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Abstract

In the exciting generative AI era, the diffusion model has emerged as a very powerful and
widely adopted content-generation tool. Very recently, some pioneering works have shown
the vulnerability of the diffusion model against backdoor attacks, calling for in-depth analysis
and investigation of the security challenges. In this paper, for the first time, we system-
atically explore the detectability of the poisoned noise input for the backdoored diffusion
models, an important performance metric yet little explored in the existing works. Starting
from the perspective of a defender, we first analyze the distribution discrepancy of the trig-
ger pattern in the existing diffusion backdoor attacks. Based on this finding, we propose a
trigger detection mechanism that can effectively identify the poisoned input noise. Then,
from the attack side, we propose a backdoor attack strategy that can learn the unnoticeable
trigger to evade our proposed detection scheme. Our empirical evaluations across various
diffusion models and datasets demonstrate the effectiveness of the proposed trigger detection
and detection-evading attack strategy. For trigger detection, our distribution discrepancy-
based solution can achieve a 100% detection rate for the Trojan triggers used in the existing
works. For evading trigger detection, our proposed stealthy trigger design approach per-
forms end-to-end learning to make the distribution of poisoned noise input approach that
of benign noise, enabling nearly 100% detection pass rate with very high attack and benign
performance for the backdoored diffusion models.

1 Introduction

Recently, the diffusion model has emerged as a prevalent generative AI technique for content creation and
editing across various data modalities, including image, video, speech, text, etc. Built on the core principle
originating from non-equilibrium thermodynamics, a diffusion model aims to learn to generate the target
probability distribution via constructing and reverting a series of latent variables. Thanks to its solid
theoretical foundations and training stability, to date the diffusion models have been widely used in various
generative tasks, such as image generation Ho et al. (2020); Song et al. (2020a); Bordes et al. (2022); Chao
et al. (2021); Karras et al. (2022), text-to-image synthesis Rombach et al. (2022); Saharia et al. (2022a);
Ramesh et al. (2022); Singh et al. (2023), image editing Meng et al. (2021); Couairon et al. (2022); Brooks
et al. (2023), image inpainting Lugmayr et al. (2022), super-resolution Rombach et al. (2022); Saharia et al.
(2022b); Choi et al. (2021) and video generation Ho et al. (2022a); Esser et al. (2023); Harvey et al. (2022).

Since diffusion models have already served as the backbone components in many real-world applications, the
corresponding security issues have become a potentially challenging risk that requires special attention. In
particular, the vulnerabilities of diffusion models under backdoor attack, as a common and essential attack
strategy against the existing classification models Chen et al. (2017); Gu et al. (2019); Nguyen & Tran
(2020b); Liu et al. (2020); Doan et al. (2021); Zheng et al. (2023); Yuan et al. (2023), should be carefully
reviewed and studied in the emerging generative AI era.

Despite the current research prosperity of the applications of diffusion models, the security challenges of
this vital technique in the backdoor attack scenario are still under-explored. To date, only very few works
investigate the backdoor attack tailored to diffusion models. In particular, Chen et al. (2023); Chou et al.
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(2023), as the representative works in this topic, propose the forward and backward processes of the back-
doored diffusion models, demonstrating that the currently representative diffusion models can be attacked
to generate the images in a target category or even targeted fixed images, with the presence of poisoned
input noise.

Although these existing works reveal the feasibility of implanting Trojans into the diffusion models, we argue
that the vulnerability and robustness of diffusion models under backdoor attack are still under-explored. In
particular, the prior works mainly craft the poisoned noise input, leaving a blank in exploring the detectability
of the embedded Trojans. Such exploration of the stealthiness of the Trojan trigger is very critical in both
attacker and defender aspects.

In this paper, we propose a systematic study on the detectability of Trojan input for the backdoored diffusion
models, from both attacker and defender perspectives. We first analyze the existing fixed trigger pattern,
discovering the distribution discrepancy of noise input to the Gaussian noise. Based on this finding, we
develop a trigger detection mechanism that can effectively identify the poisoned input noise. We then take
a further step to propose a backdoor attack strategy that can learn the stealthy trigger of the proposed
detection scheme. Overall, the contributions of this paper are summarized as follows:

• We explore the detectability of trigger patterns in the state-of-the-art diffusion model backdoor attacks.
By analyzing the distribution discrepancy of the noise input, we propose a distribution-based detection
mechanism that can identify the poisoned noise input of the backdoored diffusion models.

• We then develop a backdoor attack strategy that can evade our proposed detection method. By performing
end-to-end learning of the trigger pattern towards minimizing the distribution discrepancy, the poisoned
noise input can exhibit a very similar distribution to the benign input, making the backdoor attack
unnoticeable. We also optimize the training process of the stealthy trigger pattern to improve the benign
and attack performance of the backdoored diffusion models.

• We perform empirical evaluations for different diffusion models across different datasets and demonstrate
the effectiveness of the proposed trigger detection and detection-evading attack strategy. On the defender
side, our proposed distribution-based detection method can achieve a 100% detection rate for the trigger
patterns used in the existing works. On the attacker side, our proposed detection-evading trigger can
enable nearly 100% detection pass rate and bring high attack and benign performance for the backdoored
diffusion models.

Notice that the threat model in the previous backdoored diffusion model Chen et al. (2023); Chou et al. (2023)
assumes that 1) the attacker can control the training process of the diffusion model. 2) The users/attackers
can have access to the input Gaussian noise of the diffusion model. We follow the same threat model to
conduct our analysis in this paper.

