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ABSTRACT

Point-of-Interest (POI) prediction forecasts a user’s next destination from mobil-
ity history. A key challenge is geographic exposure bias, where users often visit
nearby or popular places out of convenience rather than genuine interest. Such
convenience-driven behaviors create spurious correlations that obscure true pref-
erences, leading models to misinterpret frequent check-ins as strong signals of
interest. Traditional sequential/graph models rely on surface-level statistical corre-
lations, and recent Large Language Model (LLM)-based methods improve seman-
tic coverage but still inherits exposure bias from observational logs. We address
this with causal inference, explicitly modeling the data-generating process and
distinguishes preference-driven behaviors from convenience-driven ones. In par-
ticular, we estimate geographic propensity scores that quantify the likelihood of a
visit due to spatial exposure, and use them to reweight check-ins and align trajec-
tory retrieval in exposure-consistent space. Towards this end, we propose Causal
Geographic Prediction (CGP), a unified framework that integrates causal infer-
ence with LLM-based trajectory modeling. It employs exposure-aware trajectory
prompting, causal-geographic similarity alignment, and supervised fine-tuning to
separate genuine preferences from convenience-driven behaviors. Experiments on
real-world datasets show that CGP outperforms state-of-the-art baselines.

1 INTRODUCTION

Point-of-Interest (POI) prediction aims to forecast a user’s next destination from historical check-in
patterns (Acharya & Mohbey, 2024} [Islam et al., 2022), enabling applications such as personalized
navigation and urban mobility analysis (Qi et al., |2018). A central challenge is to separate true
user preferences from visits driven primarily by geographic convenience(Psyllidis et al., |2022; |Ying
et al., |2012). In practice, users often check in at places close to home, work, or daily routes—not
because they genuinely like them, but because they are easy to access. For example, a nearby café
on the way work may be visited far more often than a distant café, even though the latter better
reflects the user’s actual interest (FigurdI). Such patterns create geographic exposure bias, where
spatial proximity influences both historical trajectories and future predictions. As a result, existing
models tend to conflate convenience-driven visits with genuine preferences, leading to biased and
less interpretable recommendations. This motivates our research question: How can we distinguish
genuine user interests from proximity-induced behaviors for more robust POI predictions?

Early research on POI prediction explored diverse paradigms, including matrix factorization (Ren-
dle et al., 2010}, recurrent neural networks such as LSTMs (Hochreiter & Schmidhuber, [1997)), and
attention-based architectures (Luo et al., 2021). These models captured spatial and temporal depen-
dencies in check-in sequences but still relied on surface-level correlations such as visit frequency.
As a result, they often mistook convenience-driven visits for true preferences while overlooking less
frequent but more meaningful ones. Recent advances leverage Large Language Models (LLMs) to
transform structured check-in data into natural language prompts (Li et al., 2024a; [Liu et al.| 2025}
Wang et al., |2024)), fusing semantic, temporal, and spatial signals into a unified representation. Al-
though more expressive, LLM-based methods still operate on observational data and remain vul-
nerable to geographic exposure bias (Morehouse et al., |2024). Thus, merely scaling model capacity
cannot address the core challenge of disentangling genuine preferences from spurious correlations
induced by spatial convenience.
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Figure 1: An example of geographic exposure bias: user may often visit a nearby place out of conve-
nience along daily route, while a less visited but more distant place may better reflect true preference.

Towards this end, we introduce causal inference as a principled way to reduce geographic expo-
sure bias (Yu et al., [2023} |Pearl, 2009). In observational mobility data, user visits are shaped not
only by genuine preferences but also by confounders—factors that jointly affect exposure and ob-
served behavior. Factors such as distance affect both a user’s exposure to a POI and their likelihood
of visiting it, misleading even advanced models to interpret convenience as genuine preference.
These confounders create spurious correlations, making frequent nearby check-ins appear as strong
preferences, even when advanced LLMs are applied. Causal inference explicitly models the data-
generating process, allowing us to adjust for these confounders so that visits at different exposure
levels can be compared fairly, as if randomized (Imbens & Rubin, |2015; Burgess & Thompson)
2021). As a result, observed behavioral differences are more likely to reflect true preferences rather
than artifacts of spatial convenience. To operationalize this, we estimate a geographic propensity
score (Thoemmes & Kim, 2011} for each check-in, quantifying the probability of visiting a POI
under given spatial and contextual conditions. These scores act as balancing variables that down-
weight convenience-driven visits and amplify more indicative preference signals. They also refine
trajectory similarity by penalizing cases where trajectories are semantically alike but differ sub-
stantially in exposure conditions. Through this causal adjustment, we construct LLM prompts from
exposure-consistent histories, enabling the model to better capture genuine user interests.

