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ABSTRACT

While inference-time scaling through search has revolutionized Large Language
Models, translating these gains to image generation has proven difficult. Recent
attempts to apply search strategies to continuous diffusion models show limited
benefits, with simple random sampling often performing best. We demonstrate
that the discrete, sequential nature of visual autoregressive models enables effec-
tive search for image generation. We show that beam search substantially im-
proves text-to-image generation, enabling a 2B parameter autoregressive model
to outperform a 12B parameter diffusion model across benchmarks. Systematic
ablations show that this advantage comes from the discrete token space, which
allows early pruning and computational reuse, and our verifier analysis highlights
trade-offs between speed and reasoning capability. These findings suggest that
model architecture, not just scale, is critical for inference-time optimization in
visual generation.

1 INTRODUCTION

Generative modeling is undergoing a fundamental shift in how progress is achieved. While the
past decade has been dominated by scaling model parameters (Kaplan et al., 2020; Hoffmann et al.,
2022), recent breakthroughs demonstrate that inference-time computation can be equally transfor-
mative. Systems such as OpenAI’s o1 (OpenAI et al., 2024) and o3 (OpenAI, 2025), DeepSeek-
R1 (DeepSeek-AI et al., 2025), and Gemini 2.5 (Google, 2025) achieve substantial gains not through
larger models, but via sophisticated search and deliberation during inference. For example, small
language models can now match the output quality of models 14× larger when given sufficient
compute at test time (Snell et al., 2024). This paradigm shift raises a natural question: can visual
generation similarly benefit from inference strategies rather than merely scaling up parameters?

The answer might depend on the model architecture. Recent comprehensive studies show that apply-
ing search strategies to diffusion models yields limited improvements. Approaches including noise
trajectory search, zero-order optimization, and path expansion fail to outperform a simple random
sampling (Ma et al., 2025). In contrast, language models benefit consistently from tree search (Yao
et al., 2024; Zhang et al., 2024), reward-model guidance (Lightman et al., 2023; Wang et al., 2024;
Setlur et al., 2024), and Monte Carlo methods (Xie et al., 2024). This suggests a fundamental in-
compatibility between continuous latent spaces and discrete search algorithms.

Visual autoregressive models, such as VAR (Tian et al., 2024) and Infinity (Han et al., 2024), gener-
ate images token by token across multiple scales, creating a search space structurally similar to that
of language models. In this setting, algorithms like beam search can efficiently explore alternatives,
prune low-quality paths early, and reuse computation across branches. By contrast, diffusion models
operate in continuous noise spaces where such discrete search is less effective.

To investigate this, we conduct the first systematic study of search algorithms applied to autoregres-
sive image generation. We combine state-of-the-art discrete visual models with verifiers ranging
from lightweight preference models (Xu et al., 2023) to powerful vision-language models (Li et al.,
2024), enabling guided exploration toward high-quality, compositionally accurate images.

Our results challenge conventional assumptions about model scaling. On DrawBench and T2I-
CompBench++, a 2B parameter autoregressive model with beam search achieves performance gains
twice as large as those obtained by applying search to a 12B diffusion model, while using 46% fewer
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Figure 1: Guided search in autoregressive models provides a more efficient path to high-quality image
generation than scaling diffusion models. (Left) ImageReward score vs. inference-time compute (NFEs).
A 2B autoregressive model with beam search (green) surpasses a 12B FLUX.1-dev model (Ma et al., 2025)
using random search (orange), while requiring less computation. (Right) Examples showing how beam search
corrects compositional errors in baseline generations. It successfully fixes object counts (“six keys”), incorrect
spatial relationships (“giraffe on the right”), and color errors (“green rose and a blue tulip”).

function evaluations. Notably, this allows the smaller model to surpass the larger model’s absolute
performance on all compositional metric, demonstrating that architectural compatibility with search
can overcome a 6× parameter disadvantage. Fig. 1 presents both quantitative results and qualitative
examples that illustrate the effectiveness of our approach.

2 RELATED WORK

Visual Generation. Diffusion models currently dominate high-quality image synthesis, achieving
state-of-the-art results (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023) and extending
to video generation (OpenAI, 2024). Autoregressive approaches offer a different paradigm but have
historically faced computational and architectural challenges. PixelRNN (Van Den Oord et al., 2016)
suffered from severe computational limitations, while DALL-E (Ramesh et al., 2021) used discrete
tokens but retained inefficient raster-scan ordering that disrupted spatial locality and violated bidi-
rectional dependencies. Recent advances address these limitations through hierarchical generation
strategies. Visual AutoRegressive modeling (VAR) (Tian et al., 2024) introduces “next-scale pre-
diction” that generates images coarse-to-fine across multiple resolutions, while Infinity (Han et al.,
2024) extends this with bitwise tokenization to enable infinite vocabularies. These developments
establish autoregressive models as competitive alternatives to diffusion approaches while preserv-
ing their discrete, sequential nature. This property creates natural compatibility with the search
algorithms that have proven effective in language modeling (Sun et al., 2024).

Inference-Time Scaling in LLMs. Large language models (LLMs) achieve significant performance
improvements through sophisticated inference-time computation (Snell et al., 2024; OpenAI et al.,
2024; DeepSeek-AI et al., 2025). Models like OpenAI’s o1 (OpenAI et al., 2024) and DeepSeek-
R1 (DeepSeek-AI et al., 2025) use reinforcement learning to extend internal reasoning processes,
while approaches like s1 (Muennighoff et al., 2025) force computational budgets through generation
control. External methods offer greater flexibility as post-training enhancements, employing tree
search algorithms (Yao et al., 2024; Zhang et al., 2024) and process reward models (Lightman et al.,
2023; Wang et al., 2024) to evaluate reasoning steps and guide exploration. This approach demon-
strates that strategic computation can substitute for scale. Small models with compute-optimal infer-
ence scaling can match the performance of models up to 14× larger (Snell et al., 2024), establishing
that how models “think” during inference can be as important as their parameter count.

