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Facial Prior Guided Micro-Expression Generation
Yi Zhang , Xinhua Xu , Youjun Zhao , Yuhang Wen , Zixuan Tang , and Mengyuan Liu

Abstract— This paper focuses on the facial micro-expression
(FME) generation task, which has potential application in
enlarging digital FME datasets, thereby alleviating the lack of
training data with labels in existing micro-expression datasets.
Despite obvious progress in the image animation task, FME
generation remains challenging because existing image animation
methods can hardly encode subtle and short-term facial motion
information. To this end, we present a facial-prior-guided FME
generation framework that takes advantage of facial priors
for facial motion generation. Specifically, we first estimate the
geometric locations of action units (AUs) with detected facial
landmarks. We further calculate an adaptive weighted prior
(AWP) map, which alleviates the estimation error of AUs while
efficiently capturing subtle facial motion patterns. To achieve
smooth and realistic synthesis results, we use our proposed
facial prior module to guide motion representation and gen-
eration modules in mainstream image animation frameworks.
Extensive experiments on three benchmark datasets consistently
show that our proposed facial prior module can be adopted
in image animation frameworks and significantly improve their
performance on micro-expression generation. Moreover, we use
the generation technique to enlarge existing datasets, thereby
improving the performance of general action recognition back-
bones on the FME recognition task. Our code is available at
https://github.com/sysu19351158/FPB-FOMM.

Index Terms— Facial micro-expression, image animation.

I. INTRODUCTION

FACIAL micro-expression (FME) is a brief facial move-
ment that reveals an emotion that a person tries to

conceal [1], [2], [3]. Recently, micro-expression has drawn
the attention of psychologists and computer scientists. Normal
facial expressions, called macro-expressions, usually last for
0.5 to 4 seconds, while the duration of micro-expressions
is less than 0.5 seconds [2]. The short duration and low
intensity of facial movements make micro-expressions hard
to recognize with the naked eye. FMEs can elucidate the
relationship between repressed emotions and facial expression
[2]. Hence, there are potential applications in various fields,
such as criminal investigation, medical treatment, education,
and business negotiations [4].
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The lack of training data with labels is believed to be one of
the biggest problems in automatic FME analysis [5], [6]. Deep
learning methods have achieved fine results in many computer
vision fields. However, data-driven neural network methods
have not been able to obtain dominant places in FME analysis,
and many feature designs and network methods rely heavily
on prior knowledge and manual features. A recent study [7]
showed that neural network methods, with an adequate amount
of supplementary training data, can achieve comparable perfor-
mance on the FME discriminative task as methods dedicated to
FME. This shows that providing more annotated training data
for deep neural networks is a promising way of improving
deep neural networks in automatic FME analysis tasks.

There are a limited number of experts who are facial action
coding system certification holders since the general public
has difficulties accessing large-scale FME datasets for practice.
Constructing an FME dataset can be very expensive for several
reasons. First, FMEs are involuntary expressions that require
professionally designed instructions to elicit when constructing
an FME database. Second, the duration of FMEs is extremely
short and requires multiple high-frame-rate cameras and strict
lighting conditions to capture accurately. Third, many experts
are needed to label the collected FMEs. Although some
datasets [1], [8], [9], [10], [11] have been provided, data
shortages remain, not to mention the inconsistent configuration
of each existing dataset. In [12], a GAN-based method was
proposed to transfer facial movements in micro-expression.
However, it could only synthesize a single image on an
identical human face, instead of transferring the motion to
any other human face or generating a whole video clip.

To solve the above problem, we introduce an FME gener-
ation task that can create novel FMEs. Inspired by the image
animation task, our task aims to create a novel FME video by
driving a target frame with motion information from a driving
video. We compare the differences between our task and the
traditional image animation task in Fig. 1, where the first two
columns are the onset and apex frames of a driving video,
and the last column denotes the target frame. As shown in
Fig. 1 (a), our task focuses on encoding subtle facial motion
information from a driving video. Meanwhile, Fig. 1 (b) shows
that the traditional image animation task focuses on encoding
macro motion information and handling different camera view
problems. Currently, image animation methods [13], [14] have
achieved considerable success by transferring macro motion
information from driving videos to target frames using a
self-supervised learning framework. Without involving strong
supervision signals, these methods have difficulty encoding
subtle motion information, especially from FME videos. Few
works focus on the micro-expression generation task. This
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Fig. 1. Comparison between the FME generation task and traditional image
animation task. Both tasks aim to transfer the motion information of a driving
video to a target frame. However, current image animation methods in the
human face domain focus on the macro movement (b), while the FMEs usually
occur in local areas with subtle movement (a). The low intensity of the features
mean that the motion translation for FMEs is more difficult than that for the
normal image animation task. The enlargement of existing datasets using FME
generation could benefit the community in various ways, such as improving
the performance of FME recognition neural networks.

paper takes advantage of facial prior knowledge to alleviate
optimization of the whole self-supervised paradigm for the
FME generation task. Our contributions are threefold.
• We introduce image animation to the micro-expression

generation task. With the help of the image animation
paradigm, we use existing micro-expression datasets to
transfer the action information of micro-expressions that
are difficult to collect to new target faces and then
generate new micro-expression video data. At present,
there are few works on this type of task.

• We design a “plug-and-play”, learnable facial prior mod-
ule. This module encodes facial position features related
to human emotions and can adaptively learn the features
of micro-expression directly through the loss function of
image animation. Using this module, we can learn and
encode subtle and short-duration micro-expression action
features in the human face and generally improve the
effectiveness of image animation methods in the micro-
expression generation task. This process helps to further
improve the method for encoding micro-expression prior
knowledge and adaptively using the latest image anima-
tion frameworks in the micro-expression generation task.

• We evaluate our proposed method on a cross-
dataset benchmark using different scenarios and achieve
state-of-the-art performance on this task. Furthermore,

we verify the general improvement of the facial prior
module for image animation in micro-expression gener-
ation in the experiment. Moreover, we use the genera-
tion technique to enlarge existing FME datasets, thereby
systematically improving the recognition performance of
action recognition backbones for the FME recognition
task.

Our basic FME generation framework achieved first prize in
the MEGC2021 generation track; the competition report can
be found in [15]. This paper is substantially expanded in four
aspects:
• We extend the facial prior module into a learnable encod-

ing module. This module extracts the position features
related to action units in the face and adaptively inputs
the position features into the network in the form of
keypoints and feature maps. This compensation explicitly
provides the position information required in the image
animation framework, so the model pays more attention to
the motion information in the samples, thereby enhancing
the model’s attention and transferability for subtle move-
ments. On this basis, the learning module can fit and
learn the spatial features and action features in a dataset
by relying on the objective function of image animation
to further improve the effectiveness of the facial prior
module in the micro-expression generation task.

• We verify the generality of the idea of introducing facial
prior. With the plug-and-play design of the facial prior
module, we have consistently improved the performance
of the generative models, including FOMM [13] and
MRAA [14]. We succinctly and effectively demonstrate
the universality of the core idea by improving vanilla
generative models with widely used facial information.
We emphasize that this generality will facilitate follow-
up researchers to modularly design the prior knowledge
they focus on and use more dedicated generative models.