2 Related Works

Diffusion Models. Diffusion models have emerged as a powerful generative AI technique very recently.
Compared with other deep generative models, diffusion models exhibit good training stability and better
quality and diversity of the generated data, making them popularly adopted in a variety of generative tasks,
e.g., image generation Ho et al. (2020); Song et al. (2020a); Ho et al. (2022b); Dhariwal & Nichol (2021);
Liu et al. (2023); Bordes et al. (2022); Chao et al. (2021); Karras et al. (2022), video generation Ho et al.
(2022a); Esser et al. (2023); Harvey et al. (2022), text-to-image synthesis Rombach et al. (2022); Saharia et al.
(2022a); Ramesh et al. (2022); Singh et al. (2023); Kumari et al. (2023); Gu et al. (2022); Zhang et al. (2023);
Ruiz et al. (2023); Zhang et al. (2023) and fast sampling Song et al. (2020a); Salimans & Ho (2021); Lu
et al. (2022). Diffusion models can be formulated in different ways, such as denoising diffusion probabilistic
model (DDPM) Ho et al. (2020) and its variant DDIM Song et al. (2020a), noise conditional score network
(NCSN) Song et al. (2020b) and latent diffusion model (LDM) Rombach et al. (2022). This paper focuses
on the backdoor attack on DDPM/DDIM, as the most representative and fundamental diffusion model type.
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Backdoor Attacks on AI Models. The research on launching backdoor attacks against AI models,
especially the classification models, has been widely reported in the literature Chen et al. (2017); Gu et al.
(2019); Nguyen & Tran (2020b); Liu et al. (2020); Doan et al. (2021); Saha et al. (2020); Li et al. (2021);
Salem et al. (2022); Nguyen & Tran (2020a). In this attack scenario, the adversary first poisons the training
data to inject the backdoor into the model in the training phase. Then in the inference phase, the backdoored
model behaves normally with the presence of benign input; while it will exhibit malicious behavior (e.g.,
misclassification) when the input is embedded with a Trojan trigger. Considering its natural stealthiness
and severe damage, a series of backdoor defense approaches have been proposed Gao et al. (2019); Wang
et al. (2019); Liu et al. (2018); Chen et al. (2019a;b); Tran et al. (2018); Li et al. (2020); Doan et al. (2023).

Backdoor Attacks on Diffusion Models. Unlike the extensive research on classification models, the
backdoor attack for diffusion models is little explored yet. To date, the most two representative works are
Chen et al. (2023); Chou et al. (2023), which for the first time demonstrate the feasibility of launching
backdoor attack against the generative models. By adding a pre-defined trigger into the benign Gaussian
noise input, the manipulated poisoned noise can prompt the backdoored diffusion model to generate a target
image Chou et al. (2023); Chen et al. (2023) (e.g., Hello Kitty) or images belonging to a certain class Chen
et al. (2023) (e.g., "horse") as desired by attackers. Because the adversary can leverage such malicious
behavior to generate potentially offensive or illegal images, the vulnerability of diffusion models against
backdoor attacks poses severe security challenges and risks.

3 Background

3.1 Diffusion Model

Diffusion model Sohl-Dickstein et al. (2015); Ho et al. (2020) is a type of deep generative model aiming
to generate semantic-rich data from Gaussian noise. To realize such mapping, a diffusion model typically
consists of forward diffusion process and backward generative process. Take the representative denoising
diffusion probabilistic model (DDPM) Ho et al. (2020) as an example. In the diffusion process, an image
x0 sampled from real data distribution q(x0) is gradually diffused with the added random Gaussian noise
over T time steps. More specifically, this procedure generates a sequence of random variables x1, x2, · · · , xT

in a Markov chain as xt =
√

1 − βtxt−1 + βtϵ and q(xt|xt−1) := N (xt;
√

1 − βtxt−1, βtI), where βt is the
pre-defined variance schedule and ϵ ∼ N (0, I). For simplicity, by defining αt = 1 − βt and αt =

∏t
i=1 αi, the

diffusion process can be formulated as q(xt|x0) = N (xt;
√

αtx0, (1 − αt)I). Then in the generative process,
a parameterized Markov chain is trained aiming to reverse the diffusion process and recover the image
from the noise. To be specific, it learns model parameters θ such that the reverse transition pθ(xt−1|xt),
which is defined as N (xt−1; µθ(xt, t), Σθ(xt, t)), is equivalent to the forward transition q(xt−1|xt, x0) =
N (xt−1; µ̂t(xt, x0), β̂tI), where µ̂t(xt, x0) = 1√

αt
((

√
αtx0 + (1 − αt)ϵ) − βt√

1−αt
ϵ). To that end, DDPM aims

to align the mean between pθ(xt−1|xt) and q(xt−1|xt, x0) via minimizing the following training objective:

Et,x0,ϵ[
∥∥ϵ − ϵθ(

√
αtx0 +

√
1 − αtϵ, t)

∥∥2], (1)

where t is uniformly sampled from {1, · · · , T}. Here, ϵθ represents a parameterized denoiser to predict noise
ϵ from xt, which is usually implemented based on U-Net Ronneberger et al. (2015).

3.2 Backdoor Attack on Diffusion Model

Threat Model. Following the settings in Chen et al. (2023); Chou et al. (2023), which assumes that the
attacker can control the training process of a backdoored diffusion model, which will 1) generate the clean
image from the distribution q(x0) with benign Gaussian noise input N (0, I); and 2) generate the target
image from the distribution x̃0 ∼ q̃(x̃0) with the presence of poisoned noise input x̃T that is embedded
with a pre-defined trigger δ. Without loss of generality, we assume the trigger is proportionally blended
to the clean Gaussian noise with propositional factor γ ∈ [0, 1]. More specifically, x̃T ∼ N (µδ, γ2I), where
µδ = (1 − γ)δ satisfying x̃T = (1 − γ)δ + γϵ, ϵ ∼ N (0, I). While this threat model might currently seem
impractical, this series of works provides a valuable exploration for investigating the foundational property
of backdoor attacks on the diffusion model. Following these works, we adopt this threat model in this paper.
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Figure 1: The mechanism of our proposed distri-
bution detection. After calculating the "anchor"
distribution, it can correctly recognize the benign
input while effectively identifying the poisoned
input designed in the existing backdoored diffu-
sion works, making the attack fail. On the other
hand, our proposed detection-evading trigger has
a below-threshold PDD score, evading the detec-
tion of the distribution detector.
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Figure 2: Distribution overlap between Gaussian noise and
input noise. (Top): Clean noise input (also Gaussian).
(Bottom): Poisoned noise input containing Hello Kitty
trigger in Chen et al. (2023). It is seen that poisoned
noise in the prior work exhibits a non-negligible distribu-
tion shift, bringing much higher PDD score than benign
input.

