
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ALIGNING TEACHER WITH STUDENT PREFERENCES
FOR TAILORED INSTRUCTION TUNING DATASET GEN-
ERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Enhancing the reasoning abilities of lightweight language models (LMs) for tasks
like decision-making often relies on instruction-tuning, a method that trains LMs
to mimic the reasoning process using labeled question-rationale pairs, known
as instruction-tuning datasets, which are typically generated by more powerful
teacher LMs. However, current methods for generating these instruction-tuning
datasets tend to focus solely on the quality of the questions and rationales from the
teacher model’s perspective, often neglecting the learning preferences of the stu-
dent language model. To fill this gap, we propose ARTE (Aligning TeacheR with
StudenT PreferencEs), a novel framework that adapts the teacher LM’s outputs
to the student’s preferences, inspired by “responsive teaching” in pedagogy. Our
method involves three key steps: (1) generating draft question-rationale pairs from
the teacher model, (2) collecting the student’s preferences on these draft pairs via
one-shot in-context learning, and (3) aligning the teacher model using Direct Pref-
erence Optimization (DPO), then finally curating tailored question-rationale pairs
from the aligned teacher for student training. Through extensive experiments on
academic reasoning benchmarks, we demonstrate that student models fine-tuned
with tailored datasets by ARTE achieve significant improvements across various
reasoning tasks, outperforming existing instruction-tuning datasets. Moreover, we
thoroughly investigate the generalization of ARTE, including the generalization
of fine-tuned student models in reasoning ability and the generalization of aligned
teacher models to generate tailored training data across tasks and students.

1 INTRODUCTION

Lightweight language models (LM) have achieved great success in various tasks like writing and
chatting, while it is still challenging for them to perform well in reasoning tasks which is crucial for
many applications like decision making and problem solving (Hug, 2024; Banks & Warkentin, 2024;
Hu et al., 2024; AI, 2024; Muralidharan et al., 2024). Instruction Tuning is a popular method for
improving the reasoning ability of lightweight language models by imitating the reasoning processes
on labeled question-rationale pairs, namely the instruction-tuning dataset, with Supervised Fine-
tuning (Mitra et al., 2023; Hsieh et al., 2023; Xu et al., 2023; Luo et al., 2023; Mukherjee et al.,
2023). Given the high cost and scalability issues of human-labeled instruction-tuning datasets, it
is common to leverage the Knowledge Distillation (KD) paradigm (Hinton et al., 2015) to distill
an instruction-tuning dataset from a powerful teacher language model. Students are then trained
on these distilled question-rationale pairs to improve their reasoning ability with Supervised Fine-
tuning (Peng et al., 2023; Ivison et al., 2023; Mukherjee et al., 2023; Xu et al., 2023).

To better distill instruction-tuning datasets from a teacher model, the quality of the generated
question-rationale pairs is crucial. For questions, Taori et al. (2023); Wang et al. (2022) proposed to
use ROUGE-L (Lin, 2004) to filter out the repeated questions to improve the diversity of the gen-
erated questions. Xu et al. (2023) propose Evo-Instruct to rewrite the seed questions step by step
into more complex questions to improve the complexity of the generated questions. As for ratio-
nales, Hsieh et al. (2023); Mukherjee et al. (2023) leverage chain-of-thought (Wei et al., 2022; Yao
et al., 2022) to guide the teacher model in producing rationales with detailed reasoning processes to
improve the quality of the generated rationales. Mitra et al. (2023) contends that the reasoning pro-
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cesses in the rationales should be adaptive to different question types. While these methods improve
question and rationale quality from the teacher model’s perspective, they overlook the learning pref-
erences of the student model. In practice, an ideal teacher model should generate question-rationale
pairs that are tailored to the student’s preferences and learning needs, to lower the learning barrier,
akin to the concept of ‘responsive teaching’ in pedagogy (Gay, 2018; Hattie & Timperley, 2007).

To fill this gap, we propose ARTE, short for Aligning TeacheR with StudenT PreferencEs, a novel
framework that aligns the teacher language model with the student model’s preferences to generate
tailored instruction-tuning datasets. Our framework is illustrated in Figure 1. There are three main
steps in ARTE: 1) Knowledge Elicitation (Section 2.1): We prompt the teacher model with seed
questions to generate draft question-rationale pairs. 2) Preference Collection (Section 2.2): We
collect the student’s preferences for each draft pair using one-shot in-context learning on a sampled
subset of the validation set of the target reasoning task. 3) Preference Alignment (Section 2.3):
We align the teacher model with the student’s preferences using Direct Preference Optimization
(DPO) (Rafailov et al., 2023) to improve instructional content. Finally, we repeat the first step with
the aligned teacher model to curate tailored instruction-tuning datasets, which are used to fine-tune
the student model via supervised learning.

Extensive experiments on academic reasoning benchmarks demonstrate that ARTE outperforms
existing instruction-tuning datasets by a significant margin (Peng et al., 2023; Ivison et al., 2023;
Mukherjee et al., 2023; Xu et al., 2023; Ding et al., 2023). Specifically, our method achieves im-
provements of 9.6%, 1.0%, 0.8%, and 8.5% on logic reasoning, commonsense reasoning, math rea-
soning, and knowledge reasoning tasks, respectively, in the Big-Bench-Hard (Suzgun et al., 2023)
benchmark. We also show that ARTE generalizes well across different reasoning tasks and student
models. 1) We investigate generalization in reasoning tasks through in-context learning on out-of-
domain benchmarks, including PIQA (Bisk et al., 2020), CommonsenseQA (Talmor et al., 2019),
ARC-Easy (Clark et al., 2018), ARC-Challenge (Clark et al., 2018), GSM8K (Cobbe et al., 2021),
and MMLU (Hendrycks et al., 2021). In these benchmarks, ARTE consistently outperforms base-
line methods, validating the effectiveness of aligning the teacher model with student preferences. 2)
We further explore the generalization of the aligned teacher model across different tasks and student
models. Results indicate that a teacher model aligned with BBH can generate high-quality examples
for unseen reasoning tasks, such as ARC or GSM8K. Furthermore, a teacher model aligned with a
specific student model, such as Gemma-2B, can generate tailored training examples for other models
with similar parameter capacities, such as Qwen1.5-1.8B or CodeGemma-2B.

To summarize, our contributions are as follows:

• We propose ARTE, a novel framework inspired by responsive teaching that aligns the teacher
model with the student model’s preferences to generate tailored instruction-tuning datasets for
reasoning tasks.

• Extensive experiments on in-domain and out-of-domain reasoning benchmarks demonstrate that
the student model fine-tuned with in-domain datasets generated through ARTE outperforms
models trained on existing instruction-tuning datasets.

• We also explore the generalization capability of the aligned teacher model, showing that it can
generate high-quality training examples across different reasoning tasks and for other student
models with similar capacities.

