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Abstract

The feedback that AI systems (e.g., recommender systems, chatbots) collect from
user interactions is a crucial source of training data. While short-term feedback
(e.g., clicks, engagement) is widely used for training, there is ample evidence that
optimizing short-term feedback does not necessarily achieve the desired long-term
objectives. Unfortunately, directly optimizing for long-term objectives is challeng-
ing, and we identify the disconnect in the timescales of short-term interventions
(e.g., rankings) and the long-term feedback (e.g., user retention) as one of the key
obstacles. To overcome this disconnect, we introduce the framework of MultiScale
Policy Learning to contextually reconcile that AI systems need to act and optimize
feedback at multiple interdependent timescales. Following a PAC-Bayes motiva-
tion, we show how the lower timescales with more plentiful data can provide a
data-dependent hierarchical prior for faster learning at higher scales, where data is
more scarce. As a result, the policies at all levels effectively optimize for the long-
term. We instantiate the framework with MultiScale Off-Policy Bandit Learning
(MSBL) and demonstrate its effectiveness on three tasks relating to recommender
and conversational systems.

1 Introduction

Many interactive AI systems (e.g., recommender systems, conversational systems) use abundantly
collected short-term feedback for learning. However, it is well known that over-optimization of
short-term feedback can adversely affect the long-term goals [14, 21, 26]. Similarly, challenges with
competing time horizon objectives [40, 15], and issues like reward hacking [35, 29, 30] and user
manipulation [18, 11] have been previously reported. For example, optimizing for engagement on
social media platforms can lead to clickbait-y or toxic feeds. This neither reflects the user preferences
nor the platform’s goals of retaining users. We wish to design systems that optimize for long-term
objectives, that are beneficial for various stakeholders in the system [1].

A key problem in achieving this goal is that the long-term feedback (e.g., user retention) is at a
different timescale than the short-term interventions (e.g., rankings of recommended products) that
are used to optimize them. For instance, optimizing rankings for clicks in a recommender system is
relatively straightforward since clicks can be attributed to an individual ranking. Indeed, learning
methods such as bandits that optimize for users’ immediate response to recommendations such as
clicks, likes, views, etc are widely used to learn ranking policies [19, 46]. Now, consider optimizing
rankings for the feedback on users’ subscription renewal, which is observed monthly. We note the
disconnect between the timescale of rankings presented and the long-term objective of subscription
renewal, making this a much harder problem than the previous one. While a Markov Decision Process
can in principle model sequential dependencies to achieve long-term goals, in practice the large
resulting state spaces, credit-assignment problems, and the sparsity of long-term feedback prohibit
straightforward applications of reinforcement learning [23].
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To overcome this problem, our approach is to contextually reconcile the disconnect between short-term
interventions and long-term objectives by learning interventions and policies at multiple timescales.
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Figure 1: MultiScale feedback r with cor-
responding interventions a at each level
(L1, L2, L3). At the short-term level, engage-
ment feedback (e.g., responses, clicks) is ob-
served at the fastest timescale. At the next higher
level, we observe feedback like the weekly return
rate. And at an even higher level, subscription
renewal is observed at the slowest timescale.

Consider a recommender system for a video
streaming platform as depicted in Figure 1. At the
lowest level, the system acts by providing rank-
ings of recommended products. These rankings
(short-term interventions) can be optimized for
clicks (short-term reward). While clicks are an
important signal for learning that is abundantly
available at the lowest level of Figure 1, an unmit-
igated maximization of clicks is not necessarily
aligned with higher-level goals. In particular, the
platform may sacrifice some clicks if that leads
to a higher weekly return rate. This metric is a
more reliable indicator of user satisfaction, but it
is available at a slower timescale. Finally, at the
highest level, the platform ultimately cares about
user retention and subscription renewal. This feed-
back lives at an even slower timescale, and it is
thus more scarce but even more valuable. Similar
multi-scale levels of feedback metrics also exist for other AI systems (e.g., tutoring chatbots that aim
to achieve long-term learning outcomes), and additional settings are discussed in Appendix B.

The main contributions of this work are as follows:

1. We introduce a new framework – MultiScale Policy Learning – that formalizes a multi-
level approach for optimizing long-term objectives. The framework introduces a recursive
construction of priors that are informed by data at the lower levels to speed up learning at
the higher levels.

2. We demonstrate the practicality and generality of this framework by developing MultiScale
Off-Policy Bandit Learning (MSBL) as a simple recursive algorithm for training multi-
scale contextual bandit policies. It includes two widely applicable constructions for nested
training of policies that enable the use of both abundant short-term and sparse long-term
data for optimizing long-term outcomes.

3. We demonstrate the effectiveness of our approach empirically on three tasks ranging from
recommender to conversational systems. Ablations show robustness of our method for
optimizing the long term reward.

2 Related Works

Hierarchical Reinforcement Learning. Hierarchical RL (HRL) approaches, such as the options
framework [37, 3] and feudal learning [7], learn to operate on different levels of temporal abstraction.
HRL aims to accomplish complex tasks by dividing them into sub-goals with the higher level
assigning sub-tasks to the next lower level, such as in robotic applications [31]. While our framework
shares the idea of creating a hierarchy, the type of hierarchy is fundamentally different. In particular,
our tasks do not have a subgoal decomposition as in HRL, where the discovery of the subgoals and
their execution is critical and guides the micro policy. Instead, we exploit the hierarchy of feedback
timescales to construct a hierarchical prior over the policy space to speed up learning for sparse
long-term feedback. Our goal is to steer towards improving long-term outcomes, even at the expense
of shorter-term rewards. This is fundamentally different from the macro actions (options) in HRL,
which are abstractions over micro actions, and the goal is to combine these options as subroutines.

Long Term Optimization. There has been a growing interest in the study of recommender systems
that go beyond optimizing engagement and clicks [25, 5, 23, 26, 6, 2]. Maystre et al. [23] provide an
RL perspective to long-term learning in recommender systems and discuss challenges with credit
attribution. Other approaches, such as [5] do not learn at the macro level and instead formulate
long-term macro interventions that they aim to fulfill with minimum impact on short-term engagement
metrics. These works operate on a single timescale and assume that the macro intervention is given
and fixed. Our work can be viewed as learning the macro interventions themselves from long-term
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feedback. In fact, these methods can be used for a single level-specific learning within our MultiScale
framework, making them a special case of our approach.

Multi-Objective Optimization. Recent work has highlighted the importance of selecting weights
for linear scalarization for multi-objective learning in recommender systems [27, 16, 42] and in text
generation tasks [43]. A different line of work explores learning conditional policies as a single
family of policies [9, 42, 43]. Our work leverages the idea of conditional policies and multi-objective
learning from the perspective of optimizing for long-term outcomes. In doing so, we elevate single-
stage learning to multiple levels with the macro level contextually selecting the objective to optimize
at the micro level.

Additional related works are deferred to Appendix C.

3 Multi-Scale Policy Framework

We begin by providing a PAC-Bayesian motivation for why a hierarchical approach that exploits
feedback across multiple scales can be substantially more data efficient. For simplicity of notation,
we restrict to two levels – the micro level operating at the faster timescale t1 and the macro level
operating at the slower timescale t2. As we will see later, the framework naturally extends to multiple
scales of policy learning.

Our goal is to learn a policy π(a|x) that selects an action a for a given context x. We assume that
contexts are drawn i.i.d. from an unknown distribution x ∼ p(x), but we conjecture that our approach
can be extended to stateful models as well. Our approach rests on the realization that we observe
rewards at different timescales in many AI systems. For two levels, we observe a reward

rL1 ∼ p(rL1|x, a)

at the micro level for each action a and context x, corresponding to the short-term engagement (e.g.,
clicks). We also record rewards

rL2 ∼ p(rL2|(xi, ai), . . . (xi+T , ai+T ))

after we have taken a sequence of actions. This corresponds to the long-term feedback (e.g., weekly
returns, subscription renewal) which we would like to optimize, since it typically better reflects
stakeholder objectives. This leads us to the following policy learning objective,

πL2∗ ← argmax
π∈Π

V L2(π), where V L2(π) = Exi:xi+T ,ai:ai+T ,rL2 [rL2]. (1)

Unfortunately, for a large and complex policy space Π, finding the optimal policy π∗ by simply
replacing the expected reward V L2(π) with its empirical estimate V̂ L2(π) on some training data DL2

is typically intractable. The long-term reward is too infrequent for learning policies from scratch. As
a result, existing approaches predominantly [44] optimize the more frequent reward signal rL1 at the
micro level.