Backdoored Diffusion and Generative Processes. To realize the attack goal, we assume that
the adversary is allowed to modify the diffusion and generative processes and the training procedure.
More specifically, as indicated in Chen et al. (2023), the attacker first diffuses the distribution q̃(x̃0)
of the target images to N (µδ, γ2I), forming a backdoored diffusion process as q̃(x̃t−1|x̃t, x̃0) = N
(x̃t−1; µ̃t(x̃t, x̃0), β̃tI), where µ̃t(x̃t, x̃0) = 1√

αt
((

√
αtx̃0 +

√
1 − αtµδ +

√
1 − αtγϵ)

− βt√
1−αt

ϵ). Then in the generative process, the parameterized model θ is learned
to reverse both the benign and backdoored diffusion processes: pθ(xt−1|xt) =
q(xt−1|xt, x0) (for benign Gaussian input case described in Sec. 3.1) and
p̃θ(x̃t−1|x̃t) = N (x̃t−1; µ̃θ(x̃t, t), Σ̃θ(x̃t, t)) = q̃(x̃t−1|x̃t, x̃0) (for poisoned noise input case). To that
end, the corresponding training objectives aim to simultaneously optimize both the benign and backdoor
diffusion processes. Specifically, the benign training objective follows Sec. 1, and the backdoored diffusion
training objective is formulated as:

Et,x̃0,ϵ[
∥∥ϵ − ϵθ(

√
αtx̃0 +

√
1 − αtµδ +

√
1 − αtγϵ, t)

∥∥2], (2)

where x̃0 ∼ q̃(x̃0). Here t, ϵ, ϵθ are with the same setting in Eq. 1.

4 Trigger Detection in Backdoored Diffusion

Sec. 3.2 shows the feasibility of the backdoor attack on diffusion models via properly diffusing the target
distribution and learning to reverse the backdoor generative process. Following this philosophy, some recent
works Chen et al. (2023); Chou et al. (2023) have successfully launched the attack and demonstrated the
vulnerability of the backdoored diffusion models with the presence of trigger patterns. However, we argue that
the detectability, as an important attack performance metric, is not fully considered in the existing studies.
More specifically, the embedded trigger patterns used in the state-of-the-art diffusion model backdoor attacks
can be effectively detected.

Our key finding is that the poisoned noise containing the backdoor trigger can be distinguished from the
clean Gaussian noise from the lens of data distribution.

As illustrated in Fig. 2, the distributions of two Gaussian noise inputs are highly overlapped; while an obvious
distribution shift can be identified when comparing the poisoned noise and the benign Gaussian noise (see
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Figure 3: Our proposed two-step training scheme to learn the detection-evading trigger and the corresponding
backdoored diffusion model. Phase 1 (Left): Trigger is optimized by PDD loss LdP DD and NC loss LNC

with the fixed diffusion model. To incorporate an end-to-end training procedure, we utilize the differentiable
histogram hd(·) for calculating LdP DD. Phase 2 (Right): After optimizing the trigger, the diffusion model
is updated towards the backdoored training objective with this detection-evading trigger.

Fig. 2). Such phenomenon implies that the distribution discrepancy between the input and Gaussian noise
N (0, I) can serve as a good marker to detect whether the input is potentially stamped with the backdoor
trigger or not. To quantitatively measure this discrepancy, we propose to define a KL divergence-based
KULLBACK (1959) Poisoned Distribution Discrepancy (PDD) score as follows:

D(x̃T ) = KL(Ph(x̃T ), Ph(xT )), (3)

where xT and x̃T are the clean Gaussian input and the potentially poisoned input, respectively. h(·) denotes
the histogram function, Ph(·) normalizes the histogram into a probability distribution, and KL(·, ·) calculates
KL divergence.

In general, for each potentially poisoned input, we can calculate its PDD score to evaluate its distribution
shift from the benign Gaussian noise input. Notice that since even two clean Gaussian noises sampled from
the same distribution still have a certain level of distribution discrepancy, such inevitable "base difference"
incurred by the sampling randomness should be considered, and hence it can be empirically calculated as
follows:

ϕBase = ExT
[D(xT )] + 3σD(xT ), (4)

where x1
T , x2

T , · · · , xN
T are the collection of clean inputs sampled from Gaussian distribution N (0, I). Also,

considering the potential impact of statistical error on false positive rate, the calculation of base discrepancy
includes an extra tolerance term (empirically set as 3σD(xT ), more discussion to Xσ is in Sec. 7), ensuring
that most (> 99.8%) clean Gaussian noise inputs can be correctly recognized. Then, we can use this base
discrepancy as the threshold to detect the backdoor trigger as follows:

PDD-based Trigger Detection. Given an input noise x̃T , it will be detected as poisoned with backdoor
trigger if D(x̃T ) ≥ ϕBase; otherwise it is marked as clean.

Fig. 1 illustrates the overall mechanism of the proposed distribution-based trigger detection approach. By
preparing a set of clean Gaussian noise to compute the "anchor" distribution Ph(xT ) and base discrepancy
ϕBase as the threshold, the detector can identify the poisoned noise input. As reported in our empirical
evaluations (see Tab. 1), examining distribution shift shows very strong performance for detecting backdoor
triggers. Our detection scheme only requires a one-time KL-divergence calculation between anchor and input
distribution. For detecting a single input of the backdoored CIFAR-10 diffusion model, our method only
needs 0.0014s, demonstrating its low-cost property.
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5 Detection-Evading Backdoor Trigger Design

Sec. 4 analyzes the unique characteristics of the backdoor triggers for the diffusion models, and then
develops the corresponding detection method. To deepen our understanding, in this section we further study
the vulnerability of backdoored diffusion models from the perspective of attackers, exploring stealthy trigger
design to evade the distribution-based detection mechanism.

5.1 Mitigate Distribution Discrepancy

As analyzed in Sec. 4, embedding the trigger to the benign Gaussian noise brings the detectable distribution
shift. Therefore, in order to make the backdoor trigger undetectable, the PDD score of the poisoned noise
x̃T should be optimized and suppressed below the base discrepancy ϕBase as follows:

max
δ

1
N

i=N∑
i=1

1(D(x̃i
T ) ≤ ϕBase), (5)

where 1(·) is the indicator function, and x̃i
T is one sample of poisoned noise input. Notice that here in order

to mitigate the sampling error, the optimization of the backdoor trigger δ is based on the evaluation of
embedding δ to N benign Gaussian noise inputs xi

T . Then, the trigger can be learned via minimizing the
following PDD loss:

LP DD(δ) = Ex̃T
[max(D(x̃T ) − ϕT h, 0)], (6)

where ϕT h is a pre-set threshold even smaller than ϕBase, ensuring that after the training, the optimized
PDD score can be optimized as being below ϕBase in a very probable way.

