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Abstract: A key challenge for robotic manipulation in open domains is how to ac-1

quire diverse and generalizable skills for robots. Recent progress in one-shot imi-2

tation learning and robotic foundation models have shown promise in transferring3

trained policies to new tasks based on demonstrations. This feature is attractive for4

enabling robots to acquire new skills and improve their manipulative ability. How-5

ever, due to limitations in the training dataset, the current focus of the community6

has mainly been on simple cases, such as push or pick-place tasks, relying solely7

on visual guidance. In reality, there are many complex skills, some of which may8

even require both visual and tactile perception to solve. This paper aims to unlock9

the potential for an agent to generalize to hundreds of real-world skills with multi-10

modal perception. To achieve this, we have collected a dataset comprising over11

110,000 contact-rich robot manipulation sequences across diverse skills, contexts,12

robots, and camera viewpoints, all collected in the real world. Each sequence in13

the dataset includes visual, force, audio, and action information. Moreover, we14

also provide a corresponding human demonstration video and a language descrip-15

tion for each robot sequence. We have invested significant efforts in calibrating16

all the sensors and ensuring a high-quality dataset.17

Keywords: Dataset, Robotic manipulation, Skill learning18

1 Introduction19

Robotic manipulation requires the robot to control its actuator and change the environment following20

a task specification. Enabling robots to learn new skills with minimal effort is one of the ultimate21

goals of the robot learning community. Recent research in one-shot imitation learning [1, 2] and22

emerging foundation models [3, 4] draw an exciting picture of transferring trained policies to a new23

task given a demonstration. This paper shares the same aspiration.24

While the future is promising, most research in robotics only demonstrates the effectiveness of their25

algorithms on simple cases, such as pushing, picking, and placing objects in the real world. Two26

main factors hinder the exploration of more complex tasks in this direction. Firstly, there is a lack27

of large and diverse robotic manipulation datasets in this field [3], despite the community’s long-28

standing eagerness for such datasets. The fundamental problem stems from the huge barriers asso-29

ciated with data acquisition. These challenges include the arduous task of configuring diverse robot30

platforms, creating varied environments, and gathering manipulation trajectories, which require sig-31

nificant effort and resources. Secondly, most methods focus solely on visual guidance control, yet32

it has been observed in physiology that humans with impaired digital sensibility struggle to accom-33

plish many daily manipulations with visual guidance alone [5]. This indicates that more sensory34

information should be considered in order to learn various manipulations in open environments.35

To address these problems, we revisit the data collection process for robotic manipulation. In most36

imitation learning literature, expert robot trajectories are manually collected using simplified user37
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Figure 1: Overview of our RH20T dataset. We adopt multiple robots and setup diverse environments
for the data collection. The robot manipulation episodes include multi-modal visual, force, audio
and action data. For each episode, we collect the manipulation process with well calibrated multi-
view cameras. Our dataset contains diverse robotic manipulation skills and each episode has a
corresponding human demonstration and language description. In total, we provide over 110K
robot episodes and 110K corresponding human demonstration. The dataset contains over 50 million
frames and over 140 tasks.

interfaces like 3D mice, keyboards, or VR remotes. However, these control methods are inefficient38

and pose safety risks when the robot engages in rich-contact interactions with the environment. The39

main reasons are the unintuitive nature of controlling with a 3D mouse or keyboard, and the inaccu-40

racies resulting from motion drifting when using a VR remote. Additionally, tele-operation without41

force feedback degrades manipulation efficiency for humans. In this paper, we equipped the robot42

with a force-torque sensor and employed a haptic device with force rendering for precise and effi-43

cient data collection. With the goal that the dataset should be representative, generalized, diverse and44

close to reality, we collect around 150 skills with complicated actions other than simple pick-place.45

These skills were either selected from RLBench [6] and MetaWorld [7], or proposed by ourselves.46

Many skills require the robot to engage in contact-rich interactions with the environment, such as47

cutting, plugging, slicing, pouring, folding, rotating, etc. We have used multiple different robot arms48

commonly found in labs worldwide to collect our dataset. The diversity in robot configurations can49

also aid algorithms in generalizing to other robots.50

So far, we have collected around 110,000 sequences of robotic manipulation and 110,000 corre-51

sponding human demonstration videos for the same skills. This amounts to over 40 million frames52

of images for the robotic manipulation sequences and over 10 million frames for the human demon-53

strations. Each robot sequence contains abundant visual, tactile, audio, and proprioception informa-54

tion from multiple sensors. The dataset is carefully organized, and we believe that a dataset with55

such diversity and scale is crucial for the future emergence of foundation models in general skill56

learning, as promising progress has been witnessed in the NLP and CV communities [8, 9, 10].57

