VISUAL AUTOREGRESSIVE MODELS BEAT DIFFUSION MODELS ON INFERENCE TIME SCALING

Anonymous authors

Paper under double-blind review

ABSTRACT

While inference-time scaling through search has revolutionized Large Language Models, translating these gains to image generation has proven difficult. Recent attempts to apply search strategies to continuous diffusion models show limited benefits, with simple random sampling often performing best. We demonstrate that the discrete, sequential nature of visual autoregressive models enables effective search for image generation. We show that beam search substantially improves text-to-image generation, enabling a 2B parameter autoregressive model to outperform a 12B parameter diffusion model across benchmarks. Systematic ablations show that this advantage comes from the discrete token space, which allows early pruning and computational reuse, and our verifier analysis highlights trade-offs between speed and reasoning capability. These findings suggest that model architecture, not just scale, is critical for inference-time optimization in visual generation.

1 Introduction

Generative modeling is undergoing a fundamental shift in how progress is achieved. While the past decade has been dominated by scaling model parameters (Kaplan et al., 2020; Hoffmann et al., 2022), recent breakthroughs demonstrate that inference-time computation can be equally transformative. Systems such as OpenAI's o1 (OpenAI et al., 2024) and o3 (OpenAI, 2025), DeepSeek-R1 (DeepSeek-AI et al., 2025), and Gemini 2.5 (Google, 2025) achieve substantial gains not through larger models, but via sophisticated search and deliberation during inference. For example, small language models can now match the output quality of models $14 \times$ larger when given sufficient compute at test time (Snell et al., 2024). This paradigm shift raises a natural question: can visual generation similarly benefit from inference strategies rather than merely scaling up parameters?

The answer might depend on the model architecture. Recent comprehensive studies show that applying search strategies to diffusion models yields limited improvements. Approaches including noise trajectory search, zero-order optimization, and path expansion fail to outperform a simple random sampling (Ma et al., 2025). In contrast, language models benefit consistently from tree search (Yao et al., 2024; Zhang et al., 2024), reward-model guidance (Lightman et al., 2023; Wang et al., 2024; Setlur et al., 2024), and Monte Carlo methods (Xie et al., 2024). This suggests a fundamental incompatibility between continuous latent spaces and discrete search algorithms.

Visual autoregressive models, such as VAR (Tian et al., 2024) and Infinity (Han et al., 2024), generate images token by token across multiple scales, creating a search space structurally similar to that of language models. In this setting, algorithms like beam search can efficiently explore alternatives, prune low-quality paths early, and reuse computation across branches. By contrast, diffusion models operate in continuous noise spaces where such discrete search is less effective.

To investigate this, we conduct the first systematic study of search algorithms applied to autoregressive image generation. We combine state-of-the-art discrete visual models with verifiers ranging from lightweight preference models (Xu et al., 2023) to powerful vision-language models (Li et al., 2024), enabling guided exploration toward high-quality, compositionally accurate images.

Our results challenge conventional assumptions about model scaling. On DrawBench and T2I-CompBench++, a 2B parameter autoregressive model with beam search achieves performance gains twice as large as those obtained by applying search to a 12B diffusion model, while using 46% fewer

Figure 1: Guided search in autoregressive models provides a more efficient path to high-quality image generation than scaling diffusion models. (Left) ImageReward score vs. inference-time compute (NFEs). A 2B autoregressive model with beam search (green) surpasses a 12B FLUX.1-dev model (Ma et al., 2025) using random search (orange), while requiring less computation. (Right) Examples showing how beam search corrects compositional errors in baseline generations. It successfully fixes object counts ("six keys"), incorrect spatial relationships ("giraffe on the right"), and color errors ("green rose and a blue tulip").

function evaluations. Notably, this allows the smaller model to surpass the larger model's absolute performance on all compositional metric, demonstrating that architectural compatibility with search can overcome a $6\times$ parameter disadvantage. Fig. 1 presents both quantitative results and qualitative examples that illustrate the effectiveness of our approach.

2 RELATED WORK

Visual Generation. Diffusion models currently dominate high-quality image synthesis, achieving state-of-the-art results (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023) and extending to video generation (OpenAI, 2024). Autoregressive approaches offer a different paradigm but have historically faced computational and architectural challenges. PixelRNN (Van Den Oord et al., 2016) suffered from severe computational limitations, while DALL-E (Ramesh et al., 2021) used discrete tokens but retained inefficient raster-scan ordering that disrupted spatial locality and violated bidirectional dependencies. Recent advances address these limitations through hierarchical generation strategies. Visual AutoRegressive modeling (VAR) (Tian et al., 2024) introduces "next-scale prediction" that generates images coarse-to-fine across multiple resolutions, while Infinity (Han et al., 2024) extends this with bitwise tokenization to enable infinite vocabularies. These developments establish autoregressive models as competitive alternatives to diffusion approaches while preserving their discrete, sequential nature. This property creates natural compatibility with the search algorithms that have proven effective in language modeling (Sun et al., 2024).

Inference-Time Scaling in LLMs. Large language models (LLMs) achieve significant performance improvements through sophisticated inference-time computation (Snell et al., 2024; OpenAI et al., 2024; DeepSeek-AI et al., 2025). Models like OpenAI's o1 (OpenAI et al., 2024) and DeepSeek-R1 (DeepSeek-AI et al., 2025) use reinforcement learning to extend internal reasoning processes, while approaches like s1 (Muennighoff et al., 2025) force computational budgets through generation control. External methods offer greater flexibility as post-training enhancements, employing tree search algorithms (Yao et al., 2024; Zhang et al., 2024) and process reward models (Lightman et al., 2023; Wang et al., 2024) to evaluate reasoning steps and guide exploration. This approach demonstrates that strategic computation can substitute for scale. Small models with compute-optimal inference scaling can match the performance of models up to $14 \times$ larger (Snell et al., 2024), establishing that how models "think" during inference can be as important as their parameter count.