2 ARTE

We introduce ARTE, dubbed Aligning TeacheR with StudenT PreferencEs, a novel framework that
aligns the teacher LMt with student LMs’s preferences to generate tailored question-rationale pairs
for the target task T . Our overall framework is illustrated in Figure 1. There are three main steps in
our framework: 1) Knowledge Elicitation: we prompt the teacher model with seed questions to gen-
erate a draft dataset consisting of draft questions and corresponding draft rationales. 2) Preference
Collection: We collect the preference scores from the student model for both draft questions and ra-
tionales using the one-shot in-context learning performance of the student model on the preference
set as a proxy. 3) Preference Alignment: Based on the preference score of questions and rationales,
we align the teacher model with the student model’s preferences through Direct Preference Opti-
mization (DPO). Finally, we repeat the first step with the aligned teacher model to curate tailored
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ARTE: Align TeacheR with StudenT PreferencEs

Figure 1: The overall framework of ARTE.

training pairs for the student model and use them to Supervised Fine-Tune the student model. In the
following, we will elaborate on each step in detail.

2.1 KNOWLEDGE ELICITATION

In this step, we construct a dataset Ddraft = {(q,Rq)} for the target task T , where q is the draft
question and Rq = {rq} is the set of rationales associated with the question qi. For question
generation, we prompt the teacher model LMt with seed questions to expand them into m draft
questions. Specifically, we use three seed questions to construct one question generation prompt
which guides the teacher model to brainstorm multiple questions. We decode the question generation
prompt at a temperature 1.0 multiple times until we get m draft questions.

For rationale generation, inspired by the observation that one question may have multiple different
reasoning processes leading to the same answer and the optimal reasoning process may vary for
different questions and different models (Mitra et al., 2023). Then, for each draft question q, LMt

is guided to generate n rationales rq to form a rationale set Rq using different reasoning techniques,
such as Explain Like I’m Five, Step-by-Step, or Math Symbols. Finally, we combine each draft
question q with its corresponding rationales Rq to form a draft sample (q,Rq). Since each draft
question q would be expanded into n rationales, there are m× n draft pairs Edraft = {(q, rq)} in the
draft dataset Ddraft.

2.2 PREFERENCE COLLECTION

In this step, we aim to collect the preferences of the student model for question-rationale pairs
during Supervised Fine-Tuning (SFT). To achieve this, a reliable metric that can reflect the stu-
dent model’s preference for draft pairs is needed. Recent research (Dai et al., 2023; Von Os-
wald et al., 2023) suggests that language models perform gradient-based updates during In-
Context Learning (ICL), similar to the process of SFT. Additionally, Lin et al. (2023) demon-
strates that ICL can effectively replace SFT in alignment tasks. All these findings suggest that
the one-shot ICL performance of the student model with draft pairs can be used as a proxy
for preference scores during SFT. To further empirically validate this, we first sample 50 ques-
tions from the validation set to construct the preference set Dpref. Then, we collect the one-
shot ICL performance of the student model with different draft pairs on the preference set Dpref.
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Bot-25% Top-25% Rand-25%
Acc. 35.57% 42.78% 39.94%

Table 1: Accuracy of Gemma-2B trained with
different data subsets (Bottom-25%, Top-25%,
Random-25%) based on ICL performance, eval-
uated on BBH test set.

Finally, we trained the student model (Gemma-
2B) using pairs from the top-25% (highest ICL
performance), bottom-25% (lowest ICL perfor-
mance), and a random 25% sample from the
full draft example dataset and evaluated them
on the Big-Bench-Hard (BBH) test set. The re-
sults in Table 1 show that models trained with
higher ICL performance pairs significantly out-
perform those trained with pairs with lower ICL
performance, further confirming the reliability of using ICL as a proxy for preference.

With the above findings, we define the preference score of a rationale r and a question q as the
average one-shot ICL performance of the student model on the preference set Dpref. Formally, for
rationale r associated with question q, the preference score sr is defined as:

sr =
1

|Dpref|
∑

(q′,a′)∈Dval

I(LMs(q, r; q
′) = a′) (1)

where LMs(q, r; q
′) denotes the student model’s answer to question q′ when q and r are used as the

one-shot in-context example, and I(·) is the indicator function. The preference score sq of question
q is defined as the average of the preference scores of its associated rationales:

sq =
1

|Rq|
∑
r∈Rq

sr (2)

where Rq is the set of rationales associated with question q.

2.3 PREFERENCE ALIGNMENT

After collecting the preference score of questions and rationales, we aim to align the teacher model
with the student model’s preferences to generate tailored pairs for the target task T . There are two
main aspects to align, Question Generation and Rationale Generation, towards generating not only
tailored rationales but also tailored questions. Direct Preference Optimization (DPO) (Rafailov et al.,
2023) is selected to align the teacher model with the student model’s preferences due to its stability
and simplicity compared to other methods like PPO (Schulman et al., 2017). For question level
alignment, for the input question generation prompt, we randomly sample out k draft questions with
the top-25% and bottom-25% preference scores as the chosen and rejected responses respectively.
For rationale level alignment, for each question q, we select the rationale from Rq with the highest
preference score as the chosen response and the rationale with the lowest preference score as the
rejected response. Note that the input prompt in rationale level alignment is just a naive step-by-step
prompt as shown in Table 14. Finally, we mix the question level and rationale level DPO datasets to
perform DPO to align the teacher model with the student model’s preferences.

After the alignment, we repeat the first step to generate tailored pairs for the target task T and use
them to Supervised Fine-Tune the student model. Note that when generating tailored questions and
rationales, we use the same input prompt from the alignment step and decode at temperature τ = 0
for deterministic decoding. More details can be found in Appendix E.

3 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness of our method to transfer
the reasoning capabilities from the teacher model to the student model to target tasks Big-Bench-
Hard (Suzgun et al., 2023).

3.1 EXPERIMENTAL SETUP

Datasets We conduct experiments on the Big-Bench-Hard (Suzgun et al., 2023), a suite of
23 challenging tasks from the Big-Bench benchmark (Srivastava et al., 2022). The Big-
Bench-Hard is designed to test the generalization ability of models on a wide range of
tasks, including logical reasoning, commonsense reasoning, world knowledge, math ability, etc.

4
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Category #Tasks #Pref #Test
BBH-Logic 10 400 3,146
BBH-CS 7 280 1,615
BBH-Math 3 120 750
BBH-Knowl 3 120 750

Total 23 920 6,261

Table 2: Statistics of the Big-Bench-Hard dataset.

For better presentation, we divide the tasks into
four categories based on the capabilities re-
quired: (1) logical reasoning, (2) commonsense
reasoning, (3) math reasoning and (4) world
knowledge, denoted as BBH-Logic, BBH-CS,
BBH-Math and BBH-Knowl respectively. De-
tails of the task categories are shown in Ap-
pendix D. Table 2 shows the statistical informa-
tion of the tasks in Big-Bench-Hard. For each
task, we sample 40 questions from the original
Big-Bench dataset to form the preference set.

Baselines Since We compare our method with the following instruction-tuning datasets as aca-
demic baselines: 1) GPT-4-LLM (Peng et al., 2023) is an instruction-tuning dataset distilled from
GPT-4 with Self-Instruct (Wang et al., 2022). 2) Tulu-v2 (Ivison et al., 2023) is a mix of multiple
existing high-quality instruction-tuning datasets, including FLAN (Longpre et al., 2023), OpenAs-
sistant (Köpf et al., 2024), etc. 3) OpenOrca is a reproduction of Orca (Mukherjee et al., 2023),
which augments FLAN data with additional GPT-4 or GPT-3.5-Turbo generated explanations.
4) WizardLM-Evol-Instruct (Xu et al., 2023) is instruction-fine-tuning dataset which is distilled from
the GPT-4 through Evol-Instruct. 5) UltraChat (Ding et al., 2023) contains high-quality multi-turn
dialogues and covers a wide range of topics and instructions.