Make Trigger Learning Differentiable. In general, optimizing the PDD loss can be realized by using
a gradient-based method such as stochastic gradient descent (SGD). However, as described in Eq. 3, the
calculation of PDD score D(x̃T ) is involved with the non-differentiable histogram function h(·), preventing
the differentiable learning of stealthy trigger. To address this problem, we propose to approximate the
original histogram function to a differentiable format hd(·). Here, the key idea is to use the dual logistic
functions as a closed surrogate for the histogram function (see Fig. 3). More specifically, the differentiable
histogram is calculated as:

hd(x, Bi) =
∑

x
((1 + e−ω(x−ci+ si

2 ))−1 − (1 + e−ω(x−ci− si
2 ))−1), (7)

where ω controls the smoothness of the histogram, Bi denotes the i-th bin in the histogram, and ci and si

represent the center and width of each bin, respectively. Then, the differentiable version of PDD score Dd(·)
and loss used can be calculated as:

Dd(x̃T ) = KL(Phd(x̃T ), Phd(xT )), LdP DD(δ) = Ex̃T
[max(Dd(x̃T ) − ϕT h, 0)]. (8)

Two-Step Learning Procedure. With the availability of differentiable PDD loss, the backdoored diffusion
model and the corresponding detection-evading can be learned in an end-to-end manner. As shown in Fig.
3, we first fix the to-be-backdoored diffusion model and optimize the trigger by using PDD loss and NC loss
(described in Sec. 5.2). After obtaining the stealthy trigger exhibiting low distribution discrepancy, we then
fix this trigger and use it to generate poisoned input noise, facilitating the poison training for the backdoored
diffusion model.

5.2 Noise Consistency Optimization

As shown in Fig. 3, in the trigger training phase, the noise consistency loss (LNC), which measures the
discrepancy between the benign Gaussian noise input and the predicted noise ϵθ, is also used to guide the
optimization of backdoor trigger δ. More specifically, the NC loss is defined and calculated as follows:

LNC(δ, x̃0) = Et,x̃0,ϵ[∥ϵ − ϵθ(
√

αtx̃0 +
√

1 − αtµδ +
√

1 − αtγϵ, t)∥2], (9)
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where x̃0, t, ϵ, ϵθ are with the same setting in Eq. 2. Here, the use of NC loss is motivated by the following
design philosophy: Because the backdoored model training process (Phase 2) will use the exactly same
discrepancy to update the learnable model (see Fig. 3), pre-optimize this loss in the trigger learning phase
can provide better initialization and hence potentially improve both benign and attack performance. To
be specific, with lower discrepancy between ϵ and ϵθ for the poisoned training part, slight update from the
original benign model may be already sufficient for fitting poisoned data samples, and hence the updated
model, which is backdoored but closed to the original benign one, can probably perform well with the
presence of benign inputs. Meanwhile, with the lower NC loss as the initialization, it is more likely to bring
the poisoned training Fig. 3 to a better-optimized point after the same number of epochs, thereby improving
the attack performance with the poisoned noise inputs. Notice that such a hypothesis has been verified in
our empirical evaluations reported in Sec. 7. Algorithm 1 describes the overall 2-step training procedure,
including using NC loss.

Algorithm 1 The Proposed 2-Step Training Scheme
Input: Clean dataset q(x0), backdoor target dataset q̃(x̃0), pre-trained benign diffusion model θ, scaling factor τ , propositional
factor γ, threshold ϕT h, trigger learning rate ηt, model learning rate ηd.
Output: Detection-evading trigger δ, backdoored diffusion model θbd.
1: Phase 1: Detection-Evading Backdoor Trigger Training
2: δ ← random(δ.shape)
3: repeat
4: x̃0 ∼ q̃(x̃0), t ∼ Uniform({1, · · · , T}), ϵ ∼ N (0, I)
5: x̃T ∼ N (µδ , γϵ) ▷ Sample poisoned input noises
6: LdP DD(δ) = Ex̃T [max(Dd(x̃T )− ϕT h, 0)] via Eq. 8
7: LNC(δ; x̃0) = Ex̃0,t,ϵ[∥ϵ− ϵθ(x̃0, t, ϵ, δ)∥] via Eq. 9
8: L(δ; x̃0) = LNC(δ; x̃0) + τLdP DD(δ) ▷ Overall trigger loss
9: δ ← δ − ηt∇δ L(δ; x̃0) ▷ Updating trigger δ

10: until converged
11: Phase 2: Backdoored Diffusion Model Training
12: θbd ← θ ▷ Loading pre-trained benign diffusion model
13: repeat
14: x0 ∼ q(x0), t ∼ Uniform({1, · · · , T}), ϵ ∼ N (0, I)
15: x̃0 ∼ q̃(x̃0), t̃ ∼ Uniform({1, · · · , T}), ϵ̃ ∼ N (0, I)
16: Lc(θbd) = Ex0,t,ϵ[∥ϵ− ϵθbd

(x0, t, ϵ)∥] via Eq. 1 ▷ Benign
17: Lp(θbd) = Ex̃0,t̃,ϵ̃[∥ϵ− ϵθbd

(x̃0, t̃, ϵ̃, δ)∥] via Eq. 2 ▷ Poison
18: L(θbd) = Lc(θbd) + Lp(θbd) ▷ Backdoored model loss
19: θbd ← θbd − ηd∇θbd

L(θbd) ▷ Updating diffusion model
20: until converged

6 Experiments

Datasets, Models and Attack Setting. We evaluate the performance of the proposed detection method
and the detection-evading trigger for DDPM Ho et al. (2020) and DDIM Song et al. (2020a) diffusion models
on CIFAR-10 (32 × 32) Krizhevsky et al. (2009) and CelebA (64 × 64) Liu et al. (2015) datasets. The
pre-trained models of CIFAR-10 and CelebA datasets are from repository pesserpytorch/diffusion and
ermongroup/ddim. Two types of backdoor attack models are considered in the experiments: generate an
image belonging to a specific class (referred to as "category mode") and generate a specific image (referred
to as "instance mode"). Following the settings in Chen et al. (2023), we choose the horse in the CIFAR-10
dataset and faces with heavy makeup, mouth slightly open and smiling in the CelebA dataset as the target
class in the category mode. The Micky Mouse is selected as the target image when the backdoor attack is
launched in the instance mode. The "Hello Kitty" and "Glass" images are set as fixed triggers in experiments
of TrojDiff Chen et al. (2023) and Baddiffusion Chou et al. (2023), respectively.