Inference-Time Scaling in Image Generation. Translating the success of LLM inference-time
scaling to image generation has proven challenging. For diffusion models operating in continuous
latent spaces, recent comprehensive studies show that noise trajectory search strategies are consis-
tently outperformed by simple random sampling (Ma et al., 2025), revealing fundamental archi-
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Figure 2: Search Strategies for Autoregressive Image Generation. (a) Random search generates n images
independently and selects the one with the highest score. (b) Greedy token optimization operates sequentially;
at each step, it generates c candidate images and commits to the single token that produces the best result before
continuing. (c) Beam search maintains w parallel sequences. At each step, it explores c options for each beam
and keeps the top w overall sequences, allowing it to explore more diverse paths than the greedy approach.

tectural limitations. While frameworks like Feynman-Kac steering (Singhal et al., 2025) and flow
model adaptations (Kim et al., 2025) show some promise, gains remain limited compared to LLM
achievements. Progress has largely been confined to preference optimization (Wallace et al., 2023;
Tong et al., 2025), rejection sampling with VLM-based selection (Xie et al., 2025), or reflection-
based approaches (Zhuo et al., 2025). Notably, recent work explores chain-of-thought reasoning for
autoregressive image generation (Guo et al., 2025), but the full potential of search strategies remains
unexplored. This contrast between limited gains in continuous models and huge improvements in
discrete LLMs suggests that architectural compatibility with search algorithms may be the critical
missing ingredient for effective inference-time scaling in visual generation.

3 METHOD

We apply tree search algorithms to autoregressive image generation, exploiting the discrete token
structure to enable efficient guided exploration. We describe the base generative model (Sec. 3.1),
our verification framework (Sec. 3.2), and search strategies (Sec. 3.3).

3.1 AUTOREGRESSIVE IMAGE GENERATION

We employ Infinity (Han et al., 2024), a state-of-the-art autoregressive model that fundamen-
tally differs from traditional autoregressive image generation. While models like VQGAN (Esser
et al., 2021) and LlamaGen (Sun et al., 2024) generate images token-by-token in raster-scan or-
der—requiring sequential generation of thousands of tokens, Infinity employs scale-wise generation.

Specifically, Infinity generates 1024× 1024 images through 13 progressive scales using “next-scale
prediction”: p(R) =

∏K
k=1 p(rk|r1, . . . , rk−1), where each rk represents all tokens at scale k,

generated simultaneously in a single forward pass. This creates a fundamental advantage with only
13 decision points, and the discrete token generation enables computational reuse. Once tokens
at scales r1, . . . , rk are computed, their transformer key-value representations can be cached and
reused across all search branches sharing that prefix.

3.2 VERIFICATION FRAMEWORK

Effective search requires reliable quality assessment at multiple scales. We employ complementary
verification strategies to capture different aspects of image generation quality. ImageReward (Xu
et al., 2023) serves as our primary verifier, providing a lightweight human preference predictor.

To ensure comprehensive evaluation beyond a single metric, we also include CLIPScore (Hessel
et al., 2021) and Aesthetic Score (Schuhmann et al., 2022), which assess semantic alignment and
visual quality independent of prompt adherence, respectively. Since these three metrics capture fun-
damentally different aspects (i.e., semantic correspondence, visual appeal, and human preference),
we also use an ensemble verifier that combines their assessments through ranking-based aggregation.
The ensemble computes each candidate’s rank according to each verifier and selects based on the
average ranking. This verification follows (Ma et al., 2025) and allows for robust comparison with
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a similar approach using diffusion models. Additionally, we employ LLaVA-OneVision (Li et al.,
2024; Guo et al., 2025), a 7B vision-language model fine-tuned for prompt alignment assessment.

3.3 SEARCH STRATEGIES

We compare three search strategies with distinct exploration-exploitation trade-offs (Fig. 2):

Random Search. Generates n complete images independently using different random seeds, se-
lecting the highest-scoring result: R∗ = argmaxi∈[n] S(R

(i)). This provides maximal diversity
but cannot exploit the sequential generation structure for computational efficiency.

Greedy Token Optimization (GTO). At each scale k, generates c complete continuations from the
current prefix, selecting the token that produces the highest-scoring final image:

r∗k = argmax
j∈[c]

S(r1, . . . , rk−1, r
(j)
k , r

(j)
k+1, . . . , r

(j)
K ) (1)

This creates a single optimized path but risks local optima. We evaluate c ∈ {4, 15, 30} spanning
computationally efficient to more thorough exploration regimes.

Beam Search. Maintains w parallel hypotheses, expanding each with c candidates at every scale.
After scoring all w × c complete images, it retains the top w prefixes for continued expansion:

Beamsk+1 = top-w{S(R) : R ∈ Candidatesk} (2)
This balances exploration breadth with computational tractability through aggressive pruning. We
evaluate (w, c) ∈ {(2, 2), (3, 5), (3, 10)}, ranging from minimal to extensive search configurations.

The computational advantage of GTO and beam search stems from prefix reuse: shared computation
reduces complexity from O(n · K) for independent generation to approximately O(n · K/w) for
beam search with width w, where n represents candidate images and K the number of scales.