Apart from the above academic baselines, we also compare our method with ablation baselines to
testify the effectiveness of the two different alignment aspects in our method: 1) Original Teacher:
the dataset constructed by the draft questions and its corresponding rationale with the highest pref-
erence score in the preference set. Namely, in this baseline, both the questions and rationales are
generated by the original teacher model. 2) Rationale Only: In this setting, only the rationales are
generated by the aligned teacher model, while the questions are generated by the original teacher
model. 3) Question Only: In this setting, only the questions are generated by the aligned teacher
model, while the rationales are generated by the original teacher model. To ensure a fair comparison,
we sample out 6, 750 examples from each baseline dataset to conduct the experiment. Supervised
Fine-Tune is used to train the student model on these datasets with 1 epoch using the Adam opti-
mizer (Kingma & Ba, 2014) and a learning rate of 2e− 5. We use 3% of the total training steps for
cosine learning rate warm-up and adopt a linear decay learning rate schedule.

Implementation In our experiments, we adopt Llama-3-70B-Instruction (Meta, 2024) as the
teacher model and Gemma-2B (Banks & Warkentin, 2024) as the student model. We run all of
our experiments with 5 different seeds and report the mean of the results in the tables below.

In the Knowledge Elicitation step, 1) Question Generation: We decode the question generation
prompt in Table 15 with the aligned teacher at a temperature of 1.0 until we achieve a total of
250 draft questions per task. 2) Rationale Generation: For each draft question, the teacher model
is prompted to generate n = 4 rationales using the prompt in Table 16 with diverse reasoning
techniques. Each draft question with its corresponding rationales forms a draft sample (q,Rq).

In the Preference Collection step, we collect the preference scores of questions and rationales
through in-context learning on the preference set. Specifically, we use the prompt template in Ta-
ble 17 and decoding at a temperature τ = 0 to ensure the model’s answer is deterministic.

In the Preference Alignment step, we utilize preference scores to create the DPO dataset and align
the teacher model with the student model’s preferences. For question generation, we select 50 draft
questions with the highest and lowest preference scores per task as preferred and dispreferred respec-
tively, creating 50 DPO training examples per task at the question level. For rationale generation, the
highest and lowest score rationales per question are selected similarly, resulting in 250 DPO training
examples at the rationale level per task. These datasets are combined to form the final DPO dataset.
We employ Direct Preference Optimization (DPO) to align the models at a learning rate of 1e − 7,
batch size of 16, for 1 epoch, incorporating a linear warm-up over 10% of training steps followed
by a cosine decay learning rate schedule.
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Models BBH-Logic BBH-CS BBH-Math BBH-Knowl BBH
zero-shot result

Vanilla Gemma-2B 0.80 0.00 6.00 0.00 1.09

+ GPT-4-LLM 1.35 0.00 1.60 0.93 1.00
+ Tulu-v2 6.15 5.83 16.00 0.67 6.33
+ UltraChat 3.74 0.56 7.07 8.00 3.82
+ WizardLM 6.24 2.14 12.27 15.33 6.88
+ OpenOrca 5.17 4.68 20.13 8.53 7.42

+ Original Teacher 35.57 40.61 33.87 40.27 37.55
+ Rationale Only 36.07 37.54 37.87 40.53 37.94
+ Question Only 40.29 43.45 40.80 40.67 41.73

+ ARTE 39.07 44.44 42.00 42.53 41.96
three-shot result

Vanilla Gemma-2B 28.16 40.92 42.13 44.40 35.57

+ GPT-4-LLM 29.58 40.79 36.27 49.20 36.11
+ Tulu-v2 30.28 39.74 38.67 50.00 36.35
+ UltraChat 31.01 41.05 47.73 47.07 37.28
+ WizardLM 29.62 43.44 45.33 45.33 37.29
+ OpenOrca 28.91 41.91 43.47 49.87 36.92

+ Original Teacher 34.32 43.06 44.13 52.13 40.04
+ Rationale Only 37.43 42.17 47.47 49.73 41.30
+ Question Only 40.39 43.85 41.73 51.87 42.78

+ ARTE 39.86 44.45 46.13 53.87 43.44

Table 3: Accuracy (%) of the student model Gemma-2B fine-tuned with different instruct-tuning
datasets on Big-Bench-Hard under zero-shot and three-shot settings. Cells are colored blue if the
method improves over Vanilla Gemma-2B, and orange if it declines.

Finally, we repeat the first step to generate tailored examples for BBH tasks and use them to Super-
vised Fine-Tune the student model with the same hyperparameters as baselines. All the experiments
are conducted on 8 * NVIDIA A100 80G GPUs, which will cost about 1 day in total.

3.2 RESULTS

Table 3 shows the results of our method and baselines on the Big-Bench-Hard dataset under the zero-
shot and three-shot in-context learning settings. 1) Compared to academic baselines: we can see that
our method outperforms all the baselines including the baselines that simply imitate the reasoning
process of the most powerful LLM (GPT-4-LLM), mix multiple existing high-quality instruction-
tuning datasets (Tulu-v2), distill the teacher model with hand-crafted curations (OpenOrca and Wiz-
ardLM), and high-quality multi-turn dialogues (UltraChat). 2) Compared to the ablation baselines:
our method outperforms both question-only and rationale-only baselines by a large margin, indi-
cating that both the questions and rationales generated by the aligned teacher model are important
for the student model to achieve better performance. Besides, notice that the performance of the
question-only baseline achieves better performance than the rationale-only baseline. This interest-
ing phenomenon indicates that in Knowledge Distillation for the language model, the quality of
questions plays a more important role than the quality of rationales.

4 ANALYSIS ON GENERALIZATION

Although ARTE outperforms the baselines on the Big-Bench-Hard dataset, the generalization per-
formance of it is still unclear. Thus in this section, we present a thorough examination of its gen-
eralizability in the following two aspects: 1) Generalization of the fine-tuned student model. 2)
Generalization of the aligned teacher model.
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Models PIQA CSQA ARC-E ARC-C GSM8K MMLU Average
Vanilla Gemma-2B 61.6 38.2 57.2 42.8 20.0 40.6 43.4

+ GPT-4-LLM 60.2 42.8 55.8 46.2 18.6 39.4 43.8
+ Tulu-v2 65.2 42.8 62.2 49.6 18.8 40.6 46.5
+ UltraChat 62.0 40.0 59.6 50.6 23.2 42.1 46.3
+ WizardLM 63.6 41.4 56.4 49.2 26.2 40.5 46.2
+ OpenOrca 64.6 43.6 61.0 48.4 23.6 40.0 46.9

+ ARTE 63.4 42.9 63.6 57.2 32.0 41.4 50.1

Table 4: Accuracy (%) of the student model Gemma-2B fine-tuned with ARTE and academic base-
lines on out-of-domain reasoning benchmarks. Cells are colored blue if the method improves over
Vanilla Gemma-2B, and orange if it declines.