Inference-Time Scaling in Image Generation. Translating the success of LLM inference-time scaling to image generation has proven challenging. For diffusion models operating in continuous latent spaces, recent comprehensive studies show that noise trajectory search strategies are consistently outperformed by simple random sampling (Ma et al., 2025), revealing fundamental archi-

Figure 2: Search Strategies for Autoregressive Image Generation. (a) Random search generates n images independently and selects the one with the highest score. (b) Greedy token optimization operates sequentially; at each step, it generates c candidate images and commits to the single token that produces the best result before continuing. (c) Beam search maintains w parallel sequences. At each step, it explores c options for each beam and keeps the top w overall sequences, allowing it to explore more diverse paths than the greedy approach.

tectural limitations. While frameworks like Feynman-Kac steering (Singhal et al., 2025) and flow model adaptations (Kim et al., 2025) show some promise, gains remain limited compared to LLM achievements. Progress has largely been confined to preference optimization (Wallace et al., 2023; Tong et al., 2025), rejection sampling with VLM-based selection (Xie et al., 2025), or reflection-based approaches (Zhuo et al., 2025). Notably, recent work explores chain-of-thought reasoning for autoregressive image generation (Guo et al., 2025), but the full potential of search strategies remains unexplored. This contrast between limited gains in continuous models and huge improvements in discrete LLMs suggests that architectural compatibility with search algorithms may be the critical missing ingredient for effective inference-time scaling in visual generation.

3 Method

We apply tree search algorithms to autoregressive image generation, exploiting the discrete token structure to enable efficient guided exploration. We describe the base generative model (Sec. 3.1), our verification framework (Sec. 3.2), and search strategies (Sec. 3.3).

3.1 Autoregressive Image Generation

We employ Infinity (Han et al., 2024), a state-of-the-art autoregressive model that fundamentally differs from traditional autoregressive image generation. While models like VQGAN (Esser et al., 2021) and LlamaGen (Sun et al., 2024) generate images token-by-token in raster-scan order—requiring sequential generation of thousands of tokens, Infinity employs *scale-wise* generation.

Specifically, Infinity generates 1024×1024 images through 13 progressive scales using "next-scale prediction": $p(\mathbf{R}) = \prod_{k=1}^K p(r_k|r_1,\ldots,r_{k-1})$, where each r_k represents all tokens at scale k, generated simultaneously in a single forward pass. This creates a fundamental advantage with only 13 decision points, and the discrete token generation enables computational reuse. Once tokens at scales r_1,\ldots,r_k are computed, their transformer key-value representations can be cached and reused across all search branches sharing that prefix.

3.2 VERIFICATION FRAMEWORK

Effective search requires reliable quality assessment at multiple scales. We employ complementary verification strategies to capture different aspects of image generation quality. ImageReward (Xu et al., 2023) serves as our primary verifier, providing a lightweight human preference predictor.

To ensure comprehensive evaluation beyond a single metric, we also include CLIPScore (Hessel et al., 2021) and Aesthetic Score (Schuhmann et al., 2022), which assess semantic alignment and visual quality independent of prompt adherence, respectively. Since these three metrics capture fundamentally different aspects (i.e., semantic correspondence, visual appeal, and human preference), we also use an ensemble verifier that combines their assessments through ranking-based aggregation. The ensemble computes each candidate's rank according to each verifier and selects based on the average ranking. This verification follows (Ma et al., 2025) and allows for robust comparison with

a similar approach using diffusion models. Additionally, we employ LLaVA-OneVision (Li et al., 2024; Guo et al., 2025), a 7B vision-language model fine-tuned for prompt alignment assessment.

3.3 SEARCH STRATEGIES

We compare three search strategies with distinct exploration-exploitation trade-offs (Fig. 2):

Random Search. Generates n complete images independently using different random seeds, selecting the highest-scoring result: $\mathbf{R}^* = \arg\max_{i \in [n]} S(\mathbf{R}^{(i)})$. This provides maximal diversity but cannot exploit the sequential generation structure for computational efficiency.

Greedy Token Optimization (GTO). At each scale k, generates c complete continuations from the current prefix, selecting the token that produces the highest-scoring final image:

$$r_k^* = \arg\max_{j \in [c]} S(r_1, \dots, r_{k-1}, r_k^{(j)}, r_{k+1}^{(j)}, \dots, r_K^{(j)})$$
(1)

This creates a single optimized path but risks local optima. We evaluate $c \in \{4, 15, 30\}$ spanning computationally efficient to more thorough exploration regimes.

Beam Search. Maintains w parallel hypotheses, expanding each with c candidates at every scale. After scoring all $w \times c$ complete images, it retains the top w prefixes for continued expansion:

$$Beams_{k+1} = top-w\{S(\mathbf{R}) : \mathbf{R} \in Candidates_k\}$$
 (2)

This balances exploration breadth with computational tractability through aggressive pruning. We evaluate $(w,c) \in \{(2,2),(3,5),(3,10)\}$, ranging from minimal to extensive search configurations.

The computational advantage of GTO and beam search stems from prefix reuse: shared computation reduces complexity from $O(n\cdot K)$ for independent generation to approximately $O(n\cdot K/w)$ for beam search with width w, where n represents candidate images and K the number of scales.

3.4 COMPUTATIONAL BUDGET METRICS

Fair comparison requires precise measurement of computational cost, particularly given the asymmetric efficiency gains enabled by discrete search. We report two complementary metrics:

Number of Images. Total complete images evaluated by the verifier. This provides direct comparability with prior best-of-N studies (Guo et al., 2025; Xie et al., 2025; Ma et al., 2025) regardless of architectural differences.

Number of Function Evaluations (NFEs). Total transformer forward passes, where one NFE corresponds to generating tokens for one of Infinity's 13 scales. This metric reveals the true computational advantage of guided search: beam search, generating 195 images requires only 1,365 NFEs versus 2,535 NFEs for equivalent random search, reflecting the 46% efficiency gain achieved.

We note that NFEs across architectures (autoregressive vs. diffusion) are not directly comparable in FLOPs but provide meaningful order-of-magnitude efficiency comparisons.