• As a supplement to expensive and inconvenient expert
evaluation, we propose two strategies to further evaluate
the generation performance of different models in a cost-
effective manner. In public evaluation, volunteers are
recruited to choose the preferred model in paired videos.
In automatic evaluation, the qualities of the generated
samples are compared in terms of the recognition results
predicted by different models.

• We use the generation technique to enlarge the FME
dataset, improving the performance of action recognition
backbones in FME recognition. The improvement in
various 3D neural networks indicates the effectiveness of
using generated data to boost the performance of data-
driven methods on the FMER task.

The rest of this paper is organized as follows. Section II
reviews previous work on micro-expression analysis and image
animation. Section III details the facial prior that we introduce
to the image animation framework and how we measure the
prior knowledge mathematically. Section IV introduces the
experiments and analyzes the results. Section V discusses
possible future research directions based on micro-expression
generation. Finally, Section VI concludes and summarizes
various observations.
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II. RELATED WORK
A. Micro-Expression Analysis

Traditional micro-expression analysis, including micro-
expression recognition and micro-expression spotting, has
attracted increasing attention. Micro-expression recognition
aims to assign an emotional label to a well-segmented micro-
expression sequence. The first public challenge on micro-
expression recognition was held in 2018 [16]. Handcrafted
features, including LBP-TOP, HOOF and 3DHOG, are used in
baseline methods [17]. Various methods [18], [19], [20], [21],
[22], [23] have studied and experimented on micro-expression
recognition. Experiments based on single datasets [24] and
cross datasets [25], [26], [27] are used for evaluation. Micro-
expression spotting aims to detect the onset and offset frames
of a long micro-expression sequence. The first public challenge
on micro-expression spotting was held in 2019 [28]. Various
methods [29], [30], [31], [32] have been proposed to spot
FMEs from spontaneous videos. The latest public challenge
on micro-expressions [33] involved a new challenge of spot-
ting both macro-expressions and micro-expressions from long
videos [32], [34], [35], [36].

Large-scale training data and specific facial features ben-
efit micro-expression analysis. The performance of previ-
ous micro-expression methods is limited by the scale of
public micro-expression datasets. Some institutions began
to construct datasets by conducting trials to collect micro-
expressions from a wide range of subjects. The datasets
include the CASME dataset [37], CASME II dataset [1],
CAS(ME)2 dataset [11], CAS(ME)3 dataset [38], SAMM
dataset [8] and SMIC dataset [9].

The facial action coding system (FACS) [39] is a compre-
hensive, anatomically based system for describing all visu-
ally discernible facial movements. FACS breaks down facial
expressions into individual muscle movements called action
units (AUs) [40]. AUs have been widely used in facial expres-
sion research, especially in the macro-expression domain [41],
[42]. By contrast, there is limited research on AU detection for
micro-expressions [43], [44]. AU face regions are studied [45],
[46], [47] to detect subtle micro-expression movement for
recognition. Samples from most existing datasets are labeled
with the emotion category and activated AU information,
which we can leverage. Another feature of existing datasets is
that the subjects are seated in front of a monitor to record the
full-frontal faces of the participants. Moreover, the collected
raw videos are carefully processed by professionals to rule out
irrelevant facial movements and reserve ME-related motions.
Considering these features of existing datasets, we intro-
duce another useful tool called Dlib [48]. Dlib is a library
widely used for face detection, facial keypoint prediction and
face embedding [49], [50]. With 68 landmarks predicted by
Dlib [48], faces can be accurately detected and aligned. The
strict preprocessing of dataset construction [37] ensures that
Dlib is sufficiently robust as a feature extractor for the ME
analysis in our method [51]. In recent years, research based on
deep learning methods has taken high-level features as input,
such as optical flow [52], while others prefer to feed their
networks unprocessed videos to automatically extract facial
features [26].

However, due to the expensive labeling issue, the micro-
expression recognition task remains difficult due to limited
data. Facial micro-expression recognition (FMER) is essen-
tially an action recognition task that is also considered a dif-
ficult task in micro-expression analysis. Before deep learning
methods were introduced, LBP-TOP [53] and optical flow [29]
were applied to this task. Shallow networks have also been
introduced to combat the limited data [54], [55], [56]. Several
articles [57], [58], [59], [60], [61] apply specifically designed
deep neural networks to the FMER task. There are also other
deep learning techniques being introduced to the task, such as
adversarial training [12] and neural architecture search (NAS)
[62]. A recent study [7] reports that with additional training
data, the performance of general networks could match that
of networks designed specifically for FMER. In our work,
we propose to use an improved image animation technique
to generate novel micro-expression data, thereby improving
the performance of general action recognition backbones [63]
on the FMER task.

B. Image Animation

Image animation aims to take a source image and a driving
video to generate a video following the motion of the driving
video while preserving the identity of the source image. In the
facial image animation task, strong prior knowledge must be
considered. Several methods [64], [65], [66], [67] extract facial
features such as landmarks and boundaries before face synthe-
sis or animation. Our work is similar since we use dlib [48] and
AUs [40] to predict landmarks as prior knowledge of micro-
expressions. Other image animation methods do not require
strong prior knowledge as explicit keypoints or landmark
labels in a particular domain since they use self-supervised
or unsupervised learning methods to extract features. Some
research [68], [69] focuses on extracting object landmarks
to represent structural motion in an unsupervised manner.
Then, with the representation of critical object information,
an image can be animated based on the structure of keypoints
or landmarks. Bansal et al. [70] proposed Recycle-GAN as
an unsupervised data-driven approach for video retargeting.
Wiles et al. [71] proposed X2Face training with a large
collection of data to control face generation in a fully self-
supervised manner. Siarohin et al. [72] proposed Monkey-Net
in an unsupervised way trained to extract object keypoints
and animate images. Similar work includes FOMM [13] and
MRAA [14], which also utilize self-supervised methods to
animate images by keypoints extracted from different domains
of data. Since micro-expressions have unique characteristics
such as short duration and low density, self-supervised meth-
ods can hardly obtain related motion features and semantic
information. Hence, we introduce dlib and AUs to acquire
facial landmarks to locate the occurring area and represent the
intensity of the micro-expression as strong prior knowledge.

III. PROPOSED METHOD

Our method applies facial prior knowledge to enhance the
performance of FME generation. First, we design the facial
prior module to represent AUs with facial landmarks as the
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Fig. 2. Illustration of our framework that takes target faces and driving facial micro-expression (FME) videos as inputs and can generate novel FME videos.
Our framework contains two main modules, namely, the facial prior module and motion transfer module. We use the image animation method to model the
motion transfer problem; therefore, the motion transfer module can be further split into the motion representation module and generation module. In the facial
prior module, facial prior keypoints are calculated based on facial landmarks, which can be extracted by a landmark detector. To alleviate the estimation
error of facial prior keypoints, we formulate an n-channel Gaussian distribution map with a Gaussian kernel. To enhance the flexibility of localizing facial
subregions, we modify the Gaussian distribution map as an adaptive weighted prior (AWP) map using a convolution layer. With the AWP map, the facial
prior module can become learnable through the loss function. The target face and each face in the driving video are fused with the AWP map to serve as
the extended version of the inputs for the motion representation module. As the AWP map directly encodes facial keypoint information, the extended version
of inputs will facilitate the location predictor in the motion representation module to locate keypoints, which leads the model to pay more attention to facial
movement instead of keypoint locations. By combining the heatmap output of the location predictor, the target face and facial prior keypoints from our facial
prior module, the motion predictor in the motion representation module can generate the motion flow and motion map, which are then used as inputs for the
generation module to drive the target face to a novel FME video sequence. Perceptual loss is used to minimize differences between generated and driving
videos. Equivariance loss is also used to constrain the location predictor.

facial prior. Second, the extracted prior assists deep motion
retargeting by indicating where micro-expressions appear.
Finally, the generation module generates photorealistic FME
frames by considering motion information with facial prior
knowledge. Fig. 2 shows the architecture of FME generation
used in this paper, in which the motion representation module
and generation module are ideal and can be concretized by
different algorithms.