4.1 GENERALIZATION OF THE FINE-TUNED STUDENT MODEL

To investigate the generalization ability of the fine-tuned student model Gemma-2B, we conduct
experiments on the following academic reasoning benchmarks: 1) PIQA (Bisk et al., 2020) is
a physical commonsense reasoning dataset that is designed to test the model’s ability to build,
craft, or manipulate objects using everyday physical knowledge. 2) CSQA (Talmor et al., 2019)
is a question-answering benchmark targeting commonsense reasoning. 3) ARC-Easy and 4) ARC-
Challenge (Clark et al., 2018) are multiple-choice question-answering benchmarks designed to test
the model’s ability to reason about scientific knowledge. 5) GSM8K (Cobbe et al., 2021) is a math-
ematical benchmark that is designed to test language models’ ability in math and logic reasoning.
6) MMLU (Hendrycks et al., 2021) is a new benchmark designed to measure knowledge acquired
during pretraining by evaluating models exclusively in zero-shot and few-shot settings.

Table 4 shows the results of our method and baselines on the six benchmarks. On average, our
method outperforms the best baseline by 1.5% in accuracy. The results show that our method helps
the student model Gemma-2B to achieve better generalization ability on reasoning tasks. In some
tasks like PIQA, CSQA, and MMLU, the performance of our method is not the best but still com-
petitive. While in more challenging tasks like ARC and GSM8K, which are both sampled from
real-world grade school exams, our method outperforms all the baselines. This phenomenon reveals
for more challenging tasks, more carefully curated examples are needed in knowledge distillation.
Compared to the heuristic baselines, the tailored examples generated by the aligned teacher model
are more effective in these tasks as they can better capture the student model’s preferences.

4.2 GENERALIZATION OF THE ALIGNED TEACHER MODEL

Due to the high computational cost of preference collection and alignment, it is desirable that the
aligned teacher model can generate tailored examples for unseen tasks and unseen student models.

Models PIQA ARC-E ARC-C GSM8K Average
zero-shot results

Original 62.4 62.4 51.0 22.2 49.5
Aligned 65.6 59.4 51.2 25.6 50.5
Delta ↑ 3.2 ↓ 3.0 ↑ 0.2 ↑ 3.4 ↑ 1.0

three-shot results

Original 65.0 64.2 51.8 23.4 51.1
Aligned 66.6 65.2 52.6 24.8 52.3
Delta ↑ 1.6 ↑ 1.0 ↑ 0.8 ↑ 1.4 ↑ 1.2

Table 5: Accuracy (%) of the student model Gemma-
2B fine-tuned with training examples generated by the
original teacher model and the aligned teacher model
on out-of-domain reasoning benchmarks.

Generalization Across Tasks To inves-
tigate whether our aligned teacher model
is capable of generating tailored ex-
amples for student models on unseen
tasks, we conduct experiments on the
PIQA, ARC-EASY, ARC-Challenge, and
GSM8K benchmarks.

We repeat Step 1 Knowledge Elicitation
to generate training examples on the four
benchmarks. Specifically, we guide both
original and aligned teacher models to
generate 2500 training examples for each
unseen benchmark. We train the student
model Gemma-2B with the generated ex-
amples on the four unseen benchmarks
separately with the same hyperparameters
mentioned in Section 3.
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Results in Table 5 show that the student model fine-tuned with training examples generated by the
aligned teacher model outperforms the student model fine-tuned with training examples generated
by the original teacher model. This finding suggests that through preference alignment, the aligned
teacher model gains a deeper understanding of the student model’s preferences, which helps with
unseen tasks. This enhanced understanding of the teacher model makes it easier to distill the specific
abilities of the aligned teacher model to the student model compared to the original teacher model.

Models Gemma-7B Qwen1.5-1.8B CodeGemma-2B
zero-shot results

Original 49.0 36.3 38.7
Aligned 49.0 39.4 41.2
Delta 0.0 ↑ 3.1 ↑ 2.5

three-shot results

Original 51.2 38.2 39.8
Aligned 51.0 40.3 42.7
Delta ↓ 0.2 ↑ 2.1 ↑ 2.9

Table 6: Accuracy (%) of the different student mod-
els fine-tuned with training examples generated by the
original teacher model and the aligned teacher model
on Big-Bench-Hard.

Generalization Across Student Models
To investigate the generalization ability of
the aligned teacher model across unseen
student models, we conduct experiments
on the Big-Bench-Hard dataset. Specif-
ically, we adopt Gemma-7B as the stu-
dent model from the same family with
a different capacity, Qwen1.5-1.8B and
CodeGemma-2B as the student models
with the same capacity but from different
families or different domains. We train
the student models with the training ex-
amples generated by the original teacher
model and the aligned teacher model un-
der the same hyperparameters mentioned
in Section 3.

Table 6 shows the results of the student
models trained with the original teacher model and the aligned teacher model, denoted as Original
and Aligned respectively. The results show that in Qwen1.5-1.8B and CodeGemma-2B, the models
from different families or different domains share similar parameter capacity with the Gemma-2B,
and achieve better performance with the tailored examples generated by the aligned teacher model
than the original teacher model. In Gemma-7B, the model from the same family with a larger pa-
rameter capacity does not present a promising improvement. This indicates that the language model
with a similar parameter capacity shares similar preferences in training examples. This finding sug-
gests that the aligned teacher model can be applied to different student models as long as they share
similar parameter capacities.

5 INSIGHTS FOR GENERATING RATIONALE FOR LANGUAGE MODELS

In Step 2 Preference Collection, we collect the preference of small language models, such as
Gemma-2B, towards the question-rationale pairs through one-shot in-context learning on the prefer-
ence set. Through careful analysis of the collected preference scores, we conclude with two insights
for generating a tailored question-rationale pair for language models with limited capacity:

Insight 1: The more detailed the rationale does not necessarily mean the better the per-
formance of the small language model. In previous works (Hsieh et al., 2023; Mukherjee
et al., 2023), the teacher model is guided to generate a detailed reasoning process with chain-of-
thought (Wei et al., 2022; Yao et al., 2022) to provide more information for the small language
model to imitate. However, after taking a closer look at the preference scores, we find that there is
no significant linear correlation between the length of the rationale and the preference score, namely
the accuracy of the small language model within one-shot in-context learning. Figure 2 shows the
relationship between the word number of the rationale and the one-shot in-context learning accuracy
of the small language model on boolean expressions and sports understanding tasks.

As shown in Figure 2, the rationale with most words does not necessarily mean the best performance
of the small language model, while the rationale with moderate words (75-100 words in Boolean
Expressions and 50-75 words in Sports Understanding) achieves better results. This indicates that a
rationale with complete and concise reasoning steps is more beneficial for the small language model
to learn, compared to a long meticulous rationale.

The reasons behind this are twofold: First, the Lost-in-the-Middle Phenomenon (Liu et al., 2024)
of language models. Language models may lose information when the input context is too long.
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Figure 2: The relationship between the word number of the rationale and the one-shot in-context
learning accuracy of the Gemma-2B on boolean expressions and sports understanding tasks.

