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Abstract

The deployment and application of Large Lan-001
guage Models (LLMs) is hindered by their002
memory inefficiency, computational demands,003
and the high costs of API inferences. Tradi-004
tional distillation methods, which transfer the005
capabilities of LLMs to smaller models, often006
fail to determine whether the knowledge has007
been sufficiently transferred, potentially result-008
ing in high costs or incomplete distillation. In009
this paper, we propose an Explanation-Guided010
LLMs Active Distillation (ELAD) framework011
that employs an active learning strategy to op-012
timize the balance between annotation costs013
and model performance. To improve efficient014
sample selection, we introduce an explanation-015
guided sample selection method that identifies016
samples challenging its reasoning by exploiting017
uncertainties in explanation steps. Additionally,018
we present a customized LLM-annotated ex-019
planation revision technique where the teacher020
model detects and corrects flaws in the student021
model’s reasoning. Our experiments across022
various reasoning datasets demonstrate that our023
framework significantly enhances the efficiency024
of LLM knowledge distillation.025

1 Introduction026

The advancement of Large Language Models027

(LLMs) (Brown et al., 2020; Hoffmann et al., 2022;028

Thoppilan et al., 2022; Touvron et al., 2023) has029

significantly impacted natural language process-030

ing, showcasing excellent in-context learning and031

complex reasoning capabilities. Yet, the deploy-032

ment of these models is hindered by their extensive033

parameter count, leading to significant computa-034

tional demands and financial burdens. For instance,035

deploying LLMs with 100-200 billion parameters036

would require a cluster of NVIDIA A100 GPUs,037

where each GPU costs $30, 000 in today’s mar-038

ket. While cloud computing offers a solution, the039

costs associated with such services can quickly ac-040

cumulate. Specifically, a cluster of A100 GPUs041

costs upwards of $25 per hour, which may lead 042

to a staggering $18, 000 monthly if operated non- 043

stop1. This financial barrier makes it impractical 044

for many institutions and research labs to adopt 045

LLMs widely, especially in resource-constrained 046

environments (Bai et al., 2024), limiting their audi- 047

ence and application scope. Additionally, relying 048

on API calls to access pre-trained LLMs, e.g., GPT- 049

4, also presents its challenges, including high usage 050

fees, inability to run models locally for customiza- 051

tion or fine-tuning, potential data transmission is- 052

sues, and privacy concerns (Yao et al., 2023c). 053

Recent research on LLMs knowledge distilla- 054

tion (Hinton et al., 2015) enables smaller models to 055

achieve performance similar to LLMs by transfer- 056

ring reasoning capabilities to them, making them 057

more computationally efficient. (Tang et al., 2019; 058

Wang et al., 2021; Arora et al., 2022) demonstrate 059

the training of smaller models using pseudo-labels 060

generated by LLMs, wherein LLMs act as “teach- 061

ers” to supervise the fine-tuning of these “student” 062

models. Recent works (Magister et al., 2022; Ho 063

et al., 2022; Chan et al., 2022; Li et al., 2023; Hsieh 064

et al., 2023), focus on multi-task fine-tuning of stu- 065

dent models. They utilize chain-of-thought (CoT) 066

reasoning (Wei et al., 2022) to generate both ex- 067

planations and final answers generated by LLMs 068

as pseudo-labels to jointly supervise small model 069

fine-tuning. However, a major issue with existing 070

fully supervised learning methods is that they do 071

not sense whether the knowledge has been suffi- 072

ciently distilled into the small model. Insufficient 073

distillation can lead to suboptimal performance of 074

the small model, while excessive distillation may 075

incur unnecessarily high costs. 076

To address this challenge, we take LLM as an 077

agent that guides small language models toward 078

progressive improvement. Throughout this process, 079

the LLM (teacher) can sense the weaknesses of 080

1https://charshift.com/llm-true-cost/

1



the small language model (student) and customize081

its teaching accordingly. Formally, we propose082

an Explanation-Guided LLMs Active Distillation083

(ELAD) framework that significantly enhances ac-084

tive learning through the use of LLM explanations.085

In each iteration, the framework encompasses a086

student reasoning task and a teacher reasoning task:087

the student model identifies samples it struggles088

to predict accurately and reasonably; subsequently,089

for these selected samples, the teacher model re-090

views the student’s explanations, correcting any091