2 Related Works58

We briefly review related works in robotic manipulation datasets, zero/one-shot imitation learning,59

and vision-force learning methods.60

Dataset Our community has been striving to create a large-scale and representative dataset for61

a significant period of time. Previous research in one-shot imitation learning has either collected62

robot manipulation data in the real world [2] or in simulation [11]. However, their datasets are63

usually small and the tasks are simple. Some attempts have been made to create large-scale real64

robot manipulation datasets [12, 13, 14, 15, 16, 17]. For example, RoboTurk [16] developed a65

crowd-sourcing platform and collected data on three tasks using mobile phone-based tele-operation.66
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MIME [17] collected 20 types of manipulations using Baxter with kinesthetic teaching, but they67

were limited to a single robot and simple environments. RoboNet [12] gathered a significant amount68

of robot trajectories with various robots, grippers, and environments. However, it mainly consists of69

random walking episodes due to the challenges of performing meaningful skills. BC-Z [14] presents70

a manipulation collection of 100 “tasks”, but as pointed out in [11], they are combinations of 9 verbs71

and 6-15 objects. Similarly, RT-1 [4] and RoboSet [18] also collect large-scale manipulation datasets72

but focus on a limited set of skills. Concurrently to our work, BridgeData V2 [19] collects a dataset73

with 13 skills across 24 environments. In this paper, we present a larger dataset with a wider range74

of skills and environments, with more comprehensive information. More importantly, all previous75

datasets put less emphasize on contact-rich manipulation. Our dataset focus more in this case and76

include the crucial force modality during manipulation.77

Zero/One-shot imitation learning The objective of training policies that can transfer to new tasks78

based on robot/human demonstrations is not new. Early works [13, 20, 21] focused on imitation79

learning using high-level states such as trajectories. Recently, researchers [1, 2, 11, 14, 22, 23, 24,80

25, 26, 27, 28, 29, 30, 31, 32, 33] have started exploring raw-pixel inputs with the advancement81

of deep neural networks. Additionally, the requirement of demonstrations has been reduced by82

eliminating the need for actions. Recent approaches have explored various one-shot task descriptors,83

including images [23, 30], language [4, 18, 29, 33], robot video [2, 11, 32], or human video [14, 24].84

These methods can be broadly classified into three categories: model-agnostic meta-learning [2, 23,85

24, 27, 30], conditional behavior cloning [1, 4, 11, 14, 32], and task graph construction [28, 34].86

While significant progress has been made in this direction, these approaches only consider visual87

observations and primarily focus on simple robotic manipulations such as reach, pick, push, or place.88

Our dataset offers the opportunity to take a step further by enabling the learning of hundreds of skills89

that require multi-modal perception within a single imitation learning model.90

Multi-Modal Learning of Vision and Force Force perception plays a crucial role in manipula-91

tion tasks, providing valuable and complementary information when visual perception is occluded.92

The joint modeling of vision and force in robotic manipulation has recently garnered interest within93

the research community [35, 36, 37, 38, 39, 40, 41]. However, most of these studies overlook the94

asynchronous nature of different modalities and simply concatenate the signals before or after the95

neural network. Moreover, the existing research primarily focuses on designing multi-modal learn-96

ing algorithms for specific tasks, such as grasping [40], insertion [38], twisting [35], or playing97

Jenga [37]. A recent attempt [42] explores jointly imitating the action and wrench on 6 tasks re-98

spectively. Overall, the question of how to effectively handle multi-modal perception at different99

frequencies for various skills in a coherent manner remains open in robotics. Our dataset presents100

an opportunity for exploring multi-sensory learning across diverse real-world skills.101

Dataset # Traj. # Skills # Robots Human Demo Contact Rich Depth Sensing Camera Calib. Force Sensing

MIME [17] 8.30k 12 1 " % " % %

RoboTurk [16] 2.10k 2 1 % % % % %

RoboNet [12] 162k N/A 7 % % % % %

BridgeData [43] 7.20k 4 1 % % "* % %

BC-Z [14] 26.0k 3 1 " % % % %

RoboSet [18] 98.5k 12 1 % " " % %

BridgeData V2 [19] 60.1k 13 1 % " "* % %

RH20T 110k 42 4 " " " " "

Table 1: Comparison with previous public datasets: “Camera Calib.” indicates extrinsic calibration
of all cameras and the robot. “"*” indicates that only a portion of the images are paired with
depth sensing. This comparison highlights the comprehensiveness of our dataset, which is the most
extensive dataset for robotic manipulation to date.
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Conf. Robot Gripper 6DoF F/T Sensor Tactile