A. FME Generation With Image Animation

We model the motion transfer process using image ani-
mation, which aims to generate novel videos. It tackles the
problem of transferring motion information from a video
to an image [72]. Image animation can be used in FME
generation to generate novel FMEs. Generally, image ani-
mation can be divided into two subtasks, namely, motion
prediction and object reconstruction. The motion prediction
module extracts motion information from ordered sequences
[70] such as videos. Then, the object reconstruction module
applies deep learning methods such as generative adversar-
ial networks (GANs) [73] or variant autoencoders [74] to
reconstruct images. In recent years, state-of-the-art image
animation methods strive to improve the generalizability of
the framework [13], [14], [72], animating various categories
of motion with appropriate training data. This is achieved
by extracting motion information via self-supervised learning

methods, which guarantees the frameworks can learn without
prior knowledge.

However, self-supervised learning does not consider seman-
tic information from a specific domain. Features of FMEs
make mainstream animation frameworks often fail to work.
Experiments also indicate that in FME generation, it is difficult
for most self-supervised approaches to learn the motion repre-
sentation of FMEs [15], [75]. Intuitively, the ability of humans
to spot FMEs can be significantly improved if prior knowl-
edge of FMEs is provided [76]. Prior knowledge of FMEs
gained in psychology research, namely, the facial prior, can
be considered as compensation for self-supervised learning.
Our proposed method is motivated by this observation.

B. Facial Prior

Facial keypoints and the facial prior map indicate facial
areas where FMEs might occur according to FACS. The basic
idea is to utilize the facial prior of each frame instead of using
a self-supervised approach. The ideal facial prior is expected
to provide a map from micro-expressions to facial landmark
locations.

1) Facial Keypoints: Facial keypoints indicate the
AU-related areas in MEs. To locate the AU-related area,
we use facial landmarks to estimate the centers of the activated
AU region of MEs. We introduce facial keypoints to locate
the areas of the activated AUs and represent the semantic
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information of each group area. We distribute keypoints
into groups, with each keypoint located and controlled
one-to-one in the group area. Since not all keypoints located
in the facial landmarks appear at a very close distance from
facial landmarks and can be calculated by them specifically,
keypoints can be formulated as a linear combination of
landmarks [77].

As mentioned above, not all actions occur in the facial
landmarks, which are sometimes difficult to locate by machine
learning models due to the lack of edge information. Since
facial landmarks are specific to each individual, we can
calculate certain keypoints with facial landmarks. Because the
distance between the camera and the person’s face causes
variation in the landmark distance at the pixel level, a reference
must be employed to diminish variability between individuals.
We introduce the distance between the inner corner point of
each eye as a reference, called eye-distance. We first use a
landmark detector to locate n facial landmark points. With
eye-distance as a reference, we then calculate the keypoint
locations by means of the linear combination of different
landmarks, which differ from face to face, through the facial
landmark detector. Given n facial landmarks predicted by
a landmark detector with the coordinates (x p, yp) of every
single landmark m, keypoint p can be formulated as:[

x p
yp

]
=

n∑
i=1

ki

[
xi
yi

]
(1)

where (x p, yp) is the coordinate of keypoint p and ki denotes
the weight factor of the contribution of landmark i to p.
Detailed information, such as the number of keypoints and
the centers of selected AUs, will be specified in Section IV-E.

2) Adaptive Weighted Prior Map: Due to possible estima-
tion errors, we introduce an adaptive weighted prior map into
the facial prior to normalize the motion information from all
estimated keypoints and assess the uncertainty arising from
estimates. It is reasonable to assess the importance of different
areas according to their distance to the chosen keypoints [15].
To evaluate the importance mathematically, we formulate the
per-pixel uncertainty associated with the estimated keypoints.
For a chosen keypoint p with coordinates (x p, yp) and a cer-
tain pixel i in an image with coordinates (xi , yi ), we calculate
the Euclidean distance between the two points. Assuming that
this distance-related uncertainty attributed to one keypoint has
a Gaussian distribution over the entire image, we give the
formulation for calculating the correlation of pixel i with
keypoint p:

ci p = e−
(xi−x p)2

+(yi−yp)2

σ2 (2)

where σ is the variance of the assumed Gaussian distribution,
which is set to 0.01 manually by experience [13]. For each
keypoint, we can calculate the uncertainty distribution over
the whole image as Sp(xi , yi ) =

∑
i∈RH×W ci p.

In [15], the uncertainty distribution is normalized simply
by summation S = 1

m
∑m

p=1 Sp, which we refer to as the
equal weighted prior (EWP) map. Adding all the uncertainty
distribution maps might be mathematically concise, but this
method lacks interpretability, and the model effect might be

Algorithm 1 Facial Prior Module

limited due to the hasty manual settings of the summation
method. Therefore, a convolutional neural network is used
to normalize the distance-related uncertainty, which can be
formulated as:

S = 9w(Sm) (3)

in which w is the weight parameter of the neural network and
Sm is the result of the concatenation of contribution maps from
m keypoints, which has m channels. 9(·) is the applied acti-
vation function. Since the parameters are optimized according
to the training data, the network takes the motion information
from actual videos into consideration, thereby alleviating error
from the estimation. The result of this normalization of the
distance-related uncertainty is our proposed adaptive weighted
prior (AWP) map.

Our proposed facial prior module is summarized in
Algorithm 1. Sets of points calculated according to prior
knowledge help the motion representation framework pro-
ceed with image animation and avoid the shortcomings of
self-supervised learning. We believe this paradigm can help
professionals make better use of different kinds of motion
representation models and improve the quality of generated
FMEs by providing a new perspective using the facial prior.

C. Implementation and Optimization

In this subsection, we illustrate our approach to combin-
ing the facial prior with state-of-the-art techniques of image
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Fig. 3. Relationship of facial muscles, action description and AU. The AU
area can be integrated with the correlation of branch muscle movement and
positional proximity. For example, the areas of AU1 and AU2 can be integrated
into one group since they are controlled by the same motor branch of Frontalis.

animation by introducing facial prior into two motion rep-
resentation frameworks that have yielded excellent results in
macro movement generation tasks.

1) Facial Prior: To encode the facial prior into the image
animation framework, we investigate the corresponding knowl-
edge from ME research. Specifically, we study the spatial
location feature of AUs, which is directly related to the
selection of keypoint locations. For starters, we study the
relationship between facial muscles and AUs. Facial muscles
have significant spatial location information and provide a
reference for choosing keypoints. Then, we utilize a Voronoi
diagram to assist in choosing the locations of keypoints.