3.4 COMPUTATIONAL BUDGET METRICS

Fair comparison requires precise measurement of computational cost, particularly given the asym-
metric efficiency gains enabled by discrete search. We report two complementary metrics:

Number of Images. Total complete images evaluated by the verifier. This provides direct compara-
bility with prior best-of-N studies (Guo et al., 2025; Xie et al., 2025; Ma et al., 2025) regardless of
architectural differences.

Number of Function Evaluations (NFEs). Total transformer forward passes, where one NFE
corresponds to generating tokens for one of Infinity’s 13 scales. This metric reveals the true compu-
tational advantage of guided search: beam search, generating 195 images requires only 1,365 NFEs
versus 2,535 NFEs for equivalent random search, reflecting the 46% efficiency gain achieved.

We note that NFEs across architectures (autoregressive vs. diffusion) are not directly comparable in
FLOPs but provide meaningful order-of-magnitude efficiency comparisons.

4 EXPERIMENTAL RESULTS

This section evaluates our proposed search strategies for test-time scaling in discrete autoregres-
sive image generation. We first analyze how verification scores scale with computational budget
(Sec. 4.1), then demonstrate beam search’s superior performance on DrawBench (Saharia et al.,
2022) (Sec. 4.2). We examine verifier trade-offs (Sec. 4.3) and validate on compositional bench-
marks T2I-CompBench++ (Huang et al., 2025) and GenEval Ghosh et al. (2023) (Sec. 4.4). Finally,
we compare against inference-time scaling in continuous diffusion models (Ma et al., 2025), show-
ing that discrete search overcomes a 6× parameter deficit (Sec. 4.5).

Implementation details. Unless otherwise stated, all experiments use the Infinity-2B model (Han
et al., 2024) with bitwise VQ-VAE vocabulary Vd = 232 and patch size 16, generating 1024 ×
1024 images through 13 progressive scales. We set temperature τ = 1.0 and cfg parameter to
3.0, with Flan-T5-XL (Chung et al., 2022) as the text encoder. When Infinity-8B is employed
(explicitly noted), the configuration uses VQ-VAE vocabulary Vd = 256 with patch size 8 and spatial
patchification enabled. All experiments run on a single Nvidia H100 GPU with bf16 precision.
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Figure 3: Expected maximum verification scores as functions of budget size (log scale). All three verifiers
exhibit logarithmic scaling.

4.1 BUDGET SCALING ANALYSIS

To understand the fundamental trade-offs in test-time compute allocation, we first investigate how
verification scores scale with computational budget in a simple search setting. This analysis estab-
lishes the baseline scaling behavior that motivates more sophisticated search strategies.

Experimental setup. We generate 500 samples per prompt using Infinity-2B on 200 prompts from
DrawBench, evaluating each sample with ImageReward (Xu et al., 2023), Aesthetic Score (Schuh-
mann et al., 2022), and CLIPScore (Hessel et al., 2021). For each budget size k ∈ {1, 2, ..., 500},
we compute the expected maximum score by randomly sampling k images from the full set and
selecting the highest-scoring sample, repeating this process 10 times to obtain robust statistics.

Scaling behavior. Fig. 3 reveals a clear logarithmic relationship between budget size and expected
maximum verification score across all three verifiers: E[maxi≤k si] ≈ α log(k) + β, where si
denotes the verification score of sample i, and α, β are verifier-specific constants. This logarith-
mic scaling indicates diminishing returns: achieving each additional unit of quality improvement
requires exponentially more samples.

This scaling law establishes a fundamental limitation of random search and motivates the devel-
opment of more efficient strategies. While increasing the sampling budget consistently improves
quality, the logarithmic relationship means that substantial quality gains require exponentially larger
computational investments, motivating the use of search algorithms for inference-time scaling.

4.2 PERFORMANCE ON DRAWBENCH

We present our comparison of search strategies on the DrawBench benchmark, which comprises 200
carefully curated text prompts distributed across distinct categories. We evaluate the performance of
random search, Greedy Token Optimization (GTO), and beam search when guided by different veri-
fiers. Tab. 1 presents the results on DrawBench. While all tested approaches outperform the baseline
Infinity-2B model, beam search is the most effective method, delivering the strongest improvements
across different quality metrics. The optimized smaller model not only achieves gains in visual qual-
ity, prompt adherence, and aesthetic appeal, but surpasses the performance of the larger Infinity-8B
baseline. For a qualitative comparison of search strategies on DrawBench, see Appendix B.

Each verifier exhibits distinct optimization characteristics. ImageReward guidance produces the
largest gains while preserving performance on other metrics. CLIPScore optimization improves
both CLIP and ImageReward scores but sacrifices aesthetic quality. Aesthetic Score optimization
enhances visual appeal but degrades prompt adherence (measured by CLIPScore), demonstrating
the verifier hacking phenomenon where search processes overfit to narrow objectives.

Advanced search strategies show superior computational efficiency. Both GTO and beam search
outperform random search while using substantially fewer resources. Beam search with 195 im-
ages (1,365 NFEs) surpasses random with 390 images (5,070 NFEs), achieving this efficiency gain
through prefix caching and guided exploration. This efficiency persists until extremely low budgets,
where beam search with only 54 images delivers competitive results despite using just 7% of random
search’s cost. We further explore a heuristic dynamic budget allocation in Appendix D.
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Verifier CLIPScore ImageReward Aesthetic Ensemble

Imgs. NFEs Aes. CLIP ImgR. Aes. CLIP ImgR. Aes. CLIP ImgR. Aes. CLIP ImgR.