Training Configurations. When training the detection-evading trigger (Phase 1), an Embedding layer
with the same shape of input noise (3 × 32 × 32 for CIFAR-10 dataset, and 3 × 64 × 64 for CelebA dataset) is
used for trigger learning with γ = 0.6. The threshold is set as ϕT h = 0.01 and ϕT h = 0.005 for the CIFAR-
10 and CelebA datasets, respectively. The training process adopts Adam optimizer Kingma & Ba (2015)
with 50k training steps, 2 × 10−3 learning rate and scaling factor τ as 104. After that, during the training
procedure for the backdoored diffusion model (Phase 2), we follow the standard training procedure using
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Table 1: The effectiveness of the proposed distribution-based
detection method for detecting the backdoor trigger used in
Chen et al. (2023). The PDD score Dd(x̃T ) ≫ ϕBase = 0.067
(for CIFAR-10 dataset) and Dd(x̃T ) ≫ ϕBase = 0.016 (for
CelebA dataset), making the detection rate reach to
100% and ASR drop to 0%.

Attack
Mode

Average
PDD
Score

Detection
Rate
(%)

DDPM DDIM
ASR (%)

w/o
Detection

ASR (%)
w/

Detection

ASR (%)
w/o

Detection

ASR (%)
w/

Detection
CIFAR-10

Category 0.183 100.0 90.1 0.0 87.30 0.0
Instance 0.183 100.0 100.0 0.0 100.0 0.0

CelebA
Category 0.165 100.0 96.9 0.0 95.4 0.0
Instance 0.165 100.0 100.0 0.0 100.0 0.0

Benign Attack Mode 
“Category”

Attack Mode 
“Instance”

CI
FA

R
-1

0
(3

2×
32

) 
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Figure 4: Generated images from our back-
doored diffusion model. For CIFAR-10,
the target class is "horse"; for CelebA, the
target class includes faces characterized by
"heavy makeup, smiling, and a slightly open
mouth". The target image is a "Michy
Mouse".

Table 2: Performance of the proposed backdoored diffusion model using the detection-evading learnable
trigger. The lower FID and higher ASR indicate better benign and attack performance, respectively. For
"Instance" mode, MSE between the generated and target images is also reported to show the high attack
performance. "∗" denotes we reproduce the experiments using "Glasses" Chou et al. (2023) as the trigger
and "Micky Mouse" as the target image.

Attack
Mode Method Trigger

Type
PDD
Score

Detection
Pass Rate

(%)

DDPM DDIM
Benign Attack Benign Attack

FID ↓ ∆
FID

ASR (%) w/
Detection ↑ FID ↓ ∆

FID
ASR (%) w/
Detection ↑

CIFAR-10
None Benign Baseline None 0.031±0.012 99.8 4.60 0 0 4.25 0 0

Trojdiff Chen et al. (2023) Fixed 0.183±0.012 0.0 4.74 0.14 0.0 4.47 0.22 0.0Category DisDet(Ours) Learnable 0.025±0.007 99.9 4.44 -0.16 82.0 4.29 0.04 80.1
Trojdiff Chen et al. (2023) Fixed 0.183±0.012 0.0 4.59 -0.01 0.0 4.47 0.22 0.0

Baddiffusion∗ Chou et al. (2023) Fixed 0.269±0.015 0.0 4.52 -0.08 0.0 4.43 0.18 0.0
99.9 99.9Instance

DisDet(Ours) Learnable 0.025±0.007 99.9 4.39 -0.21 (MSE: 7.64e-6) 4.38 0.13 (MSE: 4.19e-5)
CelebA

None Benign Baseline None 0.007±0.003 99.8 5.88 0 0 6.29 0 0
Trojdiff Chen et al. (2023) Fixed 0.165±0.006 0.0 5.44 -0.44 0.0 5.40 -0.89 0.0Category DisDet(Ours) Learnable 0.007±0.003 99.8 5.83 -0.05 85.9 5.94 -0.35 85.2
Trojdiff Chen et al. (2023) Fixed 0.165±0.006 0.0 5.62 -0.26 0.0 5.93 -0.36 0.0

Baddiffusion∗ Chou et al. (2023) Fixed 0.260±0.007 0.0 5.73 -0.15 0.0 5.98 -0.31 0.0
99.8 99.8Instance

DisDet(Ours) Learnable 0.007±0.003 99.8 5.80 -0.08 (MSE: 1.52e-3) 5.85 -0.44 (MSE: 1.70e-3)

Adam optimizer, 2 × 10−4 learning rate, batch size as 256, and 100k training steps. Also, the number of bins
is set as 50 for both regular histogram h(·) and differentiable histogram hd(·). The smoothness parameter is
set as ω = 6 for the Sigmoid function in hd(·) to approximate the step function and histogram h(·). All the
experiments are conducted on NVIDIA RTX A6000 GPUs.

Evaluation Metrics. The benign performance is evaluated on 50K samples via measuring Frechet Inception
Distance (FID) Heusel et al. (2017), which reveals the similarity between two sets of images. A lower FID
score indicates the higher quality of the generated images. The attack performance is evaluated on 10K
samples in terms of Attack Success Rate (ASR). When the attack mode is set as "category" and "instance",
ASR is measured as the ratio of the generated images being classified into the target class and being the
same as the target image, respectively. Specifically, when the attack is launched in the "instance" mode, we
also measure the Mean Square Error (MSE) to examine the difference between the target image and the
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Figure 5: Curve of differentiable PDD score Dd(x̃T )
when the trigger is trained with the PDD loss LdP DD

on the CIFAR-10 dataset. Dd(x̃T ) steadily decreases
and reaches below threshold.
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(b) PDD score: 0.023.