In this work, we propose Causal Geographic POI Prediction (CGP), a unified framework that in-
tegrates causal inference with LLMs to achieve robust POI prediction. CGP mitigates spatial con-
founding by embedding causal adjustments into both input construction and model adaptation, al-
lowing the LLM to distinguish true user interests from proximity-induced behavior. Specifically,
CGP includes five components: (1) Trajectory Prompting transforms each user’s check-in sequence
into structured natural language prompts, encoding rich spatio-temporal semantics; (2) Geographic
Propensity Estimation employs a neural embedding-based model to estimate the propensity score
for each check-in, quantifying the likelihood of visiting a POI due to spatial exposure; (3) Causal-
Geographic Similarity Computation defines semantic similarity by penalizing differences in propen-
sity scores, ensuring retrieved examples are consistent in both behavioral intent and exposure con-
text; (4) Historical Trajectory Selection retrieves auxiliary trajectories using the adjusted similar-
ity, providing exposure-consistent examples for model input; (5) Supervised Fine-Tuning adapts
the pretrained LLM to these prompts via parameter-efficient updates, enabling preference model-
ing disentangled from proximity bias. Experimental results on real-world datasets show that CGP
outperforms state-of-the-art POI models. Our main contributions are summarized as follows:

* To the best of our knowledge, this is the first work to embed causal inference into LLM-
based POI prediction, explicitly mitigating exposure bias from a geographic perspective for
more robust performance.

* We design an embedding-based Geographic propensity score that estimates the likelihood
of visiting a POI from its spatial and contextual attributes, serving as a causal balancing
variable to separate genuine preferences from convenience-driven behaviors.
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* We develop a retrieval-prompting strategy that aligns historical trajectories by geographic
exposure, allowing the LLM to separate preferences from convenience-driven behaviors.

2 RELATED WORK

POI prediction is a core task in location-based social networks (LBSNs), aiming to forecast a user’s
next destination from historical mobility and contextual signals (Yin et al., 2016; Islam et al., [2022)).
Early methods, such as collaborative filtering and matrix factorization, modeled user—POI interac-
tions but largely ignored explicit spatial-temporal dependencies (Davtalab & Alesheikh| 2021} [Yang
et al., [2017). Subsequent research adopted sequential models, including Markov chains and recur-
rent neural networks, to capture trajectory dependencies (Altaf et al.|[2018};[Mathivanan et al., 2024)),
while more recent work employed attention and graph neural networks to model higher-order rela-
tions among users, POIs, and contexts (Ni et al., 2024} [Yu et al., [2024a)). Despite these advances,
a key challenge remains: separating genuine user preferences from behaviors driven by geographic
convenience or popularity. Traditional and even recent models often overweight nearby or frequently
visited POls, leading to exposure bias that distorts preference estimation. Geographic and temporal
cues have been incorporated to alleviate this bias, yet these features alone cannot fully account for
the confounding effect of proximity, leaving residual bias in predictions. The emergence of LLMs of-
fers a new direction, enabling structured check-ins to be transformed into natural language prompts
that integrate semantic, temporal, and spatial features into unified representations (Kumar, 2024;
Ji et al.} 2025)). Enhancements with explicit spatial or temporal cues have improved mobility un-
derstanding (Ding & Wang, 2025} [Yuan et al., [2025)), but LLM-based POI recommenders remain
susceptible to proximity-driven confounding (Hwang et al.| 2018).