4 EXPERIMENTAL RESULTS

This section evaluates our proposed search strategies for test-time scaling in discrete autoregressive image generation. We first analyze how verification scores scale with computational budget (Sec. 4.1), then demonstrate beam search's superior performance on DrawBench (Saharia et al., 2022) (Sec. 4.2). We examine verifier trade-offs (Sec. 4.3) and validate on compositional benchmarks T2I-CompBench++ (Huang et al., 2025) and GenEval Ghosh et al. (2023) (Sec. 4.4). Finally, we compare against inference-time scaling in continuous diffusion models (Ma et al., 2025), showing that discrete search overcomes a $6 \times$ parameter deficit (Sec. 4.5).

Implementation details. Unless otherwise stated, all experiments use the Infinity-2B model (Han et al., 2024) with bitwise VQ-VAE vocabulary $V_d=2^{32}$ and patch size 16, generating 1024×1024 images through 13 progressive scales. We set temperature $\tau=1.0$ and cfg parameter to 3.0, with Flan-T5-XL (Chung et al., 2022) as the text encoder. When Infinity-8B is employed (explicitly noted), the configuration uses VQ-VAE vocabulary $V_d=2^{56}$ with patch size 8 and spatial patchification enabled. All experiments run on a single Nvidia H100 GPU with bf16 precision.

Figure 3: Expected maximum verification scores as functions of budget size (log scale). All three verifiers exhibit logarithmic scaling.

4.1 BUDGET SCALING ANALYSIS

To understand the fundamental trade-offs in test-time compute allocation, we first investigate how verification scores scale with computational budget in a simple search setting. This analysis establishes the baseline scaling behavior that motivates more sophisticated search strategies.

Experimental setup. We generate 500 samples per prompt using Infinity-2B on 200 prompts from DrawBench, evaluating each sample with ImageReward (Xu et al., 2023), Aesthetic Score (Schuhmann et al., 2022), and CLIPScore (Hessel et al., 2021). For each budget size $k \in \{1, 2, ..., 500\}$, we compute the expected maximum score by randomly sampling k images from the full set and selecting the highest-scoring sample, repeating this process 10 times to obtain robust statistics.

Scaling behavior. Fig. 3 reveals a clear logarithmic relationship between budget size and expected maximum verification score across all three verifiers: $\mathbb{E}[\max_{i \leq k} s_i] \approx \alpha \log(k) + \beta$, where s_i denotes the verification score of sample i, and α, β are verifier-specific constants. This logarithmic scaling indicates diminishing returns: achieving each additional unit of quality improvement requires exponentially more samples.

This scaling law establishes a fundamental limitation of random search and motivates the development of more efficient strategies. While increasing the sampling budget consistently improves quality, the logarithmic relationship means that substantial quality gains require exponentially larger computational investments, motivating the use of search algorithms for inference-time scaling.

4.2 Performance on DrawBench

We present our comparison of search strategies on the DrawBench benchmark, which comprises 200 carefully curated text prompts distributed across distinct categories. We evaluate the performance of random search, Greedy Token Optimization (GTO), and beam search when guided by different verifiers. Tab. 1 presents the results on DrawBench. While all tested approaches outperform the baseline Infinity-2B model, beam search is the most effective method, delivering the strongest improvements across different quality metrics. The optimized smaller model not only achieves gains in visual quality, prompt adherence, and aesthetic appeal, but surpasses the performance of the larger Infinity-8B baseline. For a qualitative comparison of search strategies on DrawBench, see Appendix B.

Each verifier exhibits distinct optimization characteristics. ImageReward guidance produces the largest gains while preserving performance on other metrics. CLIPScore optimization improves both CLIP and ImageReward scores but sacrifices aesthetic quality. Aesthetic Score optimization enhances visual appeal but degrades prompt adherence (measured by CLIPScore), demonstrating the verifier hacking phenomenon where search processes overfit to narrow objectives.

Advanced search strategies show superior computational efficiency. Both GTO and beam search outperform random search while using substantially fewer resources. Beam search with 195 images (1,365 NFEs) surpasses random with 390 images (5,070 NFEs), achieving this efficiency gain through prefix caching and guided exploration. This efficiency persists until extremely low budgets, where beam search with only 54 images delivers competitive results despite using just 7% of random search's cost. We further explore a heuristic dynamic budget allocation in Appendix D.

Verifier			(CLIPSco	ore	Ir	nageRev	vard		Aesthet	ic		Ensemb	le
	Imgs.	NFEs	Aes.	CLIP	ImgR.	Aes.	CLIP	ImgR.	Aes.	CLIP	ImgR.	Aes.	CLIP	ImgR.
Baseline (2B)	-	13	6.06	0.71	0.94	6.06	0.71	0.94	6.06	0.71	0.94	6.06	0.71	0.94
Baseline (8B)	-	13	5.97	0.73	1.14	5.97	0.73	1.14	5.97	0.73	1.14	5.97	0.73	1.14
Random	390	5070	5.83	0.80	1.09	6.11	0.72	1.52	7.19	0.67	0.87	6.53	0.75	1.28
Random	195	2535	5.88	0.79	1.13	6.05	0.73	1.48	7.08	0.68	0.88	6.31	0.72	1.16
Random	54	702	5.91	0.78	1.08	6.06	0.72	1.41	6.92	0.68	0.88	6.31	0.73	1.21
GTO	390	2730	5.88	0.85	1.08	6.08	0.73	1.62	7.50	0.68	0.90	6.76	0.78	1.44
GTO	195	1365	5.93	0.83	1.08	6.08	0.73	1.58	7.38	0.69	0.93	6.66	0.77	1.37
GTO	54	377	6.01	0.79	1.07	6.09	0.72	1.45	6.98	0.69	0.91	6.50	0.75	1.31
Beam search	390	2730	5.86	0.86	1.16	6.16	0.73	1.68	7.75	0.67	0.95	6.92	0.79	1.50
Beam search	195	1365	5.84	0.83	1.10	6.10	0.73	1.59	7.38	0.69	0.96	6.68	0.78	1.44
Beam search	54	377	5.93	0.79	1.07	6.09	0.72	1.46	6.94	0.69	0.95	6.46	0.75	1.34

Table 1: Comparison of search strategies on DrawBench. We show Random search, Greedy Token Optimization (GTO), and Beam search with varying computational budgets. "Imgs." indicates verified images during search and "NFEs" the total function evaluations. Each verifier column displays results when that verifier guides the search, measuring Aesthetic (Aes.), CLIPScore (CLIP), and ImageReward (ImgR.). Advanced strategies outperform random search even with reduced budgets. Bold indicates best scores per verifier.