Figure 6: Distribution of the poisoned inputs with
(a) the fixed trigger Chen et al. (2023) and (b)
our proposed learnable trigger on CIFAR-10 dataset.
PDD-oriented optimization brings a much lower PDD
score, making our poisoned inputs approach clean
Gaussian noise.

generated images. For the image sampling, we follow the standard strategy by setting η = 1 and S = 1000
and η = 0 and S = 100 in DDPM Song et al. (2020a) and DDIM Ho et al. (2020), respectively.

6.1 Evaluation Results

CIFAR-10 Dataset. Tab. 2 shows the benign and attack performance on the CIFAR-10 dataset. When
the backdoor attack is launched in the "category" mode, the average PDD score of the poisoned noise
generated from the trigger designed in Chen et al. (2023) is 0.183. This score is significantly higher than
the base discrepancy ϕBase = 0.067, making the attack can be easily detected with ASR as 0. In contrast,
our detection-evading trigger is learned to exhibit a very low PDD score of 0.025, making the attack very
undetectable (nearly 100% detection pass rate) with high ASR (more than 80%). Meanwhile, it enjoys good
benign performance with even lower FID than the baseline (originally non-backdoored case). In other words,
with the presence of benign input, the images generated by our backdoored model have even higher quality
than the ones generated by the diffusion model without backdoor injection. Similarly, in the backdoor attack
mode "instance", our approach also shows much better benign and attack performance than the prior works.
In particular, the MSE between the generated images and the original target image (Mickey Mouse) is very
small (7.64e-6 and 4.19e-5 for DDPM and DDIM, respectively), indicating the effectiveness of the attack.

CelebA Dataset. As shown in Tab. 2, our optimized trigger is effectively stealthy to the distribution
detector and achieves higher attack performance than the prior works. More specifically, with ϕBase as
0.016, the average PDD score of the poisoned noise in Chen et al. (2023) ( "category" attack mode) is 0.165,
bringing an ASR of 0 since all the triggers will be detected. On the other hand, the average PDD score of
our detection-evading trigger is only 0.007, and hence it is very undetectable to the distribution detector,
bringing high ASR (more than 85%). Meanwhile, the benign performance of our solution is good with even
lower FID than the baseline design. Similarly, in the ‘instance" attack mode, our method enjoys a low average
PDD score of 0.007 and also FID reduction as compared to the baseline case, demonstrating high attack and
benign performance.

Detection Results. We have shown the detection results of “Baddiffusion” in the column “Detection
Pass Rate” in Tab. 2. Similar to Trojdiff, our detection method can achieve a 100% detection rate for
“Baddiffusion” attacks.

Visualization. Fig. 4 illustrates some of the generated images from our backdoored diffusion model with
benign and poisoned noise inputs. It is seen that our approach is very effective in both benign and attack
scenarios.

7 Ablation Studies

Effect of PDD Optimization. Fig. 5 shows the curve of differentiable PDD score Dd(x̃T ) during the
trigger training procedure. It is seen that it steadily decreases as training progresses, and finally this loss
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Figure 7: The curve of absolute mean of trigger values
during the PDD-oriented training process.

Table 3: FID results of backdoored diffusion model
with the trigger optimized with or without NC op-
timization. The results are evaluated with different
sampling steps on CIFAR-10 dataset.

Init Loss Sampling Steps, η = 0
50 100 200

w/o NC 205.1 5.07 4.51 4.50
w/ NC 74.3 4.99 4.38 4.17

∆ 130.8 0.08 0.13 0.33
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Figure 8: Effect of NC optimization.
LNC in the y-axis denotes the de-
viation between the predicted and
added noises of the diffusion model
on CIFAR-10 dataset. Optimizing
the trigger δ with NC loss facili-
tates the model more easily predict-
ing the noise in the poisoned input
noise x̃T . LNC in attack mode "in-
stance" is stable since the target im-
age is fixed, causing less variance.

(a) w/ PDD, w/o
NC.

(b) w/ PDD, w/
NC.

(c) w/ PDD, w/o
NC.

(d) w/ PDD, w/
NC.

Figure 9: Visualization of generated CIFAR-10 images with or without
NC optimization. Figures (a) and (b) display generated clean images
with benign input (i.e., bird, ship, airplane, dog, horse, automobile,
deer, frog). Figures (c) and (d) show generated images of the target class
("horse") with poisoned inputs. Figures (b) and (d) represent the images
generated from poisoned inputs with the NC-optimized trigger. NC
optimization is observed to enhance the image quality in both benign
and attack scenarios.

reaches below ϕT h, indicating that the proposed differentiable histogram hd(·) is an effective approximation
to h(·) when considering the gradient-based optimization. Also, Fig. 6 illustrates the distribution discrepancy
incurred by fixed trigger used in Chen et al. (2023) and learnable trigger after PDD optimization. It is seen
that the proposed PDD-oriented trigger learning brings a much lower PDD score, significantly improving
the stealthiness of the backdoor trigger.

We also observe the variation of the absolute mean of the trigger values when optimizing the PDD scores,
as illustrated in Fig. 7. Although the mean of trigger values remains around zero, there is a significant
variation in absolute mean values. As the training process progresses, the absolute mean increases while the
PDD score decreases. This phenomenon leads us to hypothesize that the change in the absolute mean value
of the trigger may be related to the process of approaching Gaussian distribution. The modified values seem
to mimic the distribution of Gaussian noise. As the PDD scores reach a plateau, the mean absolute value
also becomes stable, no longer experiencing significant fluctuations.

Effect of NC Optimization. As analyzed in Sec. 5.2, NC loss measures the discrepancy between the
added Gaussian noise and the predicted noise at one step. Fig. 8 shows the curve of NC loss as training
progresses. It is seen that compared with only emphasizing optimization of PDD, training towards both
optimizing both PDD and NC brings a very significant NC loss drop, indicating the strong noise prediction
capability and generation of higher-quality images. As shown in Tab. 3, using NC optimization leads to lower
FID scores across different sampling steps. Fig. 9 visualizes the benign and attack performance improvement
after considering NC optimization in trigger learning.