Causal inference offers a principled framework for disentangling genuine effects from spurious cor-
relations caused by confounders. Foundational methods such as the back-door criterion and propen-
sity score adjustment (Pearl| [2009; Yu et al., |2025) are widely used to estimate treatment effects
from observational data, particularly in fields like healthcare and economics. In recommender sys-
tems, causal inference has become an effective tool to address biases including popularity, exposure,
and temporal confounding (Yao et al.,[2021). By modeling the data-generating process as a causal
graph, these approaches adjust for variables that jointly affect both user preferences and observed
actions, resulting in more accurate and interpretable predictions. Recently, causal methods have
been adapted to POI prediction tasks through techniques such as propensity score matching, causal
regularization, and counterfactual reasoning, aimed at correcting spatial and contextual biases in
mobility data (Yu et al.l 2023} |Zeng et al.| 2022). However, the integration of causal inference into
large-scale language models is still in its infancy. This work addresses that gap by embedding causal
adjustments—specifically, geographic propensity scores—within LLM-based POI prediction, en-
abling robust preference estimation.

3  PROBLEM DEFINITION

POI prediction aims to forecast a user’s next destination based on historical check-ins within a
location-based social network (LBSN) (Yin et al., 2016} |/Acharya & Mohbey, 2024). Let D =
{qi} X, be a dataset of N check-ins, where each ¢; = (u;, p;, ¢;, t;, g;) denotes a user ID u;, POI
identifier p;, category c;, timestamp t;, and geographic coordinates g; € R2. For each user u, check-

ins are ordered and segmented into trajectories T, = {T&m)}fn“:l using a temporal window At.

Given a partial trajectory qum)(t) = {(pe,co,te, ge) Yo, withty < -+ < t), < t, the task is to pre-
dict the next POI pk + 1 at time ¢;1. A key challenge is geographic exposure bias (Psyllidis et al.,
2022; Ying et al.,|2012), where spatial proximity shapes both mobility history and future visits. Users
often visit nearby POIs out of convenience, causing models to misinterpret convenience-driven be-
havior as true preference. Yet, true interests may lie in distant POIs that remain unobserved in raw
records due to spatial constraints, creating a gap between observed check-ins and actual preferences.

To address this, we model the data-generating process from a causal perspective. As shown in Fig-
ure 2 a user’s true preference P influences the likelihood of visiting a POI V, while geographic
distance D acts as a confounder, affecting both historical trajectories H and visit outcomes. Tem-
poral variables X may also shape both preferences and visit behavior. This structure exposes two
back-door paths: (1) P <~ H < D — V, where distance influences both mobility history and visit
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behavior, making frequent visits to a nearby mall reflect convenience rather than true interest; (2)
P < X — V, where temporal factors (e.g., morning check-ins) bias preferences toward specific
POI types. These confounding paths create spurious correlations that bias preference estimation. We
therefore estimate a geographic propensity score for each check-in, quantifying the probability of
visiting a POI given spatial and contextual attributes. This score serves as a causal balancing factor,
mitigating exposure bias and enabling more robust POI prediction.

1 P — User’s True Preference i

i D— Geographic Distance !

0 | V — Observed Visit !
| X — Temporal Factors !

i

1 H — Historical Trajectory

Figure 2: Our designed causal graph representing the data-generating process in POI predictions.

4 METHODOLOGY

As shown in Figure [3] our CGP framework builds on LLMs as the backbone, as they effectively
unify heterogeneous signals into a single representation. Yet applying LLMs directly to location
data introduces exposure bias, mistaking nearby visits for genuine preferences. To address this, CGP
embeds causal adjustments into data preparation and training, enabling the framework to separate
convenience-driven from true preference-driven choices. CGP consists of five components: (1) Tra-
jectory Prompting converts raw check-in sequences into structured natural language prompts, en-
abling the LLM to jointly capture spatial, temporal, and semantic signals; (2) Geographic Propen-
sity Estimation models the likelihood (e.g., propensity score) of visiting a POI based on spatial
exposure using an embedding-based network; (3) Causal-Geographic Similarity Computation
adjusts semantic similarity by penalizing differences in propensity scores, ensuring retrieved trajec-
tories share both behavioral patterns and exposure conditions; (4) Historical Trajectory Selection
retrieves auxiliary trajectories using the adjusted similarity, forming exposure-consistent prompts
for model input; (5) Supervised Fine-Tuning adapts a pretrained LLM to these prompts through
parameter-efficient updates, enabling preference modeling disentangled from spatial confounding.