πL1∗ ← argmax
π∈Π

V L1(π), where V L1(π) = Ex,a,rL1 [rL1]. (2)

Note that even the policy πL1∗ that perfectly optimizes the micro level reward can have substantially
worse reward at the macro level, V L2(πL1∗) < V L2(πL2∗). However, πL1∗ is typically much better
than a random policy from Π. This raises the following question.

How do we exploit feedback at the micro level to learn faster at the macro level? To provide a
theoretical motivation, we make the following PAC-Bayesian argument. PAC Bayes generalization
bounds [20, 24] provide uniform convergence over all posterior distributions Q(π) for any given
prior distribution P (π). Specifically, with probability 1− δ,∣∣Eπ∼Q[V

L2(π)]− Eπ∼Q[V̂
L2(π;D)]

∣∣ ≤ O

(√
KL(Q||P ) + ln(1/δ)

n

)
. (3)

Since this bound holds for all Q, it also holds for any (approximately) optimal posterior QL2∗ that
maximizes the macro level reward. For a discrete policy space, QL2∗ is the Dirac delta distribution
centered on πL2∗. The bound states that this learning problem is ‘easy’ (i.e., requires a small number
n of training examples) if the KL-divergence between QL2∗ and the prior P is small.
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Can we improve the prior for the macro level with data from the micro level? While the optimal
policy πL1∗ at the micro level may be suboptimal at the macro level, a policy that is learned based on
finite data at the micro level via π̂L1 ← argmaxπ∈Π V̂ L1(π) can provide useful prior information
for learning at the macro level.

Consider the following illustrative example, where each policy π(.|., θ) ∈ Π is defined via a parameter
vector θ. We denote θL1 as the parameters of policy π̂L1, and θL2∗ as those of the optimal macro
policy πL2∗. For simplicity of demonstration, we define the target policy distribution as QL2∗ =
N(θL2∗,ΣL2), an uninformed prior distribution P0 = N(θ0,Σ0) for some arbitrary θ0, and an
informed prior PL1 = N(θL1,ΣL1) centered at the learned micro policy π̂L1. The difference in
training samples n0−nL2 to get the same confidence interval for QL2∗ in Equation (3) is proportional
to KL(QL2∗||P0)−KL(QL2∗||PL1). We show in Section E.1 that for an appropriately chosen ΣL1,
the improvement in required training samples by moving to the informed prior PL1 is at least

n0 − nL2 ∝ KL(QL2∗||P0)−KL(QL2∗||PL1) ∈ O(|θL2∗ − θ0|M − |θL2∗ − θL1|M ) (4)

where |θL2∗ − θ0|M is the squared Mahalanobis distance in the parameter space θ.
This shows that the policy π̂L1 ∼ PL1 learned at the micro level can provide
training sample savings at the macro level, if π̂L1 and πL2∗ are close compared to
the uninformed prior P0. In particular, if we can learn almost all parameters of πL2∗

at the micro level, the distance |θL2∗ − θL1|M will be small, resulting in higher
macro level sample savings. The figure on the right illustrates how an informed
prior PL1 pulls the center of the prior P0 closer to the parameters of πL2∗ ∼ QL2∗.
To quantify the reduction in macro level training data, we construct a numerical example (detailed in
Section E.1) with θ ∈ R50, such that 49 parameters are learned well at the micro level and only 1
parameter needs to be adjusted at the macro level. This results in saving ≈ 98% training samples1,
which means gathering enough macro level data may only take weeks instead of years.

4 Multi-Scale Policy Learning

In order to put the theoretical insights from the previous section into a practical policy learning
algorithm, we introduce a factorization of contexts and policies at each level. We propose the policy
factorization in a way that the micro level learns a large part of the parameter space, even if it is not
aligned with the long term expected reward. This simplifies learning at macro level compared to
learning from scratch.

Multi-Scale Contexts. The context x ∼ p(x) can be factorized as p(x) ≜ p(xL2) · p(xL1|xL2). At
the upper level, contexts xL2 ∼ p(xL2) arrive at timescale t2. An example of an upper-level context
could be a user as described by demographic features or some long-term profile. For each such
upper-level context, a sequence of lower-level contexts xL1 ∼ p(xL1|xL2) is drawn conditionally on
xL2. Such lower-level contexts could be search queries, or chat requests.

Multi-Scale Policies. We consider the following factorization of policy space Π,

Π ≜ ΠL1 ·ΠL2, (5)

where ΠL1 consists of micro policies, that as we will see later, can provide a strong inductive bias for
the long term optimal policy. In contrast, the macro level is only concerned with learning within the
space of reasonable policies obtained after micro learning and has a much smaller policy space ΠL2.

Specifically, for each upper-level context xL2, the upper-level policy πL2 selects an action aL2

from action space AL2. Examples of aL2 are diversity boosts, aggressiveness of spam filtering, the
decoding strategy of an LLM policy, etc.

aL2 ∼ πL2(aL2|xL2) ; πL2 ∈ ΠL2

Importantly, as shown in Figure 2 (a), the action aL2 corresponds to a lower-level policy πL1
aL2 .

This means that the action space AL2 at the upper level is isomorphic to a family of policies
Π̂L1 = {π̂L1

aL2 : aL2 ∈ AL2}, learned empirically at the lower level.

AL2 ∼= Π̂L1

1This calculation does not consider the investment of training samples nL1 for constructing PL1. Generally,
these nL1 samples are significantly cheaper than the macro samples nL2, since they are T times more frequent.
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Figure 2: (a) At inference, a macro action indexes to select the particular micro policy from a family
of micro policies. The macro action space AL2 is isomorphic to the family of policies Π̂L1 (b)
Learning micro policies: Abundant micro-level data is used to learn promising policies Π̂L1 using
policy or feedback modification (c) Macro-level data is used to learn a macro policy. For more than
two levels, (b) and (c) are recursively called, narrowing down micro policy space/ macro action space.

The lower-level policy πL1
aL2 indexed by the chosen upper-level action aL2 will be executed for the

subsequent lower-level contexts.

aL1 ∼ πL1
aL2(a

L1|xL1)

The actions aL1 ∈ AL1 at the lower level are rankings, chat responses, or push notifications, just like
in the conventional contextual bandit framework.

Multi-Scale Data. We collect contextual bandit feedback at both the upper and the lower level. At
the lower level, we get the conventional data

DL1 = {(xL1
i , aL1

i , rL1
i , pL1

i )}n
L1

i=1 ,

where we use the logging policy πL1
0 and record the propensity pL1

i = πL1
0 (aL1

i |xL1
i ) to enable off-

policy learning. However, unlike for conventional bandit policies, we also get data for the upper-level,
which includes the long-term rewards

DL2 = {(xL2
i , πL1

aL2
i
, rL2

i , pL2
i )}n

L2

i=1 with propensity pL2
i = πL2

0 (aL2
i |xL2

i ).

We thus need to devise an algorithm for learning both π̂L2, as well as each of the policies in Π̂L1. We
approach this problem by using the upper-level data DL2 for learning aL2, and we use the lower-level
data DL1 to learn a comparably small set of policies Π̂L1 that serve as actions for the upper-level.
This provides the affordance to use the abundant feedback in DL1 for learning in the large action
space AL1, thus narrowing down the set of potential actions for learning πL2 from the comparably
scarce data in DL2, as shown in Figure 2 (b) and (c).

4.1 Learning a Family of Micro Policies

The following proposes two options, which both define a comparably small Π̂L1 based on the more
abundant data DL1 available at the lower level.