Effect of Various Smoothness Factors. To explore the effect of the smoothness factor ω of the differential
histogram function hd(·), we conduct several PDD optimization experiments using various ω. Fig. 10 shows
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Figure 10: Curve of PDD score D(x̃T ) and differentiable PDD score Dd(x̃T ) when the trigger is trained with
the PDD loss LdP DD. Effect of ω, the smoothness factor of the differential histogram function.

Table 4: Effect of various Xσ. Performance of the proposed backdoored diffusion model using the detection-
evading learnable trigger under 1σ. The lower FID and higher ASR indicate better benign and attack
performance, respectively. For "Instance" mode, MSE between the generated and target images is also
reported to show the high attack performance. "∗" denotes we reproduce the experiments using "Glasses"
Chou et al. (2023) as the trigger and "Micky Mouse" as the target image.

Attack
Mode Method Trigger

Type
PDD
Score

Detection
Pass Rate

(%)

DDPM DDIM
Benign Attack Benign Attack

FID ↓ ∆
FID

ASR (%) w/
Detection ↑ FID ↓ ∆

FID
ASR (%) w/
Detection ↑

CIFAR-10
None Benign Baseline None 0.031±0.012 84.0 4.60 0 0 4.25 0 0

Category DisDet(Ours) Learnable 0.025±0.007 97.5 4.44 -0.16 80.0 4.29 0.04 78.1
97.5 97.5Instance DisDet(Ours) Learnable 0.025±0.007 97.5 4.39 -0.21 (MSE: 7.64e-6) 4.38 0.13 (MSE: 4.19e-5)

the curve of the PDD score D(x̃T ) and differentiable PDD score Dd(x̃T ) during the trigger PDD optimization
procedure.

When ω is too small, such as ω = 2 in Fig. 10a, the approximation of differentiable PDD score Dd(x̃T )
becomes less accurate. This inaccuracy results in a very small differential PDD score, even at the initialization
step. Then, it leads to a larger gap between the regular PDD score D(x̃T ) and differentiable PDD score
Dd(x̃T ). This larger gap is undesirable for optimizing the desired distribution pass rate and ASR. When
ω is too large (e.g., ω = 8), the differential histogram function exhibits non-smooth characteristics. This
can be seen in Fig. 10d, where after 2.5K steps, the PDD scores become undefined (denoted as "NaN").
This phenomenon is directly attributed to the non-smooth nature of the differential histogram function with
larger ω values. Consequently, a larger ω not only hinders but also halts the optimization process of the
desired PDD score. In our experiments, we choose ω = 6 to strike a balance between minimizing the gaps
in PDD score and maintaining the feasibility of optimization.

Effect of Various Xσ. We follow the 3-sigma rule in Gaussian distribution to set 3σ in our main experiments
because it provides a way to manage the spread of data within a predictable range. In a Gaussian distribution,
about 99.7% of the data points lie within three standard deviations (3-sigma) from the mean to avoid hurting
the pass rate of the benign input. Specifically, if the defender applies a stricter criterion, such as 1σ, the
detection system would significantly decrease the pass rate of benign inputs from 99.8% to 84%, thereby
increasing the 20% number of generation attempts (number of trials). Therefore, to improve the user
experience, we use 3σ as a default setting. Additionally, we conduct the experiment on the CIFAR-10
dataset and present the effect of various Xσ in Tab. 4. Our DisDet can achieve 97.5% ASR with the attack
mode “Instance”.

Defend the patched-based trigger. We conduct additional experiments incorporating a patch-based
trigger to further validate the universality of our method. Based on the CIFAR-10 dataset, we use the
detection method outlined in Sec. 4 to detect the patch trigger from Trojdiff. The results show that our
PDD-based defense can achieve a 90.4% detection rate for the path-based trigger, resulting in a low ASR of
9.6%. This indicates that our detection method is effective for both the blend and patch-based trigger.
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Sampling Steps and Training Epochs. To investigate how training and sampling steps affect the
performance of a stealthy backdoor diffusion model, we conduct training on CIFAR-10 and CelebA datasets
using the "instance" attack mode. The models are trained with varying training steps (50k, 75k, 100k) and
sampling steps (10, 20, 50, 100, 200). According to the results presented in Tab. 5, an increase in training
epochs generally maintains or slightly decreases the FID while simultaneously enhancing attack performance.
Regarding sampling steps, we observe that larger number of sampling steps leads to improved performance
in both benign and attack scenarios. This aligns with the property of a standard diffusion model, where
increasing sampling steps tend to yield better overall performance.

Table 5: Results of different sampling steps on various training epochs on CIFAR-10 and CelebA datasets
with attack mode "instance". For the benign performance, FID reflects the quality of benign images. For
the attack performance, the ASR equals that of the main results, and MSE is measured to reflect the subtle
change exactly according to different sampling steps and training epochs.

Training Metric Sampling Steps
Epochs 10 20 50 100 200

CIFAR-10

50k FID 14.74 7.42 5.00 4.39 4.17
MSE 1.53e-4 1.03e-4 8.37e-5 8.10e-5 7.34e-5

75k FID 14.37 7.33 4.98 4.34 4.17
MSE 1.07e-4 7.12e-5 5.69e-5 5.52e-5 5.02e-5

100k FID 14.51 7.38 4.99 4.38 4.17
MSE 8.20e-5 5.43e-5 4.32e-5 4.19e-5 3.80e-5

CelebA

50k FID 2.85e-3 2.02e-3 1.71e-3 1.70e-3 1.59e-3
MSE 13.31 8.23 6.35 5.85 5.75

75k FID 1.43e-3 1.04e-3 9.01e-4 8.98e-4 8.55e-4
MSE 13.24 8.17 6.28 5.84 5.71

100k FID 1.08e-3 7.98e-4 7.01e-4 6.99e-4 6.69e-4
MSE 13.25 8.14 6.23 5.82 5.72

8 Conclusion

In this paper, we perform systematic studies on the detectability of the Trojan input for the backdoored
diffusion model, from both defender and attacker sides. First, we propose the distribution discrepancy-based
trigger detection mechanism for detecting the backdoor attack. Second, we design a detection-evading trigger
to unnoticeably attack the diffusion model. Evaluation results on CIFAR-10 and CelebA datasets show a
nearly 100% detection rate to the previous backdoor attack on diffusion models, and a 100% detection pass
rate with very high attack and benign performance of our proposed attack method. Our attack method shows
a vulnerability of the PDD score-based defense, and that future approaches should consider an alternate
framework instead.