! TTrajectory " 1 { ‘Geographic Propensity | {  Causal-Geographic \{  Historical Trajectory I ;Jp;r;i;e;;i;e_-r:: ;i;g‘:
| Prompting " L Estimation 1!_Similarity Computation_| L Selection l'. ]
=
= "
2
o 9 5 Propensity Score .;2,,
W e s P(p|d,ec,t) B
a
E.E; E — 5
e Zd t < “% Current
Raw Check-In e 5 Trajectory T
Q S AN
E.E; E, \mm! 2 £ 0
: e S ~ £
o o Propensity Score 2 © . q
W QE@ f P(p|d,ec,t) %D 2 R 5} Historical E]
pla,ct 2 8 3 n Trajectory = 2 2
— a E el|=||Z]||o
= £ 5 ENEIE
— o & © = 2 ¢
£ 9 S o
Cosine Similarity g 2 £ 2
Sim(Ey, E,) 2 g ¥ 3
[T -] 8.
¢zl |8 —
<\ © O _
Q (2}
2 Fi Target
o 9 o Propensity Score A (&)
Y o s Pp|d,c,t) E
a
E.E, E, 2

Figure 3: Overall framework of our proposed method.

4.1 TRAJECTORY PROMPTING

The first challenge in POI prediction is representing heterogeneous spatio-temporal data (Zhao et al.,
2020). As shown in Figure [2] trajectories are shaped by both true preferences and confounders
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such as geographic distance. To model preferences accurately, the representation should capture
behavioral intent while accounting for these confounders, as ignoring them can bias predictions.
Traditional numerical embeddings often miss such nuances, limiting performance in geographically
diverse settings (Yu et al., 2024b; Hu et al.,|2024). We address this by converting structured check-in
records into natural language, enabling LLMs to jointly interpret POI categories, timestamps, and
locations through semantic reasoning. This unified, context-aware format lays the groundwork for
incorporating causal signals, improving robustness to spatial confounding.

Formally, for a user’s historical trajectory 77 = (p1,c1,t1, 1), - -, (Dk, Ck, Lk, gk ), €ach check-in is
converted into a natural language sentence using a predefined template that encodes semantic, tem-
poral, and spatial attributes. The overall prompt and check-in record structure is shown in Table [T}
Each prompt includes four blocks: the current trajectory block encodes the user’s recent check-ins to
capture short-term behavioral context; the historical trajectory block contains trajectories retrieved
via causal-geographic similarity to ensure consistency in both semantic behavior and geographic ex-
posure; the specifies the prediction task, guiding the model to prioritize preference-
driven patterns over proximity effects; and the target block, used only during training, provides the
ground-truth POI to help the model learn predictions disentangled from spatial confounding.

Table 1: Prompt template for trajectory construction and check-in representation.

Prompt Layout

[Current Trajectory]: The user [user id] has recently checked in
at: [records].

[Retrieved Trajectories]: Historical sequences from similar
comparable contexts: [records].

[Target Answer]: At [time], user [user id] visited at [poi id].

Check-in Sentence Pattern

At [time], user [user id] visited [poi id] (type: [category]), located [distance] meters from the prior
check-in, with an estimated propensity score of [value].

Our trajectory prompting template transforms heterogeneous mobility logs—covering spatial, tem-
poral, and semantic attributes—into a unified textual form suitable for LLMs. By clearly distin-
guishing the recent context, exposure-consistent historical sequences, the task directive, and the
target outcome, the template facilitates context-aware and bias-resilient modeling. In addition, the
check-in representation encodes both the raw confounder (distance) and its adjustment (geographic
propensity score). For instance, each record ¢ = (u, p, ¢, t, g) is expressed as: “At [time], user [id]
visited [poi] (category: [c]) located [distance] meters from the last check-in, with a propensity score
of [value].” This design lets the model interpret both exposure intensity and its causal correction,
thereby distinguishing habitual proximity-driven actions from genuine user interests. By embedding
multimodal cues into natural language, our approach preserves causal relationships and enhances
interpretability under spatial confounding.