Facial muscle movement is an essential cue to facial expres-
sions and is strongly related to AUs [78]. Fig. 3 shows the
AUs and their facial positions along with the related muscles.
Micro-expressions can be roughly located with the position of
AU-related areas. Since an AU can be formulated with one or
more muscle movements, we distribute the AU-related areas
based on the facial muscle orientation. The area with the same
branch muscle controlled can be integrated.

To integrate spatially neighboring areas of facial muscles
or AUs, we use a Voronoi diagram to divide the facial area
into several parts according to facial keypoints. In a Voronoi
diagram, every point in a given polygon region is closer
to its keypoint than to any other. By choosing appropriate
AU-oriented keypoint locations, each area of the Voronoi
diagram conforms to the distribution of AUs on the human
face.

In summary, we investigate the spatial location feature of
AUs through facial muscles and introduce a Voronoi diagram
to assist in choosing facial keypoints. In some mainstream
FME databases [1], [37], [79], FME video samples are
provided along with AU labels, which would also help us
make better use of AU patterns in the generation process.
The selection of keypoints and an illustration of the Voronoi
diagram are detailed in Section IV-B.

2) FOMM: The first-order motion model [13] has two
modules: motion estimation and image generation. The first
step in the motion estimation module is to estimate coarse
motion from the target frame to the driving frame. In the
motion estimation module, the self-supervised learning method
is adopted for application to diverse scenarios involving macro
movements. With the dense motion field and occlusion mask
eventually extracted in the motion estimation module, the
image generation module renders an image of the target object
moving, such as the one in the driving video.

We have made the following modifications to FOMM.
The keypoint representation acts as a bottleneck leading to
a compact motion representation, as Siarohin et al. argued
[13]. In vanilla FOMM, an encoder–decoder network learned
in a self-supervised manner serves as a keypoint detector to
predict K keypoints, indicating K critical parts for motion
(K is set manually). However, Fan et al. [75] found that the
keypoints predicted by vanilla FOMM are heavily overlapping
and argued that subtle variations in FMEs make it difficult for
an unsupervised learner to learn the keypoints well. In our pro-
posed adaptive weighted prior-based first-order motion model,
the unsatisfying detected keypoints are replaced with facial
prior keypoints, which contain more prior knowledge and
semantic information. Moreover, our proposed facial prior map
is fused by concatenating each frame as an additional channel,
providing strong distance-related importance knowledge.

The facial prior map calculates the local importance of the
human face. Based on it, our previous work [15] improved
the performance of the motion representation framework.
However, one limitation is that the contributions of different
keypoints are equally weighed by the FPM. To address this
problem, an adaptive weighted method is adopted, using
a convolutional layer with learnable weights that can be
optimized with the training loss function. Technically, the
learnable convolutional layer can weigh each facial prior
keypoint differently to approximate the prior distribution in
a given dataset.

3) Modified MRAA: Compared to keypoints in FOMM,
MRAA [14] focuses on semantically relevant regions and tries
to disentangle shape and pose in the region space.

Research [14] shows that MRAA surpassed FOMM in
many macro movement image animation tasks. However,
for FME generation, MRAA has drawbacks compared with
FOMM. First, MRAA focuses on regions to extract the motion
information more easily; however, for FMEs, local motion is
more important yet difficult to extract from driving videos.
Second, the disentanglement of shape and pose might make
the overall training of the framework uncoordinated, resulting
in unsatisfactory facial distortion.

The adaptive facial prior can provide semantic information
that could be fed into the region-prediction module of MRAA.
Therefore, in our modified version of MRAA, the adaptive
weighted prior map is taken as the provided region of interest,
similar to our modifications to FOMM.

4) Training Loss: Our proposed frameworks are trained
and optimized using a multiresolution perceptual loss and an
equivariance constraint loss, which are used in both vanilla
FOMM and MRAA.

Perceptual loss [80] has been applied to various generation
tasks [13], [14], [81], [82]. It compares the high-level features
extracted from two domains. Assume X as the input face and
X̂ as the reconstructed result of input; then, the perceptual loss
L P can be defined as:

L P =
∑

l

αl

∣∣∣∣∣∣El (X)− El

(
X̂

)∣∣∣∣∣∣ (4)

where αl > 0, l = 1, 2, 3, . . . are scalars. El(·) is the feature
extracted by VGG-19 pretrained for ImageNet classification.
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Recently, equivariance constraint loss has been reported
to generate new image animation videos [13], [14]. The
equivariance constraint introduced in [68] and [69] limits
the movement of keypoints. In [13], it was extended to
additionally include a constraint on the predicted Jacobians
from the motion estimator in the pipeline. The equivariance
constraint loss is used following the structure of FOMM [13]
and MRAA [14] and can be defined as

L E = |Ak
X←R − ÃAk

X̃←R
| (5)

where X̃ represents image X transformed by Ã and Ã is a geo-
metric transform matrix. The perceptual loss and equivariance
constraint loss have equal loss weights in the experiments [13].

For the adaptive weighted facial prior-based first-order
motion model, a large number of facial video sequences
including various micro-expressions are used for training
the whole network. Each frame in the videos has its own
corresponding keypoints and FPM, which can be generated
before training. By combining content information from the
target image with motion information from the original driving
video, as well as their keypoints and FPM, we obtain the corre-
sponding reconstructed image. With perceptual loss calculated
between the input driving face and the generated face, the
proposed network can be optimized in an effective manner.
Additionally, the equivariance constraint loss mentioned above
is introduced into Jacobians in the location prediction module
so that the model can predict consistent Jacobians with respect
to given keypoints. To this end, the final loss is the weighted
sum of these two losses. During testing, this framework gener-
ates different FMEs on the given target face image according
to different input driving videos.

For modified MRAA, similar losses are applied as those
used in vanilla MRAA. Since we have provided the region
information for the framework, the original two-stage training
process is simplified to one stage, and the same scenario as
that in modified FOMM is employed.

IV. EXPERIMENT

In this section, we conduct comprehensive experiments
to verify the effectiveness of the proposed algorithm in the
generation of FMEs. First, we introduce the FME datasets used
in our experiment, along with our implementation. Second,
we present the generation results and visualize the different
frames to demonstrate the improvement achieved when using
the facial prior module. Third, we assess the effectiveness
of our proposed facial prior module under two scenarios: 1)
We measure the effectiveness of the equal weighted prior
module using expert evaluation. In this section, we compare
the proposed module with all current methods. 2) We measure
the effectiveness of our proposed adaptive weighted prior
module through public evaluation. In this section, we perform
a significance test of the experimental data to support the con-
clusions drawn from this experiment. Moreover, we compare
the recognition results inferred by a set of recognition models
in the automatic evaluation strategy. Finally, we conduct a
recognition experiment with action recognition backbones to
explore the possibility of using generated data to improve

TABLE I
DETAILS OF CASME II, SAMM AND SMIC-HS DATASETS. SOME STATIS-

TICS ARE FROM THE LITERATURES [1], [8], AND [9], [55]

TABLE II
SELECTED DRIVING VIDEOS FOR EVALUATION

recognition performance. The detailed settings are described
in each experiment.

A. Datasets

Our method is trained using three public facial micro-
expression datasets: CASME II [1], SAMM [8], and
SMIC-HS [9]. Models were trained on the combined dataset,
excluding the videos chosen for evaluation. Details of these
three datasets are presented in Table I. Note that the sample
videos of these datasets have labels of micro-expressions.
In CASME II [1], sample videos are classified into five cat-
egories of micro-expressions: happiness, disgust, repression,
surprise, others. In SAMM [8], sample videos are labeled with
seven categories of micro-expressions: contempt, disgust, fear,
anger, sadness, happiness, surprise. In SMIC-HS [9], micro-
expression clips are classified into three categories: positive,
negative, surprise.