4.3 VERIFIER ANALYSIS

Having shown that guided search consistently outperforms random search, we now analyze verifier trade-offs to understand when each is most effective. Appendix C shows how different verifiers affect scaling behavior under varying computational budgets.

Computational requirements. The computational overhead of different verifiers varies dramatically, as shown in Tab. 2. Using images generated by Infinity-2B, we find substantial differences in both processing time and memory usage. While lightweight verifiers like CLIPScore process images in just 14ms using $\sim\!1.6\text{GB}$ GPU memory, LLaVA-OneVision requires 500ms per image and 15.3GB GPU memory, representing a 36× speed difference and $9\times$ memory overhead. Notably, the verification time with LLaVA-OneVision approaches the generation time of Infinity-2B (800ms),

Verifier	Time/Img (ms)	GPU Mem (GB)
CLIPScore	14	1.6
Aesthetic	19	1.6
ImageReward	25	1.7
LLaVA-OneVision	500	15.3

Table 2: **Verifier computational requirements.** Results show up to $36 \times$ speed difference and $9 \times$ memory difference between lightweight verifiers and LLaVA-OneVision.

making verifier choice a critical bottleneck in practical deployment.

Tab. 3 presents verifier substitution analysis, measuring actual task performance when using different verifiers for best-of-195 selection on T2I-CompBench++. The results reveal a clear trade-off between lightweight and heavyweight verifiers. For attribute-binding tasks, ImageReward consistently outperforms LLaVA-OneVision, showing advantages of 0.02 on color, 0.02 on shape, and 0.02 on texture. However, LLaVA-OneVision provides a decisive 0.07 advantage on spatial reasoning tasks, where its vision-language reasoning capabilities are essential. Given ImageReward's 20× computational advantage, these results suggest task-dependent verifier selection: lightweight models for attribute binding, heavyweight models for complex reasoning.

A prevalent issue when scaling inference through search is verifier hacking, where the search process overfits to a verifier's inherent biases. This phenomenon arises because verifiers often have narrow objectives; optimizing for one metric can degrade another. For instance, an aes-

Verifier	Color	Shape	Texture	Spatial	Numeracy	Complex
Baseline	0.75	0.47	0.61	0.26	0.54	0.39
Aesthetic	0.74	0.47	0.58	0.23	0.54	0.39
CLIP	0.79	0.54	0.70	0.26	0.58	0.40
ImageReward	0.84	0.62	0.74	0.27	0.61	0.41
Ensemble	0.81	0.58	0.70	0.29	0.61	0.40
LLaVA-OneVision	0.82	0.60	0.72	0.36	0.62	0.41

Table 3: **Verifier substitution on T2I-CompBench++.** Task-specific performance when using each verifier for best-of-195 selection, evaluated using the T2I-CompBench pipeline. Bold indicates best performance per category.

Verifier	Imgs.	NFEs	Color	Shape	Texture	Spatial	Numeracy	Complex
Baseline	-	13	0.75	0.47	0.61	0.26	0.54	0.39
ImageReward + Random	195	2535	0.84	0.62	0.74	0.27	0.61	0.41
ImageReward + Beam	195	1365	0.84	0.63	0.75	0.30	0.62	0.42
LLaVA-OneVision + Random	195	2535	0.84 0.83	0.61	0.75	0.35	0.64	0.41
LLaVA-OneVision + Beam	195	1365		0.64	0.76	0.36	0.67	0.42

Table 4: Compositional performance comparison on T2I-CompBench++. Task-specific performance when using different search strategies with varying computational budgets. Beam search consistently improves performance while using only 54% of random search's NFE budget. Bold indicates best performance per category.

thetic verifier might ignore key prompt details to generate a more visually appealing image, while a CLIPScore-guided search might sacrifice visual quality for strict prompt adherence. For compositional tasks, we see the best results, and least amount of hacking, for ImageReward and LLaVa-OneVision (see Appendix E for a qualitative example).

4.4 COMPOSITIONAL VALIDATION

Having established search effectiveness on DrawBench and analyzed verifier trade-offs, we now evaluate our approach on the more demanding compositional challenges across two specialized benchmarks. We focus on the most promising verifiers identified in our analysis: ImageReward for its cost-effectiveness and LLaVA-OneVision for its reasoning capabilities.

T2I-CompBench++. We compare beam search against random search using both verifiers on 1,800 prompts across six compositional categories: color, shape, texture, spatial, numeracy, and complex compositions. Both strategies use 195 images, with beam search requiring only 1,365 NFEs compared to random search's 2,535 NFEs. We employ LLaVA-OneVision with ImageReward-based tie-breaking to resolve cases where multiple images receive identical binary assessments.

Tab. 4 shows that both search strategies demonstrate substantial improvements over the baseline across all compositional categories. The baseline Infinity-2B model achieves modest scores, particularly struggling with shape (0.47) and spatial reasoning (0.26) tasks. ImageReward with random search demonstrates strong performance, achieving a color binding score of 0.84, an impressive 0.09 improvement over baseline. When paired with beam search, ImageReward shows competitive results across all categories, with notable improvements in spatial reasoning (+0.03) and numeracy (+0.01) over its random search counterpart. Qualitative examples with the performance of beam search are shown in Fig. 4 (more examples can be found in Appendix A).