For limited-capacity language models, when example rationales are too long, the small language
model may get lost in the narrative and forget the question to solve. Second, the Repetition Prob-
lem (Welleck et al., 2019) of language models. In long meticulous rationales, the teacher model may
repeat the same step multiple times, for example acting as a stack machine when solving a math
problem. For limited-capacity language models, this repeated step may cause the small language
model to get stuck in a loop and repeat the same step infinitely.

Method BBH
Vanilla Gemma-2B 35.57

+ Randomly Selected 39.94
+ Most Preferred 40.04
+ Task Consistent 42.12
+ Aligned Teacher 43.44

Table 7: Accuracy (%) of the Gemma-
2B fine-tuned with different training ex-
amples on Big-Bench-Hard.

Insight 2: Although different questions in the same
task prefer different reasoning strategies, the small
language model prefers consistent reasoning strate-
gies for one task in Supervised Fine-tuning. The di-
versity of tests in the training corpus is crucial for the pre-
training stage of language models (Liu et al., 2019). To
investigate the impact of the diversity of reasoning strate-
gies in the training dataset, we fine-tuned the Gemma-2B
with four different training datasets on Big-Bench-Hard.
1) Randomly Selected: the rationale of each question is
randomly selected from different reasoning strategies. 2)
Most Preferred: the rationale of each question is selected
based on the highest preference score. 3) Task Consistent:
all rationales are selected from within the same reasoning
strategy for one task. 4) Aligned Teacher: the rationales are generated by the aligned teacher model
with the small language model’s preference. All the questions in these four training datasets are
generated by the original teacher model to ensure fairness. Table 7 presents the performance of
the small language model fine-tuned with four different training datasets on Big-Bench-Hard. The
results present an interesting phenomenon: the performance of Gemma-2B fine-tuned with the Most
Preferred dataset is similar to the Randomly Selected dataset, while Task Consistent and Aligned
Teacher datasets both outperform the other two datasets by a decent margin. This indicates that
in the fine-tuning stage, especially when we try to enhance one or two specific capabilities of the
small language model, for example, reasoning, the consistent reasoning strategies are more benefi-
cial. The reason behind this is that the small language model may get confused when the reasoning
strategies are too diverse for one task, while the consistent reasoning strategies provide clear guid-
ance for the small language model to imitate for specific capability enhancement.

6 RELATED WORK

Instruction Tuning & Knowledge Distillation Instruction tuning, which involves fine-tuning pre-
trained language models on a labeled dataset known as an instruction-tuning dataset, is a widely
adopted technique to enhance both task-specific performance and the ability to follow instructions.
In this paper, we concentrate on improving the reasoning capabilities of lightweight language mod-
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els through instruction tuning. Given the high costs and scalability challenges of creating human-
labeled instruction-tuning datasets, Knowledge Distillation (KD) is frequently employed to distill
such datasets from a powerful teacher model (Hinton et al., 2015). To enhance the quality of gener-
ated question-rationale pairs, Taori et al. (2023); Wang et al. (2022) suggested using ROUGE-L (Lin,
2004) to filter out repetitive questions, thereby increasing the diversity of the generated content. Xu
et al. (2023) introduced Evo-Instruct, which incrementally rewrites seed questions into more com-
plex ones, improving their sophistication. For generating rationales, Hsieh et al. (2023); Mukherjee
et al. (2023) utilized chain-of-thought reasoning (Wei et al., 2022; Yao et al., 2022) to guide the
teacher model in producing rationales that incorporate detailed reasoning steps, thus enhancing ra-
tionale quality. Additionally, Mitra et al. (2023) argued that the reasoning in rationales should be
adaptable to different question types. While these approaches improve the quality of questions and
rationales from the teacher model’s perspective, they do not account for the student model’s learning
preferences. To address this limitation, we propose ARTE, a novel framework that aligns the teacher
language model’s outputs with the preferences of the student model, generating instruction-tuning
datasets that are better tailored to the student model’s needs.

Alignment of Language Models Alignment of Language Models is about aligning the behavior
with human or other models’ preferences. It is initially proposed in the context of reinforcement
learning from human feedback (Christiano et al., 2017), where the language model is trained to
align with human preferences including safety, ethics, common sense, and other human values.
Proximal Policy Optimization (PPO, Schulman et al., 2017) and Direct Preference Optimization
(DPO, Rafailov et al., 2023) are two popular reinforcement learning algorithms used to achieve this
alignment (Ouyang et al., 2022; Touvron et al., 2023; Meta, 2024; Yang et al., 2024). Since collect-
ing human feedback is expensive and time-consuming, it has been extended to align the language
model with preferences from other AI models or itself, known as RL from AI feedback (RLAF,
Wang et al., 2023; Bai et al., 2022; Yuan et al., 2024). Our work is inspired by this line of research,
where we align the teacher model with preference data collected from the student model to generate
tailored training examples for reasoning tasks. Recently, some concurrent works have also inspired
by RLAIF to improve the ability of the student model by adding an RLAIF-based loss term in the
training process (Agarwal et al., 2024) or using DPO to replace the commonly used Supervised
Fine-Tuning (Brown et al., 2020) (Zhang et al., 2024). These works focus on the training process,
while our work focuses on the knowledge elicitation process, specifically on how to curate training
data from LLMs.

7 CONCLUSION

In this study, we propose ARTE, a novel framework in Knowledge Distillation that aligns the
teacher language model with the student language model’s preferences to generate a tailored in-
struction tuning dataset, which is inspired by responsive teaching in pedagogy, which effectively
lowers the learning barriers for students. Our framework consists of three main steps: Knowledge
Elicitation, Preference Collection, and Preference Alignment. Extensive experiments on various
academic benchmarks show that our method outperforms existing instruction-tuning datasets dis-
tilled from powerful LLMs by a large margin. Moreover, we investigate the generalization of the
aligned teacher model, showing that the aligned teacher model can be generalized to other reasoning
benchmarks and different student models.
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APPENDIX

A LIMITATIONS

Although most of the data used in ARTE are automatically generated by the teacher model, there
still needs some manual efforts to construct the prompts and collect the preference scores. Specifi-
cally, there are two main limitations in the current implementation of ARTE: First, in draft rationale
generation, to elicit diverse and high-quality rationales, a set of carefully designed prompts is re-
quired. In this work, we hand-crafted the system prompts for each task using different reasoning
techniques from the paper authors themselves. Totally, we constructed 4 prompts for each task
as presented in Table 16. Recently, Wang & Zhou (2024) proposed to Chain-of-Thought Decod-
ing (CoT-Decoding) to uncover reasoning processes of questions from language models without
prompts. In the future, we will explore the possibility of using CoT-Decoding to generate a reason-
ing process automatically. Second, in preference collection, a set of labeled examples consisting of
questions and answers is required to act as the validation set and preference set. Preference scores
are collected on these labeled question-answer pairs to measure the preference of the student model
towards the draft questions and rationales. In this work, we simply reuse the data from the original
Big-Bench dataset as the validation set. In the future, we will explore the possibility of directly
measuring the preference through the internal states of the student model (Kadavath et al., 2022).

