD(λ).283
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Figure 8: The performance of MARL meth-
ods on 2m_vs_1z.

Performance of Multi-Agent Exploration and Risk-284

Sensitive MARL methods. We also provide results of285

exploration methods for MARL and risk-sensitive MARL286

method to answer Q4. MAVEN utilizes mutual information287

to learn latent space for exploration and RMIX aims to288

learning risk-sensitive policies for MARL. In Fig. 7, RMIX289

even fails to learn. Mainly because the potential loss of290

reward is displaced by off-beat actions. Overall, MAVEN291

is stabler than EMC and RMIX. QMIX-LeGEM is stable292

in all scenarios and outperforms MAVEN. With LeGEM,293

even simple method such VDN can perform well and out-294

performs many MARL methods with complex and advanced components. Indeed, exploration295

in OBMAS is beneficial for multi-agent learning. However, the key challenge of temporal credit296

assignment can not be easily addressed merely with exploration.297

SMAC. We also conduct experiments on SMAC [44]. We train MARL methods and our method298

on 2m_vs_1z where are two agents combating with one opponent. To overcome the issue of299
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high dimension continuous state space, We utilize simhash [9] to calculate the hash value of the300

key. We only select the attack action and set the action duration with 9. As illustrated in Fig. 8,301

incorporated with our novel episodic memory, QMIX, IQL and VDN illustrate enhanced performance,302

demonstrating the superiority of our method on complex multi-agent scenarios.303

7 Related Works304

Action Delay in RL. Conventionally, the execution of actions in RL is instantaneous and the execution305

duration is neglected. Katsikopoulos et al. [20] propose the Delayed MDP where actions have delays306

and Walsh et al [59] propose a model-based method for the Delayed MDP. To optimize the delayed307

MDP, many RL approaches [59, 39, 66, 69] augment the state space with the queuing actions to308

be executed into the environment. However, this state-augmentation trick is intractable [11]. Chen309

et al. [10] extend the delayed MDP [39] and propose a Delayed Markov Game. However, the310

state-augmentation treatment is confined to short delays and neglects the off-beat actions in multi-311

agent scenarios. Recently, Bouteiller et al. [6] apply replay buffer correction method. However, the312

delayed timestep is privileged information. It is not available for agents in many scenarios. Simply313

applying this single-agent trajectory correction in MARL cannot attain satisfactory performance due314

to off-beat actions; devising inter-agent trajectory correction methods for OBMAS is non-trivial.315

Credit Assignment in RL. Credit assignment [50, 52] tackles long-horizon sequential decision-316

making problem by distributing the contribution of each single step over the temporal interval. TD317

learning [51] is the most established credit assignment method, which is the basis of many RL methods.318

RUDDER [2] redistributes the episodic return to key timesteps in the episode [14, 42, 40]. Klissarov319

et al. [22] propose a reward propogation method via graph convolutional neural network [21]. Another320

line of works utilize episodic memory (EM) [37, 5, 73, 27, 74] to recall key events and aggregate321

information of the past for decision-making or learning. However, simply applying EM of RL to322

MARL cannot perform well in OBMAS due to the non-stationarity and the displaced rewards.323

Multi-Agent RL. Many MARL methods focus on factorizing the global Q value to train agents’324

policies via CTDE [13, 49, 41, 47, 60, 63, 35]. However, these existing works assume actions are325

executed synchronously. Messias et al. [30] propose an event-driven, asynchronous formulation of326

the multi-agent POMDP. However, the assumption of free communication [61] is limited and the327

asynchronous execution [34] in the paper is confined to the design of events and did not propose328

methods on solving challenging credit assignment issue in OBMAS. Recently, Amato et al. [1]329

and Xiao et al. [67, 68] propose macro-action methods, which are similar to hierarchical methods.330

Macro-actions are manually designed via abstracting primitive actions. However, macro-action331

methods mainly focus on macro-action selection during multi-timestep decision-making and assume332

the environment can use manually pre-defined methods for state transition. Unfortunately, the above333

works either focus on synchronous actions or defining specific asynchronous execution components334

with human knowledge. Learning coordination in OBMAS remains a challenge.335

8 Conclusion336

In this paper, we investigate model-free MARL with off-beat actions. To address challenges in337

OBMAS, we first propose Off-Beat Dec-POMDP. Then, we propose a new class of episodic memory,338

LeGEM, for model-free MARL algorithms. LeGEM addresses the challenging temporal credit339

assignment problem raised by off-beat actions in TD-learning via the novel reward redistribution340

scheme. We evaluate our method on various OBMAS scenarios. Empirical results show that our341

method significantly boosts the multi-agent coordination and achieves leading performance as well as342

improved sample efficiency.343

Limitations and Future Work. Searching from a graph-structured episodic memory takes much344

overhead in LeGEM. Scaling up LeGEM to complex OBMAS is our future direction. Recently, there345

is a growing interest in model-based planing [45]. Leveraging LeGEM for model-based planning346

is also our future work. Our paper focuses on Dec-POMDP-based MARL methods. We leave it to347

future work for investigating off-beat actions in frameworks like Markov Game [26] and MMDP [7].348

We are also interested in finding the merit of our method in real-world problem in our future work,349

such as scheduling [29] with off-beat settings.350
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