Policy Modification. In this procedure, we first learn a single policy πL1 from DL1 that we then
modify to define the family Π̂L1. In particular, we first train π̂L1 to optimize the expected reward at
the lower level according to Eq. (2). This single policy is then modified by each action aL2, where
each action takes the form of a function from ΠL1 → Π̂L1.

π̂L1
aL2 := aL2(π̂L1) (6)

In the example of text generation, a decoding strategy aL2 might modify the learned LLM policy
for more varied response generations. Similarly, applying a boost aL2 to items of a particular type
in a recommender system updates the ranking policy πL1

aL2 by ranking boosted items higher up, or
items suspected to be click-bait lower. As a result, Eq. (6) defines policy update π̂L1

aL2 for a given
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intervention aL2 as a form of perturbing the short-term optimized policy π̂L1. While π̂L1
aL2 could

provide a lower expected short-term reward as compared to that from π̂L1, it can be more effective at
optimizing the reward at the upper-level (e.g., fewer clicks by more aggressively pruning suspected
click bait can lead to better weekly returns).

Feedback Modification. In this procedure, each upper-level action aL2 takes a form of a loss function
that acts upon the observed feedback at the lower level when learning the lower-level policy. In this
case we assume that the feedback rL1 is vectorial (e.g., clicks, likes, purchases, add-to-carts), and
each aL2 is a different function (e.g., convex combination) for combining the feedback vector into a
scalar loss. Then, for any given aL2, we optimize

πL1
aL2 := argmax

πL1∈ΠL1

Ep(xL1),πL1(aL1|xL1),p(rL1|xL1,aL1)[a
L2(rL1)] (7)

to get a family of policies Π̂L1.

For a more efficient implementation that does not require us to explicitly enumerate the policies in
Π̂L1, we include aL2 in the context and parameterize the reward aL2(rL1) during training πL1 for
every aL2 ∈ AL2. In this way, we only learn a single policy that is parameterized by aL2 to represent
all policies in Π̂L1. At inference, aL2 chosen from the learned macro policy is included in the context
of the micro policy, selecting the particular πL1

aL2 . As a result, while Eq. (7) in principle refers to a
discrete set of policies, practically we only train one micro policy. For LLM policies, this can be
implemented as described in [43].

Note again that the transformation of the rewards can lead to lower short-term reward on some
primary metric (e.g., clicks), but that the upper-level policy now has a space of actions that can
optimize the longer-term metric (e.g., user retention).

4.2 Learning the Macro Policy

Once the family of policies Π̂L1 that correspond to the upper-level actions aL2 ∈ AL2 is fixed, we
can chose from a wide range of policy-learning methods that use the data in DL2 to optimize the
expected upper-level reward V L2(πL2). In particular, we can use off-policy policy-gradient methods
that optimize the inverse propensity weighted empirical average

π̂L2 = argmax
πL2(.|.,θ)

1

nL2

nL2∑
i=1

πL2(aL2
i |xL2

i , θ)

pL2
i

rL2
i (8)

as an estimate of the expected upper-level reward V L2(πL2). If the policy π̂L2(.|., θ) is differentiable
in its parameters θ, we can use stochastic-gradient descent for training [17].

4.3 MultiScale Bandit Learning Algorithm

We can now summarize our approach to learning a nested set of policies across multiple levels in
Algorithm 1. The algorithm uses off-policy contextual bandits [10, 38, 33] at each level. Algorithm 1
is limited to two levels for conciseness of notation, but the full recursive procedure for an arbitrary
number of levels is given in Appendix D.2. In the experiments, we will explore policy spaces with
two and three levels.

Algorithm 1 MultiScale Training: Off-Policy Contextual Bandits

Procedure PolicyLearning(πL2
0 , πL1

0 )
Collect Micro Logged dataset DL1 := {(xL1

i , aL1
i , rL1

i , pL1
i )}nL1

i=1 ∼ πL1
0

Learn Micro policies Π̂L1(Eq. (6) or (7) using DL1)
Collect Macro Logged dataset DL2 := {(xL2

j , aL2
j , rL2

j , pL2
j )}nL2

j=1 ∼ πL2
0

Learn Macro Policy π̂L2← argmaxπL2 V̂ L2(πL2;DL2) (Eq. (8))
return learned policies π̂L2, Π̂L1

The procedure requires the logging policies πL2
0 , πL1

0 as input. We first collect logged bandit data
DL1 and learn the micro policies either as policy or feedback modification to get a family of policies
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Π̂L1 := {π̂L1
aL2 : aL2 ∈ AL2}. With the learned policies Π̂L1, we now collect logged bandit data DL2

for the macro level. Note that the logged datasets DL1 and DL2 can be collected asynchronously,
because during micro policy learning, we learn Π̂L1 for all aL2 ∈ AL2.

Overall, at each lower level L(k − 1), we use data DL(k−1) to learn the promising policies Π̂L(k−1)

that provide prior information and serve as the action space for the next upper level L(k). While
the training involves bottom-up learning of the policies, deployment involves top-down inference
from learned policies at each of the levels. Figure 2 (a) shows the inference with actions chosen
from the upper-most level policy, indexing the next lower level policy. For e.g., aL2 is first selected
from the learned π̂L2(.|xL2) and the lower level action aL1 is selected according to the indexed
policy π̂L1

aL2(.|xL1). In this way, learning a family of policies enables adaptation (according to the
intervention aL2) for the micro level at inference time. We provide a formal inference algorithm in
Section D.

Since we use off-policy learning independently at each level, convergence for the contextual bandit
learning at each level depends on the number of samples and the action space [10]. As a result, with
a smaller macro action space AL2 compared to AL1, we can utilize the scarcer data at the upper level
and get similar convergence as the micro policy that utilizes the more abundant data.

5 Experiments

We conduct experiments on three scenarios related to conversational systems (Anthropic Helpful
Assistant [4] and a new simulator), and a conventional recommendation system (KuaiRand video
streaming benchmark) for two and three timescale levels. We provide an additional experiment on
a toy domain that is simple enough to make RL tractable in Section F.1, and as expected, we find
that our approach is competitive. In the following experiments, we compare our approach against
single-stage policies that cannot personalize at the macro level, a random baseline policy (denoted by
aL2 ∼ πL2

0 ) that selects interventions uniformly, and an oracle skyline policy. We use subscript index
to denote the static policies, e.g., aL2

1 is fixed action policy that always applies first macro intervention.
Complete experiment setup, hyperparameters, and training details are provided in Section F.

5.1 Multi-turn Conversation
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Figure 3: Multi-turn conversation: (a) Setup for
learning preference weights aL2 using feedback
modification (b) Comparison of long-term (user sat-
isfaction of multi-turn) vs short-term (single-turn)
rewards for all users across 5 random seeds.

Figure 3 (a) shows a two level setup for multi-
turn conversations. In this task, we learn
the preference weight vector aL2 for harm-
lessness and helpfulness with a bandit policy
πL2(aL2|xL2). The macro intervention aL2

is applied as a feedback modification to the
lower level LLM policy. The upper-level con-
text xL2 represents a user persona, such as
“Child” and “Expert”. At the micro level, the
context xL1 starts from a question in the An-
thropic dataset. For each subsequent turn, the
trained LLM policy Π̂L1 responds, and the
user persona LLM asks a follow-up question.
The short term observed reward is the user
LLM’s evaluation of a single-turn. We simu-
late five turns of the prompt-response cycle. At the end of the five turns, an LLM evaluator at the
macro level scores user satisfaction for the given user persona and full conversation in {0, 1}.
Results. Figure 3 (b) shows that our approach of learning a macro level policy that selects the
helpful/harmless tradeoff aL2 for each user persona based on macro level feedback achieves the best
long term reward for the overall conversation as compared to the non-adaptive baselines. Optimizing
only the per-turn response can adversely affect the overall conversation. This is due to harm-inducing
responses, which provide acceptable individual answers at the lower level but adversely affect the
conversation over five turns. This experiment demonstrates that macro level learning is crucial
and that MSBL effectively learns to optimize for long-term reward even when the reward is highly
non-linear (i.e., Llama-3-70b [13] evaluations). Further results are given in Section F.4.
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Figure 4: Conversational recommender system: (a) Tradeoff between longer-term Level 2 and
short-term Level 1 rewards using decoding temperature aL2 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} as policy
modification. (b) Tradeoff between expected rewards at all three levels. Expected rewards are
reported across 5 random seeds for all users.