B DISCUSSION

Threshold of DPO data Selection When aligning the teacher model, we chose the top and bot-
tom 25% to balance example quantity and quality. Higher thresholds like 5% may yield too few
examples, while lower thresholds like 45% may include less discriminative ones. We further con-
ducted an ablation study showing that 25% is a good balance point. We aligned teachers at different
thresholds and used them to generate data for training the student model. The results of BBH are
shown in Table 8:

Threshold 15% 25% 35%

Student (0-shot) 39.7 42.0 41.6

Table 8: Different thresholds used to align the teacher model

Scaling Relationship In this section, we discuss the feasibility of our approach for large-scale
datasets and models.

We sampled 6,750 examples from each baseline dataset to conduct the experiment and ensure a fair
comparison. To investigate the performance trend as data size varies, we trained the student model
(Gemma-2B) with varying sizes of tailored data from the aligned teacher model (LLaMA-3-70B).
The performance continued to improve with increasing data size, indicating promising scalability.
The examples are shown in Table 9:

Data Size 1350 4050 6750 9450 12150

Student (0-shot) 39.2 40.3 42.0 45.2 46.0

Table 9: Different tailored data size used to train the student model

As for large-scale models, we would like to clarify that our approach is model-agnostic and can be
applied to any LLMs. This is because our approach is based on In-Context Learning (Collect Student
Preferences), Direct Preference Optimization (Align Teacher Model), and Supervised Fine-tuning
(Train Student Model), which are general techniques available for all LLMs. Thus, our method is
flexible and easily scalable to any of them.
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Human Evaluation Human evaluation is a good engineering effort to evaluate the model’s perfor-
mance. We manually check some cases of the answer between ARTE and others. Table 10 shows
that with our ARTE distillation, the output is more specific and reaches a higher accuracy.

Question Original Teacher ARTE

This SVG path element
<path d=M̈ 5.41,37.88 L
1.69,19.06 M 1.69,19.06 L
0.30,43.85 M 0.30,43.85 L
5.41,37.88/̈>draws a
Options:
(A) circle
(B) heptagon
(C) hexagon
(D) kite
(E) line
(F) octagon
(G) pentagon
(H) rectangle
(I) sector
(J) triangle

Let’s break down the SVG path element step
by step:
1. ‘M 5.41,37.88‘: Move to the point (5.41,
37.88)
2. ‘L 1.69,19.06‘: Draw a line to the point
(1.69, 19.06)
3. ‘M 1.69,19.06‘: Move to the point (1.69,
19.06)
4. ‘L 0.30,43.85‘: Draw a line to the point
(0.30, 43.85)
5. ‘M 0.30,43.85‘: Move to the point (0.30,
43.85)
6. ‘L 5.41,37.88‘: Draw a line back to the
starting point (5.41, 37.88)
From these steps, we can see that the shape
has four sides, and all internal angles are
right angles (90 degrees). This matches the
definition of a...
<ans>(H) rectangle</ans>

Let’s break down the SVG path element step
by step.
The path starts at (5.41, 37.88) and moves to
(1.69, 19.06), then to (0.30, 43.85), and fi-
nally back to (5.41, 37.88).
This forms a shape with three sides, where
all sides are of equal length, and opposite
sides are parallel. The internal angles are
also equal (120 degrees).
This shape matches the definition of a
<ans>(J) triangle</ans>.

Is the following sentence
plausible? J̈ohn Carlson
scored in the third period.¨

Let’s break it down!
1. John Carlson is a real NHL player, so that
part is plausible.
2. The third period is a common term used in
hockey to describe the final period of a game,
so that’s also plausible.
3. However, scoring is a term typically used
in sports like soccer (or football), not hockey.
In hockey, the score is usually kept by the
goalie, not the players.
Considering these points, I’d say the sen-
tence is <ans>implausible</ans>

Let’s break it down!
* John Carlson is a real person and a profes-
sional ice hockey player.
* Scoring is a common action in ice hockey,
and the third period is a crucial period in a
hockey game.
* It’s possible for a player to score in the
third period.
Considering these points, I conclude that the
sentence is...
<ans>plausible</ans>

Table 10: Cases of the answer between ARTE and Original Teacher.

Besides, we follow the common practice in the field of Knowledge Distillation for Language Mod-
els, where human evaluation is not commonly conducted. For example, recent works like Phi-
1(Gunasekar et al., 2023), Phi-2(Mic, 2023), Phi-3(Abdin et al., 2024), WizardLM(Xu et al., 2023),
Orca(Mukherjee et al., 2023), Orca-2(Mitra et al., 2023), and SmoLM(Hug, 2024) did not conduct
human evaluation and used similar benchmarks like we did to evaluate the model’s performance,
whose answers are explicit. Our approach aligns with these standards, ensuring consistency and
comparability within the field.

C BROADER IMPACTS

The possible broader impacts of this work lie in the hallucination of language models. Language
models have been shown to generate biased and harmful content (Bender et al., 2021; Zhang et al.,
2023). In this work, we focus on the enhancement of the student model’s specific capability, such
as reasoning, which is not directly relevant to the generation of harmful content. It is worth noting
that the user should be cautious when using the student model or the teacher model to generate text,
especially when the generated text is used in critical applications such as medical diagnosis or legal
advice.
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D BIG-BENCH-HARD CATEGORY

We split the Big-Bench-Hard tasks into four categories based on the capabilities required by the
tasks: (1) logical reasoning, (2) commonsense reasoning, (3) math reasoning and (4) world knowl-
edge, denoted as BBH-Logical, BBH-Commonsense, BBH-Math and BBH-Knowledge respectively.
Table 11 shows the detailed information of the tasks in Big-Bench-Hard.

Category Task Quantity

BBH-Logic

dyck languages, formal fallacies syllogisms negation, logi-
cal deduction, navigate, object counting, penguins in a table,
temporal sequences, tracking shuffled objects, web of lies,
word sorting

10

BBH-CS causal judgment, date understanding, disambiguation qa, hy-
perbaton, reasoning about colored objects, ruin names, snarks 7

BBH-Math boolean expressions, geometric shapes, multistep arithmetic 3

BBH-Knowl movie recommendation, salient translation error detection,
sports understanding 3

Table 11: Big-Bench-Hard task categories.

E REPEATING KNOWLEDGE ELICITATION TO GENERATE TRAINING
EXAMPLES

After the Preference Alignment step, we need to repeat the Knowledge Elicitation step to generate
training examples for the student model with the aligned teacher model. Specifically, first, we
prompt the aligned teacher model with question generation prompts as shown in Table 15 to generate
draft examples. We will decode the question generation prompts with decoding temperature 1.0
multiple times until we get enough draft questions. Then, for each question, we prompt the aligned
teacher model with naive Step-by-Step prompts as shown in Table 12 to generate rationales with
decoding temperature 0.0.

Task Description: {Task Description}
Question: {Question}
Answer: Let’s think step by step. {to be completed by the teacher model}

Table 12: Naive Step-by-Step prompt for the teacher model.