4.2 GEOGRAPHIC PROPENSITY ESTIMATION

Although spatial distance is included in trajectory prompts, raw distance alone cannot capture its
systematic influence on mobility. Geographic proximity acts as a confounder, shaping both the
likelihood of visiting a POI and the trajectory history, thereby obscuring true preferences with
convenience-driven behaviors (Wang et al.l 2025). To mitigate this, we estimate a geographic
propensity score for each check-in, quantifying the probability of visiting a POI given its distance,
category, and temporal context. This score serves as a causal balancing variable, aligning trajec-
tories across semantic and exposure space to disentangle preference-driven patterns from spatial
confounding.

For each check-in ¢ = (u,p, ¢, t, g), we estimate a geographic propensity score. The score models
the probability of the treatment (i.e., a visit to POI p) conditioned on a set of covariates, including
the spatial distance from the previous location, the POI category, and the temporal context. While
logistic regression is commonly used for its simplicity and interpretability (Westreich et al.,|2010),
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it assumes linear and monotonic effects that seldom hold in real-world mobility, where temporal
and categorical influences are often highly nonlinear. To capture such complexities, we employ an
embedding-based neural architecture (Balaneshin-Kordan & Kotovl 2018)) in which distance (dis-
cretized into bins), category, and temporal features are each mapped to trainable low-dimensional
embeddings Emb(d), Emb(c), and Emb(¢). These embeddings are concatenated and fed into a
multi-layer perceptron, with a sigmoid activation producing the final propensity score as

P(p|d,c,t)=o(f(Emb(d),Emb(c), Emb(t))) (D)
where f(-) is the MLP and o(+) is the sigmoid function. This architecture enables flexible, nonlin-

ear mappings from contextual conditions to visit probabilities. The propensity score P(p | d, ¢, t)
quantifies the likelihood that a check-in is driven by spatial exposure rather than intrinsic preference.

4.3 CAUSAL-GEOGRAPHIC SIMILARITY COMPUTATION

Traditional semantic similarity measures capture behavioral patterns but often ignore spatial expo-
sure differences, which can lead to misleading trajectory matches (Yan et al.| 2013). Accordingly, we
propose a causal-geographic similarity metric that jointly considers semantic relevance and exposure
consistency. Generally, we refine cosine similarity between trajectory embeddings by penalizing di-
vergence in their estimated geographic propensity score distributions, thereby discouraging matches
between semantically similar but contextually mismatched trajectories.

Specifically, each trajectory prompt is first transformed into a natural language sentence and en-
coded into a dense embeddings using a pretrained LLM. Let E;, and E, denote the embeddings
of the key (current) and query (historical) trajectories, obtained from the LLM’s final hidden layer.
Mathematically, the baseline semantic similarity between two trajectory prompts is computed as

_ E; - Eq
[ Ex |1 £l

where Sim(FEy, E,) is the cosine similarity between the embeddings of the key and query trajecto-
ries, capturing behavioral alignment but ignoring geographic exposure mismatches. To address this,
we define a causal-geographic similarity that penalizes exposure discrepancies. Instead of a single
scalar, each trajectory is represented as a distribution over its check-in—level geographic propensity
scores, with divergence measured via KL divergence D(Py, |, P,) to obtain the final similarity:
1
1+\-D(P. || P)

Here, CausalSim(E}, E,) denotes the causal-geographic similarity score, which integrates both se-
mantic closeness and exposure consistency between the two trajectories. To compute exposure con-
sistency, we construct empirical exposure distributions P, and P, for the key and query trajectories
by collecting vector-valued propensity scores across their respective check-in sets T}, and T7:

Py ={P(pq | dg,cq,tq) | a € Tu}, Py ={P(pq|dq cq,tq) | q €Ty} “4)
where the discrepancy function D(- || -) quantifies the divergence between these distributions, re-
ducing similarity for trajectories that are semantically close but contextually mismatched. The hy-
perparameter A > 0 controls the strength of this penalty, allowing the model to balance semantic
similarity against exposure consistency.