erroneous reasoning.092

However, first, it is nontrivial to tackle the stu-093

dent task. Current sample selection methods typ-094

ically focus on finding samples with the wrong095

predictions (Lewis, 1995; Ren et al., 2021; Bansal096

and Sharma, 2023), but even if the prediction is cor-097

rect, the reasoning process can be wrong or flawed.098

The selection of samples with bad reasoning goes099

beyond it and is yet to be well explored, which100

requires the student model to faithfully self-inspect101

its step-by-step explanation of its prediction and102

locate the flaw. To address this, we propose a novel103

explanation-guided sample selection method that104

identifies the samples that trouble its reasoning105

by exploiting explanation stepwise uncertainties.106

Second, how the teacher senses and corrects the107

flaws in student model reasoning is also a chal-108

lenging problem. Merely prompting teacher and109

student to generate their respective explanations110

separately and compare their difference is problem-111

atic because a prediction could be led by differ-112

ent reasoning processes and different explanations113

(e.g., Rashomon Effect (Roth and Mehta, 2002)).114

We need the teacher model to check the student115

model’s explanation, locate the problem within its116

reasoning, and correct it, which is not well explored.117

To accomplish this, we propose a customized LLM-118

annotated explanation revision technique. It entails119

sequentially prompting the LLM with the expla-120

nation from the small model and then asking it to121

assess whether the current step is reasonable or122

necessitates revision.123

We evaluate our framework across six reasoning124

benchmarks, comparing it against existing sample125

selection methods for active learning and LLMs126

explanation and answer generation methods. Our127

findings indicate that the proposed framework no-128

tably enhances annotating efficiency.129

We summarize our main contributions as fol-130

lows: a) An Explanation-Guided LLMs Active Dis-131

tillation framework that enhances active learning,132

guided by explanations from small models, during 133

the distillation of LLMs to smaller models. b) An 134

explanation-guided sample selection method that 135

identifies the samples that trouble the reasoning of 136

language model by exploiting explanation stepwise 137

uncertainties. c) A customized LLM-annotated ex- 138

planation revision technique that allows LLM to 139

teach customized knowledge by guiding the LLM 140

to pinpoint and correct inaccuracies in the reason- 141

ing steps of small models. d) Extensive experi- 142

ments demonstrate that the proposed framework 143

can improve annotating efficiency. 144

2 Related Work 145

2.1 LLMs Knowledge Distillation 146

DistilBert (Sanh et al., 2019) achieves efficient 147

distillation of the BERT transformer into a stu- 148

dent model with minimal performance loss. Tiny- 149

bert (Jiao et al., 2019) introduces a loss term for 150

matching hidden states between teacher and stu- 151

dent. Works like (Magister et al., 2022), Fine- 152

tune-CoT (Ho et al., 2022), KNIFE (Chan et al., 153

2022), SCoTD (Li et al., 2023), and Distilling step- 154

by-step (Hsieh et al., 2023) emphasize multi-task 155

fine-tuning of student models using both CoT rea- 156

soning explanations and LLM-generated answers. 157

Distilling step-by-step (Hsieh et al., 2023) specifi- 158

cally uses task-specific prefixes in prompts to tailor 159

model responses. Li et al. (Li et al., 2022) inves- 160

tigate methods for generating explanations to aid 161

student model learning. SOCRATIC CoT (Shrid- 162

har et al., 2023) decomposes problems into sub- 163

problems to guide reasoning, while SCOTT (Wang 164

et al., 2023) uses teacher-generated explanations 165

for training on a counterfactual reasoning objective, 166

promoting self-consistency. 167

2.2 Efficient Annotating and Active Learning 168

(Bansal and Sharma, 2023) introduced a method 169

using model uncertainty (Lewis, 1995), dataset den- 170

sity (Ren et al., 2021), and conditional informa- 171

tiveness (Bansal and Sharma, 2023) for one-shot 172

informative sample selection to enhance annotation 173

efficiency. However, these one-shot approaches fail 174

to sense the sufficiency of annotation. Addressing 175

this, active learning, particularly the pool-based 176

paradigm, has been recognized as a crucial tech- 177

nique for reducing annotation costs (Settles, 2009; 178

Ren et al., 2021). For NLP tasks, the most com- 179

mon strategy is based on the entropy of predicted 180

tokens for sampling (Zhang et al., 2022). Addition- 181
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ally, (Yao et al., 2023a) proposed a data diversity-182

