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Abstract
In this paper we study different methods for pre-
training and fine-tuning a transformer-based lan-
guage model for generating commonsense knowl-
edge or the KB completion task in few-shot set-
tings. The model can be trained in unsuper-
vised and supervised methods with different pre-
training objectives. We investigate the effect of
each type of these training objectives on the per-
formance of the model in knowledge generation
and retrieval. We analyze the results from both
plausibility and variety and novelty aspects. The
results show that mixing both objectives in pre-
training and fine-tuning stages can provide more
novel and accurate results in few shot settings.
These considerations can be taken into account
for selecting and fine-tuning a model for a specific
task.

1. Introduction
Recently pre-trained language models (PLMs) have been
used as an alternative for knowledge bases. Petroni et al.
tried to retrieve factual and commonsense knowledge di-
rectly from these models by converting a query into cloze-
style prompts (Petroni et al., 2020). They found that this
approach is more suitable for retrieving one-to-one factual
knowledge. When prompted to complete commonsense
declarative relationships, PLMs exhibit limited ability to
map their language modeling abilities to this task (Petroni
et al., 2020; Da et al., 2021b).

Other works attempted to fine-tune a PLM on a common-
sense knowledge graph tuples for KB completion and gener-
ation of commonsense tuples (Bosselut et al., 2020; Hwang
et al., 2020; Da et al., 2021a). The tuples are typically in
the form of {head, relation, tail}. The model must learn
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the commonsense relationships and generalize them to sit-
uations it has not seen during fine-tuning and provide a
plausible tail.

In these works, it is assumed that commonsense knowl-
edge is implicitly encoded in the pretrained model, and fine-
tuning serves to learn an interface to the encoded knowledge
(Hwang et al., 2020). With this assumption, a commonsense
knowledge model can be trained effectively in a few-shot
setting to hypothesize commonsense knowledge (Da et al.,
2021a).

One of the methods that can accelerate learning common-
sense knowledge is the use of natural language prompts to
elicit knowledge from PLMs (Feldman et al., 2020; Da et al.,
2021a). Prompts are mainly effective in a few-shot setting
where there is little signal to learn a relation embedding
from scratch.

The related works have usually employed encoder-decoder
models such as T5 (Raffel et al., 2020) to generate the tail of
a triplet by feeding the model with the head and the relation.
The relation is either a special token appended to the head as
a prefix, or is represented using natural language prompts.

However the current works are often fine-tune the model in a
supervised fashion where a mapping must be made between
the input and output. One drawback of this method is that
the model may overfit to the training data and its generaliza-
tion power decreases. Also in few-shot settings, its accuracy
may decrease due to the lack of sufficient training examples.
Therefore, a trade-off must be made between the diversity
and novelty of the results that comes from the pre-training
stage and their accuracy and generalization that are gained
during fine-tuning.

We assumed that a fine-tuning method that is more similar to
the unsupervised method in which the model was pretrained
on a large amount of text data can provide better results
in some cases and allows for a better distillation of the
knowledge that is encoded in the language model.

In this work, we investigate the performance of a common-
sense knowledge model under different pre-training and
fine-tuning settings for few-shot learning. We assume that
commonsense knowledge can be retrieved from pre-trained
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Table 1. Examples of inputs and targets for two unsupervised objectives in the T5 model (Raffel et al., 2020)
Objective Input Target

prefix language modeling
PersonX goes to a library,
because he wants to borrow a book

I.i.d noise replace spans
personX teaches X in schools.
He is seen as Y

X history
Y knowledgeable

Table 2. different versions of T5 models based on the pre-training objective
Model Pre-training Objective Data Sets
t5-v1 I.i.d noise replace spans C4 corpus
t5-lm noise replace spans + Language modeling C4 + 100K steps on the LM objective

t5-base noise replace spans + supervised text-to-text C4 + WikiDPR — various supervised tasks

language models because it must generate a plausible output
in diverse natural language phrases. However, our results
can be generalized to other types of knowledge such as
factual knowledge.

2. Experimental Setup
2.1. Model

In the related works several models such as GPT2-LX as an
autoregressive model, and BART and T5 as encoder-decoder
models were employed. Among them, the BART and T5
models provided better results. The GPT model tended to
copy the input or generate unnecessary full sentences par-
ticularly in few-shot settings (Da et al., 2021b;a) . This
issue was also observed in our experiments. Therefore, we
decided to focus on the T5 model, which provided better re-
sults in few-shot settings and uses both encoder and decoder
parts of the transformer model (Vaswani et al., 2017).