Sim(Ey, E,) 2)

CausalSim(Ey, E,) = Sim(Ey, E,) 3)

4.4 HISTORICAL TRAJECTORY SELECTION

Constructing effective prompts requires retrieving historical trajectories consistent in both semantic
behavior and geographic exposure (Li et al.l [2024b). If retrieval relies only on semantic similarity,
trajectories may share surface patterns but differ in exposure, reintroducing proximity-related con-
founding. Accordingly, we use causal-geographic similarity to retrieve trajectories consistent in user
intent and spatial context, ensuring prompts contain causally valid examples that guide the model
toward preference-driven rather than proximity-induced predictions.

Given a historical trajectory pool H, where each candidate trajectory T;, ends before the current
timestamp t, we compute its causal-geographic similarity with the current trajectory Tj. The top-k
most similar trajectories are selected as:

S(k) =arg  max  CausalSim(Ey, E,) 5)

quH,t:‘I"d<tk
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where ¢ is the end time of T,. S(k) denotes the set of top-k trajectories most aligned with T} in
both intent and exposure. Selected trajectories are templated into natural language and added to the
history block, ensuring structural consistency and exposure-aware conditioning so the model learns
preference-driven signals instead of proximity-induced noise.

4.5 SUPERVISED FINE-TUNING

While the base model captures general language patterns, it lacks domain-specific knowledge of
our causal adjustments. Fine-tuning with exposure-aware prompts aligns model parameters with the
task’s causal structure, enabling the model to distinguish preference-driven behavior from proximity
bias. To reduce training cost while preserving performance, we adopt LoRA (Hu et al.||2022), freez-
ing dense layers in the LLM and updating weights via low-rank decomposition. For a pretrained
weight matrix Wy € R?**_ we replace the full update W, + AW with:

W =Wy+AB, AcR¥™" BecR™ r < min(d,k) (6)

where A projects from the original dimension d to a reduced dimension 7, and B projects back
to k. During training, only A and B receive gradient updates, reducing trainable parameters while
retaining adaptability. For long prompts with multiple historical trajectories, we use FlashAttention-
3 (Shah et al.| [2024) for memory-efficient attention over sequences up to 32768 tokens.

5 EXPERIMENTS

To evaluate CGP, we conduct extensive experiments to answer the following questions: 1) Does our
proposed CGP outperform existing state-of-the-art POI models? 2) What is the contribution of each
component to the overall effectiveness of CGP? 3) To what extent does CGP enhance interpretability
in POI task? 4) How sensitive is CGP to variations in its key hyperparameters?

5.1 SETUP

We conduct experiments on three widely used datasets: Gowallﬂ s NYC—TE], and Ma—STE] . Each
contains user check-ins with POI categories, timestamps, and geographic coordinates. Following
common practice, we filter out users with fewer than 10 check-ins and POIs visited by fewer than
10 users (Wu et al.l 20255 |Li et al., [2023). The remaining data are segmented into trajectories with
temporal window A;, where the last POI is the prediction target and preceding POIs form the input.
Our model is implemented in PyTorch and optimized with Adam (Modoranu et al.,[2024) at learning
rate 0.001. The embedding dimension is 128, batch size 256, and hyperparameters tuned via grid
search. Each experiment is repeated five times with different seeds, and averages are reported. We
use three LLM backbones (Touvron et al.,|2023; |[Feng et al., 2024)): Llama 3.3 (70B), Llama 4 Scout
(17B), and Llama 2—7B. Performance is evaluated using Accuracy@1 (Acc@1), the proportion of
cases where the ground-truth POI is ranked first: Acc@l = L Y™™ T(rank; < 1), where m is the
number of test instances and rank; the predicted rank of the ground-truth POI.

We compare CGP against 10 representative baselines. FPMC (Rendle et al., |2010) combines ma-
trix factorization with first-order Markov chains for preference and transition modeling, while
PRME (Feng et all [2015) learns pairwise ranking metric embeddings for user-specific movement
patterns. LSTM (Hochreiter & Schmidhuber, [1997)) captures long- and short-term dependencies,
with HST-LSTM (Kong & Wu, 2018) extending it to a hierarchical structure for multi-scale spa-
tial-temporal patterns. STAN (Luo et al., 2021)) employs bi-layer attention for fine-grained spatio-
temporal relevance, and PLSPL (Wu et al., [2020) uses parallel LSTMs to jointly capture long- and
short-term preferences. GETNext (Yang et al.,[2014)) integrates a graph-enhanced transformer with
trajectory flow mapping for global dependencies, while STHGCN (Yan et al., 2023) applies hy-
pergraph convolution for high-order mobility and sparsity mitigation. LLM4POI (Li et al,2024a)
leverages structured trajectory prompts for heterogeneous check-ins, and GA-LLM (Liu et al.| 2025)
injects geographic coordinates and POI alignment for improved spatial representation.