Despite the 20× computational overhead of LLaVA-OneVision, performance differences between verifiers depend on task complexity. Margins are modest for simple attribute binding, but reasoning-heavy tasks show larger

Method	One Obj.	Two Obj.	Count	Colors	Position	Color Attr.	Overall
Baseline	1.00	0.78	0.60	0.85	0.25	0.55	0.67
Beam Search		0.97	0.85	0.70	0.51	0.74	0.83
Improvement	0.00	0.19	0.25	0.05	0.26	0.19	0.16

Table 5: **Performance comparison on GenEval.** Beam search shows substantial improvements across object-focused compositional tasks, particularly in multi-object, counting, and spatial reasoning capabilities.

gaps: LLaVA-OneVision outperforms ImageReward on spatial reasoning and numeracy, where understanding object relationships and counting is critical. LLaVA-OneVision's vision-language reasoning capabilities clearly surpass the preference-based ImageReward model in these categories.

GenEval. To further validate our approach on object-focused compositional evaluation, we evaluate on GenEval (Ghosh et al., 2023), an object-focused framework that evaluates compositional image properties such as position, count, and color. Tab. 5 demonstrates that beam search achieves significant improvements across all GenEval categories. The baseline Infinity-2B model shows particular weaknesses in positional reasoning (0.25) and color attribution (0.55). Beam search delivers substantial gains: +19% on two-object composition, +25% on counting tasks, +26% on position, and +19% on color attribution. The overall average improvement of +16% demonstrates the effectiveness of guided search for object-focused compositional generation.

Figure 4: Qualitative comparison of verifiers on T2I-CompBench++. Each example shows the performance of the baseline and the beam search with ImageReward and LLaVA-OneVision. For attribute binding (e.g., Color), both verifiers perform well. For complex reasoning (e.g., Spatial), LLaVA-OneVision's capabilities are required to guide the model to a semantically correct image, correcting errors that ImageReward misses.

Across both benchmarks, beam search improvements remain significant, particularly considering that beam search achieves these gains using only 54% of random search's NFE budget on T2I-CompBench++. This efficiency, combined with consistent improvements

Beam search	Color	Shape	Texture	Spatial	Numeracy	Complex
$\tau = 1.0$	0.84	0.63	0.75	0.30	0.62	0.42
$\tau = 2.0$	0.85	0.65	0.76	0.29	0.64	0.41

Table 6: **Performance of ImageReward-guided beam search with different sampling temperatures.** Increasing temperature boosts performance in most categories but reveals a trade-off in spatial tasks. Experiment conducted with 195 images (1365 NFEs).

across compositional metrics, establishes beam search as a practical strategy for scaling inference. The results suggest a nuanced trade-off: for attribute-focused tasks, lightweight ImageReward paired with beam search offers excellent cost-efficiency, while reasoning-heavy applications benefit from LLaVA-OneVision's superior capabilities despite computational overhead.

The Impact of Sampling Temperature. To explore how sampling diversity impacts search performance, we conducted an experiment increasing the generation temperature (τ) from 1.0 to 2.0 for ImageReward-guided beam search. Tab. 6 shows that this change boosts performance on most tasks but reveals a nuanced trade-off rooted in the verifier's capabilities. The higher temperature provides more diverse candidate paths, particularly beneficial for numeracy tasks (+2.0%), likely because increased variety allows the model to produce different counts from which ImageReward can effectively select the correct image. Conversely, the slight decrease in spatial performance likely amplifies ImageReward's inherent weakness in this domain, as increased diversity may produce more spatially varied but incorrect layouts that the verifier struggles to penalize effectively.

4.5 Comparison with Continuous Diffusion Models

We now compare our results with Ma et al. (2025), who explore inference-time scaling for continuous diffusion models. Their experiments utilize FLUX.1-dev, a 12B parameter model, while our approach employs the Infinity-2B model (2B parameters), a $6 \times$ difference in model capacity.

General-purpose validation on DrawBench. Tab. 7 provides a detailed comparison of our beam search strategy against the best-performing search from Ma et al. (2025) on DrawBench. The data highlights two critical advantages of our approach. First, our method is substantially more efficient: our medium-budget beam search (1365 NFEs) achieves a higher ImageReward score than the competitor's best result, using less than half the computational budget. Second, at comparable budgets, our high-budget search (2730 NFEs) outperforms the 12B model's best search result (2880 NFEs) across every metric, achieving performance gains that are $1.3 \times$ to $3.1 \times$ larger.

Method	Model	T2I-CompBench Categories							
Withing		Color	Shape	Texture	Spatial	Numeracy	Complex		
Ma et al. baseline	FLUX.1-dev (12B)	0.77	0.52	0.63	0.24	0.62	0.36		
Ma et al. + Search	FLUX.1-dev (12B)	0.82	0.60	0.72	0.30	0.66	0.38		
Absolute gain		0.05	0.08	0.09	0.06	0.05	0.02		
Our baseline	Infinity-2B (2B)	0.75	0.47	0.61	0.26	0.54	0.39		
Our + Beam search	Infinity-2B (2B)	0.83	0.64	0.76	0.36	0.67	0.42		
Absolute gain	_	0.08	0.17	0.15	0.10	0.13	0.04		

Table 8: Comparison with Ma et al. (2025) on T2I-CompBench++. The discrete autoregressive approach achieves superior absolute improvements despite using a $6 \times$ smaller model. This superior performance is achieved with fewer total function evaluations (1365 NFEs for 195 images vs. 1920 NFEs for 64 images), underscoring the computational efficiency of guided discrete search. Bold indicates better improvement metrics.