based active learning sampling strategy, leveraging183

explanation annotations. BSDETECTOR (Chen184

and Mueller, 2023) introduces an uncertainty quan-185

tification technique for black-box LLMs, focusing186

on consistency (Wang et al., 2022).187

2.3 Explanation Generation for LLMs188

Extractive explanations (Lei et al., 2016; Yu et al.,189

2019) focus on identifying key elements within190

the input that justify a prediction. However, they191

are limited in explaining complex reasoning tasks192

that require detailed natural language explanations193

(free-text explanation) (Camburu et al., 2018; Ra-194

jani et al., 2019). (Narang et al., 2020) advanced195

this by training models to generate explanations196

post-prediction. Self-rationalization models, such197

as those discussed by (Wiegreffe et al., 2020), aim198

to simultaneously predict labels and generate text-199

based explanations. STaR (Zelikman et al., 2022)200

generates explanations by augmenting ground truth201

answers as hints when predicted answers are in-202

correct. (Wei et al., 2022) introduced CoT prompt-203

ing, which uses demonstrations in LLM prompting204

to elicit intermediate reasoning steps for explana-205

tions. (Kojima et al., 2022) demonstrated the zero-206

shot reasoning capabilities of LLMs by employing207

prompts like “Let’s think step by step” to gener-208

ate an explanation. Tree of Thought (ToT) (Yao209

et al., 2023b; Long, 2023) generates reasoning ex-210

planations by recursively decomposing complex211

questions into simpler sub-questions, solving them212

individually, and integrating their answers.213

3 Preliminary Study214

3.1 LLMs Reasoning215

In the zero-shot CoT prompting scenario, prompt-216

ing a question q to an LLM triggers the generation217

of the completion which consists of an answer a218

and reasoning path (explanation) r, modeled as219

(a, r) ∼ P (a, r | q). This process unfolds in an220

auto-regressive manner, generating r before a and221

formalizing the conditional probability of the an-222

swer as P (a | q) = P (a | q, r)× P (r | q), where223

P (a | q, r) represents the probability of a given224

both q and r, and P (r | q) denotes the probability225

of r given q. In few-shot scenarios, demonstration226

triplets {(qpi , a
p
i , r

p
i )}mi=1 are included before q in227

the prompt, facilitating contextual guidance and228

reasoned answer generation, with m indicating the229

number of demonstrations in the prompt.230

The CoT prompting approach facilitates sequen- 231

tial reasoning in LLMs, generating a series of rea- 232

soning steps r = {s1, s2, . . . , sn}, where n is the 233

total number of steps. Each step si contributes cu- 234

mulatively to the reasoning explanation, culminat- 235

ing in the final answer. Specifically, the probability 236

of generating the explanation r given the question 237

q, denoted P (r | q), is expressed as a product of 238

conditional probabilities, representing the step-by- 239

step reasoning: 240

P (r | q) =
∏n

i=1
P (si | q, s1, . . . , si−1) (1) 241

where each si is predicated on the question q 242

and the preceding steps s1, . . . , si−1. 243

3.2 LLMs Knowledge Distillation 244

LLMs Knowledge distillation entails a process 245

wherein a large teacher language model T transfers 246

its knowledge to a small student language model 247

S. In this framework, given an unlabeled dataset 248

U , the teacher model generates a pseudo-answer 249

and a pseudo-explanation for each question q in 250

dataset U . These outputs are represented as the 251

answer-explanation pair (completion) (â, r̂). This 252

generation process is modeled as: 253

(â, r̂) ∼ T (a, r | q) (2) 254

The result is a collection of triplets {(q, â, r̂)}|U| 255

as the training dataset D. Subsequently, the stu- 256

dent model S is fine-tuned using D, employing the 257

standard language modeling loss, formulated as: 258

maxE(q,â,r̂) ∼D [S(â, r̂ | q)] (3) 259

4 Problem Setup 260

In the context of knowledge distillation of LLM 261

T , we address the problem of efficiently annotat- 262

ing an unlabeled question set U . This involves 263

strategically selecting a subset Q from U , where 264

Q ⊂ U and |Q| < |U|. Our study’s primary 265

goal is to enhance the performance of a smaller 266

model S through fine-tuning with a training dataset 267

D = {(qi, âi, r̂i)}|Q|, where the LLM annotates 268

an answer â and a corresponding explanation r̂ for 269

each question q ∈ Q, forming D. The objective is 270

to achieve a performance with S that is comparable 271

to that of T , while minimizing the size of the anno- 272

tated dataset Q. This approach aims to maximize 273

the efficiency of the small model and minimize the 274

amount of annotated data required from the LLM. 275
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Figure 1: Overview of the Explanation-Guided LLM Active Distillation (ELAD) framework: (a) illustrates the
Explanation-Guided Sample Selection method, (b) depicts the Customized LLM-Annotated Explanation Revision
technique, and (c) showcases the LLM Knowledge Distillation (small model fine-tuning) process.

5 Methodology276

In this section, we first present the overview of our277

proposed Explanation-Guided LLMs Active Distil-278

lation framework. We then proceed to present a279

novel explanation-guided sample selection method.280

Lastly, we present a customized LLM-annotated281

explanation revision method.282

5.1 Explanation-Guided LLMs Active283

Distillation Framework284

We propose a novel Explanation-Guided LLMs Ac-285

tive Distillation framework to optimize the trade-286

off between sufficient distillation and annotation287

costs for LLM knowledge distillation tasks via an288

active learning strategy. Our overall framework289

is depicted in Figure 1. We first collect an unla-290

beled dataset U . At the n-th iteration of active291

learning, during the sample selection phase, as de-292

picted in Figure 1 (a), we employ the standard293

pool-based setting. The small model S generates294

answers and explanations (completions) for all sam-295

ples q ∈ U , resulting in a set {(qi, ai, ri)}|U|. Then,296

an explanation-guided sample selection method f297

(details to be provided in Section 5.2) is adopted298

to select m samples with high uncertainty in their299

generated answers and explanations from this set,300

forming the selected subset. This process can be301

represented as302

Qn = f({(qi, ai, ri)}|U|;m) (4)303

We then create the batch Bn comprising triples304

{(qi, ai, ri)}m for each q ∈ Qn. Subsequently, we305

progress to the annotation phase of active learning, 306

as illustrated in Figure 1 (b). The customized LLM- 307

annotated explanation revision function g (to be 308

discussed in Section 5.3) annotates completions 309

(â, r̂) for the selected samples in Qn using the LLM 310

T , guided by the completion (a, r) generated by 311

the small model, represented as 312

Dn = g({(qi, ai, ri)}m; T ) (5) 313

For each q ∈ Qn, this results in the dataset 314

Dn = {(qi, âi, r̂i)}m for small model fine-tuning. 315

The datasets are updated by removing Qn from U 316

and adding Dn to the cumulative training set D. 317

Finally, in the model update phase of active learn- 318

ing, depicted in Figure 1 (c), we fine-tune the small 319

model S on the training set D. This process is re- 320

peated until the LLM annotating (labeling) budget 321

Bu is depleted or other stopping criteria are met 322

(e.g., marginal improvement of the small model 323

falls below a certain threshold). The overall algo- 324

rithm is summarized in Algorithm 1. 325

5.2 Explanation-Guided Sample Selection 326

This section presents the explanation-guided sam- 327

ple selection method to select samples with high 328

uncertainty. This uncertainty stems from the com- 329

plexity and instability inherent in the step-by-step 330

reasoning process. We estimate it across two di- 331

mensions: 1) Intra-explanation uncertainty, which 332

explores the uncertainty within individual steps 333

of an explanation, and 2) Inter-explanation uncer- 334

tainty, which examines the uncertainty across the 335

aggregated answers from different reasoning paths. 336
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Algorithm 1: ELAD
Require: U , D, T , S, annotating budget Bu, number of