5.2 Conversational recommender system

To increase the complexity of the experiments and evaluate more than two levels of feedback, we
built a simulated conversational recommender system based on the motivating example in Figure 1.
We simulate 1500 users for training and test 300 users. At the lowest level, we use a pretrained
LLM policy πLLM that acts as a personalized agent, generating cuisine suggestions y to users at L1
timescale t1 = {1, . . . 10}. Each query consists of a system prompt specifying the agent’s expertise
and a user query q. We learn a bandit policy πL1(aL1|xL1) that selects the particular LLM agent
aL1 according to user context xL1. Next, we generate response yt ∼ πLLM(.|aL1, q, yt−1) from the
LLM policy, given the agent selection aL1, and append the previous timestep response yt−1 to the
current query q. The L1 reward is the inverse perplexity conditional on the optimal action, which
simulates the engagement (relevance) metric. At the second level, we simulate two user groups with
unknown preferences for relevance and diversity. L2 reward is a non-linear function of relevance and
diversity, representing weekly return rate at every 10 timesteps of L1. The L2 policy πL2 selects the
decoding temperature aL2 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} as a policy modification to the L1 policy.
At the third level, we simulate two user groups, with different long term preferences and use feedback
modification for L2 training to get a family of policies Π̂L2 := {π̂L2

aL3 : aL3 ∈ AL3}.
Results with two levels. Figure 4 (a) illustrates the tradeoff between Level 1 and Level 2 expected
rewards. While greedy decoding with aL2

1 provides the best overall short term reward, it leads to
low longer term reward at Level 2. Stochastic decoding temperatures aL2

2 through aL2
6 applied to the

lower level policy improve the longer term reward depending on the user group but fall short. MSBL
learns nested contextual policies π̂L1 and π̂L2 to achieve nearly optimal longer term reward for all
users in the system with little sacrifice to the short term relevance of responses. In Appendix F.3,
we analyze the performance for each of the user groups as well as robustness of MSBL for varying
feature noise in user contexts at both levels. We find that MSBL learns the weighted preference of
relevance and diversity for each user group and is robust to noisy features.

Scaling to three levels. Next, we analyze all three levels and compare short, medium, and long-term
expected rewards in Figure 4(b). First, note that the corners of the simplex are red, blue, and brown
corresponding to the Level 3 opt. (MSBL), Level 2 opt. (MSBL), and Level 1 opt. policy respectively.
Level 3 opt. (MSBL) refers to three nested bandit policies with Level 1 policy obtained via policy
modification with aL2 and Level 2 policy obtained via feedback modification with macro intervention
aL3. The short term optimizing policy performs poorly for both the medium and long term, validating
that optimizing engagement leads to sub-optimal performance in the longer term. Level 2 opt. policy
(MSBL with 2 levels) performs optimally in the medium term with little sacrifice to the short term but
does not perform well for the long term. Level 3 opt. policy (MSBL) achieves the best expected long
term reward with little sacrifice to the medium and short term rewards. Taking a random intervention
at the third level lies strictly inside the Level 3 opt. policy. This experiment validates the scalability
of MSBL for more than two levels. In Appendix F.3, we analyze the tradeoff in feedback across all
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user groups from all three timescales. We find that MSBL optimizes the long term rewards for each
of the user groups.

5.3 Recommender System
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Figure 5: Recommender system: Tradeoff between long term return rate and clicks by varying
groups using the boost aL2 to the relevance scores as policy modification. Expected short and long
term rewards are reported across 5 random seeds.
In the final setting, we use the KuaiRand dataset [12] to simulate two levels of short and long term
feedback. This allows us to evaluate based on real-world user features, and their historical interactions,
thereby evaluating for increasing action spaces. We use the simulator developed in [45] and modify it
for the contextual bandit setting. We use a training dataset of size 14,265 and test randomly selected
1,771 users. At the lower level, each user logs T = 5 interactions, and a transformer model uses item
and user embeddings to predict relevance scores s. Action aL1 represents a top-k selection of items
for a context xL1, from the policy π̂L1 ← argmaxk s, with the micro reward as average clicks per
user.

At the upper level, we simulate a macro intervention aL2 as the boost to the scores s. This is an
instance of policy modification since the intervention aL2 is applied post optimization to the micro
policy. We learn a policy π̂L2 to select the boost aL2 for a given user xL2. We simulate user and item
groups such that each user group has an unknown preference for a particular item group that is not
evident in the micro-level feedback, but only in the macro-level feedback (e.g., less click bait). We
simulate the macro reward of return rate as a non-linear function of the long-term preference-weighted
fraction of selected items.

Scaling Level 2 action space. The purpose of applying a macro intervention aL2 is to boost certain
item groups for certain user groups. We increase the macro action space by increasing the granularity
of user and item groups. As the groups increase, the top-k selected items may not belong to the
preferred item groups, making the problem setting harder. Figure 5 shows the tradeoff in the long
term user return rate and short term reward of clicks (under the intervention of boost from the macro
policy) for top-10 selection. As the number of groups varies ∈ {2, 3, 4, 5}, MSBL maintains a high
return rate compared to all the baseline policies, with some sacrifice to the short-term clicks. Policies
indicated by aL2

j use the same micro policy π̂L1 as MSBL, but apply the boost only to item group j

for all users in the system. The short-term optimization policy π̂L1 has no macro intervention applied
to the scores and maximizes the clicks, but results in low user return rates across all group sizes.

We study the changes in outcomes when the multiscale policies are updated asynchronously after
deployment in Appendix F.4. We find that as new data becomes available, updating only the micro
policy improves short term outcomes but may deteriorate long term outcomes requiring an update
to the macro policy. We also evaluate the robustness of macro learning with varying noise in the
micro policy and analyze the tradeoff with increasing Level 1 actions (selection set size). We find
that MSBL is robust to perturbations in micro policy, and it outperforms baselines consistently across
varying selection sizes.

6 Conclusion, Limitations and Future Work

We study the problem of how to train AI systems so that they achieve long-term desirable outcomes.
Focusing on the contextual bandit setting, we introduce a MultiScale Policy Learning framework
that can use plenty of data at the lower levels as prior information for enabling learning from scarce
data at the higher levels. We show how this bridges the disconnect in timescales between short-term
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actions and long-term feedback when optimizing for long-term objectives. Furthermore, we show
how this framework can be implemented in a practical algorithm, which we found to be effective in
optimizing long-term outcomes across a range of domains. However, there are many other ways of
instantiating our MultiScale framework with other algorithms, which provide many directions for
future work.

Limitations. One limitation of this work is the availability of real-world multi-scale datasets in the
public domain. We hope that our work accelerates research and sparks interest in the community,
particularly within the industry to open source real-world data. Another limitation lies in the focus
on contextual bandits, and the principled extension to stateful policies is an interesting future work.
Finally, we assume access to the structure of levels and contexts at each level. Discovering the
timescales and inferring the contexts at each level of the multiscale framework in a data driven way is
another important direction for future work.
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A Broader Impacts

Optimizing for long term outcomes is a desired goal for many interactive AI systems. This paper
makes progress in the area by highlighting the issue of disconnect in timescales of feedback and
interventions. As a solution, we propose a general framework and a learning algorithm that aims to
reconcile this disconnect.

While the proposed framework provides affordances to design and optimize for beneficial outcomes
at multiple scales, those design choices must be carried out responsibly. For instance, the design of
interventions and how they interface between longer and shorter-term levels are of crucial importance.
These interventions could enable user agency in steering the system towards their personalized long
term outcomes, but could also be used adversely. Transparency in the design choices and optimization
objectives is especially important for that reason.