Compositional validation T2Ion CompBench++. Tab. 8 presents a comparison of absolute and relative improvements on T2I-CompBench++. Despite the substantial difference in model size, the autoregressive approach demonstrates superior performance gains across all evaluation categories. The 2B autoregressive model with beam search achieves higher scores than the 12B diffusion model with search in every compositional category, providing strong evidence that architectural compatibility with search can overcome a 6× deficit in model parameters. Despite starting from a lower baseline, we achieve substantially larger absolute improvements: an average of 11.3% across all

Method	NFEs	Imgs.	Aes	CLIP	ImgR.
Ma et al. (2025)					
FLUX.1-dev-12B	-	1	5.79	0.71	0.97
+ Random search (Best)	2880	96	6.38	0.82	1.58
Absolute Gain			+0.59	+0.11	+0.61
Our Method					
Infinity-2B	-	1	6.06	0.71	0.94
+ Beam search (Med)	1365	195	7.38	0.83	1.59
+ Beam search (High)	2730	390	7.75	0.86	1.68
Absolute Gain (High)			+1.69	+0.15	+0.74

Table 7: **Performance and efficiency comparison on DrawBench.** Our 2B model with beam search surpasses the 12B FLUX.1-dev model across all metrics. Our medium-budget setting already exceeds the competitor's performance while using less than half the NFEs. Best final scores and gains are in **bold**.

categories compared to Ma et al. (2025) average of 5.7%. The scaling behavior is particularly evident in structured tasks like shape (+17.38% vs. +7.72%) and spatial reasoning (+10.45% vs. +6.14%). Notably, our spatial reasoning and counting results utilize the computationally expensive LLaVA-OneVision verifier, yet the smaller autoregressive model still outperforms the larger diffusion model, further underscoring that architectural advantages can overcome both parameter count and verifier computational overhead. This suggests that discrete token optimization is inherently better suited for test-time scaling on compositional tasks than continuous latent space optimization.

Architectural advantages of discrete search. These results demonstrate that discrete autoregressive models provide a fundamentally more tractable domain for guided search compared to continuous diffusion models. The discrete token space enables early pruning of unpromising paths and computational reuse through prefix caching. This architectural benefit leads to a step-change in performance scaling, with our approach achieving not only larger relative improvements but also higher absolute performance despite using a model with $6\times$ fewer parameters. The superior scaling behavior suggests that for compositional image generation, architectural compatibility with search may be more important than raw parameter count, opening new directions for efficient model development.

5 CONCLUSION

This work demonstrates that autoregressive image models hold a fundamental architectural advantage for inference-time search. Their discrete token space enables efficient pruning and computational reuse, allowing a 2B model with beam search to surpass a 12B diffusion model while using fewer function evaluations. These gains are consistent across benchmarks, highlighting the robustness of this approach. These results challenge the assumption that quality scales primarily with model size and highlight the potential of co-designing models and inference algorithms for more efficient and capable text-to-image generation.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility and encourage further research in this area, we commit to making our implementation publicly available upon publication. This includes all search algorithms, verifier integration code, and experimental configurations used in our study. Our work relies entirely on publicly available models and datasets, with Infinity-2B and all verifier models (ImageReward, CLIP-Score, Aesthetic Score, and LLaVA-OneVision) being openly accessible to the research community.

AUTHOR STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Large language models were utilized in this work solely for editorial refinement and grammatical corrections. All scientific content, including research conception, experimental design, data analysis, and interpretive conclusions, originates entirely from the authors without computational assistance.

References

486

487 488

489

490

491

492

493 494

495 496

497

498

499

500 501 502

504

505

506

507

508

509

510 511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

536

537 538 Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason Wei. Scaling instruction-finetuned language models. *arXiv preprint arXiv:2210.11416*, 2022.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in Ilms via reinforcement learning, 2025. URL https://arxiv.org/abs/2501.12948.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image synthesis. In CVPR, 2021.

- Dhruba Ghosh, Hannaneh Hajishirzi, and Ludwig Schmidt. Geneval: An object-focused framework for evaluating text-to-image alignment. *Advances in Neural Information Processing Systems*, 36: 52132–52152, 2023.
 - Google. Gemini 2.5 pro preview model card. Available online at https://storage.googleapis.com/model-cards/documents/gemini-2.5-pro-preview.pdf, 5 2025. Model card updated May 9, 2025.
 - Ziyu Guo, Renrui Zhang, Chengzhuo Tong, Zhizheng Zhao, Peng Gao, Hongsheng Li, and Pheng-Ann Heng. Can we generate images with cot? let's verify and reinforce image generation step by step. *arXiv preprint arXiv:2501.13926*, 2025.
 - Jian Han, Jinlai Liu, Yi Jiang, Bin Yan, Yuqi Zhang, Zehuan Yuan, Bingyue Peng, and Xiaobing Liu. Infinity: Scaling bitwise autoregressive modeling for high-resolution image synthesis. *arXiv* preprint arXiv:2412.04431, 2024.
 - Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. Clipscore: A reference-free evaluation metric for image captioning. *arXiv* preprint arXiv:2104.08718, 2021.
 - Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. *Advances in neural information processing systems*, 33:6840–6851, 2020.
 - Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. *arXiv preprint arXiv:2203.15556*, 2022.
 - Kaiyi Huang, Chengqi Duan, Kaiyue Sun, et al. T2i-compbench++: An enhanced and comprehensive benchmark for compositional text-to-image generation. In *IEEE TPAMI*, 2025.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint arXiv:2001.08361, 2020.
 - Jaihoon Kim, Jihoon Kim, Suha Oh, and Kimin Lee. Inference-time scaling for flow models via stochastic generation and rollover budget forcing. *arXiv preprint arXiv:2503.19385*, 2025.
 - Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. *arXiv preprint arXiv:2408.03326*, 2024.
 - Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let's verify step by step. *arXiv preprint arXiv:2305.20050*, 2023. URL https://arxiv.org/abs/2305.20050.
 - Nanye Ma, Shangyuan Tong, Haolin Jia, Hexiang Hu, Yu-Chuan Su, Mingda Zhang, Xuan Yang, Yandong Li, Tommi Jaakkola, Xuhui Jia, et al. Inference-time scaling for diffusion models beyond scaling denoising steps. *arXiv preprint arXiv:2501.09732*, 2025.
 - Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time scaling. *arXiv preprint arXiv:2501.19393*, 2025.
 - OpenAI. Video generation models as world simulators. OpenAI Technical Report, 2024. URL https://openai.com/index/video-generation-models-as-world-simulators/.
 - OpenAI. Openai o3-mini system card, 2025. URL https://cdn.openai.com/o3-mini-system-card-feb10.pdf.
- OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden
 Low, Alec Helyar, Aleksander Madry, Alex Beutel, Alex Carney, Alex Iftimie, Alex Karpenko,
 Alex Tachard Passos, Alexander Neitz, Alexander Prokofiev, Alexander Wei, Allison Tam, Ally
 Bennett, Ananya Kumar, Andre Saraiva, Andrea Vallone, Andrew Duberstein, Andrew Kondrich,