F DIRECT PREFERENCE OPTIMIZATION DETAILS

In the Preference Alignment step, we align the teacher model with the student model’s preferences
through Direct Preference Optimization (DPO) (Rafailov et al., 2023). Here we provide the details
of constructing the DPO dataset

DPO dataset for Question Generation For each task, we construct the DPO dataset for question
generation using the following template. The question generation prompt is constructed based on
the task description and seed questions, detailed in Table 15. The preferred response is randomly
selected from the draft questions with top-25% preference scores, while the dispreferred response is
randomly selected from the draft questions with bottom-25% preference scores.

DPO dataset for Rationale Generation For each draft question, we construct the DPO dataset
for rationale generation using the following template, The naive Step-by-Step prompt is constructed
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Input Prompt x: { The Question Generation Prompt }
Preferred Response yw: {Preferred Question}
Dispreferred Response yl: {Dispreferred Question}

Table 13: DPO dataset template for question generation.

Input Prompt x: { The Naive Step-by-Step Prompt }
Preferred Response yw: {Preferred Rationale}
Dispreferred Response yl: {Dispreferred Rationale}

Table 14: DPO dataset template for rationale generation.

based on the task description and the draft question, detailed in Table 12. The idea of using naive
Step-by-Step prompts is inspired by Prompt Erasure (Mitra et al., 2023), which lets the teacher
model learn to select the most suitable reasoning strategy to generate tailored training examples for
the student model. The preferred response is the draft rationale to the draft question with the highest
preference scores, while the dispreferred response is the draft rationale with the lowest preference
scores.

Finally, we mix the DPO dataset for question generation and rationale generation together to train
the teacher model with DPO.

G QUESTION GENERATION PROMPT

We provide some prompts for guiding the teacher model to generate questions in the Knowledge
Elicitation step.

Task Prompt

boolean expressions boolean expressions is a task whose description is as follows: Evaluate the result
of a random Boolean expression.
I will provide you 3 example questions about this task in the following. Based
on the following example, I want you to generate 5 more questions about
boolean expressions with brainstorming.
You may not stick to context, but the question should be related to boolean
expressions.
The output should be like this:
<Question x><input>...</input><target>...</target></Question x>
x can be any number, but it should be unique.

<Question 1><input>not ( ( not not True ) )
is</input><target>False</target></Question 1>
<Question 2><input>True and False and not True and True
is</input><target>False</target></Question 2>
<Question 3><input>not not ( not ( False ) )
is</input><target>True</target></Question 3>

causal judgment causal judgment is a task whose description is as follows: Answer questions
about causal attribution.
I will provide you 3 example questions about this task in the following. Based
on the following example, I want you to generate 5 more questions about causal
judgment with brainstorming.
You may not stick to context, but the question should be related to causal judg-
ment.
The output should be like this:
<Question x><input>...</input><target>...</target></Question x>
x can be any number, but it should be unique.

<Question 1><input>How would a typical person answer each of the follow-
ing questions about causation?
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Frank T., had an ongoing dispute with his neighbor over a stretch of land and
one day decided to shoot his neighbor in the body. Frank T. had no experience
with guns, his hand slipped on the barrel of the gun, and the shot went wild.
Nonetheless, the bullet bounced off a large boulder several feet away and hit the
neighbor’s body, causing significant injury. Did Frank T. intentionally shoot his
neighbor in the body?
Options:
- Yes
- No</input><target>No</target></Question 1>
<Question 2><input>How would a typical person answer each of the follow-
ing questions about causation?
Suzy and Billy are working on a project that is very important for our nation’s
security. The boss tells them both: ”Be sure that you are here at exactly 9 am.
It is absolutely essential that you arrive at that time.” Both Billy and Suzy arrive
at 9 am. As it happens, there was a motion detector installed in the room where
they arrived. The motion detector was set up to be triggered if at least one
person appeared in the room at the same time. So the motion detector went off.
Did Billy cause the motion detector to go off?
Options:
- Yes
- No</input><target>Yes</target></Question 2>
<Question 3><input>How would a typical person answer each of the follow-
ing questions about causation?
George and his sister Lena reunite at their parent’s house for Thanksgiving.
Whereas George just got into medical school, Lena is unhappy in her marriage
and recently lost her job. Over the course of the day, George and Lena get into a
number of heated arguments. Later in the afternoon, they play a game of darts.
They split the first two games, and the third game was close until the end. Who
will win comes down to George’s last shot. If he hits a high point region, he
wins; if he hits a low point region, Lena wins. George thinks of the difficult
time Lena is having, and he really wants to let her win. He aims the dart at the
low point region. He sets up his shot and the dart lands in the low point region.
After his shot, Lena wins the game and is very happy. Did George hit the low
point region intentionally?
Options:
- Yes
- No</input><target>Yes</target></Question 3>

date understanding date understanding is a task whose description is as follows: Infer the date from
context.
I will provide you 3 example questions about this task in the following. Based
on the following example, I want you to generate 5 more questions about date
understanding with brainstorming.
You may not stick to context, but the question should be related to date under-
standing.
The output should be like this:
<Question x><input>...</input><target>...</target></Question x>
x can be any number, but it should be unique.

<Question 1><input>Today is Christmas Eve of 1937. What is the date 10
days ago in MM/DD/YYYY?
Options:
(A) 12/14/2026
(B) 12/14/1950
(C) 12/14/2007
(D) 12/14/1937
(E) 07/14/1938
(F) 12/14/1988</input><target>(D)</target></Question 1>
<Question 2><input>Tomorrow is 11/12/2019. What is the date one year ago
from today in MM/DD/YYYY?
Options:
(A) 09/04/2018
(B) 11/11/2018
(C) 08/25/2018
(D) 11/02/2018
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(E) 11/04/2018</input><target>(B)</target></Question 2>
<Question 3><input>Jane and John married on Jan 2, 1958. It is their 5-year
anniversary today. What is the date tomorrow in MM/DD/YYYY?
Options:
(A) 01/11/1961
(B) 01/03/1963
(C) 01/18/1961
(D) 10/14/1960
(E) 01/03/1982
(F) 12/03/1960</input><target>(B)</target></Question 3>

movie recommendation movie recommendation is a task whose description is as follows: Recommend
movies similar to the given list of movies.
I will provide you 3 example questions about this task in the following. Based
on the following example, I want you to generate 5 more questions about movie
recommendations by brainstorming.
You may not stick to context, but the question should be related to movie rec-
ommendations.
The output should be like this:
<Question x><input>...</input><target>...</target></Question x>
x can be any number, but it should be unique.

<Question 1><input>Find a movie similar to Star Wars Episode IV - A New
Hope, Indiana Jones and the Last Crusade, Star Wars Episode V - The Empire
Strikes Back, The Big Lebowski:
Options:
(A) Tetsuo
(B) the Ironman
(C) The Princess Bride
(D) The Barkley Marathons The Race That Eats Its Young
(E) Bug</input><target>(C)</target></Question 1>
<Question 2><input>Find a movie similar to Twister, The Silence of the
Lambs, Independence Day, Braveheart:
Options:
(A) They Shoot Horses
(B) Don’t They
(C) Forrest Gump
(D) The Salton Sea
(E) Extreme Days</input><target>(C)</target></Question 2>
<Question 3><input>Find a movie similar to Minority Report, Total Recall,
Inside Out, Forrest Gump:
Options:
(A) Phenomena
(B) Lilting
(C) Catwoman
(D) Edge of Tomorrow</input><target>(D)</target></Question 3>

Table 15: Prompts for question generation.
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H RATIONALE GENERATION PROMPT FOR DIFFERENT REASONING
TECHNIQUES

We provide some prompts for guiding the teacher model to generate rationale with different reason-
ing techniques in the Knowledge Elicitation step.