B Additional MSBL Example

Consider a conversational system, consisting of multiple agents, where each agent specializes in
a specific type of food cuisine. The platform assists users with various cuisine preferences over a
session consisting of multiple queries. Within these preferences, some users prefer more diverse
recommendations in a session than others. According to the users’ interaction history, selecting the
most relevant agent for a query is optimized at the lowest level. The feedback at this level is the
relevance of the generated response from a LLM policy, with relevant responses leading to better
engagement. At the next higher level, a decoding strategy acts as an upper-level intervention to the
LLM policy. The intervention of the decoding strategy can steer the responses towards more or less
diverse responses depending on user preferences, leading to a better user return rate on the platform.
While optimizing for this return rate seems important, at an even higher level, some users may not
prefer to use the platform as heavily as compared to others. For such users, leveraging an intervention
that ultimately provides more system value than optimizing their return rate is ideal.

C Extended Related Works

Prior works have studied the misalignment between micro and macro objectives to be substantial
[5, 28]. Specifically, [5] compares the ranking dcg metric for the micro/short term utility of micro
actions (ranking) and the macro violation for the long term constraint violation. Similarly, [28]
demonstrate the tradeoff between utility and amortized exposure (collected over a time horizon T)
as the macro goal. These works consider optimizing for L1 actions only (rankings). They do not
learn L2 interventions such as reward weights [26], ads, message notifications, decoding strategies
etc that are available in the system and can directly steer the system towards long term objectives.
In contrast, MSPL framework learns these interventions via the macro policy and extends to more
than two timescales of competing objectives. In conversational systems, misalignment between
token-level metrics (e.g., perplexity) and multiple responses/document-level metrics (e.g., diversity
in a paragraph) has been studied [8, 41, 32].

Recent works have explored hierarchy in the action space and arms in bandits [22, 34]. These works
do not learn for long-term outcomes but for efficient multi-task learning. [22] proposes a tree-based
hierarchical structure, where each tree node represents an action abstraction, grouping similar actions
in its child nodes. In contrast, our focus of study is hierarchy in the timescale of feedback, and clear
separation of action space at different levels. For long term optimization, [25] proposes a bandit
algorithm in the progressive feedback setting, where the long term outcome is increasingly predictable
as more short term information is revealed. It models the long term outcome as the delayed outcome
of micro level actions. This setting is different than ours as it does not take into account the tradeoff
in short and long-term outcomes.

For multi-objective optimization, [6] proposes learning an RL-based policy for the weights of clicks,
shares, likes etc. in recommender systems. Similarly, [16] proposes learning weights with off-policy
bandits for a north star goal. Different than these works, our framework learns a single policy as a
family of policies at the micro level and a separate policy at the macro level. This allows learning
with more abundant feedback at the micro level to narrow down the potential actions for the upper
level and learn macro policy from relatively sparse data. Our framework also learns contextually and
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handles a richer class of reward functions than the linear scalarization approach in [6, 16]. [9] first
introduced learning a single model trained with a distribution of losses instead of learning multiple
models, each trained with a single loss function. [42] learns a family of models for recommender
systems given a distribution of preference vectors. In LLM Alignment literature, [43] introduces
learning a family of policies by including preference weighting in the prompt context of LLM policies.
These works do not learn the preference weights, operate on a single level, and do not consider
learning long-term outcomes.

Related to the adverse effects of over optimization on short term feedback, [30] recently showed that
feedback loops within in context learning can cause reward hacking via output and policy refinement.
In this paper, we propose policy and feedback modification as two ways to construct priors and
mitigate the over-optimization of short term feedback.

D MSBL Algorithms

D.1 MSBL Inference Algorithm

Below, we provide the inference procedure for two levels. The process follows top-down approach,
where macro action is selected from upper level policy. This macro action then selects the lower level
policy as action aL1 ∼ π̂L1

aL2(.)

Algorithm 2 MultiScale Inference
foreach upper level timescale t2 ∈ {1, . . .} do

Observe upper level context xL2 ∼ p(xL2)
Get upper level action aL2 ∼ π̂L2(aL2|xL2)
foreach lower level timescale t1 ∈ {1, . . . T} do

Observe lower level context xL1 ∼ p(xL1|xL2)
Get lower level action aL1 ∼ π̂L1

aL2(a
L1|xL1)

D.2 Extending MSBL to k levels

Algorithm 3 presents MSBL extended to multiple levels by calling the PolicyLearning procedure
recursively for any two levels. We start with the highest level k, and recursively call the next lower
level until the base case of k=1 is reached. The Algorithm would then return to the PolicyLearning
procedure of the next two upper levels and so on.

Algorithm 3 MultiScale Off-Policy Contextual Bandits (for multiple levels)
Require :k ≥ 2

Procedure PolicyLearning(πL(k)
0 , π

L(k−1)
0 )

if k = 1 then
return ; // Base case: when at lowest level

PolicyLearning(πL(k−1)
0 , π

L(k−2)
0 )

Collect Micro Logged dataset

DL(k−1) := {(xL(k−1)
i , a

L(k−1)
i , r

L(k−1)
i , p

L(k−1)

i )}n
L(k−1)

i=1 ∼ π
L(k−1)

0

Learn Micro policies Π̂L(k−1)(Eq. (6) or (7) using DL1)
Collect Macro Logged dataset
DL(k) := {(xL(k)

j , a
L(k)
j , r

L(k)
j , p

L(k)
j )}nL(k)

j=1 ∼ π
L(k)
0

Learn Macro Policy
π̂L(k) ← argmaxπL(k) V̂ L(k)(πL(k);DL(k)) (Eq. (8))
return learnt policies π̂L(k), Π̂L(k−1)
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E Multi-Scale Policy Framework

The PAC Bayes generalization bounds we consider in Eq. (3) are derived for counterfactual risk
minimization (e.g., clipped inverse propensity estimator) in [20].

As part of the motivation, we illustrate the following example.

E.1 Gaussian Model

We consider Gaussian parameterizations, where each policy π(.|., θ) ∈ Π is defined via a parameter
vector θ ∈ Rd. We define the target policy distribution as QL2∗ = N(θL2∗,ΣL2), an uninformed
prior distribution P0 = N(θ0,Σ0) for some arbitrary θ0, and an informed prior PL1 = N(θL1,ΣL1)
centered at the learned micro policy π̂L1.

The KL divergence between any two multivariate gaussian KL(QL2∗||P0) is given by,

KL(QL2∗||P0) =
1

2

[
log
|Σ0|
|ΣL2|

− d+ tr(Σ−1
0 ΣL2) + (θ0 − θL2)TΣ−1

0 (θ0 − θL2)

]
where (θ0 − θL2)T (Σ0)

−1(θ0 − θL2) = |θ0 − θL2|M is the squared Mahalanobis distance in the
parameter space θ.

Using the above, the gain in the number of samples from using an informed prior PL1 instead of an
uninformed prior P0 is,

n0 − nL2 ∝ KL(QL2∗||P0)−KL(QL2∗||PL1) =

tr(Σ−1
0 ΣL2)− tr((ΣL1)

−1
ΣL2) + (θL2 − θ0)

TΣ−1
0 (θL2 − θ0)− (θL2 − θL1)T (ΣL1)

−1
(θL2 − θL1)

+ log |Σ0|
|ΣL1| (9)

Setting ΣL1 := Σ0 = ΣP and since the squared Mahalanobis distance is symmetric, we have

KL(QL2∗||P0)−KL(QL2∗||PL1) = (θL2 − θ0)
TΣ−1

P (θL2 − θ0)− (θL2 − θL1)TΣ−1
P (θL2 − θL1)

As a result, we can have the sample gain from using the informed prior PL1 instead of P0 as

n0 − nL2 ∝ KL(QL2∗||P0)−KL(QL2∗||PL1) ∈ O(|θL2∗ − θ0|M − |θL2∗ − θL1|M ) (10)

For the special case of isotropic Gaussian distributions, where ΣL1 = σL1I := σ0I = σP I , Eq. (10)
can also be written in terms of L2 distance as,

KL(QL2∗||P0)−KL(QL2∗||PL1) ∈ O(||θL2∗ − θ0||2 − ||θL2∗ − θL1||2)

However, the above is a conservative estimate, since it can be beneficial to pick variances σL1 < σ0

that increasingly reduce the variance going from uninformed prior P0 to PL1.