samples to select each iteration m
Ensure: Fine-tuned student model S
1: while Bu > 0 do
2: Generate answers and explanations for samples

from U using small model S
3: Select m most informative samples asQn using

Equation 4 to form batch Bn

4: Annotate Bn using LLM T as per Equation 5,
obtaining Dn

5: Update D ← D ∪Dn; U ← U \ Qn

6: Retrain S on updated D
7: Bu← Bu−m
8: end while
9: Perform final retraining of S on D

Intra-explanation uncertainty As stated in Sec-337

tion 3, for an explanation r = {s1, s2, . . . , sn},338

each reasoning step si builds upon the question339

and all preceding steps and influences subsequent340

steps and the final answer. To address the chal-341

lenge of estimating the uncertainty in the explana-342

tion generation resulting from step-by-step reason-343

ing, we introduce a novel method for estimating344

intra-explanation uncertainty. This method utilizes345

a step-wise technique to evaluate the consistency346

of final answers, whether they are conditioned on347

specific reasoning steps or not. By comparing out-348

comes in both scenarios, we effectively measure349

the uncertainty associated with each step in the350

explanation. To be more specific, for the i-th rea-351

soning step, the reasoning and answer before the352

i-th step can be written as:353

(a, s≥i) ∼ S(a, s≥i | q, s<n) (6)354

Similarly, the reasoning process conditioned on the355

i-th reasoning step can be written as:356

(â, s>i) ∼ S(â, s>i | q, s<i, si) (7)357

where â is the sampled answer conditioned on i-358

th reasoning step. The above two scenarios are359

illustrated in Figure 2. We prompt the small model360

with (q, s<i) and (q, s≤i) for each of the n steps361

to obtain the corresponding answers, resulting in362

a set {(âi, ai)}ni=1 that records the outcomes. The363

uncertainty of the explanation is then quantified364

by calculating the frequency of instances where365

predictions remain unchanged despite the removal366

of a reasoning step in the prompt as367

HReasoning :=
1

n

∑n

i=1
I (âi = ai) (8)368

where I (âi = ai) is an indicator function that re-369

turns 1 (or 0) if the predicted answer is unchanged370

(or not). This intra-reasoning uncertainty score 371

HReasoning measures the uncertainty of a single 372

explanation. 373

Figure 2: (a) illustrates reasoning not conditioned on the
i-th reasoning step; (b) depicts reasoning conditioned
on the i-th reasoning step.

Inter-explanation uncertainty The answers and 374

explanations generated by language models can ex- 375

hibit diversity due to the randomness introduced 376

by sampling temperature. To assess the uncer- 377

tainty arising from this randomness, we propose 378

a consistency-based method for evaluating inter- 379

explanation uncertainty. For each question, we 380

apply multiple path decoding strategy, prompting 381

the model k times to generate k distinct reason- 382

ing paths. This process can produce different final 383

answers, leading to N unique answer values, with 384

each unique value occurring ci times. We assess the 385

consistency among these multiple final answers by 386

calculating the frequency of occurrence ci for ev- 387

ery unique answer and subsequently computing the 388

probability of each answer as pi = ci
k . To quantify 389

the uncertainty in the probability distribution of the 390

output answers derived from multiple promptings, 391

we utilize Shannon entropy, calculated as follows: 392

HConsistency := −
∑N

i=1
pi log(pi) (9) 393

This inter-explanation uncertainty score serves as 394

an indicator of the model’s reasoning uncertainty 395

arising from different reasoning paths. 396

Overall Uncertainty Estimation and Sample Se- 397

lection Based on the two types of uncertainty illus- 398

trated in Equations 8 and 9, we define the overall 399

reasoning uncertainty H as: 400

H = HConsistency +
∑k

i=1
H(i)

Reasoning (10) 401

For all samples in dataset U , we select m sam- 402

ples with the highest uncertainty scores to form 403

the selected subset Q. Based on the above, the 404

Equation 4 is formalized as: 405

Q = argmax-m
q∈U

H(q) (11) 406

where H(q) denotes the computed uncertainty 407

score for a question q using Equation 10. 408
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5.3 Customized LLM-Annotated Explanation409

Revision410

After selecting the samples the small model trou-411

bles the reasoning, the next step is transferring412

knowledge from the LLM to the small model. This413

process involves using the LLM to generate pseudo-414

completion to fine-tune small model. To achieve415

this, we introduce a customized LLM-annotated ex-416

planation revision technique. This approach lever-417

ages the advanced capabilities of the LLM to pro-418

vide customized guidance to the small model by419

allowing the LLM to detect and correct flaws in the420

small model’s reasoning.421

Figure 3: Customized LLM-Annotated Explanation Re-
vision. (a) and (b) illustrate the process by which the
LLM is prompted to revise the explanation and answer
from the small model. (c) shows the DFS-based reason-
ing steps searching strategy.