Cfg 1 Flexiv Dahuan AG95 OptoForce N/A
Cfg 2 Flexiv Dahuan AG95 ATI Axia80-M20 N/A
Cfg 3 UR5 WSG50 ATI Axia80-M20 N/A
Cfg 4 UR5 Robotiq-85 ATI Axia80-M20 N/A
Cfg 5 Franka Franka Franka N/A
Cfg 6 Kuka Robotiq-85 ATI Axia80-M20 N/A
Cfg 7 Kuka Robotiq-85 ATI Axia80-M20 uSkin

Table 2: Hardware specification of different configurations.

Conf. Modal Size Frequency

Cfg 1-7

RGB image 1280×720×3 10 Hz
Depth image 1280×720 10 Hz

Binocular IR image 1280×720 10 Hz
Robot joint angle 6 / 7 10 Hz
Robot joint torque 6 / 7 10 Hz

Gripper Cartesion pose 6 / 7 100 Hz
Gripper width 1 10 Hz

6DoF F/T 6 100 Hz
Audio N/A 30 Hz

Cfg 7 Tactile 2×16×3 200 Hz
Table 3: Data information of different configurations. The first 9 data modality are the same for all
robot configurations. The last data modality of fingertip tactile sensing is only available in Cfg 7.

3 RH20T Dataset102

We introduce our robotic manipulation dataset, Robot-Human demonstration in 20TB (RH20T), to103

the community. Fig. 1 shows an overview of our dataset.104

3.1 Properties of RH20T105

RH20T is designed with the objective of enabling general robotic manipulation, which means that106

the robot can perform various skills based on a task description, typically a human demonstration107

video, while minimizing the notion of rigid tasks. The following properties are emphasized to fulfill108

this objective, and Tab. 1 provides a comparison between our dataset and previous representative109

publicly available datasets.110

Diversity The diversity of RH20T encompasses multiple aspects. To ensure task diversity, we111

selected 48 tasks from RLBench [6], 29 tasks from MetaWorld [7], and introduced 70 self-proposed112

tasks that are frequently encountered and achievable by robots. In total, it contains 147 tasks, con-113

sisting of 42 skills (i.e., verbs). Hundreds of objects were collected to accomplish these tasks. To114

ensure applicability across different robot configurations, we used 4 popular robot arms, 4 different115

robotic grippers, and 3 types of force-torque sensors, resulting in 7 robot configurations. Details116

about the robot configurations are provided in Tab. 2.117

To enhance environment diversity, we frequently replaced over 50 table covers with different tex-118

tures and materials, and introduced irrelevant objects to create distractions. Manipulations were119

performed by tens of volunteers, ensuring diverse trajectories. To increase state diversity, for each120

skill, volunteers were asked to change the environmental conditions and repeat the manipulation121

10 times, including variations in object instances, locations, and more. Additionally, we conducted122

robotic manipulation experiments involving human interference, both in adversarial and cooperative123

settings.124
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Figure 2: (a) Statistics on the amount of robotic manipulation for different tasks. (b) Statistics on
the execution time of different robotic manipulations in our dataset.

Multi-Modal We believe that the future of robotic manipulation lies in multi-modal approaches,125

particularly in open environments, where data from different sensors will become increasingly ac-126

cessible with advancements in technology. In the current version of RH20T, we provide visual, tac-127

tile, audio, and proprioception information. Visual perception includes RGB, depth, and binocular128

IR images from three types of cameras. Tactile perception includes 6 DoF force-torque measure-129

ments at the robot’s wrist, and some sequences also include fingertip tactile information. Audio130

data includes recordings from both in-hand and global sources. Proprioception encompasses joint131

angles/torques, end-effector Cartesian pose and gripper states. All information is collected at the132

highest frequency supported by our workstation and saved with corresponding timestamps, and the133

details are given in Tab. 3.134

Scale Our dataset consists of over 110,000 robot sequences and an equal number of hu-135

man sequences, with more than 50 million images collected in total. On average, each136

skill contains approximately 750 robot manipulations. Fig. 2 (a) provides a detailed break-137

down of the number of manipulations across different tasks in the dataset, showing a rela-138

tively uniform distribution. Fig. 2 (b) presents statistics on the manipulation time for each139