Next, we simulate a toy example with isotropic Gaussian distributions for θ ∈ R50. To calculate
n0 − nL1, we use the exact KL divergence in Eq. (9). We start with an uninformed prior variance
σ0 = 200 and learn all 50 parameters with target variance σL2 = 1.0. For nL2, we start with an
informed prior PL1 that has 49 parameters learned with σL1 = 1.0, and we only need to adjust 1
more parameter. The coefficient constant for n

KL(Q||P ) is used as 5.0e3 for all cases. This provides
n0−nL2

n0
= 98% as the reduction in samples needed at the macro level L2. Note that the number of

samples used to form the prior nL1 is significantly cheaper than nL2 since they occur T times as
frequently. Empirically, even when taking the additional L1 samples into account, this still provides a
n0−nL2−nL1

T

n0
= 88.2% reduction with a T = 10 horizon.

F Experiment Details

For training the bandit policy at a given level, we use Importance Sampling estimator (IPS) [38].

17



Reward SimulatorLevel Manager Algorithm Estimators
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doubly robust Reward functionsManage levels and their setup

Figure 6: MultiScale simulator modules

For any given level, we use a uniform random policy as the logging policy π0, and a softmax policy
π(a|x, θ) parameterized by weights θ,

π(a|x, θ) = exp(βϕ(x, a, θ))∑
a′∈A exp(βϕ(x, a′, θ))

(11)

where β > 0 is the inverse temperature parameter, ϕ(.) is a function mapping a given context, action
to real value with dimension d, parameterized by θ, defined as ϕ(., θ) : X ×A → Rd

IPS is an unbiased estimator and only requires the full support condition, that is π0(a|x) >
0 ∀(x, a) ∈ X ×A.

For feedback modification, we additionally pass the macro action with the features, so that,

πL1(aL1|xL1, aL2, θ) =
exp(βϕ(xL1, aL2, aL1, θ))∑

aL1′∈AL1 exp(βϕ(xL1, aL2, aL1′ , θ))
(12)

We sample aL2 from a uniform distribution during training. At inference aL2 is selected from the
learned macro policy.

Simulator The simulator code can be found at https://github.com/RichRast/mspl. Figure 6
shows the structure of the simulator with four key modules. A level manager module is responsible
for the overall orchestration of level initialization and invokes the algorithm module. The algorithm
module implements recursive policy learning of the MSBL algorithm and other non-adaptive baselines.
This module may invoke one of the off-policy estimators such as IPS, the direct method, or the doubly
robust estimator. Finally, the reward simulator implements reward functions that provide the observed
feedback at different timescales. Policy learning options for the algorithm, estimators, and the type of
reward function are configurable.

Compute Resources We use NVIDIA RTX A6000-48GB GPUs for experiments in conversational
systems and 24GB NVIDIA GeForce RTX 3090 for experiments in conventional recommender
system.

F.1 A toy example to illustrate comparison with flat RL
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Figure 7: Ratio of Q learning
vs MSBL episodic samples for
a toy setup as the action space
increases with k.

We consider a finite horizon setting MDP with the goal of
learning π(a|x) that optimizes the long term reward rL2 ∼
p(rL2|(xi, ai), . . . (xi+T , ai+T )) observed after T timesteps.

We use (tabular) Q learning to learn a policy that optimizes for
the sparse reward rL2 for the following setup. Users arrive with
context xt ∼ p(xt) and select k out of n items based on relevance
vector rt(xt) ∈ Rn. The action at can be one out of k choose n
combinations. We simulate n = 10 items, and 2 contexts xt. The
long term reward for each user is observed based on their preference
for the item. We use a time horizon of T = 5.

While Q learning is provably optimal, it is computationally
expensive to form the Q table by learning from episodes
{(xi, ai), . . . (xi+T , ai+T ), r

L2}, especially when rL2 is sparse. In
contrast, MSBL leverages the problem structure as follows. Its mi-
cro policy is simply argmax on item relevances. Even though this
myopic policy doesn’t lead to optimal long-term reward, it provides a prior for the macro level, which
only needs to learn the macro intervention aL2 as the amount of boost to the relevance vector rt. We
construct |AL2| = 8, so that πL2 only needs to select the best aL2 for each user context.

As a side note, while function approximation and other advancements (actor-critic, etc.) would
provide benefit to the RL baseline, they are orthogonal to the key idea of enabling faster learning
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via the use of hierarchical priors for sparse long-term feedback. Figure 7 shows the ratio of episodic
samples n0 to the MSBL macro policy samples nL2 to achieve the same rL2 in expectation. We can
see that 10 ≤ n0

nL2 ≤ 62 as k varies in {2, 4, 6}. Scaling this baseline for continuous context features,
time horizon, selection size k, and number of items n is challenging and motivates our approach.

F.2 Multi-turn conversation

Experiment Setup. We use Llama-2-7b-chat [39] as the base model at the lower level. We use
huggingface reward models gpt2-large-harmless-reward_model and gpt2-large-helpful-reward_model
for harmless and helpful reward models R1, R2. Following rewards in context learning [43], we
train a micro policy as a family of LLM policy Π̂L1 by including aL2 in the context prompt and
optimizing

∑2
i=1 a

L2
i Ri. The conversation starts from one of the query prompts xL1 (a question in

the Anthropic dataset), and for each subsequent turn, the trained LLM policy Π̂L1 responds. This
completes one turn. Then the user LLM asks a follow-up question. As a result, each generated
response yt ∼ πL1

aL2(.|xL1
<t, y<t) consists of the conversation upto that turn. For the user LLM, we use

another Llama-2-7b-chat model. The user LLM scores a single-turn conversation, which we use as
the short-term reward. This is an instance of feedback modification that steers the LLM policy using
modeled feedback (where feedback is defined by a model). This differs from the observed feedback
(i.e, user LLM evaluations, which are not modeled and only observed for an action that is taken). At
the upper level, we learn interventions aL2 ∈ [0.8(harml-), 0.2(helpf-)], [0.2(harml-), 0.8(helpf-)].
aL2
1 refers to the same level 1 policy as other baselines but using the fixed level 2 intervention of

preference weights in [0.8(harml-), 0.2(helpf-)], while aL2
2 refers to using the fixed level 2 intervention

of preference weights in [0.2(harml-), 0.8(helpf-)].
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Figure 8: Long-term (multi-turn) vs
short-term (single-turn) rewards for all
users (overall) and for each user group.

We use the upper level reward simulator as Llama-3-70b
API [13], which scores user satisfaction for the given
user persona after a full 5-turn conversation as a binary
score in {0, 1}. We transform the user persona text with
MPNet model [36] and project down with PCA to a 10-
dimensional embedding. This forms the upper-level con-
text xL2 for bandit policy πL2.

Group-wise Results Figure 8 shows the long term multi
turn reward vs per-conversation short term reward for each
of the user personas - Child and Expert. We note that
MSBL achieves the best multi-turn reward for each user
persona while the other policies are optimal only for one
type of user group.

Training Details. For πL2(.|xL2), we use a 5 layer neural
network with hidden dimension 256. We train using AdamW optimizer, with a batch size of 256,
learning rate 1e-3, weight decay 1e-1 for 1000 epochs. We use the inverse temperature parameter
β = 0.8 in Eq. (11).

Prompt Templates Below, we include the prompt templates for the LLM evaluators and prompt
generator.

We use the template below and the corresponding user persona for obtaining the upper level reward.

### User Persona Prompts
child: You are a child user who wants to avoid harmful ,

illegal , or unethical content.,
expert: You are an expert user who values accurate and

relevant content.