The T5 model is an encoder-decoder model pre-trained in
unsupervised and supervised methods with different pre-
training objectives. In the following, we review its pre-
training objectives.

• Supervised Training In this setup, the input se-
quence and output sequence are a standard sequence-to-
sequence input-output mapping. A prefix representing
the task instruction can be appended to each input ex-
ample.

• Unsupervised Training The T5 model was pre-
trained on a huge collection of unlabeled texts in an
unsupervised method. Various techniques can be used
to format a sentence as input and output of the model.
In Table 1 two objectives are shown. In a basic ”prefix
language modeling” a span of text is randomly split
into prefix and target portions, one to use as inputs to
the encoder and the other to use as a target sequence.

In a denoising objective, spans of the input sequence

are randomly sampled and masked by so-called sen-
tinel tokens (a.k.a unique mask tokens). The target
then corresponds to all of the dropped-out spans of
tokens, delimited by the same sentinel tokens used in
the input sequence plus a final sentinel token to mark
the end of the target sequence. The model is trained
to reconstruct the original sequence by predicting the
dropped-out spans of tokens.

There are multiple versions of the T5 model published by
its creators (Raffel et al., 2020). Table 2 shows the mod-
els that we used in our experiments. They mainly differ
in the pre-training method and some details in architecture.
The T5-v1 model was only pre-trained on C4 dataset 1 with
an unsupervised denoising objective. The T5-lm model is
based on T5-v1 but additionally was trained on 100k steps
in the unsupervised LM objective. This adaptation improves
the ability of the model to be used for prompt tuning. The
T5-base was pretrained on a mixture of supervised and unsu-
pervised tasks in multitasking fashion. It uses the denoising
objective (replace spans) for unsupervised training. The t5-
v1 and t5-lm models use GEGLU (Shazeer, 2020) activation
in the feedforward hidden layer rather than RELU.

2.2. Data and Tasks

One of the main commonsense databases used in the related
works is the ATOMIC knowledge base (Sap et al., 2019). It
is an atlas of everyday commonsense reasoning, organized
through 877k textual descriptions of inferential knowledge.
The tuples are in the form of {head h, relation r, tail
t} triplets. The head is the description of a situation in-
volving social agents and the tails are social commonsense
relating to them along 9 dimensions, such as the causes and
the effects of the event, and the intentions, the character or
possible reactions of the participants.

Each of these relations can be viewed as a task. In
1http://www.tensorflow.org/datasets/catalog/c4
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Table 3. different Methods to format the input and output of a T5 model
Name Format

map
Input: 〈xIntent〉 PersonX goes to a library
Target: to borrow a book

natural
Input: personX goes to a library because he wants
Target: to borrow a book

natural x
Input: personX goes to a library because he wants X
Target: X to borrow a book

our experiments, we report the results for the relation
xIntent which shows the intention of the agent of do-
ing something. The tuples can be organized in the form
of typed if-then relations with variables. For example,
“if PersonX goes to a library, he wants to borrow a book”
shows the intention relation and for his or her character
the tuple is “if PersonX goes to a library, he is seen as
intelligent” where the heads and tails are underlined. Each
head can have multiple tails for each relation. The tails are
plausible or possible consequences of the head event.

ATOMIC splits into training, development, and test subsets
such that no head entities in one set appear in any other.
Models trained on this knowledge base can generate a plau-
sible sequence by receiving a new situation and a specific
relation from a defined set of 9 relations.

2.3. Training

To train the model, the head and the relation of each example
serve as the inputs to the model and the tail is used as the
target. The model is trained to minimize the negative log-
likelihood of the tokens of the tail entity for each tuple. We
use the AdaFactor optimizer with a constant learning rate
of 0.001, a mini-batch size of 4, and train the model for 3
epochs. In few-shot settings, we set the number of examples
per relation n=50 and n=100 examples per relation.

2.4. Evaluation

The generated tails for a given head and relation can be
evaluated in terms of plausibility as well as variety and
novelty with both automatic metrics such as ROUGE (Lin &
Och, 2004) and BERT score (Yuan et al., 2021) and human
verification. For the human evaluation, the workers were
shown the complete tuple and asked whether it is valid or not.
The evaluation was performed on 100 random generated
samples. The automatic evaluations were also performed on
300 unique heads with multiple targets consisting of 1000
examples.

2.5. Fine-tuning methods

Table 3 shows different methods to format the input and the
output of the model. They are based on the formats that

were used as the supervised or unsupervised objective in the
pre-training stage:

• map: This method is the same used in (Bosselut et al.,
2020) in which the model is fine-tuned in a supervised
fashion and a unique token is appended to the tokens
of head entity for each relation. This token maps to a
unique learnable embedding for that relation.