As Figure 3 (a) and (b) illustrate, our method422

prompts the LLM to annotate customized comple-423

tion for the selected questions, conditioned on the424

output completion provided by the small model425

to make detection and possible revision (correc-426

tion), as (r̂, â) ∼ T (r̂, â | q, r, a). Specifically,427

we employ a Depth-First Search (DFS)-based strat-428

egy (Yao et al., 2023b), where for each reasoning429

step generated by the small model, the LLM is430

prompted to perform verification to ascertain the va-431

lidity of the current step. This verification process432

is iterative, continuing along the current reasoning433

path until it becomes infeasible to proceed further.434

At this point, the LLM is prompted to complete435

the reasoning process by generating the remaining436

steps and providing the final answer. As depicted437

in Figure 3 (c), the process is represented as: q →438

s1 → . . . → si−1 → × → ŝi → . . . → ŝn → a,439

denotes the si−1 reasoning step is infeasible. si are440

the steps generated by the small model, and ŝi are441

the steps generated (revised) by the LLM.442

Based on the above statement, the Equation 5443

can be formalized as the following process. We444

initiate the process with the question and prompt 445

the LLM to determine if the current step si from 446

the small model is valid for problem-solving. If the 447

LLM’s response is “Yes”, we prompt it to generate 448

its own reasoning step ŝi as ŝi ∼ P (ŝi | q, si, ŝ<i). 449

This process is continued until the LLM responds 450

“No” to the i-th step. At this point, we prompt the 451

LLM to generate the remaining reasoning steps and 452

the final answer as (a, ŝ≥i) ∼ P (a, ŝ≥i | q, ŝ<i). 453

The specifics of this verification and prompting 454

process take the following form. Initially, we com- 455

bine the first reasoning step from the student model 456

s1 with the question q to create the prompt: “For 457

question <q>, can we start with this step: <s1>?” 458

If the LLM’s answer is “Yes”, we adopt the first 459

reasoning step from the LLM ŝ1 as the annotated 460

step and proceed to the next reasoning step. For the 461

i-th reasoning step from the student small model, 462

we define the prompt as: “Can we continue with 463

this step: <si>?” If the response is “No,” we then 464

prompt the LLM with: “What are the rest of the 465

reasoning procedures and the answer?” to generate 466

the subsequent reasoning steps and the final answer. 467

An example is shown below: 468

Customized LLM-Annotated Explanation Revision

Prompt: For question <q>. Let’s think step by step.
Can we start with this step: <s1>? If yes, give me
your step. If no, give me the rest steps and the final
answer.
Response: Yes, we can start with that <ŝ1>
Prompt: Can we continue with this step <s2>?
Response: Yes, the second step is <ŝ2>.
Prompt: Can we continue with this step <s3>?
Response: No, we should proceed as <ŝ≥3>, the
final answer is <â>.

469

6 Experiments 470

Datasets The experiments are conducted on six 471

well-known benchmark datasets across 3 different 472

reasoning tasks: GSM8K (Cobbe et al., 2021) and 473

AQuA (Geva et al., 2021) for arithmetic reasoning 474

tasks, ANLI (Nie et al., 2019) and e-SNLI (Cam- 475

buru et al., 2018) for natural language inference 476

(NLI) tasks, and StrategyQA (Geva et al., 2021) 477

and CommonSenseQA (Talmor et al., 2018) for 478

common sense reasoning task. Further details are 479

provided in the Appendix A. 480

Evaluation Metric To assess question-answering 481

performance for the above reasoning tasks, we cal- 482

culate the accuracy based on the final answers 483

given by the student small model. 484

Setup We use GPT-3.5-turbo as teacher via Ope- 485
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Method Annotating Arithmetic NLI Commonsense

GSM8K AQuA ANLI e-SNLI CommonSenseQA StrategyQA

Teacher: GPT-3.5-turbo

Zero-shot-CoT – 73.45 54.96 68.02 47.67 68.94 69.78

Student: LLaMA-2-7B

Zero-shot-CoT – 10.04 21.07 33.94 28.98 41.28 44.71

Fine-Tuned Student

Random CoT Prompting 28.42 26.86 54.22 48.60 45.66 48.76
CLAER 30.31 27.05 57.12 48.56 48.54 50.89

Maximum Entropy CoT Prompting 27.58 27.67 52.56 47.98 46.35 49.03
CLAER 29.04 27.42 53.75 51.76 48.86 51.05

Least Confidence CoT Prompting 28.42 25.8 52.26 48.21 45.93 47.53
CLAER 28.68 27.19 53.63 48.65 48.52 51.23

Disagreement CoT Prompting 30.11 25.91 55.59 50.32 48.64 48.60
CLAER 31.49 27.23 58.71 54.32 52.46 53.81

Self-Confidence CoT Prompting 26.41 26.04 52.69 46.01 48.53 49.69
CLAER 27.95 25.57 54.32 49.21 49.03 52.44

EGSS CoT Prompting 30.01 26.91 55.87 51.16 49.64 50.32
CLAER 32.72 28.43 58.02 54.44 53.53 55.63