595

596

597

598

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

627

628

629

630 631

632

633 634

635

636

637 638

639

640 641

642

643644645

646

647

Andrey Mishchenko, Andy Applebaum, Angela Jiang, Ashvin Nair, Barret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin Sokolowsky, Boaz Barak, Bob McGrew, Borys Minaiev, Botao Hao, Bowen Baker, Brandon Houghton, Brandon McKinzie, Brydon Eastman, Camillo Lugaresi, Cary Bassin, Cary Hudson, Chak Ming Li, Charles de Bourcy, Chelsea Voss, Chen Shen, Chong Zhang, Chris Koch, Chris Orsinger, Christopher Hesse, Claudia Fischer, Clive Chan, Dan Roberts, Daniel Kappler, Daniel Levy, Daniel Selsam, David Dohan, David Farhi, David Mely, David Robinson, Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Freeman, Eddie Zhang, Edmund Wong, Elizabeth Proehl, Enoch Cheung, Eric Mitchell, Eric Wallace, Erik Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, Francis Song, Fred von Lohmann, Freddie Sulit, Geoff Salmon, Giambattista Parascandolo, Gildas Chabot, Grace Zhao, Greg Brockman, Guillaume Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, Hunter Lightman, Hyung Won Chung, Ian Kivlichan, Ian O'Connell, Ian Osband, Ignasi Clavera Gilaberte, Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina Kofman, Jakub Pachocki, James Lennon, Jason Wei, Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu, Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero Candela, Joe Palermo, Joel Parish, Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kondraciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen, Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov, Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agarwal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Taylor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson, Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen, Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li. Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In *International conference on machine learning*, pp. 8821–8831. Pmlr, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, et al. Photorealistic text-to-image diffusion models with deep language understanding. 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. *Advances in neural information processing systems*, 35:25278–25294, 2022.

- Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated process verifiers for llm reasoning. *arXiv* preprint arXiv:2410.08146, 2024.
- Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion models. *arXiv preprint arXiv:2501.06848*, 2025.
- Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling Ilm test-time compute optimally can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.
- Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan. Autoregressive model beats diffusion: Llama for scalable image generation. *arXiv* preprint arXiv:2406.06525, 2024.
- Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling: Scalable image generation via next-scale prediction. *arXiv* preprint arXiv:2404.02905, 2024.
- Chengzhuo Tong, Ziyu Guo, Renrui Zhang, Wenyu Shan, Xinyu Wei, Zhenghao Xing, Hongsheng Li, and Pheng-Ann Heng. Delving into rl for image generation with cot: A study on dpo vs. grpo. *arXiv preprint arXiv:2505.17017*, 2025.
- Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In *International conference on machine learning*, pp. 1747–1756. PMLR, 2016.
- Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou, Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, and Nikhil Naik. Diffusion model alignment using direct preference optimization. *arXiv preprint arXiv:2311.12908*, 2023.
- Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Deli Chen, Yu Wu, and Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. *arXiv* preprint arXiv:2312.08935, 2024.
- Enze Xie, Junsong Chen, Yuyang Zhao, Jincheng Yu, Ligeng Zhu, Chengyue Wu, Yujun Lin, Zhekai Zhang, Muyang Li, Junyu Chen, et al. Sana 1.5: Efficient scaling of training-time and inference-time compute in linear diffusion transformer. *arXiv preprint arXiv:2501.18427*, 2025.
- Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen Kan, Timothy P Lillicrap, Kenji Kawaguchi, and Michael Shieh. Monte carlo tree search boosts reasoning via iterative preference learning. *arXiv preprint arXiv:2405.00451*, 2024.
- Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation. *Advances in Neural Information Processing Systems*, 36:15903–15935, 2023.
- Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *arXiv* preprint arXiv:2305.10601, 2024.
- Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, Yuxiao Dong, and Jie Tang. Rest-MCTS*: LLM self-training via process reward guided tree search. *arXiv preprint arXiv:2406.03816*, 2024. URL https://arxiv.org/abs/2406.03816.
- Le Zhuo, Liangbing Zhao, Sayak Paul, Yue Liao, Renrui Zhang, Yi Xin, Peng Gao, Mohamed Elhoseiny, and Hongsheng Li. From reflection to perfection: Scaling inference-time optimization for text-to-image diffusion models via reflection tuning. *arXiv preprint arXiv:2504.16080*, 2025.

A QUALITATIVE RESULTS: BASELINE VS. BEAM SEARCH

We present qualitative comparisons on T2I-CompBench++ between baseline generation and our beam search approach guided by LLaVA-OneVision. The search is conducted with a computational budget of 195 image evaluations (1,365 NFEs). Each row shows the text prompt, baseline generation, and the search-guided result that best satisfies the prompt according to the vision-language model evaluation.

Text Prompt	Baseline	Search-Guided
Bee left of key		
Bird next to refrigerator		
Bird top of balloon		
Fish near car		
Five kites		
Four lamps, four dogs		

Table 9: Qualitative comparison of baseline and search-guided generation (Part 1 of 5)

Table 10: Qualitative comparison of baseline and search-guided generation (Part 2 of 5)

Table 11: Qualitative comparison of baseline and search-guided generation (Part 3 of 5)

Text Prompt	Baseline	Search-Guided
Suitcase right of cow		
Tall sunflower, short daisy		
Three clocks		
Two bowls, three microwaves, two chickens		* AAA
Two sofas, four chickens		
Two trains		

Table 12: Qualitative comparison of baseline and search-guided generation (Part 4 of 5)

Text Prompt	Baseline	Search-Guided
Vase right of man		
Woman right of TV		
Wooden desk, leather jacket		
Wooden fork, glass bowl		
Wooden toy, fabric pants		

Table 13: Qualitative comparison of baseline and search-guided generation (Part 5 of 5)

B RESULTS FROM DIFFERENT SEARCH STRATEGIES

Prompt	Baseline (Single Sample)	Random search	Greedy Token Optimization	Beam search
"A blue coloured pizza."				
"A laptop on top of a teddy bear."				
"A bird scaring a scarecrow"	本本	XA		Î
"A zebra underneath a broccoli."				
"A car playing soccer, digital art."				