### Llama -3-70b Evaluation Template
system_prompt = You are an expert conversation evaluator. Given

a user personality and conversation , output only a score 0
or 1 indicating user satisfaction. Repetition of responses
in the conversation should not have any impact on your

evaluation.
User Personality: {user persona}
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output format:
score: [0.0 or 1.0]
Here are some examples of how you might respond:
{Examples}

template = {role: system ,
content: {system prompt},
role: user ,
content: Conversation to evaluate :{ conversation}
Evaluate user satisfaction. Please provide a score and

explanation in the required format .}

User Llama-2-7b Evaluator and Prompt Generator

For the next prompt generation, we use the below template with the history of previous turn conversa-
tion.

### User Llama -2-7b Evaluator and Prompt Generator
system prompt = You are a user having a conversation with an AI

assistant.
{user persona}
Given the conversation history , generate only the next user

message or question (one or two sentences) to continue the
conversation.

output format:
User: [next user message]

template = { role: system ,
content: {system prompt},
role: user ,
content: Conversation history :{ conversation}
Respond with just your next message in the exact format.
}

For evaluating a single turn, we use the below template. This score serves as the simulated lower
level reward.

system prompt = You are evaluating an AI assistant ’s response
as a user.

{user persona }.
You are provided with a user ’s prompt and an assistant ’s

response. Rate the usefulness and quality of the response
from 0.0 to 1.0.

You must use this exact format for your response:
score: [between 0.0 and 1.0]

template = { role: system ,
content: {system prompt},
role: user ,
content: User: {prompt}
Assistant: {response}
Provide score in the required format.
}

F.3 Conversational recommender system

Experiment Setup At each of the three levels, we simulate 5-dimensional contexts sampled from
a normal distribution N (µl

g, σf ) belonging to two user groups. The context xL1 represents users’
demographics and cuisine preferences. At Level 1, there are 10 bandit actions aL1, corresponding
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to a cuisine:{“Ethiopian”, “Mexican”, ”French”, “Japanese”, “Spicy Indian”, “Thai”, “Carribean”,
“Peruvian”, “Russian”, “Italian”, }. We use Llama-2-7b-chat [39] as the LLM policy πLLM that acts
as a personalized agent, generating cuisine suggestions y to users at L1 timescale t1 = {1, . . . 10}.
Each query consists of a system prompt specifying the agent’s expertise and a user query q. We
learn a bandit policy πL1(aL1|xL1) that selects the particular LLM agent aL1. Next, we generate
response yt ∼ πLLM(.|aL1, q, yt−1) from the LLM policy, given the agent selection aL1 and append
the previous timestep response yt−1 to the current query. The L1 reward is simulated as inverse
perplexity conditional on the optimal prompt, representing the engagement (relevance) metric, as
follows

rL1
t = perplexity(yt|aL1∗)−1 = exp

(
1

# tokens in response yt

# tokens in yt∑
i

log prob(yt,i|yt,0:i−1, a
L1∗)

)
where aL1 ={cuisine} is selected according to πL1, and the optimal action aL1∗ corresponds to the
optimal prompt according to user preference.

Intuitively, the inverse perplexity metric means that the response yt generated using the bandit action
aL1 should give the highest perplexity if the optimal action aL1∗ is chosen. For example, if the user’s
preference was french, but the bandit policy πL1 selected an action corresponding to mexican cuisine,
then the response generated y consisting of mexican cuisine would have a low perplexity given the
prompt of french cuisine (i.e, the optimal action aL1∗)

The query q at every timestep t ≥ 1 is as follows,

You are my personal chef experienced in {cuisine} Cuisine. Your
responses should be professional and concise (100 words or
less). Previously , you suggested: {previous generated

response }.
What should I eat today?

At the second level, we simulate two user groups with context xL2 representing preferences for
engagement (relevance) and diversity. We use the notion of n-gram repeats over multiple responses
(t1 ∈ {1, . . . 10}) for computing diversity, where we use n = 3. In particular, we define diversity as
normalized 3-gram repeats, where the 3-gram repeats are computed over T = 10 responses generated
at Level 1 for each user. We simulate the reward

rL2 = σ

(
βu(

∑10
t1=1 r

L1
t1

10
) + (1− βu) (diversity)

)
, where σ(x) = a(x − b) is scaled sigmoid function with scaling factors a = 60, b = 0.6. βu is
the unknown user’s relevance-diversity trade-off parameter, and we use βu = {0.9, 0.1} for groups
that prefer relevance and diversity respectively. The second level policy πL2 selects an intervention
of decoding temperature aL2 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} as a policy modification to the Level 1
policy, with aL2

1 . . . aL2
6 referring to each of the L2 interventions.

Some sample responses (decoding temperatures are logged after generation) are,

"Hola! How about our delicious carne asada burritos with sauted
onions and bell peppers , topped with melted cheese and

served with a side of sliced avocado and a drizzle of
homemade salsa? decoding_temp_1 .10",

"For lunch today , I recommend our ‘Chili con Carne Burrito.’ It
’s a satisfying blend of slow -cooked beef , beans , and
vegetables wrapped in a large flour tortilla , topped with
creamy sour cream and fresh cilantro. It’s a hearty and
flavorful dish that will warm you up on a chilly day! "
decoding_temp_0 .87",

"Great! Based on your previous preferences , I recommend trying
our ‘Shiro Wot ’ - a creamy stew made with chickpeas , onions
, garlic , and a blend of spices. It ’s a popular vegetarian
dish that ’s sure to satisfy your taste buds. Pair it with a
side of ’Kik Alicha ’ - sauted vegetables in a mild sauce ,

and enjoy! decoding_temp_0 .21",
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Figure 9: Conversational recommender system: Tradeoff between longer-term Level 2 and short-
term Level 1 rewards using decoding temperature aL2 ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0} as policy
modification across 5 random seeds. (a) for all users (b) for users belonging to group A that prefer
relevance (c) for users belonging to group B that prefer diversity among multiple responses

Figure 10: Tradeoff in different timescale rewards for the two user groups at Level 3. (a) For this
group, long term reward of subscription renewal is aligned with medium term reward of weekly
return rate (b) For this group, the long term reward is not aligned with the medium term reward.

At the third level, we simulate users with context xL3. We use feedback modification for Level
2 training to get a family of policies Π̂L2 := {π̂L2

aL3 : aL3 ∈ {[0, 1], [1, 0]}}. The parameterized
feedback is given by

∑2
i=1 a

L3
i Ri, for two reward models R1, R2, such that R1 = rL2, and R2 =

min(τ, rL2). We use τ = 0.8 as a user group-specific threshold. This simulates the scenario where
for one user group, optimizing the weekly return rate is beneficial, while for the other user group,
optimizing only upto a threshold τ is beneficial. We simulate rL3 across 2 timescales of level 2 as
follows,

rL3 = γu

∑
t2 r

L2
t2

2
+ (1− γu) 1(activity preference)

where γu ∈ {1, 0} is the trade-off parameter.

Training Details For bandit policy π at each level, we use a 3 layer neural network with hidden
dimension 256. We train using AdamW optimizer, with a batch size of 256, learning rate 1e-4, for
4000 epochs.

MultiScale contexts. In this experiment, we evaluate across user groups from all three timescales.
At each level, we simulate contexts belonging to two user groups.

Figure 9 shows the tradeoff in longer-term L2 reward and shorter term L1 reward for the two user
groups individually. The context xL2 at Level 2 belongs to these two groups. Similarly, Figure 10
shows the tradeoff in different timescale rewards for the two groups that xL3 belongs to at Level 3.
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Figure 11: MultiScale contexts (xL2 | xL3) and rewards for 4 groups in (a), (b), (c), and (d) across all
three timescales.