Table 1: Performance of ELAD. Accuracy (%) of Fine-tuned LLaMA-2 model with ELAD (EGSS and CLEAR)
and with different baseline sample selection strategies and completion generation methods. We report results at 50%
annotation budget for all datasets in this table for comparison. Blue cells denote results of ELAD.

nAI API. We use LLaMA-2-7B (Touvron et al.,486

2023) as our student model. Further implemen-487

tation details are provided in the Appendix A.488

Baseline Methods We compare the proposed489

ELAD framework with two different categories490

of baselines: 1) sample selection methods, and491

2) completion generation methods. To be more492

specific, we provide a comparison of Explanation-493

Guided Sample Selection (EGSS) with five differ-494

ent sample selection methods: Random, Maximum495

Entropy (Settles, 2009), Least Confidence (Cu-496

lotta and McCallum, 2005), Disagreement (Vote497

Entropy) (Engelson and Dagan, 1996), and Self-498

Confidence (Kadavath et al., 2022). Further, we499

delineate the efficacy of our Customized LLM-500

Annotated Explanation Revision (CLEAR) method501

in contrast to the conventional vanilla annotating502

with zero-shot-CoT prompting (Kojima et al., 2022)503

method applied post-sample selection. We also in-504

clude comparative results from student and teacher505

models, assessed without fine-tuning and using di-506

rect prompting to answer questions.507

6.1 Results and Analysis508

This section evaluates the reasoning performance509

of models using our proposed ELAD framework,510

comparing it with baseline methods. We highlight511

improvements in sample selection and completion512

generation. Performance trends from a 5% to 50% 513

annotating budget are depicted in Figure 4, illustrat- 514

ing the effectiveness of our EGSS method against 515

other selection baselines. Furthermore, we detail 516

reasoning performance at a 50% annotating budget 517

for our CR completion annotation method and the 518

CoT prompting baseline in Table 1. 519

Comparison with sample selection baselines 520

From Table 1 we can observe that the EGSS 521

method demonstrates significant performance im- 522

provements compared with traditional sample se- 523

lection baselines for active learning. For arithmetic 524

reasoning tasks (GSM8K and AQuA), EGSS with 525

CLEAR exhibits a remarkable performance advan- 526

tage. Specifically, it shows an increase of approxi- 527

mately 2.41% and 1.38% in accuracy over the next 528

best-performing method for GSM8K and AQuA, 529

respectively. In the context of natural language in- 530

ference and commonsense reasoning tasks, such 531

as ANLI, e-SNLI, CommonSenseQA, and Strate- 532

gyQA, EGSS continues to set the benchmark. For 533

instance, in the ANLI dataset, EGSS achieves a 534

performance boost of nearly 3.27% over the Least 535

Confidence method with CLEAR. Similarly, for 536

StrategyQA, EGSS demonstrates a substantial in- 537

crease of 4.82% in accuracy compared to the Dis- 538

agreement strategy. From Figure 4, It is evident that 539

the proposed EGSS method effectively selects the 540

7



(a) GSM8K (b) ANLI (c) CommonSenseQA

(d) AQuA (e) e-SNLI (f) StrategyQA

Figure 4: Performance curves of different sample selection methods for active learning. The y-axis denotes the
accuracy for the question-answering task, and the x-axis represents the percentage of samples annotated by the LLM
for small model fine-tuning. In this case, 100% denotes that all samples from the training set have been annotated.

most informative unlabeled questions, as evidenced541

by performance gains that align with increases in542

annotation budget. Initially, differences between543

EGSS and Disagreement strategies are minimal,544

likely due to the dominance of Inter-explanation545

uncertainty. However, as the annotation budget546

grows, EGSS significantly outperforms the Dis-547

agreement strategy, highlighting the crucial role548

of Intra-explanation uncertainty in identifying the549

most valuable samples for annotation.550

Evaluating customized LLM-annotated explana-551

tion revision method Table 1 showcases the Cus-552

tomized Revision technique’s effectiveness over553

the baseline CoT Prompting across several tasks.554

In arithmetic tasks like GSM8K and AQuA, Cus-555

tomized Revision outperforms vanilla CoT Prompt-556

ing annotation method by up to 2.71% and 1.52%,557

respectively, under the EGSS framework, highlight-558

ing its superior capability in refining reasoning559

skills. In NLI and Commonsense Reasoning tasks,560

such as ANLI and StrategyQA, Customized Revi-561

sion demonstrates notable accuracy improvements562

of 2.15% and 5.31%, respectively. These results un-563

derline the method’s strength in leveraging detailed564

explanations to enhance model understanding and565

performance significantly.566

6.2 Ablation Studies567

In this section, we conduct an ablation study to568

investigate the importance of each component in569

the ELAD framework we propose, and the results570

are reported in Table 2. The results reveal that the571

Setting
Arithmetic NLI Commonsense

GSM8K AQuA ANLI e-SNLI CommonSenseQA StrategyQA

ELAD (Ours) 32.72 28.43 58.02 54.44 53.53 55.63
w/o EGSS 30.31 27.05 57.12 48.56 48.54 50.89
w/o CLAER 30.01 26.91 55.87 51.16 49.64 50.32

Table 2: Ablation Study. We report the performance of
our ELAD framework under different settings.