Figure 3: Example of data hierarchy: The leaf
nodes in the hierarchy consist of human demon-
strations (highlighted in green) and robot manip-
ulations (highlighted in red, only the right-est ex-
ample is shown in the figure). We can pair a robot
manipulation sequence with human demonstra-
tion videos captured from different viewpoints,
scenes, human subjects, and environments. Zoom
in to explore the details of various human demon-
strations.

sequence in our dataset. Most sequences140

have durations ranging from 10 to 100 sec-141

onds. With its substantial volume of data, our142

dataset stands as the largest in our community143

at present.144

Data Hierarchy Humans can accurately un-145

derstand the semantics of a task based on vi-146

sual observations, regardless of the viewpoint,147

background, manipulation subject, or object.148

We aim to provide a dataset that offers dense149

<human demonstration, robot manipulation>150

pairs, enabling models to learn this property. To151

achieve this, we organize the dataset in a tree152

hierarchy based on intra-task similarity. Fig. 3153

illustrates an example tree structure and the cri-154

teria at different levels. Leaf nodes with a155

more recent common ancestor are more closely156

related. For each task, millions of <human157

demonstration, robot manipulation> pairs can158

be constructed by pairing leaf nodes with a159

common ancestor at different levels.160
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Compositionality RH20T includes not only short sequences that perform single manipulations161

but also long manipulation sequences that combine multiple short tasks. For example, a sequence162

of actions such as grabbing the plug, plugging it into the socket, turning on the socket switch, and163

turning on the lamp can be considered as a single task, with each step also being a task. This task164

composition allows us to investigate whether mastering short sequences improves the acquisition of165

long sequence tasks.166

3.2 Data Collection and Processing167

Unlike previous methods that simplify the tele-operation interface using 3D mice, VR remotes,168

or mobile phones, we place emphasis on the importance of intuitive and accurate tele-operation169

in collecting contact-rich robot manipulation data. Without proper tele-operation, the robot could170

easily collide with the environment and generate significant forces, triggering emergency stops.171

Consequently, previous works either avoid contact [14] or operate at reduced speeds to mitigate172

these risks.173

Figure 4: Illustration of our data collection plat-
form.

Collection Fig. 4 shows an example of our174

data collection platform. Each platform con-175

tains a robot arm with force-torque sensor, grip-176

per and 1-2 inhand cameras, 8-10 global cam-177

eras, 2 microphones, a haptic device, a pedal178

and a data collection workstation. All the cam-179

eras are extrinsically calibrated before conduct-180

ing the manipulation. The human demonstra-181

tion video is collected on the same platform by182

human with an extra ego-centric camera. Tens183

of volunteers conducted the robotic manipula-184

tion according to our task lists and text descrip-185

tion. We make our tele-operation pretty intu-186

itive and the average training time is less than 1187

hour. The volunteers are also required to spec-188

ify ending time of the task and give a rating189

from 0 to 9 after finishing each manipulation.190

0 denotes the robot enters the emergency state (e.g., hard collision), 1 denotes the task fails and 2-9191

denotes their evaluation of the manipulation quality. The success and failure cases have a ratio of192

around 10:1 in our dataset.193

Processing We preprocess the dataset to provide a coherent data interface. The coordinate frame194

of all robots and force-torque sensors are aligned. Different force-torque sensors are tared carefully.195

The end-effector Cartesian pose and the force-torque data are transformed into the coordination sys-196

tem of each camera. Manual validation is performed for each scene to ensure the camera calibration197

quality. Fig. 5 shows an illustration of rendering different component of the data in a unified co-198

ordinate frame and demonstrates the high-quality of our dataset. The detailed data format and data199

access APIs are provided on our website.200

4 Discussion and Conclusion201

In this paper we present the RH20T dataset for diverse robotic skill learning. We believe it can202

facilitate many areas in robotics, especially for robotic manipulation in novel environments. The203

current limitations of this paper are that (i) the cost of data collection is expensive and (ii) the po-204

tential of robotic foundation models is not evaluated on our dataset. We have tried to duplicate the205

results of some recent robotic foundation models but haven’t succeeded yet due the limit of com-206

puting resources. Thus, we decide to open source the dataset at this stage and hope to promote the207
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Figure 5: We display the point cloud generated by fusing the RGBD data from the multi-view
cameras mounted in our data collection platform. The red pyramids indicate the camera poses.
Additionally, the robot model is rendered in the scene based on the joint angles recorded in our
dataset. It is evident that all the cameras are calibrated with respect to the robot’s base frame, and
all the recorded data are synchronized in the temporal domain.

development of this area together with our community. In the future, we hope to extend our dataset208

to broader robotic manipulation, including dual-arm and multi-finger dexterous manipulation.209
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