Baseline (2B) - 13 6.06 0.71 0.94 6.06 0.71 0.94 6.06 0.71 0.94 6.06 0.71 0.94
Baseline (8B) - 13 5.97 0.73 1.14 5.97 0.73 1.14 5.97 0.73 1.14 5.97 0.73 1.14

Random 390 5070 5.83 0.80 1.09 6.11 0.72 1.52 7.19 0.67 0.87 6.53 0.75 1.28
Random 195 2535 5.88 0.79 1.13 6.05 0.73 1.48 7.08 0.68 0.88 6.31 0.72 1.16
Random 54 702 5.91 0.78 1.08 6.06 0.72 1.41 6.92 0.68 0.88 6.31 0.73 1.21

GTO 390 2730 5.88 0.85 1.08 6.08 0.73 1.62 7.50 0.68 0.90 6.76 0.78 1.44
GTO 195 1365 5.93 0.83 1.08 6.08 0.73 1.58 7.38 0.69 0.93 6.66 0.77 1.37
GTO 54 377 6.01 0.79 1.07 6.09 0.72 1.45 6.98 0.69 0.91 6.50 0.75 1.31

Beam search 390 2730 5.86 0.86 1.16 6.16 0.73 1.68 7.75 0.67 0.95 6.92 0.79 1.50
Beam search 195 1365 5.84 0.83 1.10 6.10 0.73 1.59 7.38 0.69 0.96 6.68 0.78 1.44
Beam search 54 377 5.93 0.79 1.07 6.09 0.72 1.46 6.94 0.69 0.95 6.46 0.75 1.34

Table 1: Comparison of search strategies on DrawBench. We show Random search, Greedy Token Op-
timization (GTO), and Beam search with varying computational budgets. “Imgs.” indicates verified images
during search and “NFEs” the total function evaluations. Each verifier column displays results when that veri-
fier guides the search, measuring Aesthetic (Aes.), CLIPScore (CLIP), and ImageReward (ImgR.). Advanced
strategies outperform random search even with reduced budgets. Bold indicates best scores per verifier.

4.3 VERIFIER ANALYSIS

Having shown that guided search consistently outperforms random search, we now analyze verifier
trade-offs to understand when each is most effective. Appendix C shows how different verifiers
affect scaling behavior under varying computational budgets.

Verifier Time/Img GPU Mem
(ms) (GB)

CLIPScore 14 1.6
Aesthetic 19 1.6
ImageReward 25 1.7
LLaVA-OneVision 500 15.3

Table 2: Verifier computational requirements.
Results show up to 36× speed difference and 9×
memory difference between lightweight verifiers
and LLaVA-OneVision.

Computational requirements. The computa-
tional overhead of different verifiers varies dra-
matically, as shown in Tab. 2. Using images
generated by Infinity-2B, we find substantial
differences in both processing time and mem-
ory usage. While lightweight verifiers like
CLIPScore process images in just 14ms us-
ing ∼1.6GB GPU memory, LLaVA-OneVision
requires 500ms per image and 15.3GB GPU
memory, representing a 36× speed difference
and 9× memory overhead. Notably, the verifi-
cation time with LLaVA-OneVision approaches
the generation time of Infinity-2B (800ms),
making verifier choice a critical bottleneck in practical deployment.

Tab. 3 presents verifier substitution analysis, measuring actual task performance when using differ-
ent verifiers for best-of-195 selection on T2I-CompBench++. The results reveal a clear trade-off
between lightweight and heavyweight verifiers. For attribute-binding tasks, ImageReward consis-
tently outperforms LLaVA-OneVision, showing advantages of 0.02 on color, 0.02 on shape, and
0.02 on texture. However, LLaVA-OneVision provides a decisive 0.07 advantage on spatial rea-
soning tasks, where its vision-language reasoning capabilities are essential. Given ImageReward’s
20× computational advantage, these results suggest task-dependent verifier selection: lightweight
models for attribute binding, heavyweight models for complex reasoning.

Verifier Color Shape Texture Spatial Numeracy Complex
Baseline 0.75 0.47 0.61 0.26 0.54 0.39
Aesthetic 0.74 0.47 0.58 0.23 0.54 0.39
CLIP 0.79 0.54 0.70 0.26 0.58 0.40
ImageReward 0.84 0.62 0.74 0.27 0.61 0.41
Ensemble 0.81 0.58 0.70 0.29 0.61 0.40
LLaVA-OneVision 0.82 0.60 0.72 0.36 0.62 0.41

Table 3: Verifier substitution on T2I-CompBench++. Task-specific per-
formance when using each verifier for best-of-195 selection, evaluated using
the T2I-CompBench pipeline. Bold indicates best performance per category.

A prevalent issue when
scaling inference through
search is verifier hacking,
where the search process
overfits to a verifier’s in-
herent biases. This phe-
nomenon arises because
verifiers often have narrow
objectives; optimizing for
one metric can degrade an-
other. For instance, an aes-
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Verifier Imgs. NFEs Color Shape Texture Spatial Numeracy Complex
Baseline - 13 0.75 0.47 0.61 0.26 0.54 0.39

ImageReward + Random 195 2535 0.84 0.62 0.74 0.27 0.61 0.41
ImageReward + Beam 195 1365 0.84 0.63 0.75 0.30 0.62 0.42

LLaVA-OneVision + Random 195 2535 0.84 0.61 0.75 0.35 0.64 0.41
LLaVA-OneVision + Beam 195 1365 0.83 0.64 0.76 0.36 0.67 0.42

Table 4: Compositional performance comparison on T2I-CompBench++. Task-specific performance when
using different search strategies with varying computational budgets. Beam search consistently improves per-
formance while using only 54% of random search’s NFE budget. Bold indicates best performance per category.

thetic verifier might ignore key prompt details to generate a more visually appealing image, while
a CLIPScore-guided search might sacrifice visual quality for strict prompt adherence. For compo-
sitional tasks, we see the best results, and least amount of hacking, for ImageReward and LLaVa-
OneVision (see Appendix E for a qualitative example).