full proposed ELAD framework outperforms con- 572

figurations lacking EGSS (w/o EGSS) and CLAER 573

(w/o CLAER) across all tasks. Ours demonstrates 574

a notable performance advantage, with improve- 575

ments up to 2.41% in arithmetic tasks, 6.88% in 576

NLI tasks, and 5.09% in commonsense reasoning 577

tasks over the "w/o EGSS" setup. This highlights 578

the critical contributions of EGSS and CLAER to 579

the framework’s overall performance. The dimin- 580

ished performance in configurations without these 581

components underscores their importance in en- 582

hancing model reasoning ability. 583

7 Conclusion 584

This paper introduced the Explanation-Guided 585

LLMs Active Distillation (ELAD) framework to 586

address the challenges of deploying LLMs due to 587

the high memory and computational demands. Our 588

proposed framework achieves LLMs active distil- 589

lation with explanation-guided sample selection 590

and a customized LLM-annotated explanation revi- 591

sion. Extensive experiments on various reasoning 592

datasets demonstrate the effectiveness of our ap- 593

proach in enhancing the distillation efficiency. 594
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Limitations595

Our method, which utilizes LLMs as agents in ac-596

tive learning, is influenced by the design of prompts597

for the LLM, potentially affecting the quality of598

generated explanations and answers. Similarly, the599

prompt design for the small model can impact its600

reasoning abilities. Additionally, our approach re-601

quires submitting questions (data) to third-party ser-602

vices via APIs (e.g., OpenAI), posing a risk of data603

leakage. Additionally, due to budget constraints,604

we did not utilize the most recently released GPT-605

4.0 as the teacher model in our experiments. We606

plan to explore this in future research.607

Ethical Considerations608

All datasets and models used in this study are609

open-source, and references to previous work are610

properly cited. For fine-tuning the small language611

model, we solely used triples generated by GPT-3.5612

Turbo and LLaMA-2, both of which are publicly613

accessible. This work complies with ethical guide-614

lines, and no ethical concerns have been identified.615
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A Appendix825

Datasets Details826

We provide more detailed descriptions of the827

datasets used in our experiments. We include a828

more detailed introduction and original sources re-829

leased from the authors as follows:830

GSM8K (Grade School Math 8K) (Cobbe et al.,831

2021): A dataset containing approximately 8,000832

math word problems designed for grade school833

students, testing a variety of mathematical skills in834

natural language. For more information, visit the835

GSM8K GitHub repository.836

AQuA (Algebra Question Answering) (Geva837

et al., 2021): Features algebraic word problems838

with multiple-choice answers, aimed at evaluating839

algebraic problem-solving in AI systems. Available840

on Kaggle.841

ANLI (Adversarial Natural Language Infer-842

ence) (Nie et al., 2019): A dataset with natural843

language inference tasks, including adversarial ex-844

amples, to test models’ understanding of human845

language beyond existing NLI datasets. For more846

details, refer to the ANLI GitHub repository.847

e-SNLI (Explainable Stanford Natural Lan-848

guage Inference) (Camburu et al., 2018): Extends849

the SNLI dataset by providing human-annotated850

explanations for NLI decisions, assessing models851

on inference and explanation generation. Visit the852

e-SNLI GitHub repository for more information.853

CommonSenseQA (Talmor et al., 2018): A 854

question-answering dataset that focuses on com- 855

monsense reasoning, requiring an understanding 856

of everyday concepts for correct answers. More 857

details can be found on the CommonSenseQA web- 858

site. 859

StrategyQA (Geva et al., 2021): Tests models on 860

strategic question answering, particularly on rea- 861

soning about implicit strategies for yes/no ques- 862

tions. Information is available on the AllenAI web- 863

site.

Dataset Task Type #Train #Validation #Test

GSM8K Arithmetic 7,473 – 1,319
AQuA Arithmetic 10,000 – 254
ANLI NLI 16,946 1,000 1,000
e-SNLI NLI 549,367 9,842 9,824
CommonSenseQA Commonsense 9,741 975 1,221
StrategyQA Commonsense 1,603 490 687

Table 3: Dataset statistics used in our experiments.