Figure 5: Visual comparison of search strategies for text-to-image generation. Each row shows results for a different prompt, with columns representing: baseline generation (single sample with Infinity-2B), random search, greedy token optimization, and beam search. All images are generated using the Infinity-2B model with identical parameters. All search strategies have been guided by the ImageReward (Xu et al., 2023) verifier. The budget is set to 390 verified images. All prompts are from Drawbench (Saharia et al., 2022).

1072

1073

1074

1075

SCALING BEHAVIOR FOR DIFFERENT VERIFIERS 1027 1028 **Aesthetic Verifier** 1029 Random GTO Beam search Random GTO Beam search 7.75 1030 1031 7.50 1032 7.25 7.25 1033 Aesthetic Score 7.00 1034 Aesthe 6.75 1035 1036 6.50 6.50 1037 6.25 6.25 1038 1039 6.00 2000 3000 4000 Number of Function Evaluations (NFEs) 150 200 250 Number of Verified Images 1040 1041 (a) NFEs (b) Images 1042 1043 **CLIPScore Verifier** 1044 Random GTO -- Random 0.86 0.86 1045 1046 0.82 0.82 1047 1048 1049 O.78 1050 0.76 0.76 1051 0.74 1052 0.72 1053 1054 2000 3000 4000 Number of Function Evaluations (NFEs) 150 200 250 Number of Verified Images 1055 (c) NFEs (d) Images 1056 1057 ImageReward Verifier 1058 1.7 1059 --- Random Random GTO 1060 1.6 --- Beam search 1061 1062 1063 1064 1065 1066 1067 1.0 1068 2000 3000 4000 Number of Function Evaluations (NFEs) 150 200 250 Number of Verified Images 1069 1070 (e) NFEs (f) Images 1071

Figure 6: Performance scaling of search strategies on DrawBench across different verifiers. The plots compare performance against computational budget (NFEs and images), showing that guided methods like GTO (blue) and beam search (green) are significantly more compute-efficient than random search (red). While both outperform random search at low budgets, beam search shows superior scaling, widening its lead over GTO as the budget increases.

Selection Method	Imgs.	NFEs	Aesthetic	CLIPScore	ImageReward
Dynamic GTO	130	1275	7.28	0.82	1.55
Fixed GTO (high budget)	195	1365	7.38	0.83	1.58
Fixed GTO (low budget)	130	910	7.24	0.82	1.54

Table 14: **Comparison of dynamic vs. fixed-budget GTO.** The variance-based dynamic allocation shows no clear benefit, proving less efficient than a fixed-budget approach for the same number of candidate images and underperforming a fixed-budget approach with a similar NFE count. Bold indicates best performance per metric.

D ANALYSIS OF A HEURISTIC-BASED DYNAMIC BUDGET ALLOCATION

A potential enhancement to tree search strategies is to allocate the computational budget dynamically, focusing resources on steps where the model is most uncertain. We hypothesize that the variance of verifier scores across candidate tokens would serve as a good proxy for this uncertainty. A high variance would suggest a complex decision point where more exploration is needed, while low variance would imply that the top candidates are similar and fewer samples are required.

Experimental setup. To test this hypothesis, we implemented a variance-based dynamic allocation strategy. The core of this method is a heuristic designed to distribute a fixed total number of candidate slots (130) across the 13 generation steps. The number of candidates allocated to each step was set to be proportional to the variance of verifier scores observed at that step, relative to the average variance across the entire generation process. As illustrated in Fig. 7, this approach methodically concentrates the search on the initial, high-variance steps.

Results and analysis. The performance of this strategy is compared against fixed-budget GTO in Tab. 14. The results reveal two key insights. First, when comparing methods that evaluate the same number of candidate paths (130 images), the dynamic approach is less compute-efficient. By front-loading the search, it consumed 1275 NFEs, 40% more than the 910 NFEs required by the fixed-budget strategy—without yielding a corresponding performance improvement (e.g., an ImageReward score of 1.55 vs. 1.54). Second, when compared to a fixed-budget GTO with a similar NFE count (1365 NFEs), the dynamic strategy still underperforms across all key metrics.

This result, while negative, provides a valuable insight: score variance alone appears to be a noisy or insufficient signal for optimal budget allocation. The upfront computational invest-

Figure 7: Analysis of the variance-based allocation heuristic. The plot shows the verifier score variance (blue line, right axis) at each generation step, which peaks early in the process. The orange bars (left axis) show the corresponding number of candidates allocated by the heuristic, mirroring the variance trend.

ment from the front-loaded dynamic strategy does not yield a proportional return in quality. One possible explanation is that even later, low-variance steps can contain critical decision points where a consistently wider search is beneficial. This finding suggests that a stable search breadth at each step (as in fixed-budget GTO) or the parallel exploration of multiple paths (as in beam search) are more robust and efficient strategies than this specific heuristic-based approach.

E VERIFIER IMAGE SELECTION

(a) Aesthetic

(b) CLIPScore

(c) ImageReward

(d) Ensemble

Figure 8: Search results for prompt "a metallic ring and a fluffy hat" using different verifiers. The aesthetic verifier (a) produces visually appealing images but chooses an image without the metallic ring, demonstrating lack of prompt adherence. The other verifiers value prompt adherence, but does comprise aesthetic appeal by finding images that features poorly generated hands. Prompt and images from random search with 390 verified images using T2I-Compbench++ Huang et al. (2025)