9 Broader Impact

By systematically exploring the detectability of poisoned noise input in backdoored diffusion models, this
paper contributes significantly to improving the security of generative AI models. The proposed trigger
detection mechanism can potentially safeguard these systems against backdoor attacks, ensuring that content
generation tools remain trustworthy and reliable. The proposed backdoor attack strategy that learns to
evade detection could pave the way for future research aimed at exploring and enhancing the robustness of
generative AI models.
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Appendix

A Limitations

The threat model in the previous backdoored diffusion model Chen et al. (2023); Chou et al. (2023) assumes
that the attacker can control the training process and access the input Gaussian noise of the diffusion model.
While these assumptions might currently seem impractical, this series of works provides a valuable exploration
for investigating the foundational property of backdoor attacks on the diffusion model. Following these works,
we adopt this threat model to guide our analysis. Second, our study currently focuses on unconditional
diffusion models, in future work, we aim to enhance our understanding of detection mechanisms within
conditional diffusion models, such as Stable Diffusion.

B Potential Scenarios

Here, we present potential scenarios the threat model could arise:

• Scenario 1: When developing the diffusion model on a device, the hardware could be poisoned
by continuously shifting the input noise with a trigger. This would cause the model to generate
dangerous and unpredictable content.

• Scenario 2: If a company allows users to input their own Gaussian noise via an open API to generate
corresponding target images, users might save a fixed Gaussian noise that generates a desired image.
This feature can attract customers to use the model from the company. However, malicious users
could exploit this input method to introduce harmful triggers, resulting in dangerous outputs.

C Details of Differentiable Histogram

We propose to use the dual logistic functions to approximate the original histogram function. Given a
bin with the range of [0.5, 1.0], with the center c = 0.75 and interval s = 0.5, when an item with a
value of 0.6 falls into this bin, the histogram count increases by 1. To make this process differentiable, we
use dual logistic functions to approximate this count. As seen in Fig. 3, we use a brown dotted line to
represent sigmoid(ω(x − c + s

2 )), corresponding to the first term of Eq. 7. The blue dotted line represents
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sigmoid(ω(x − c − s
2 )), corresponding to the second term in Eq. (7). In the figure, using x = 0.6 as an

example, this count of 1 is approximated by subtracting the blue line value from the brown line value, which
is denoted by sigmoid(ω(0.6 − 0.75 + 0.5

2 )) − sigmoid(ω(0.6 − 0.75 − 0.5
2 )). By summing all the counts for

each bin separately, Eq. 7 can approximate the histogram function.

D Additional Visualization Results

D.1 CIFAR-10 Dataset

DDPM. Fig. 11, Fig. 12, Fig. 13, Fig. 14 illustrate some of the generated images from our backdoored
DDPM model with benign and poisoned noise inputs on CIFAR-10 dataset. For the attack mode "Category",
the target category is the horse. For the attack mode "Instance", the target instance is a Michy Mouse image.

DDIM. Fig. 15, Fig. 16, Fig. 17, Fig. 18 illustrate some of the generated images from our backdoored
DDIM model with benign and poisoned noise inputs on CIFAR-10 dataset. For the attack mode "Category",
the target category is the horse. For the attack mode "Instance", the target instance is a Michy Mouse image.

D.2 CelebA Dataset

DDPM. Fig. 19, Fig. 20, Fig. 21, Fig. 22 illustrate some of the generated images from our backdoored
DDPM model with benign and poisoned noise inputs on CelebA dataset. For the attack mode "Category",
the target category is the faces with heavy makeup, mouth slightly open and smiling. For the attack mode
"Instance", the target instance is a Michy Mouse image.

DDIM. Fig. 23, Fig. 24, Fig. 25, Fig. 26 illustrate some of the generated images from our backdoored
DDIM model with benign and poisoned noise inputs on CelebA dataset. For the attack mode "Category",
the target category is the faces with heavy makeup, mouth slightly open and smiling. For the attack mode
"Instance", the target instance is a Michy Mouse image.

Figure 11: Generated benign images in Attack Mode "Category" with DDPM model on CIFAR-10 dataset.
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Figure 12: Generated target images in Attack Mode "Category" with DDPM model on CIFAR-10 dataset.
The target category is the horse.

Figure 13: Generated benign images in Attack Mode "Instance" with DDPM model on CIFAR-10 dataset.
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Figure 14: Generated target images in Attack Mode "Instance" with DDPM model on CIFAR-10 dataset.
The target instance is the Michy Mouse image.

Figure 15: Generated benign images in Attack Mode "Category" with DDIM model on CIFAR-10 dataset.
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Figure 16: Generated target images in Attack Mode "Category" with DDIM model on CIFAR-10 dataset.
The target category is the horse.

Figure 17: Generated benign images in Attack Mode "Instance" with DDIM model on CIFAR-10 dataset.
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Figure 18: Generated target images in Attack Mode "Instance" with DDIM model on CIFAR-10 dataset.
The target instance is the Michy Mouse image.

Figure 19: Generated benign images in Attack Mode "Category" with DDPM model on CelebA dataset.
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Figure 20: Generated target images in Attack Mode "Category" with DDPM model on CelebA dataset. The
target category is the faces with heavy makeup, mouth slightly open and smiling.

Figure 21: Generated benign images in Attack Mode "Instance" with DDPM model on CelebA dataset.
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Figure 22: Generated target images in Attack Mode "Instance" with DDPM model on CelebA dataset. The
target instance is the Michy Mouse image.

Figure 23: Generated benign images in Attack Mode "Category" with DDIM model on CelebA dataset.
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Figure 24: Generated target images in Attack Mode "Category" with DDIM model on CelebA dataset. The
target category is the faces with heavy makeup, mouth slightly open and smiling.

Figure 25: Generated benign images in Attack Mode "Instance" with DDIM model on CelebA dataset.
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Figure 26: Generated target images in Attack Mode "Instance" with DDIM model on CelebA dataset. The
target instance is the Michy Mouse image.
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