Uhttps://snap.stanford.edu/data/loc-gowalla.html
Zhttps://sites.google.com/site/yangdingqi/home/foursquare-dataset?utm_source=chatgpt.com
*https://github.com/cruiseresearchgroup/Massive-STEPS
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Table 2: (a) Performance comparison of Acc@1 (RQ1) and (b) case study (RQ3).

(a) Performance comparison (RQ1) (b) Case study (RQ3)
Model Gowalla NYC-T Ma-ST ? Vegan {
FPMC 0.101 0.083  0.128 Ry [ResiEwEs
LSTM 0.134 0.141  0.182 s (\‘,*I‘S’fﬁ;:;‘;;'c‘f)‘
PRME 0.119 0112  0.165 \ )
HST-LSTM 0.148 0.153  0.194 ' I
PLSPL 0.174 0.168 0211 >
STAN 0.198 0185  0.233 WP
GETNext 0.217 0206  0.248 Cononz
STHGCN 0.246 0233 0275 ;
LLM4POI 0.292 0303 0322 _
GA-LLM 0.304 0289  0.334
CGP (Llama 2-7B) 0.315 0.300  0.347
CGP (Llama 4 Scout 17B) 0.321 0.307  0.353
CGP (Llama 3.3 70B) 0.328 0313  0.359 . : around 6PM)

Exposure-bias Controlled Evaluation (Llama 3.3 70B) y < ? oo
Setting GA-LLM CGP A G / ?$ ? o

Near POIs (< 1km) 0312 0318  +0.006 vy &
Far POIs (>5km) 0.201 0.238  +0.037 -
Popular POIs (Top 20%) 0.342 0.349  +0.007

Long-tail POIs (Bottom 80%) 0.187 0.224 +0.037

5.2 PERFORMANCE COMPARISON (RQ1)

To assess the effectiveness of our proposed CGP, we conduct extensive experiments as shown in
Table [2] CGP consistently outperforms all baselines across datasets. With the strongest backbone
Llama 3.3 70B, CGP achieves Acc@1 of 0.328 on Gowalla, 0.313 on NYC-T, and 0.359 on Ma-
ST, compared with 0.304, 0.289, and 0.334 for GA-LLM. The gains are most evident on Gowalla
and NYC-T, where shorter trajectories and skewed POI distributions make baselines more prone
to overfitting nearby check-ins. To further assess if these gains are associated with exposure bias,
we conducted stratified evaluations averaged across the three datasets. Test cases were divided by
distance into nearby (<1km) and distant (>>5km) categories, and by popularity into top 20% most-
visited POIs and the remaining long-tail 80%. The gap between CGP and GA-LLM remains small
for nearby and popular POIs but grows significantly for distant and long-tail POIs, where exposure
bias is strongest. This contrast shows that LLMs alone, while improving semantic coverage, cannot
overcome the spurious correlations induced by spatial convenience. Overall, the causal adjustments
in CGP reduce exposure-induced distortions and enhance the robustness of POI prediction.

5.3 ABLATION STUDY (RQ2)

To assess the contribution of each component, we conduct ablation experiments as shown in Ta-
ble (1) w/o GPE: removes geographic propensity estimation, eliminating causal balancing;
(2) wlo CGS: removes causal-geographic similarity, using only cosine similarity; (3) w/o ECR:
removes exposure-consistent retrieval, relying solely on semantic similarity. Table [3b] reports the
Acc@]1 results for CGP with the Llama 3.3 (70B) backbone. The largest accuracy drop occurs when
geographic propensity estimation is removed, confirming that causal balancing is the most critical
driver of performance improvements. Removing causal-geographic similarity or exposure-consistent
retrieval also degrades accuracy, though to a smaller degree, since they ensure retrieval is aligned in
both intent and exposure. Together, these findings make clear that LLMs contribute semantic rich-
ness, but the causal modules provide the essential bias correction. The superior performance of CGP
therefore stems directly from combining the two, rather than scaling LLM capacity alone.