4.4 COMPOSITIONAL VALIDATION

Having established search effectiveness on DrawBench and analyzed verifier trade-offs, we now
evaluate our approach on the more demanding compositional challenges across two specialized
benchmarks. We focus on the most promising verifiers identified in our analysis: ImageReward
for its cost-effectiveness and LLaVA-OneVision for its reasoning capabilities.

T2I-CompBench++. We compare beam search against random search using both verifiers on 1,800
prompts across six compositional categories: color, shape, texture, spatial, numeracy, and complex
compositions. Both strategies use 195 images, with beam search requiring only 1,365 NFEs com-
pared to random search’s 2,535 NFEs. We employ LLaVA-OneVision with ImageReward-based
tie-breaking to resolve cases where multiple images receive identical binary assessments.

Tab. 4 shows that both search strategies demonstrate substantial improvements over the baseline
across all compositional categories. The baseline Infinity-2B model achieves modest scores, partic-
ularly struggling with shape (0.47) and spatial reasoning (0.26) tasks. ImageReward with random
search demonstrates strong performance, achieving a color binding score of 0.84, an impressive
0.09 improvement over baseline. When paired with beam search, ImageReward shows competitive
results across all categories, with notable improvements in spatial reasoning (+0.03) and numeracy
(+0.01) over its random search counterpart. Qualitative examples with the performance of beam
search are shown in Fig. 4 (more examples can be found in Appendix A).

Method One Obj. Two Obj. Count Colors Position Color Attr. Overall
Baseline 1.00 0.78 0.60 0.85 0.25 0.55 0.67
Beam Search 1.00 0.97 0.85 0.90 0.51 0.74 0.83

Improvement 0.00 0.19 0.25 0.05 0.26 0.19 0.16

Table 5: Performance comparison on GenEval. Beam search shows sub-
stantial improvements across object-focused compositional tasks, particularly
in multi-object, counting, and spatial reasoning capabilities.

Despite the 20× com-
putational overhead of
LLaVA-OneVision, perfor-
mance differences between
verifiers depend on task
complexity. Margins are
modest for simple attribute
binding, but reasoning-
heavy tasks show larger
gaps: LLaVA-OneVision outperforms ImageReward on spatial reasoning and numeracy, where
understanding object relationships and counting is critical. LLaVA-OneVision’s vision-language
reasoning capabilities clearly surpass the preference-based ImageReward model in these categories.

GenEval. To further validate our approach on object-focused compositional evaluation, we evaluate
on GenEval (Ghosh et al., 2023), an object-focused framework that evaluates compositional image
properties such as position, count, and color. Tab. 5 demonstrates that beam search achieves signifi-
cant improvements across all GenEval categories. The baseline Infinity-2B model shows particular
weaknesses in positional reasoning (0.25) and color attribution (0.55). Beam search delivers sub-
stantial gains: +19% on two-object composition, +25% on counting tasks, +26% on position, and
+19% on color attribution. The overall average improvement of +16% demonstrates the effective-
ness of guided search for object-focused compositional generation.
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Color
“A yellow frog and a green fly”

Baseline Beam+IR Beam+LLaVA

Shape
“A round cookie and a square tin”

Baseline Beam+IR Beam+LLaVA

Texture
“A metallic car and leather shoes”

Baseline Beam+IR Beam+LLaVA

Spatial
“A man on the right of a lamp”

Baseline Beam+IR Beam+LLaVA

Numeracy
“Five candles”

Baseline Beam+IR Beam+LLaVA

Complex
“Red hat on a brown coatrack”

Baseline Beam+IR Beam+LLaVA

Figure 4: Qualitative comparison of verifiers on T2I-CompBench++. Each example shows the performance
of the baseline and the beam search with ImageReward and LLaVA-OneVision. For attribute binding (e.g.,
Color), both verifiers perform well. For complex reasoning (e.g., Spatial), LLaVA-OneVision’s capabilities are
required to guide the model to a semantically correct image, correcting errors that ImageReward misses.

Beam search Color Shape Texture Spatial Numeracy Complex
τ = 1.0 0.84 0.63 0.75 0.30 0.62 0.42
τ = 2.0 0.85 0.65 0.76 0.29 0.64 0.41

Table 6: Performance of ImageReward-guided beam search with dif-
ferent sampling temperatures. Increasing temperature boosts perfor-
mance in most categories but reveals a trade-off in spatial tasks. Experiment
conducted with 195 images (1365 NFEs).

Across both benchmarks,
beam search improvements
remain significant, particu-
larly considering that beam
search achieves these gains
using only 54% of random
search’s NFE budget on
T2I-CompBench++. This
efficiency, combined with
consistent improvements
across compositional metrics, establishes beam search as a practical strategy for scaling inference.
The results suggest a nuanced trade-off: for attribute-focused tasks, lightweight ImageReward
paired with beam search offers excellent cost-efficiency, while reasoning-heavy applications benefit
from LLaVA-OneVision’s superior capabilities despite computational overhead.