• natural: This method is similar to the above, but the in-
put tuples are formatted into natural language prompts
to represent the relations. We used the templates intro-
duced in (Da et al., 2021b) for each relation.

• natural x: This method is again similar to the natu-
ral methed in that the relations are mapped to natural
language prompts. However, according to the T5 unsu-
pervised training format, we use a unique mask token X
as a placeholder for the tail. The input and the missing
tail when replaced form a complete natural language
sentence. It is similar to the unsupervised objective
used in the pre-training stage of the T5 model.

2.6. Discussion

We evaluated the commonsense learning capabilities of dif-
ferent models. Table 2.5 shows the results for different
methods described in the previous section using n = 50 and
n = 100 examples per relation xIntent.

Findings Using n = 50 examples per relation, the natural
method provides better results for all models compared to
the map method which doesn’t use natural prompts. This
finding is in agreement with the related works (Da et al.,
2021a) and shows that using natural language prompts for
relation is effective in a few-shot setting.

However, the natural x method produces better results com-
pared to both the natural and map methods in the few-shot
settings for t5-base. It shows that making prompts close
to the denoising objective can benefit the models that were
trained using this objective. This advantage can be even
seen for the t5-v1 model which was only pre-trained using
the denoising objective. However, the quality of the out-
puts are not as good as the other models but their diversity
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Table 4. Results of different models using different fine-tuning methods for 50 and 100 samples

n = 50
method model ROUGE Score BertScore Human Unique Tails

map
T5-v1 0.10 0.31 0.10 291
T5-lm 0.43 0.54 0.62 160

T5-base 0.39 0.50 0.58 198

natural
T5-v1 0.14 0.32 0.05 300
T5-lm 0.45 0.54 0.64 155

T5-base 0.41 0.52 0.67 182

natural x
T5-v1 0.42 0.51 0.41 190
T5-lm 0.15 0.37 0.11 193

T5-base 0.46 0.56 0.72 125
n=100

method model ROUGE Score BertScore Human Unique Tails

map
T5-v1 0.10 0.30 0.01 292
T5-lm 0.46 0.54 065 112

T5-base 0.43 0.52 058 145

natural
T5-v1 0.12 0.37 0.02 300
T5-lm 0.47 0.54 0.68 108

T5-base 0.42 0.52 0.62 118

natural x
T5-v1 0.46 0.51 0.55 97
T5-lm 0.30 0.43 0.41 254

T5-base 0.46 0.54 0.68 93

(number of unique predicted tails) is high relative to its ac-
curacy. This model also has very low performance with
the natural method because it wasn’t trained on the LM
objective or supervised data like the other models. This
shows that formatting the task into a format that was used in
the pre-training stage can help to distill knowledge from the
model in few-shot settings. To augment data for fine-tuning
a model in this setup, specific words and longer phrases
suitable for a task can be omitted from the sentences of a
corpus. We leave this to future work.

In the case of t5-lm, the performance surprisingly drops
after using the natural x method. This can be due to the ad-
ditional 100K pre-training steps on the LM objective which
can cause the model to forget its pre-training capability
on the denoising objective. The model may need to see
more samples to recover its capability. When the number of
samples increases to 100, the performance also increases,
however, its quality based on human judgment is still not
very good. This model has good performance particularly
with the natural method and this method is again close to
the LM objective.

The other major point is the performance of t5-base that
increases with both natural and natural x methods where
this increase in the case of natural x method is even higher.
The t5-base model was actually pre-trained on a mixture of
supervised and unsupervised objectives. This enables the
model to have good performance in both formats without

forgetting either one. The denoising objective is suitable
for completing a sentence with natural compliments seen
during the pre-training stage and the LM or supervised ob-
jectives are suitable to learn from examples and generalize
them to unseen data. This consideration can be useful in
pre-training or fine-tuning a model for distilling novel and
accurate knowledge from pre-training models.

3. Conclusion
In this paper we compared different methods for pre-training
and fine-tuning a T5 model to generate commonsense knowl-
edge. We proposed that converting the training examples to
a format similar to the unsupervised objective of the model
can provide better results. The model provides better results
when it is pre-trained on a mixture of denoising and LM
objectives in a multi-tasking setup. The resulting model
when fine-tuned with a similar method can produce more
diverse and novel knowledge by relying more on the stored
knowledge in the pre-training language model.
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