Task Prompt

boolean expressions

Image you are an expert in Boolean expression evaluation. Now you
will be given a random Boolean expression, you should first evaluate
the expressions inside brackets, then follow the order of operations from
highest priority to lowest priority namely ”not”, ”and”, ”or”, respec-
tively, and finally evaluate the result of the random Boolean expres-
sion. Remember you should output your final answer in the end like
<ans>True</ans>or <ans>False</ans>

You are an expert in Math. Given a random Boolean expression, you
should first recall the rules of Boolean algebra and then evaluate the
expression step by step. Finally, you should provide the result of the
expression. Remember you should output your final answer in the end
like <ans>True</ans>or <ans>False</ans>

Evaluate the result of a random Boolean expression. Remember you
should output your final answer in the end like <ans>True</ans>or
<ans>False</ans>

Given you are a binary classification question, solve the question step
by step as follows: 1. Read the question and options 2. Find the best
option among the remaining ones. Remember you should output your
final answer in the end like <ans>True</ans>or <ans>False</ans>

causal judgment

I want you to act as a judge in a causal judgment process. There are 3
key points you should consider when assessing whether an action was
intentional or not. 1. Intentionality and Outcome: When evaluating an
action, consider the actor’s intentions and the sequence of events lead-
ing to the outcome. If the actor clearly intended the outcome and acted
to bring it about, the action is intentional. 2. Accidents and Unintended
Consequences: If the outcome resulted from an accident or slip, and
not from a deliberate act aimed at causing that specific outcome, it is
considered unintentional. Unexpected or uncontrollable factors can in-
fluence the final result, diverging from the actor’s original intent. 3.
Contribution to Outcome: In cases where multiple factors contribute to
an outcome, analyze each factor’s role in producing the final effect. If
an agent’s actions directly contribute to triggering an event, they can be
considered a cause, even if other factors are also involved. Carefully
assess the situation and the actor’s mindset to make a fair and accurate
judgment. Based the three key points, given one scenario, you should
first analyze the situation and the actor’s mindset. Then, decide which
key point is the most relevant to the scenario. Finally, you should con-
clude by answering the question of whether an action was intentional
or not. Remember you should output your final answer in the end like
<ans>True</ans>or <ans>False</ans>

You are given a scenario and asked to figure out whether the person in
the scenario intentionally caused the outcome. Use your common sense
and the information given in the scenario to answer the question step
by step. Remember you should output your final answer in the end like
<ans>True</ans>or <ans>False</ans>

Answer questions about causal attribution. Remember you should
output your final answer in the end like <ans>True</ans>or
<ans>False</ans>

Given you are a binary classification question, solve the question step
by step as follows: 1. Read the question and options 2. Find the best
option among the remaining ones. Remember you should output your
final answer in the end like <ans>True</ans>or <ans>False</ans>
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date understanding

You are given a known date and asked to calculate a date based on a
specific time interval or event. To solve these types of questions, follow
these steps: 1. Identify the known date provided in the question. 2.
Understand the time interval or event mentioned (e.g., ”10 days ago”,
”one year ago”, ”5-year anniversary”). 3. Calculate the required date
by counting backward or forwards from the known date according to
the interval or event. 4. Compare the calculated date with the options
given to find the correct answer. Finally, select the option that matches
the calculated date. Remember you should output your final answer in
the end like <ans>(A)</ans>or <ans>(B)</ans>, etc.

Use your knowledge of the calendar and common sense. Carefully read
the question and the options. And then, handle the math calculation step
by step to find the answer. Finally, select the correct answer.Remember
you should output your final answer in the end like <ans>(A)</ans>or
<ans>(B)</ans>, etc.

Infer the date from context. Remember you should output your final
answer in the end like <ans>(A)</ans>or <ans>(B)</ans>, etc.

Given a multi-choice question, your task is to solve the question step
by step as follows: 1. Read the question and options. 2. Eliminate
the options that are clearly wrong. 3. Find the best option among the
remaining ones. Remember you should output your final answer in the
end like <ans>(A)</ans>or <ans>(B)</ans>, etc.

movie recommendation

Image you are a movie buff and you are asked to recommend movies
similar to a given list of movies. Follow the steps below to find the an-
swer. (1) Identify the common genres and themes of the movies in the
list. (2) Consider the time period of production, focusing on classics or
movies from a specific era. (3) Compare the options provided, looking
for films that match the identified genres, themes, and production pe-
riod. (4) Select the option that best aligns with the criteria established
from the given list of movies. Remember you should output your final
answer in the end like <ans>(A)</ans>or <ans>(B)</ans>, etc.

Image you are a movie buff and you are asked to recommend movies
similar to a given list of movies. You need to think about the genre,
the year of production, the actors, and the overall style of the movies.
Think step by step and eliminate the options that are not similar to the
given list of movies. Choose the option that is most similar to the given
list of movies. Remember you should output your final answer in the
end like <ans>(A)</ans>or <ans>(B)</ans>, etc.

Recommend movies similar to the given list of movies. Remember you
should output your final answer in the end like <ans>(A)</ans>or
<ans>(B)</ans>, etc.

Given a multi-choice question, your task is to solve the question step
by step as follows: 1. Read the question and options. 2. Eliminate
the options that are clearly wrong. 3. Find the best option among the
remaining ones. Remember you should output your final answer in the
end like <ans>(A)</ans>or <ans>(B)</ans>, etc.

Table 16: Task prompts for different reasoning techniques.
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I ONE-SHOT IN-CONTEXT LEARNING TEMPLATE FOR PREFERENCE
COLLECTION

We provide the in-context learning prompt for the student model in the Preference Collection step.

Task Description: {Task Description}
Remember you should include your final answer with the tag <ans> and </ans>.
Question: {Example Question}
Answer: Let’s think step by step. {Example Rationale}
Question: {Test Question}
Answer: Let’s think step by step. {to be completed by the student model}

Table 17: One-shot in-context learning prompt for preference collection.

J LICENSES FOR EXISTING ASSETS

The names of the licenses for each asset used in this paper are detailed below.

Asset License
BBH MIT License
GPT-4-LLM Apache License Version 2.0
Tulu-v2 ODC-BY
WizardLM Apache License Version 2.0
OpenOrca MIT License
UltraChat MIT License
PIQA Academic Free License v3.0
CSQA MIT License
ARC-E CC-BY 4.0
ARC-C CC-BY 4.0
GSM8K MIT License
MMLU MIT License

Gemma-2B Gemma Terms of Use
Gemma-7B Gemma Terms of Use
Qwen1.5-1.8B Tongyi Qianwen RESEARCH LICENSE
CodeGemma-2B Gemma Terms of Use
Llama-3-70B-Instruction META LLAMA 3 COMMUNITY LICENSE

Table 18: Licenses for each asset in the paper.
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