5.4 INTERPRETABILITY ANALYSIS (RQ3)

To illustrate how CGP enhances interpretability, we analyze a real case from the NYC-T dataset
(Figure 2b). User 882 often checks in at nearby Bars around 6 PM after work in midtown Manhat-
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Table 3: (a) Sensitivity analysis (RQ4) and (b) ablation study (RQ2) at Acc@1.

(a) Sensitivity analysis (RQ4) (b) Ablation study (RQ2)

Setting Value Gowalla NYC-T Ma-ST Variant Gowalla NYC-T Ma-ST

1 0.316 0.300 0.347 CGP (full)  0.328 0.313 0.359

3 0324 0308 0353 ", 0GpET 0314 0298 0346
k S 0328 0313 0359 L, cGs 0320 0304 0351
7 0327 0311 0358 : : :

10 0325 0.309 0.356 w/o ECR 0.322 0.307 0.353

0.0 0.320 0.305 0.351
0.5 0.328 0.313 0.359
A 1.0 0.327 0.312 0.358
1.5 0.324 0.310 0.356
2.0 0.321 0.308 0.354

tan, a routine strongly shaped by spatial convenience. This user also makes repeated trips to distant
Vegan Restaurants, which, although less accessible, reflect a stable dietary preference. Conventional
models emphasize the frequent bar visits and would predict another bar, thus mistaking convenience-
driven exposure for preference. CGP avoids this through two mechanisms. First, geographic propen-
sity scores estimate whether a visit is driven by convenience: bars near home have high values (e.g.,
p ~ 0.82), while vegan restaurants have lower values (e.g., p =~ 0.37), highlighting them as stronger
preference indicators. Second, causal-geographic similarity ensures that retrieval selects trajectories
consistent not only in semantics but also in exposure; under the best setting (k = 5, A = 0.5), it rein-
forces the pattern of traveling farther for vegetarian cuisine observed in similar users. By combining
these components, CGP predicts the vegan restaurants as the next destination and, importantly, ex-
plains its reasoning: nearby bars are down-weighted as high-propensity, convenience-driven visits,
while distant vegan restaurants are emphasized as preference-driven signals.

5.5 HYPERPARAMETER SENSITIVITY (RQ4)

We evaluate CGP’s robustness with respect to two key parameters: (1) the number of retrieved trajec-
tories k in exposure-consistent retrieval, and (2) the penalty weight )\ in causal-geographic similarity.
As shown in Table[3a] performance improves as k increases from 1 to 5, since additional exposure-
consistent examples enrich the behavioral context. Beyond k = 7, however, accuracy plateaus and
then drops slightly at £ = 10, suggesting that overly broad retrieval introduces irrelevant or noisy
trajectories. This dilutes causal alignment and risks reintroducing spurious correlations, indicating
that moderate retrieval depth achieves the best trade-off between context richness and causal preci-
sion. For ), setting the penalty to zero (A = 0) consistently underperforms, confirming that exposure
alignment is essential to suppress proximity-driven bias. The best results are achieved at A = 0.5,
where semantic similarity and exposure consistency are balanced. Larger values (A > 1.5) reduce
accuracy slightly by over-penalizing exposure differences and discarding useful examples. Overall,
CGP remains robust across a wide parameter range, with optimal tuning (k = 5, A = 0.5) consis-
tently yielding the highest performance.

6 CONCLUSION AND FUTURE WORK

In conclusion, we presented CGP, a unified framework that integrates causal inference with LLM-
based trajectory modeling to address geographic exposure bias in POI prediction. We designed
CGP to disentangle genuine preferences from proximity-driven behaviors. Our model combines ge-
ographic propensity estimation with causal-geographic similarity and exposure-consistent retrieval.
This method achieved consistent improvements across diverse LBSN datasets.. For our future work
we have three main goals. First we will incorporate multi-modal contextual signals. We also plan to
design dynamic causal adjustments for evolving mobility patterns. Finally we aim to extend CGP to
broader applications like location-based recommendation and urban mobility forecasting.
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