The Impact of Sampling Temperature. To explore how sampling diversity impacts search perfor-
mance, we conducted an experiment increasing the generation temperature (τ ) from 1.0 to 2.0 for
ImageReward-guided beam search. Tab. 6 shows that this change boosts performance on most tasks
but reveals a nuanced trade-off rooted in the verifier’s capabilities. The higher temperature provides
more diverse candidate paths, particularly beneficial for numeracy tasks (+2.0%), likely because
increased variety allows the model to produce different counts from which ImageReward can ef-
fectively select the correct image. Conversely, the slight decrease in spatial performance likely am-
plifies ImageReward’s inherent weakness in this domain, as increased diversity may produce more
spatially varied but incorrect layouts that the verifier struggles to penalize effectively.

4.5 COMPARISON WITH CONTINUOUS DIFFUSION MODELS

We now compare our results with Ma et al. (2025), who explore inference-time scaling for contin-
uous diffusion models. Their experiments utilize FLUX.1-dev, a 12B parameter model, while our
approach employs the Infinity-2B model (2B parameters), a 6× difference in model capacity.

General-purpose validation on DrawBench. Tab. 7 provides a detailed comparison of our beam
search strategy against the best-performing search from Ma et al. (2025) on DrawBench. The data
highlights two critical advantages of our approach. First, our method is substantially more efficient:
our medium-budget beam search (1365 NFEs) achieves a higher ImageReward score than the com-
petitor’s best result, using less than half the computational budget. Second, at comparable budgets,
our high-budget search (2730 NFEs) outperforms the 12B model’s best search result (2880 NFEs)
across every metric, achieving performance gains that are 1.3× to 3.1× larger.
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Method Model T2I-CompBench Categories
Color Shape Texture Spatial Numeracy Complex

Ma et al. baseline FLUX.1-dev (12B) 0.77 0.52 0.63 0.24 0.62 0.36
Ma et al. + Search FLUX.1-dev (12B) 0.82 0.60 0.72 0.30 0.66 0.38
Absolute gain 0.05 0.08 0.09 0.06 0.05 0.02

Our baseline Infinity-2B (2B) 0.75 0.47 0.61 0.26 0.54 0.39
Our + Beam search Infinity-2B (2B) 0.83 0.64 0.76 0.36 0.67 0.42
Absolute gain 0.08 0.17 0.15 0.10 0.13 0.04

Table 8: Comparison with Ma et al. (2025) on T2I-CompBench++. The discrete autoregressive approach
achieves superior absolute improvements despite using a 6× smaller model. This superior performance is
achieved with fewer total function evaluations (1365 NFEs for 195 images vs. 1920 NFEs for 64 images), un-
derscoring the computational efficiency of guided discrete search. Bold indicates better improvement metrics.

Method NFEs Imgs. Aes CLIP ImgR.
Ma et al. (2025)

FLUX.1-dev-12B - 1 5.79 0.71 0.97
+ Random search (Best) 2880 96 6.38 0.82 1.58
Absolute Gain +0.59 +0.11 +0.61

Our Method
Infinity-2B - 1 6.06 0.71 0.94
+ Beam search (Med) 1365 195 7.38 0.83 1.59
+ Beam search (High) 2730 390 7.75 0.86 1.68
Absolute Gain (High) +1.69 +0.15 +0.74

Table 7: Performance and efficiency comparison on
DrawBench. Our 2B model with beam search sur-
passes the 12B FLUX.1-dev model across all metrics.
Our medium-budget setting already exceeds the com-
petitor’s performance while using less than half the
NFEs. Best final scores and gains are in bold.

Compositional validation on T2I-
CompBench++. Tab. 8 presents a comparison
of absolute and relative improvements on
T2I-CompBench++. Despite the substantial
difference in model size, the autoregressive
approach demonstrates superior performance
gains across all evaluation categories. The
2B autoregressive model with beam search
achieves higher scores than the 12B diffusion
model with search in every compositional
category, providing strong evidence that
architectural compatibility with search can
overcome a 6× deficit in model parameters.
Despite starting from a lower baseline, we
achieve substantially larger absolute im-
provements: an average of 11.3% across all
categories compared to Ma et al. (2025) average of 5.7%. The scaling behavior is particularly
evident in structured tasks like shape (+17.38% vs. +7.72%) and spatial reasoning (+10.45%
vs. +6.14%). Notably, our spatial reasoning and counting results utilize the computationally
expensive LLaVA-OneVision verifier, yet the smaller autoregressive model still outperforms the
larger diffusion model, further underscoring that architectural advantages can overcome both
parameter count and verifier computational overhead. This suggests that discrete token optimization
is inherently better suited for test-time scaling on compositional tasks than continuous latent space
optimization.

Architectural advantages of discrete search. These results demonstrate that discrete autoregres-
sive models provide a fundamentally more tractable domain for guided search compared to contin-
uous diffusion models. The discrete token space enables early pruning of unpromising paths and
computational reuse through prefix caching. This architectural benefit leads to a step-change in per-
formance scaling, with our approach achieving not only larger relative improvements but also higher
absolute performance despite using a model with 6× fewer parameters. The superior scaling behav-
ior suggests that for compositional image generation, architectural compatibility with search may be
more important than raw parameter count, opening new directions for efficient model development.