For evaluation, our framework generates FMEs from driv-
ing sample videos on the template target face. We evalu-
ate our proposed AWP on the cross-database MEGC2021
Generation Challenge benchmark. Specifically, we use nine
driving samples and two template faces to generate eighteen
videos for evaluation. Selected driving videos are chosen from
CASME II [1], SAMM [8] and SMIC-HS [9], which are listed
in Table II. The template faces are chosen from CASME I [37]
and SMIC-VIS [9] to avoid possible information leakage.
To maintain the same emotion categories of generated videos,
we refer to the dataset with the simplest categories among
the three datasets, which is SMIC-HS [9]. The mentioned
categories (“positive”,“negative”,“surprise”) are from the con-
figuration of this dataset.

In summary, the generative models will be trained on the
appointed micro-expression datasets. At the same time, the
face samples used to be driven will not appear in the training
set, which could provide justification for the generalization
of the model and prove the effectiveness of the model on
unknown neutral faces.
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Fig. 4. (a) The locations of 68 landmarks. (b) The locations of 18 keypoints.

Fig. 5. Control area of each keypoint with colors associated with same AUs.

B. Implementation

We use dlib [48] to locate 68 facial landmark points,
as shown in Fig. 4(a). We evaluate the importance of each
landmark and use AU to represent the occurrence of FMEs.
Eighteen points are selected to locate the micro-expressions,
as shwon in color in Fig. 4(b). A total of 12 of 18 points are
selected from 68 facial landmarks predicted with dlib, and the
remaining 6 points are linear combinations of different land-
marks. The points 1-12 selected from the 68 facial landmarks
are 19, 24, 27, 38, 41, 43, 46, 48, 54, 55, 57 and 59. With eye-
distance as a reference, points 13 to 18 are calculated from
68 facial landmarks and are formulated as:

p13
p14
p15
p16
p17
p18

 =
1
2


p42
p42
p42
p39
p39
p39

−
1
2


p39
p39
p39
p42
p42
p42

+


p29
p35
p54
p29
p35
p54

 (6)

where pn denotes the coordinates (xn, yn) of point n. Eye-
distance is employed with p39 and p42 as the inner corner
point of each eye. Each point is a linear combination of
68 landmarks, with 3 landmarks contributing to the location of
a single point. Fig. 5 shows the control region of 18 keypoints
parted by the Voronoi diagram. AU areas are divided into
regions, where each region controls one or multiple AUs.

We convert color video to grayscale video and then use
face detection and facial area extraction as a preprocessing
step. Each grayscale image from the video is cropped to a
resolution of 256× 256 pixels and self-concatenated to obtain
3 channel images. We convert all videos to grayscale to make
all the samples in the same format before feeding them into
the network since images in SAMM are all grayscale with
3 channels while the other two datasets are color ones. Details
about the training process are as follows. Keypoints selected
in our experiments are depicted in Fig. 4(b). Additionally,
synthesized facial prior maps Sm were normalized before

entering the motion prediction module. The training process
was terminated after 5000 iterations.

C. Ablation Study

Ablation studies were conducted on two frameworks,
FOMM and MRAA, to verify the effectiveness and robustness
when introducing the facial prior into video generation frame-
works. Fig. 6 presents the generation results and visualizations
of the interframe difference between the current frame and the
given target face.

1) FOMM vs. FOMM With Equal Weighted Prior Map
vs. FOMM With Adaptive Weighted Prior Map: Considering
only FOMM (I I ) and its modifications (I V &V ) in Fig.6,
we find that the adaptive weighted method helps the motion
representation module highlight facial motion and reduces
noise. Examples include the right angulus oris shifting in
cases 1&2, cheek raising in cases 3&4, and eye blinking
in cases 5&6. With the adaptive weighted method, these
movements dominate other subtle motions in the period
in which they occur, which they would not have without
this approach, as shown in the interframe-difference pseudo-
colored visualizations. Additionally, the adaptive weighted
method prevents premature and redundant movements before
the apex frame, which is evident in cases 1−6. This means
that generated FMEs arise and disappear in a smoother
manner.

2) MRAA vs. MRAA With Adaptive Weighted Prior Map:
Considering only MRAA (I ) and its modification (I I I )
in Fig.6, we can see that MRAA with adaptive weighted
prior map better captures subtle motionr, while MRAA pro-
duces comparatively unsatisfying results, with many incorrect
motions that do not convey the same emotion as the driving
sequences do.

3) MRAA With Adaptive Weighted Prior Map vs. FOMM
With Adaptive Weighted Prior Map: We compared the modi-
fications of MRAA and FOMM that yielded the best results,
that is, I I I and V , in Fig.6. Visually, FOMM with adap-
tive weighted prior map outperforms MRAA with adaptive
weighted prior map since FOMM with AWP animates lifelike
facial expressions even with motions that are difficult to learn,
such as the right angulus oris shifting in cases 1&2.

D. Evaluation Metrics

Two evaluation scenarios, i.e., expert evaluation and public
evaluation, are adopted to assess the performance of our
approach.

Specifically in expert evaluation, each generated video is
subjectively evaluated based on the quality and AUs by experts
who are FACS certification [39] holders. The facial region is
divided into upper and lower parts and evaluated separately
with a score of 0-3. By separating the face into two parts,
evaluations can take into account partial facial movements
that may occur. Furthermore, the judges can provide a score
of 0-3 in a category called noise to evaluate the overall
quality of the generated video. The noise score decreases if
the generated video has background artifacts. Therefore, the
maximum available score for each video is 9.
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Fig. 6. Comparison of MRAA, FOMM, MRAA with adaptive weighted prior (AWP) map, FOMM with equal weighted prior (EWP) map and FOMM with
adaptive weighted prior (AWP) map. In each case, the target face and driving sequence are presented in Row 1. The results are presented in Rows 2, 3, 4,
5 and 6. All the images are covered with pseudo colored frame difference between the current frame and the target face. For better visualization, we sort
the presented cases by the noticeableness of the FME. Markers indicate some subtle movements, such as angulus oris shifting (red rectangle), eye blinking
(magenta dotted capsule), cheek raising (yellow ellipse) and many others (orange arrow).

The following details the score categories:
1) Score 0: Completely Incorrect
2) Score 1: Poor
3) Score 2: Good
4) Score 3: Excellent
As for public evaluation, a total of 31 students were

recruited as volunteers with payment (mean age 20.68,
standard deviation(SD) = 1.35, including 20 males and
11 females). Given each compared video pair, the partici-
pants were required to choose the better of two given FMEs
generated by two different models. The comparison pairs
were formed according to the degree of improvement step

by step (e.g., FOMM v.s. FOMM with EWP, FOMM with
EWP v.s. FOMM with AWP). This design was used for
three reasons: 1) the step-by-step comparison can illustrate the
effectiveness of each step of improvement; 2) this design can
compare different kinds of methods based on the transitivity
of comparison; and 3) the step-by-step comparison reduces
the size of comparisons for the untrained volunteers. Since
the subjects are not professionally trained, grading ME video
samples for too long might be tedious for them and affect their
judgment. Therefore, we provided only a subset of the possible
pairings. Furthermore, we presented the results of two models
modified with the proposed AWP and asked them to choose
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Fig. 7. Average voting rate results between pairwise methods using
public evaluation. The voting rate represents the subject’s confidence in the
preference model in a set of public evaluation. The higher the voting rate is,
the higher the subjects’ confidence in the preference model. Since the first set
of data failed the statistical test, we use slashes to denote it. Please note that
EWP is the abbreviation of equal weighted prior, and AWP is the abbreviation
of adaptive weighted prior. Best viewed in color.

the best model to provide a reference for future research. That
is, each participant graded 72 video pairs in total.