Policy

Noise MSBL aL2 ∼ πL2
0 aL2

1 aL2
2 aL2

3 aL2
4 aL2

5 aL2
6

0.05 0.82±0.13 0.66±0.10 0.46±0.13 0.68±0.16 0.76±0.11 0.77±0.10 0.72±0.08 0.64±0.06
0.10 0.86±0.08 0.66±0.09 0.48±0.10 0.61±0.13 0.77±0.12 0.74±0.11 0.75±0.11 0.62±0.06
0.20 0.76±0.10 0.57±0.08 0.43±0.18 0.59±0.10 0.60±0.08 0.61±0.11 0.58±0.08 0.55±0.06
0.30 0.66±0.12 0.54±0.06 0.34±0.17 0.49±0.12 0.49±0.12 0.55±0.03 0.53±0.04 0.53±0.02
0.40 0.58±0.06 0.53±0.02 0.37±0.09 0.45±0.12 0.51±0.02 0.51±0.04 0.52±0.01 0.51±0.01
0.50 0.62±0.08 0.47±0.03 0.33±0.09 0.50±0.05 0.51±0.01 0.52±0.02 0.52±0.01 0.51±0.01

Table 1: Level 2 Reward with varying noise in features

In both cases, we find that MSBL policy achieves near-optimal long term rewards for each of the
groups.

A Level 2 context xL2 is drawn given a Level 3 context xL3. For example, given that a user does not
want to be on the app every week (Level 3 preference), the user likes more diverse responses (Level 2
preference). This results in 4 user groups across L2 and L3. Figure 11 shows the tradeoff in expected
rewards across these 4 groups. While there are user groups for whom a policy that is optimal in the
medium term is also near-optimal in the long term (groups 1 and 2 with overlapping red and blue
lines), Level 3 opt. (MSBL) pareto dominates each of these policies for all the 4 groups for the long
term reward.

Robustness to noisy features. We also evaluate robustness of MSBL with varying noise in the
user features with σf ∈ {0.05,0.1, 0.2, 0.3, 0.4, 0.5} with default value in bold. Table 1 shows that
while the expected Level 2 rewards decrease with increasing noise in features, MSBL maintains the
advantage of learning the interventions over other baselines across noise variations.

F.4 Recommender System

In the final setting, we use the KuaiRand dataset [12] to simulate two levels of short and long term
feedback. This allows us to evaluate based on real-world item, user features, and their historical
interactions, thereby evaluating for increasing action spaces. We use the simulator developed in [45]
and modify it for the contextual bandit setting. We use a training dataset of size 14,265 and test
randomly selected 1,771 users. There are 5659 items and their descriptions/features in the dataset.
At the lower level, each user logs T = 5 interactions, and a transformer model uses item and user
embeddings to predict relevance scores s. Action aL1 represents a top-k selection of items for a
context xL1, from the policy π̂L1 ← argmaxk s. Then, we simulate clicks according to a Bernoulli
distribution of the relevance scores of selected items and micro-level reward as average clicks per
user.

We form item groups based on the upload type of the video and user groups based on the users’
activity level feature. At the upper level, each user group has an unknown preference pu,i for a
particular item group. We use pu,i = 0.9 for the preferred user and item group pair. The user
retention probability pr is simulated as this preference-weighted fraction of items selected, given
by pr = softmax

(
log(

∑
i pu,i

ni∑
i ni

)
)
, where ni is the number of items selected from group i over
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Figure 12: Recommender system: Tradeoff between long term return rate and clicks by varying slate
size using the boost aL2 to the relevance scores as policy modification across 5 random seeds when
the number of groups vary in (a) 2 groups (b) 3 groups and (c) 4 groups.

t1 = {1, . . . , 5} timesteps of the lower level. The reward rL2, representing the return rate is simulated
as the inverse of the return day to the app.

For training the lower level policy, which is a transformer model that uses input as the item and user
embedding and predicts relevance scores, we use the user features and pre-processing following [45].

For the upper level bandit policy, we use 5 user features, namely
‘uf_user_active_degree’,‘uf_is_live_streamer’,‘uf_is_video_author’, ‘uf_follow_user_num_range’,
‘uf_fans_user_num_range’, with their definitions provided in [12].

Training Details For bandit policy πL2 at upper level, we use an embedding module that embeds the
raw user features into 16-dimensional vectors and a 4 layer neural network with hidden dimension
128. We train using AdamW optimizer, with a batch size of 128, learning rate 1e-4, for 4000 epochs.

Increasing Level 1 and Level 2 action space. Figure 12 shows the tradeoff with varying groups in
{2, 3, 4} and with varying Level 1 actions as the slate size top-k varies for k ∈ {5, 10, 20, 40}. We
observe that the return rate for MSBL remains high across all sizes and for all groups. Since we
report average clicks per user, there is a decrease in the short term (clicks) with increasing slate size.
This experiment demonstrates that even with large micro action space AL1, MSBL can effectively
leverage the interventions to drive the system toward the long-term reward.

Updating policies after deployment. To study the changes in outcomes when the multiscale policies
are updated asynchronously, we conduct the following experiment. We use 60% data to learn micro
and macro policies and refer to them as the deployed policy. We include an additional 20% data of
users and their corresponding interaction history. We update only the micro policy with the increased
logged micro data, and leave the macro policy unchanged. The top row of Table 2 shows the %
change relative to the deployed policy. The change in return rate under the updated micro policy
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2 Groups 3 Groups 4 Groups 5 Groups

% Improv. w. updating LT ST LT ST LT ST LT ST

only micro policy -1.18% 2.47% -0.70% 2.61% -0.07% 3.04% 4.88% 2.85%

micro & macro policy 0.67% 2.34% 4.90% 2.37% 2.12% 2.86% 5.66% 2.66%

Table 2: Improvement (relative to deployed policy) after policy updates. Short-term (ST) clicks
highlighted when only micro policy is updated. Long-term (LT) return rate highlighted when macro
policy is also updated.

2 Groups 3 Groups 4 Groups

LT ST LT ST LT ST

w. new macro data 0.79 ±0.05 202.0 ±0.67 0.58 ±0.09 203.3±0.53 0.50±0.07 203.8±0.81
w. updating only macro policy 0.84 ±0.01 201.9±0.70 0.61±0.08 203.1±0.57 0.54±0.07 203.4±0.84
% Improv. 5.89% -0.02% 6.26% -0.09% 8.70% -0.18%

Table 3: % Improvement after only macro policy update.

and the clicks under the intervention of the deployed macro policy are reported. While the clicks
consistently improve, the return rate can deteriorate, as seen for two groups. Next, we update the
macro policy with the logged data collected under the updated micro policy. We compare the %
change relative to the deployed policy and find that the long term return rate improves, as seen in
the second row of Table 2. In conclusion, while updating the micro policy improves the short term
outcome as expected, it can also affect the long term outcome, requiring an update to the macro
policy.

Next,we evaluate the long and short-term outcomes when new macro data is available, which we
simulate by changing the user preferences at the macro level in the environment. In the first row of
Table 3 there is no change to the macro policy while in the second row, the macro policy is updated
using the new logged macro data and the micro policy is kept unchanged. We find that the long-term
improves without much change to the short-term clicks under the intervention of boosts from this
updated macro policy.
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Figure 13: Long term return rate with
varying noise σs in micro policy varies
in {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0}.

Robustness to errors in the micro policy. To evaluate
the robustness with varying errors in the micro policy, we
simulate a perturbed policy π̃L1

aL2 := argmaxk s̃, where
noisy relevance scores s̃ are sampled from N (s, σ2

s), with
σs ∈ {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0}. Figure 13 shows
long term reward as this noise varies for top-10 selection
with 2 groups. We find that learning the macro policy is ro-
bust for fairly large noise σs and only begins to deteriorate
for high values of σs. This experiment also demonstrates
the advantage of learning micro policy to the long term
return rate metric. In real-world deployment, the micro
policy may be updated periodically, so this robustness to
errors makes the nested bandit learning practically appeal-
ing.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims and experimental findings referenced in the abstract and the intro-
duction are included in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide a theoretical motivation in Section 3 and its associated derivation
in Section E

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe the setup for each experiments in Section 5 and provide details in
Section F

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the code repo link for the simulator described in Section F

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide experiment setting/details in Section 5 and Section F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report performance across multiple runs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide information on compute resources in Section F
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe our work adheres to the NeurIPS code of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss broader impacts in Section A

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: These safeguard concerns do not apply to our experimental domains.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include the information in Section F

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Not applicable to this paper

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No crowdsourcing or human subjects involved

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No crowdsourcing or human subjects involved
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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