5 CONCLUSION

This work demonstrates that autoregressive image models hold a fundamental architectural advan-
tage for inference-time search. Their discrete token space enables efficient pruning and computa-
tional reuse, allowing a 2B model with beam search to surpass a 12B diffusion model while using
fewer function evaluations. These gains are consistent across benchmarks, highlighting the robust-
ness of this approach. These results challenge the assumption that quality scales primarily with
model size and highlight the potential of co-designing models and inference algorithms for more
efficient and capable text-to-image generation.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility and encourage further research in this area, we commit to making our
implementation publicly available upon publication. This includes all search algorithms, verifier in-
tegration code, and experimental configurations used in our study. Our work relies entirely on pub-
licly available models and datasets, with Infinity-2B and all verifier models (ImageReward, CLIP-
Score, Aesthetic Score, and LLaVA-OneVision) being openly accessible to the research community.

AUTHOR STATEMENT ON THE USE OF LARGE LANGUAGE MODELS

Large language models were utilized in this work solely for editorial refinement and grammati-
cal corrections. All scientific content, including research conception, experimental design, data
analysis, and interpretive conclusions, originates entirely from the authors without computational
assistance.
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Johannes Heidecke, John Hallman, John Rizzo, Jonathan Gordon, Jonathan Uesato, Jonathan
Ward, Joost Huizinga, Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Karina Nguyen, Karl
Cobbe, Katy Shi, Kayla Wood, Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu, Kevin Lu,
Kevin Stone, Kevin Yu, Lama Ahmad, Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho, Liam
Fedus, Lilian Weng, Linden Li, Lindsay McCallum, Lindsey Held, Lorenz Kuhn, Lukas Kon-
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd, Maja Trebacz, Manas Joglekar, Mark Chen,
Marko Tintor, Mason Meyer, Matt Jones, Matt Kaufer, Max Schwarzer, Meghan Shah, Mehmet
Yatbaz, Melody Y. Guan, Mengyuan Xu, Mengyuan Yan, Mia Glaese, Mianna Chen, Michael
Lampe, Michael Malek, Michele Wang, Michelle Fradin, Mike McClay, Mikhail Pavlov, Miles
Wang, Mingxuan Wang, Mira Murati, Mo Bavarian, Mostafa Rohaninejad, Nat McAleese, Neil
Chowdhury, Neil Chowdhury, Nick Ryder, Nikolas Tezak, Noam Brown, Ofir Nachum, Oleg
Boiko, Oleg Murk, Olivia Watkins, Patrick Chao, Paul Ashbourne, Pavel Izmailov, Peter Zhokhov,
Rachel Dias, Rahul Arora, Randall Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Miyara, Reimar
Leike, Renny Hwang, Rhythm Garg, Robin Brown, Roshan James, Rui Shu, Ryan Cheu, Ryan
Greene, Saachi Jain, Sam Altman, Sam Toizer, Sam Toyer, Samuel Miserendino, Sandhini Agar-
wal, Santiago Hernandez, Sasha Baker, Scott McKinney, Scottie Yan, Shengjia Zhao, Shengli Hu,
Shibani Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang, Siyuan Fu, Spencer Papay, Steph
Lin, Suchir Balaji, Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan Clark, Tao Wang, Tay-
lor Gordon, Ted Sanders, Tejal Patwardhan, Thibault Sottiaux, Thomas Degry, Thomas Dimson,
Tianhao Zheng, Timur Garipov, Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peterson, Tyna
Eloundou, Valerie Qi, Vineet Kosaraju, Vinnie Monaco, Vitchyr Pong, Vlad Fomenko, Weiyi
Zheng, Wenda Zhou, Wes McCabe, Wojciech Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yunyun Wang, Zheng Shao, and Zhuohan Li.
Openai o1 system card, 2024. URL https://arxiv.org/abs/2412.16720.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, et al. Photorealistic text-to-image diffusion mod-
els with deep language understanding. 2022.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi
Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An
open large-scale dataset for training next generation image-text models. Advances in neural in-
formation processing systems, 35:25278–25294, 2022.

12

https://arxiv.org/abs/2412.16720


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. arXiv preprint arXiv:2410.08146, 2024.

Raghav Singhal, Zachary Horvitz, Ryan Teehan, Mengye Ren, Zhou Yu, Kathleen McKeown, and
Rajesh Ranganath. A general framework for inference-time scaling and steering of diffusion
models. arXiv preprint arXiv:2501.06848, 2025.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.
Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint
arXiv:2406.06525, 2024.

Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905, 2024.

Chengzhuo Tong, Ziyu Guo, Renrui Zhang, Wenyu Shan, Xinyu Wei, Zhenghao Xing, Hongsheng
Li, and Pheng-Ann Heng. Delving into rl for image generation with cot: A study on dpo vs. grpo.
arXiv preprint arXiv:2505.17017, 2025.
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A QUALITATIVE RESULTS: BASELINE VS. BEAM SEARCH

We present qualitative comparisons on T2I-CompBench++ between baseline generation and our
beam search approach guided by LLaVA-OneVision. The search is conducted with a computational
budget of 195 image evaluations (1,365 NFEs). Each row shows the text prompt, baseline gener-
ation, and the search-guided result that best satisfies the prompt according to the vision-language
model evaluation.