864

For each dataset where a validation set is not 865

originally provided, we randomly subsample 10% 866

of the original training set to serve as a validation 867

set. The dataset statistics are provided in Table 3. 868

Implementation Details 869

The main experiments were conducted on a sin- 870

gle NVIDIA GTX 3090 GPU with 24GB of mem- 871

ory. We utilize QLoRA4 (Dettmers et al., 2023) by 872

default to conduct parameter-efficient fine-tuning. 873

We set the attention dimension as 64, the alpha 874

parameter as 16, and the dropout rate as 0.1. For 875

fine-tuning the Llama-2-7b-chat-hf model, we 876

utilized the Huggingface libraries2 and set the batch 877

size to 16 and the learning rate to 1e-4 using the 878

AdamW optimizer. 879

Examples for Customized LLM-Annotated 880

Explanation Revision 881

We present two examples of Customized LLM- 882

Annotated Explanation Revision. Example 4 illus- 883

trates a case where the small model makes incorrect 884

reasoning in step 3. The explanation from the small 885

model is sequentially prompted to LLMs for verifi- 886

cation. At step 3, the LLM responds with “No” and 887

proceeds to revise step 3 and generate the remain- 888

ing steps and the final answer. Example 5 provides 889

an example where the small model errs in step 1 of 890

its reasoning. The step 1 from the small model fails 891

the LLM’s verification, and LLM directly generates 892

the entire completion. 893

2https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
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[l] Question: Anne purchased a box of sweets that contains 15 packs, and each pack has 60 pieces. She kept two packs and gave
the rest to her 10 friends equally. How many pieces of sweets did each of her friends receive?
[l] Response from Small Model: Let’s think step by step. Step 1: Identify the information given in the problem. Number of
packs of sweets Anne purchased: 15 Number of pieces in each pack: 60 Number of friends Anne gave the sweets to: 10. Step 2:
Identify the unknown quantity. Number of pieces of sweets each friend received: x (where x is the unknown quantity). Step 3:
Use the information given in the problem to find the unknown quantity. Since Anne kept two packs for herself, the total number
of pieces she gave to her friends is 15 x 10 = 150. Therefore, the number of pieces each friend received is 150 / 10 = 15 pieces.
So, each of Anne’s 10 friends received 15 pieces of sweets from her.
[l] Prompt: Anne purchased a box of sweets that contains 15 packs, and each pack has 60 pieces. She kept two packs and gave
the rest to her 10 friends equally. How many pieces of sweets did each of her friends receive? Let’s think step by step. Can
we start with this step: Step 1: Identify the information given in the problem. Number of packs of sweets Anne purchased: 15
Number of pieces in each pack: 60 Number of friends Anne gave the sweets to: 10? Yes or no? If yes, give me your answer for
this step. If no, give me the rest steps and final answer.
[l] Response: ✓ Yes, we can start with that step. Step 1: Identify the information given in the problem. Number of packs of
sweets Anne purchased: 15. Number of pieces in each pack: 60. Number of friends Anne gave the sweets to: 10.
[l] Prompt: Can we continue with this step Step 2: Identify the unknown quantity. Number of pieces of sweets each friend
received: x (where x is the unknown quantity)?
[l] Response: ✓ Yes, we can continue with Step 2: Step 2: Identify the unknown quantity. Number of pieces of sweets each
friend received: x (where x is the unknown quantity).
[l] Prompt: Can we continue with Step 3: Use the information given in the problem to find the unknown quantity. Since Anne
kept two packs for herself, the total number of pieces she gave to her friends is 15 x 10 = 150. Therefore, the number of pieces
each friend received is 150 / 10 = 15 pieces.?
[l] Response: × No, we should proceed as Step 3: Use the information given in the problem to find the unknown quantity. Since
Anne kept two packs for herself, the total number of pieces she gave to her friends is (15 packs - 2 packs) x 60 pieces/pack = 13
packs x 60 pieces/pack = 780 pieces. Therefore, the number of pieces each friend received is 780 pieces / 10 friends = 78 pieces.
So, each of Anne’s friends received 78 pieces of sweets.

Table 4: Example that small model makes incorrect reasoning in its step 3

[l] Question: Rong has been saving 20 coins in his piggy bank every month. Neil has been saving 2/5 times more coins in his
piggy bank per month than Rong. How many coins are they having ten years after they started their savings?
[l] Response from Small Model: Rong has been saving 20 coins in his piggy bank every month. Neil has been saving 2/5 times
more coins in his piggy bank per month than Rong. How many coins are they having ten years after they started their savings?
Let’s think step by step. Rong has been saving 20 coins per month for 10 years, so he has saved a total of 20 x 10 = 200 coins.
Neil has been saving 2/5 times more coins than Rong, so he has saved 2/5 x 20 = 40 coins per month. He has saved a total of 40
x 10 = 400 coins. Therefore, Rong has 200 coins and Neil has 400 coins after 10 years of saving."
[l] Prompt: Rong has been saving 20 coins in his piggy bank every month. Neil has been saving 2/5 times more coins in his
piggy bank per month than Rong. How many coins are they having ten years after they started their savings? Let’s think step by
step. Can we start with this step: Rong has been saving 20 coins per month for 10 years, so he has saved a total of 20 x 10 = 200
coins? If yes, give me your answer on this step. If no, give me the rest steps and final answer.
[l] Response: × No, we cannot start with that step because Neil has been saving a different amount of coins per month than
Rong. We need to calculate Neil’s savings separately. Let’s break it down step by step: Step 1: Calculate how many coins Rong
has saved in 10 years. Rong saves 20 coins per month, so in a year, he saves 20 coins x 12 months = 240 coins. In 10 years,
Rong will have saved 240 coins/year x 10 years = 2,400 coins. Step 2: Calculate how many coins Neil has saved in 10 years.
Neil has been saving 2/5 times more coins than Rong per month. 2/5 of 20 coins = (2/5) * 20 = 8 coins. So, Neil saves an extra 8
coins per month compared to Rong. Neil’s monthly savings = 20 coins (Rong’s savings) + 8 coins (extra savings) = 28 coins per
month. In a year, Neil saves 28 coins x 12 months = 336 coins. In 10 years, Neil will have saved 336 coins/year x 10 years =
3,360 coins. Step 3: Calculate the total number of coins they both have together. Rong saved 2,400 coins, and Neil saved 3,360
coins. So, the total number of coins they have saved together is 2,400 coins + 3,360 coins = 5,760 coins. So, after 10 years of
saving, they will have a total of 5,760 coins.

Table 5: Example that small model makes incorrect reasoning in its step 1
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