Through this test, the total vote count of each video is
obtained for further analysis. Therefore, we propose two met-
rics to measure the vote result of public evaluation: preference
rate and voting rate. Preference rate indicates the proportion
of preferred samples in the comparison while voting rate
represents the average confidence in the model during the
comparison. Specifically, the preference rate of model A when
compared with model B is formulated as:

PrefRate(A|B) =

∑M
i=1 1

(V C(A|B)
i >V C(B|A)

i )

M
, (7)

the voting rate of model A when compared with model B
is formulated as:

VotingRate(A|B) =

∑M
i=1 V C (A|B)

i
M × N

, (8)

where V C (A|B)
i is the vote count of model A in sample i

when compared with model B. 1
(V C(A|B)

i >V C(B|A)
i )

is a value
that changes based on the comparison result: it is equal to
1 when (V C (A|B)

i > V C (B|A)
i ) and 0 otherwise. M is the total

number of compared video pairs, and N is the total number
of participants. When comparing models A and B in sample
i , V C (A|B)

i + V C (B|A)
i = N . Furthermore, when N is odd,

PrefRate(A|B) + PrefRate(B|A) = 1 and VotingRate(A|B) +

VotingRate(B|A) = 1.

E. Expert Evaluation

The expert evaluation results in Table III are the challenge
results from the MEGC2021 generation track. This is the first
year the challenge was held. More detailed figures are avail-
able at https://megc2021.github.io/GeneResultevaluation.html.

As shown in Table III, the FOMM with our proposed EWP
outperforms the other existing micro-expression generation
methods and achieved first place in the MEGC2021 generation
track.

Generally, expert evaluation can only provide evaluation
results for the considered methods, and it is not convenient

Fig. 8. Boxplot of the voting rate of each set of data in public evaluation.
In the boxplot, the red dot denotes the mean and the line in the box denotes
the median. There is a large gap in the mean values of the last three sets
that passed the statistical test. There are also significant differences in the
distributions of voting rate among different samples in each set. These results
yield further conclusions. Please note that EWP is the abbreviation of equal
weighted prior, and AWP is the abbreviation of adaptive weighted prior. Best
viewed in color.

Fig. 9. Detailed comparison results between pairwise methods using public
evaluation. Given a pair of FME videos generated by different methods,
subjects were asked to vote for the one that seems more realistic. Voting
rate indicates the sum of votes from all subjects for each testing sample.
To ensure fair comparisons, we use the same samples as in the MEGC2021
Generation Challenge. The voting rates for all samples are shown: a higher
score indicates better performance. EWP is the abbreviation of equal weighted
prior, and AWP is the abbreviation of adaptive weighted prior. Best viewed
in color.

to conduct exploratory work, such as ablation experiments.
Luckily, the DMT-FMEG [75] included in this challenge
utilized vanilla FOMM and trained the model in the FME
dataset. Since the expert evaluation scores are more authorita-
tive and rare, this result provides a powerful research reference
to further explore the effect of the facial prior module in
improving state-of-the-art methods for image animation in
micro-expression.

F. Public Evaluation

The detailed results of the public evaluation are shown in
Fig. 9. As mentioned above, we proposed two metrics to
assess the experimental data. Due to the limited number of
experimental samples in our public evaluation, sampling errors
may be introduced, resulting in incorrect interpretation of the
results. To this end, we assess the statistical significance of
our results to confirm the conclusions.

To begin, we perform statistical modeling of our public eval-
uation. We conducted four sets of comparative experiments,
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TABLE III
OVERALL EXPERT EVALUATION OF EXISTING STATE-OF-THE-ART METHODS. THE METHODS AND RESULTS ARE FROM

THE FIRST FME GENERATION CHALLENGE IN MEGC2021

TABLE IV
SIGNIFICANCE TEST RESULTS OF EACH SET OF PUBLIC EVALUATION. H0 IS THE EXPECTED MEAN OF THE VOTES THAT IMPROVED METHOD Ma

RECEIVES µ < 15.5. IF THE TEST STATISTIC OF THE SET Z > 1.65, THEN WE REJECT HYPOTHESIS H0 AND CONSIDER Ma TO BE BETTER IN
THE PUBLIC EVALUATION, I.E., THIS SET PASSES THE SIGNIFICANCE TEST

each consisting of 31 participants choosing the better model
among 18 pairwise videos according to the generation quality.
We refer to the better model as Ma and the worse one as Mb.
A pairwise sample comparing Ma and Mb receives 31 inde-
pendent subject votes. Suppose the probability of voting for
Ma for each participant in a sample is p, and the number
of votes received by Ma in a pairwise video comparison is a
random variable X ; then, X follows a binomial distribution,
that is, X ∼ B(31, p). According to the central limit theorem
(CLT), when the sample number n in the binomial distribution
is sufficiently large (greater than 20), a binomial distribution
can be approximated using a normal distribution. Therefore,
for X ∼ B(31, p), we can use the normal distribution X ∼
N (31p, 31p(1− p)) as an approximation. That is, for a video
pair generated by Ma and Mb, its 31 evaluations by the
public can be regarded as following a normal distribution X ∼
N (31p, 31p(1− p)). Then, the significance of the conclusions
can be tested using a normal distribution significance test.

Since we assume that Ma is better than Mb in the evaluation,
it is reasonable to set the null hypothesis H0 as follows: fewer
than 31

2 participants will vote for Ma in a sample. Assuming
X represents the number of votes that Ma receives and that
its expected mean is µ, H0 can be formulated as H0 : µ <

15.5. Moreover, the alternative hypothesis can be formulated
as H1 : µ ≥ 15.5. Since there are 18 pairs of videos generated
by Ma and Mb being voted on by the public, the process
can be abstracted as 18 sampling tests, and we can obtain
statistics regarding the 18 samples of X . On the basis of this
statistic, we can calculate the mean X̄ and standard deviation
σ of the random variable. Therefore, the test statistic Z can
be calculated as follows:

Z =
X̄ − µ

σ/
√

n
,

where n = 18 is the number of samples. Since the alternative
hypothesis is H1 : µ ≥ 15.5, a right-tailed test should be used.
Assuming the commonly used significance level of 0.05, the
test critical value is 1.65 according to the distribution function
of the standard normal distribution. That is, if the test statistic

Z > 1.65, then we can reject hypothesis H0 and conclude that
the results are statistically significant.

On the basis of the data collected via public evaluation,
we conducted a significance test on four sets of method
comparison experiments; the results are shown in Table IV,
where sets 2, 3, and 4 have a test statistic that exceeds 1.65.
Therefore, the following analysis draws conclusions from only
these sets in the public evaluation, while the conclusion from
set 1 is considered nonsignificant, as shown in Fig. 7.