Text Prompt Baseline Search-Guided

Bee left of key

Bird next to refrigerator

Bird top of balloon

Fish near car

Five kites

Four lamps, four dogs

Table 9: Qualitative comparison of baseline and search-guided generation (Part 1 of 5)
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Text Prompt Baseline Search-Guided

Four pens

Giraffe right of wallet

Green apple, red kiwi

Green frog, yellow fly

Green rose, blue tulip

Rubber tire, fabric pillow

Table 10: Qualitative comparison of baseline and search-guided generation (Part 2 of 5)
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Text Prompt Baseline Search-Guided

Seven balloons

Six bread

Six ducks

Six keys

Small button, big zipper

Small lion, big horse

Table 11: Qualitative comparison of baseline and search-guided generation (Part 3 of 5)
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Text Prompt Baseline Search-Guided

Suitcase right of cow

Tall sunflower, short daisy

Three clocks

Two bowls, three microwaves,
two chickens

Two sofas, four chickens

Two trains

Table 12: Qualitative comparison of baseline and search-guided generation (Part 4 of 5)
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Text Prompt Baseline Search-Guided

Vase right of man

Woman right of TV

Wooden desk, leather jacket

Wooden fork, glass bowl

Wooden toy, fabric pants

Table 13: Qualitative comparison of baseline and search-guided generation (Part 5 of 5)
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B RESULTS FROM DIFFERENT SEARCH STRATEGIES

Prompt
Baseline

(Single Sample)
Random search

Greedy Token
Optimization

Beam search

“A blue coloured pizza.”

“A laptop on top of a teddy
bear.”

“A bird scaring a scarecrow”

“A zebra underneath a
broccoli.”

“A car playing soccer, digital
art.”

Figure 5: Visual comparison of search strategies for text-to-image generation. Each row shows results for
a different prompt, with columns representing: baseline generation (single sample with Infinity-2B), random
search, greedy token optimization, and beam search. All images are generated using the Infinity-2B model with
identical parameters. All search strategies have been guided by the ImageReward (Xu et al., 2023) verifier. The
budget is set to 390 verified images. All prompts are from Drawbench (Saharia et al., 2022).
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C SCALING BEHAVIOR FOR DIFFERENT VERIFIERS
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ImageReward Verifier
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Figure 6: Performance scaling of search strategies on DrawBench across different verifiers. The plots
compare performance against computational budget (NFEs and images), showing that guided methods like
GTO (blue) and beam search (green) are significantly more compute-efficient than random search (red). While
both outperform random search at low budgets, beam search shows superior scaling, widening its lead over
GTO as the budget increases.
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Selection Method Imgs. NFEs Aesthetic CLIPScore ImageReward

Dynamic GTO 130 1275 7.28 0.82 1.55

Fixed GTO (high budget) 195 1365 7.38 0.83 1.58
Fixed GTO (low budget) 130 910 7.24 0.82 1.54

Table 14: Comparison of dynamic vs. fixed-budget GTO. The variance-based dynamic allocation shows
no clear benefit, proving less efficient than a fixed-budget approach for the same number of candidate images
and underperforming a fixed-budget approach with a similar NFE count. Bold indicates best performance per
metric.

D ANALYSIS OF A HEURISTIC-BASED DYNAMIC BUDGET ALLOCATION

A potential enhancement to tree search strategies is to allocate the computational budget dynam-
ically, focusing resources on steps where the model is most uncertain. We hypothesize that the
variance of verifier scores across candidate tokens would serve as a good proxy for this uncertainty.
A high variance would suggest a complex decision point where more exploration is needed, while
low variance would imply that the top candidates are similar and fewer samples are required.

Experimental setup. To test this hypothesis, we implemented a variance-based dynamic allocation
strategy. The core of this method is a heuristic designed to distribute a fixed total number of candi-
date slots (130) across the 13 generation steps. The number of candidates allocated to each step was
set to be proportional to the variance of verifier scores observed at that step, relative to the average
variance across the entire generation process. As illustrated in Fig. 7, this approach methodically
concentrates the search on the initial, high-variance steps.

Figure 7: Analysis of the variance-based allocation
heuristic. The plot shows the verifier score variance
(blue line, right axis) at each generation step, which
peaks early in the process. The orange bars (left axis)
show the corresponding number of candidates allocated
by the heuristic, mirroring the variance trend.

Results and analysis. The performance of
this strategy is compared against fixed-budget
GTO in Tab. 14. The results reveal two key
insights. First, when comparing methods that
evaluate the same number of candidate paths
(130 images), the dynamic approach is less
compute-efficient. By front-loading the search,
it consumed 1275 NFEs, 40% more than the
910 NFEs required by the fixed-budget strat-
egy—without yielding a corresponding perfor-
mance improvement (e.g., an ImageReward
score of 1.55 vs. 1.54). Second, when com-
pared to a fixed-budget GTO with a similar
NFE count (1365 NFEs), the dynamic strategy
still underperforms across all key metrics.

This result, while negative, provides a valuable
insight: score variance alone appears to be a
noisy or insufficient signal for optimal budget
allocation. The upfront computational invest-
ment from the front-loaded dynamic strategy does not yield a proportional return in quality. One
possible explanation is that even later, low-variance steps can contain critical decision points where
a consistently wider search is beneficial. This finding suggests that a stable search breadth at each
step (as in fixed-budget GTO) or the parallel exploration of multiple paths (as in beam search) are
more robust and efficient strategies than this specific heuristic-based approach.
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E VERIFIER IMAGE SELECTION

(a) Aesthetic (b) CLIPScore (c) ImageReward (d) Ensemble

Figure 8: Search results for prompt “a metallic ring and a fluffy hat” using different verifiers. The aes-
thetic verifier (a) produces visually appealing images but chooses an image without the metallic ring, demon-
strating lack of prompt adherence. The other verifiers value prompt adherence, but does comprise aesthetic
appeal by finding images that features poorly generated hands. Prompt and images from random search with
390 verified images using T2I-Compbench++ Huang et al. (2025)
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