To better illustrate the analysis of the public evaluation,
we present boxplots of the collected data. Fig. 8 shows a large
gap in the average voting rate of several groups of data that
have passed the significance test, and there is a large gap in the
voting rate distribution. In other words, the significance test
can be used to explicitly preprocess the data collected from
the public evaluation to ensure that the conclusions we draw
are reliable.

G. Result Analysis

In this section, we summarize the experimental data col-
lected from the expert evaluation and public evaluation
described above. The conclusions verify the effectiveness of
our method.

First, we introduce expert evaluation. Expert evaluation is an
evaluation of existing methods by qualified experts according
to preset conditions. Since MEGC2021 was the first competi-
tion, according to the expert evaluation provided in Table III,
FOMM with EWP achieved the best results among all methods
in the competition. Furthermore, another group of methods that
participated in the competition, DMT-FMEG [75], used the
vanilla FOMM model trained on micro-expression datasets.
From the perspective of expert review, FOMM with EWP has
better micro-expression generation performance than does the
vanilla FOMM method. Overall, FOMM with EWP scored the
highest in the first micro-expression generation competition
and surpassed the FOMM in the expert evaluation.

Next, we present the public evaluation, which is convenient
for conducting ablation experiments to measure the degree of
model improvement. However, since these data come from
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TABLE V
PREFERENCE RATE RESULT OF THE PUBLIC EVALUATION. THE PREFERENCE RATE INDICATES THE PROPORTION OF PREFERRED SAMPLES A METHOD

GENERATED IN A PAIRWISE COMPARISON WITH ANOTHER METHOD. NOTE THAT SINCE THE FIRST SET OF PUBLIC EVALUATION DID NOT PASS
THE SIGNIFICANCE TEST, WE DO NOT DRAW ANY CONCLUSIONS FROM IT

public opinion, we must perform a statistical test on the
data collected during this process. According to the first set
of data in the public evaluation (FOMM vs. FOMM with
EWP), the difference between these methods might not be
considered significant, so we will not draw any conclusions.
The remaining data groups passed the significance test, and
we analyzed them in turn.

For the second set of public evaluation data (FOMM with
EWP vs. FOMM with AWP), the FOMM with AWP method
produced more preferred videos (i.e., a preference rate greater
than 0.5 was obtained, as shown in Table V). Furthermore,
public subjects were, on average, more than half as confident
(i.e., more than half the voting rate, as shown in Fig. 7)
in this approach compared to FOMM with EWP. Therefore,
FOMM with AWP outperforms FOMM with EWP in the
FME generation task. Furthermore, introducing a learning
layer in the facial prior module is beneficial to encoding the
prior knowledge of the human face, thereby improving the
performance of the model on the FME generation task.

Similarly, we use the facial prior module to improve MRAA.
Through the preference rate and voting rate indicators of
the public evaluation, we can see that the MRAA with
AWP generate more preferred videos for public subjects and
leads to higher model confidence, which means that AWP
improves MRAA’s performance on FME generation tasks. The
improvement effects of the MRAA with AWP and FOMM
with AWP models indicate that it is feasible to introduce
a facial prior module into the image animation framework
to encode the facial prior, thereby improving the generation
effect of FMEs. To provide a reference for follow-up research,
we conducted the public evaluation experiment on these two
improved models. The results show that the improved FOMM
with AWP model is better for generating micro-expressions.

Through the above analysis of the experimental data of
the expert evaluation and public evaluation, we can see that
the introduction of a learnable facial prior module gener-
ally improves the effectiveness of image animation methods
in micro-expression generation. Specifically, in the expert
evaluation, the FOMM with EWP outperforms the vanilla
FOMM.The second set of data of the public evaluation illus-
trates introducing a learnable module makes the FOMM with
AWP superior to the EWP method, which means that it also
outperforms the vanilla FOMM method. Moreover, the public
evaluation indicates that the MRAA with the learnable AWP
outperforms the vanilla MRAA method.

Furthermore, by comparing FOMM to FOMM with EWP
through expert evaluation and public evaluation, we can see
that the evaluation process still requires expert input when
the improvement effect is relatively subtle and specialized.
On the other hand, there are more pronounced gaps in the

expert evaluation when the public perceives certain effects
to be significant. Therefore, we recommend statistical tests
after each public evaluation to ensure the significance of the
conclusions.

In summary, the two parts of human evaluation, including
expert evaluation and public evaluation, conjointly prove the
superior effectiveness of the proposed method to perform FME
transfer to an unknown neutral face.

H. Automatic Evaluation

Both expert evaluation and public evaluation require the
involvement of humans, which could be time-consuming and
lack objectivity; an automatic evaluation strategy could effec-
tively address these shortcomings.

Here, we evaluate the generation quality by comparing the
recognition results for real samples and generated samples.
This specific scenario applies a performance requirement to the
recognition method. Notably, a recent study [7] showed that
general action recognition backbones could achieve compara-
ble state-of-the-art performance to that of the models dedicated
to FME when provided an adequate amount of training data;
therefore, we evaluate the samples with three general action
recognition models using F1macro and accuracy as metrics
and take the average as the final result. For reference, we also
report the recognition results for real samples, i.e., the driving
videos in the generation experiment. The training strategy of
the three discriminative models is augmented by generated
data, which will be specified in the next section.

As shown in Table VI, the recognition results of the real
samples are all in the leading position, which provides a good
reference for the remaining models. The samples generated
by both FOMM and MRAA have better recognition scores
when they are equipped with AWP, which indicates that they
both generate more authentic data with the assistance of AWP.
Notably, the recognition score on the dataset generated by
FOMM with AWP is significantly higher than that generated
by MRAA with AWP, which echoes the result of the signifi-
cance test in the public evaluation.

The automatic evaluation protocol has the following advan-
tages: 1) The reproducibility of the protocol using general
action recognition backbones is better. 2) Averaging multiple
results from different backbones instead of using only one
model can reduce accidental results caused by potentially lim-
ited model performance. 3) Due to the introduced training data
enlarged by generative models, the performance of the general
action recognition backbones reaches applicable results. This
can be seen from the fact that all three sets of networks
achieved consistent conclusions, which also aligns with the
expert/public evaluation.
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TABLE VI
RESULTS OF AUTOMATIC EVALUATION. THE FIRST COLUMN SHOWS THE SOURCE OF DATA BEING TESTED. SCORES OF THE BETTER MODELS WITH

OR WITHOUT AWP ARE SHOWN IN BOLD, WHILE THE BEST OF ALL MODELS IS UNDERLINED

In summary, by comparing the recognition results for real
samples and generated data, we can evaluate the genera-
tion quality automatically. The performance difference among
models reflected by this evaluation strategy also matches the
human evaluation.

I. Augmented Recognition

A recent study [7] reports that the performance of large
networks could be greatly improved by considering more
data. Moreover, general discriminative models can match the
performance of models specifically designed for the FMER
task. However, the samples are collected in real scenarios
and are restricted by the expensive labeling issue. With the
micro-expression generation technique, we can expand the
size of the training set by a factor of ten or more, thereby
substantially expanding the sample diversity of the training set.
We conduct recognition experiments with the training dataset
enlarged by the FME generation technique, which we refer to
as augmented recognition.

In the augmented recognition experiment, we use the
dataset of MEGC2019 recognition [28], which is a composite
of the three mainstream micro-expression datasets, namely,
CASME2, SAMM, and SMIC-HS. The dataset consists of
three classes: positive, negative, and surprise. We apply
subject-independent conduction in the augmented recognition,
to ensure that no subject simultaneously appears in both the
training and testing sets. The ratio of the training set to the
testing set is 7:3.

To avoid data leakage, the generation model is trained with
only the separated training set. We use the first frame of every
training video clip as the source frame, and the remainder
of each video clip as the driving video. Every sample in the
ME dataset has a relatively neutral first frame. The generation
strategy indicates that we could enlarge a training set with n
samples to n2, in theory.

Another practical problem in augmented recognition is the
proportion of generated data in the training process. We calcu-
late the loss from real samples and generated data separately,
then balance their weights with a parameter. Suppose the loss
from real samples is Lreal and the loss from generated data is
Lgen ; therefore, the total loss can be formulated as:

L total = Lreal + λLgen

where λ is the balance parameter that can be adjusted man-
ually. With the balance parameter, we can easily set the

TABLE VII
RESULTS OF AUGMENTED RECOGNITION. R.D. IS SHORT FOR REAL DATA,

WHILE G.D. STANDS FOR GENERATED DATA. THE RATIO BETWEEN
R.D. AND G.D. INDICATES THE MAGNITUDE OF THE GENERATED

DATA ENROLLED IN THE TRAINING PROCESS COMPARED TO
THE REAL DATA. RESULTS OF THE BEST CONFIGURATION

OF A BACKBONE ARE SHOWN IN BOLD, WHILE THE
OVERALL BEST MODEL IS UNDERLINED

proportion of generated data in the training process to prevent
it from overwhelming the effect of real samples.

The training process is implemented based on the MEB
[7] library, which provides tools for data loading and train-
ing micro-expression models. Specifically, the backbones use
RGB as input, whose channel number is 3. All the samples
are resized to 112 × 112. The recognition experiments are
performed on a 4-2080Ti-GPU machine. The batch size is
32 for both real samples and generated data. We use the Adam
optimizer with an initial rate of 10−4 and steps-based learning
rate reduction policy for all the backbones. All the backbones
were trained with a fixed number of iterations of 150, while
the enrolled generated data are used only once in the overall
training process. Therefore, the ratio of enrolled generated
data to real samples is equal to the number of times that
the real samples are repeated. Moreover, the weight of the
generated data could be adjusted by λ flexibly. Specifically,
when λ = 0.01 and the number of training instances on real
samples is 150, the magnitude of the enrolled generated data
is 1.5 times that of real samples.

As shown in Table VII, the F1macro score of all the
action recognition backbones improves systematically and
significantly. This result shows the effect of introducing gen-
erated data into the training process to further improve the
recognition performance. The backbones used in the automatic
evaluation are trained and augmented by means of generated
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data, while no subject or motion information in the evaluated
samples appears in the training set. Since the batch size might
affect the optimization results, we conduct an additional group
of experiments with a batch size of 64 with no generated
data being introduced. In this setting, MC3-18, R(2+1)D-18
and R3D-18 obtain F1 scores of 0.439, 0.366, and 0.375,
respectively, all of which are lower than the best results yielded
by the methods trained on the synthetic dataset. These results
verify the effectiveness that can only be achieved through the
use of generated data.

V. FUTURE DISCUSSION

In this section, we discuss possible future research directions
based on this paper from three perspectives: potential improve-
ment of the generation algorithm, the application scenario of
boosting micro-expression recognition, and the vision of using
prior knowledge in expert-dependent domains.

A. Algorithm Improvement

In this paper, we propose a micro-expression generation
framework that considers facial prior knowledge. By introduc-
ing a facial prior module, we encode the spatial features into an
image animation framework, addressing the shortcoming that
the motion information in the rare ME samples is so sparse that
existing image animation method based on self-supervision fail
to capture the spatial features of micro-expressions.

The proposed work suggests that the ME generation perfor-
mance of the image animation framework could be system-
atically improved by introducing handcrafted features, while
no other losses or constraints are needed. To achieve bet-
ter performance in micro-expression generation, a promising
improvement can be achieved by introducing better hand-
crafted features, especially spatial features that are specific
to the micro-expressions, such as LBP-TOP [53]. Moreover,
the proposed AWP is based on the Dlib library. A model that
could predict more keypoints will provide more fine-grained
features to the overall framework. We believe that the plug-
and-play facial prior module provides researchers, not only
computer vision researchers but those who have backgrounds
in psychology, an efficient interface to encode better features
into the framework. Similarly, better generative models can
also be introduced. In summary, due to the concise and mod-
ular setup used in this paper, the generalizability of the core
idea, which is, introducing facial priors to generative models,
has been demonstrated. The scalable framework proposed in
this article supports follow-up researchers to introduce prior
knowledge and inductive bias of research concerns through
modular design.

We must also acknowledge that intricate loss functions or
constraints are beneficial to the task. Subtle motion translation
is a very challenging topic. A dedicated loss function for the
FME generation task is a promising means to further improve
the generation quality.

B. Boosting Recognition

An important application scenario of FME generation is
using the generated data to improve the ME recognition

performance. In this paper, we conducted an experiment to
validate the effectiveness of using generated data to improve
recognition. Meanwhile, we propose a method to balance the
proportion of generated data by adjusting the weight of loss
from generated data.

We believe that data generation is beneficial to ME recog-
nition task not simply as a data augmentation technique.
For example, existing micro-expression datasets suffer from
extreme class imbalance. The micro-expression generation
technique can easily address this issue. For a task with a
serious lack of effective data such as micro-expression recog-
nition, data generation could be beneficial in many ways. More
strategies for how we utilize the generated data are worth
exploring.

C. Prior Knowledge

This paper is based on a belief that by manually encoding
prior knowledge, we can systematically improve data-driven
methods in domains that lack effective data, have low-tensity
features, and are highly dependent on expensive expert knowl-
edge. Specifically, in this paper, prior knowledge is the spatial
information of each video frame, which can be used to improve
the performance of image animation. We look forward to
newly proposed image or video generation methods based on
this vision contributing to psychology.

VI. CONCLUSION

This paper focuses on a new facial micro-expression (FME)
generation task that aims to generate novel FME videos.
Different from mainstream image animation methods that pay
more attention to encoding macro motion information, the
FME generation task aims to encode subtle facial motion
information. To this end, we utilize facial action units (AUs)
and present a facial prior module to enhance the ability of
the general image animation module to capture subtle facial
motion features. In addition to the technical improvement,
this paper provides a detailed protocol of how to evaluate the
generated FME samples automatically, as well as a strategy to
utilize the generated data as an augmentation to FME analysis,
which would provide subjective metrics and specific applica-
tion scenarios for this task. Extensive experiments on three
benchmark datasets, namely, CASME II, SAMM, and SMIC,
verify the effectiveness of our facial prior module, which
consistently improves general image animation frameworks.
In addition to using expert evaluation, we present public
evaluation and automatic evaluation protocols and results,
which also illustrate the superior performance of our proposed
facial prior module. Extensive recognition experiments demon-
strate the effectiveness of using generated data to enhance the
performance of general action recognition backbones on the
FMER task.
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