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Abstract

Modern LLM reasoning relies on extensive test-time computation, driven by in-
ternal model training and external agentic orchestration. However, this synergy is
often inefficient, as model verbosity and poor instruction following lead to wasted
compute. We analyze this capability-cost trade-off and introduce an optimized
reasoning workflow (CEPO) that empowers smaller open-source models to outper-
form models multiple times their size. Our work demonstrates a clear path toward
co-designing orchestration frameworks with the underlying model capabilities to
unlock powerful reasoning in small-to-medium sized models. Our work is open-
sourced at https://github.com/codelion/optillm/tree/main/optillm/
cepo.

1 Introduction

The ability of Large Language Models (LLMs) to solve exceptionally complex problems in domains
like mathematics, software development, and strategic games is increasingly unlocked by substantial
computation at inference time [9, 8, 32, 4]. Progress in this domain is advancing along two parallel
fronts: i) Reasoning Engine: training models with techniques like reinforcement learning to cultivate
implicit, "internal" reasoning capabilities [22, 20], ii) Conductor: external, agentic workflows that
decompose tasks into iterative, verifiable steps [4, 18]. While the combination of these internal
model capabilities and external frameworks holds enormous promise, it also introduces critical new
challenges in efficiency and scalability which we evaluate and address in this paper.

The first of these challenges is effort duplication. When both the external orchestration framework
(the "Conductor") and the internal model (the "Engine") attempt to perform high-level reasoning,
they can produce redundant or conflicting operations, leading to wasted compute. This inefficiency is
compounded by a second, pervasive challenge: weak instruction following [3, 7]. These powerful
reasoning models often struggle to adhere perfectly to complex instructions, causing the agentic flow
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Figure 1: Overview of CEPO Framework. Simplified view of our orchestration framework

to deviate, consume excess resources, and ultimately fail. Together, these issues create a significant
barrier to deploying robust and capable reasoning systems at scale.

To overcome these obstacles, this paper introduces Conductor for Efficient Planning and Orchestration
(CEPO), an adaptive framework that actively orchestrates the reasoning Engine. Our approach
amplifies model capabilities, enabling medium-sized models to achieve state-of-the-art results that
surpass models multiple times their size across challenging tasks in scientific reasoning, math and
code generation. This provides a clear and efficient path towards the next generation of powerful AI
systems - ones that deliver elite performance and can be deployed on systems with practical memory
budgets.

2 The Conductor: A Framework for State-of-the-Art Reasoning

CEPO (simplified view in Figure 1) is composed of several key components that work in concert. It
begins with an adaptive planner that assesses a given problem and can map out multiple distinct
execution paths to find a solution. The framework then passes these plans to executor, which attempts
to solve the problem. A crucial element of executor is iterative self-refinement, where the system
can analyze feedback from its own solution attempts such as the output from a code execution and
adapt its approach (such as problem reformulation) accordingly. The executor phase produces
multiple possible executions which is then passed onto self-reflection phase to synthesize insights
from multiple attempts and facilitate “cross-pollination” of ideas by identifying and addressing
inconsistencies across different executions. Final step of our orchestration is Verification which can
invoke multiple methods such as majority vote or LLM-as-a-judge based on the problem setting.

The above formulation (Algorithm 1, Appendix C) enables us to dynamically allocate more compute
to more difficult problems by invoking multiple stages of problem reformulation and self-refinement
while the simple queries can pass through without invoking all the stages of the pipeline. This
“right-tool-for-the-job” approach allows the framework to invoke a variety of external tools as needed
including Python interpreter, code compilation and verification.

The effectiveness of CEPO is demonstrated in Table 1 and Table 2 by its ability to elevate strong
open-source models to the top of leaderboards, often outperforming much larger commercial models.
For Qwen [32] family of models, applying our orchestration allows Qwen3 32B to outperform much
larger models such as DeepSeek R1, Qwen3 235B and even closed-source models such as OpenAI
O3-mini [16]. To demonstrate the generality of our approach, we also applied it to the recently
released GPT-OSS [17] models in a manner compliant with the Artificial Analysis [1] benchmark
suite. On various tasks1, our framework boosts these models to the top tier of leaderboards2.

The rest of the paper will delve deeper into the importance of these individual components, with
detailed analysis and ablations. We will conclude with a discussion of future work focused on further
enhancing the capabilities of the orchestration via co-design with next-generation reasoning models.

3 Deconstructing the Conductor: A Component-wise Analysis

We systematically evaluate the impact of the core components − planning, self-reflection and cross-
solution verification − on a challenging reasoning benchmarks. The results, detailed in Table 3
and Table 4, reveal the importance of this multi-component orchestration in CEPO for achieving
high performance on diverse reasoning tasks. Our analysis begins to uncover the critical interplay

1GPQA results are averaged across three runs.
2The AIME benchmark was excluded for this model as its baseline performance already approached 95%.
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Table 1: Our framework, CEPO, elevates the medium-sized Qwen3 model to achieve state-of-the-art
(SOTA) performance, outperforming much larger open-source models as well as leading closed-
source reasoning systems on math and coding benchmarks. Evaluation setup details in Appendix B.

Benchmark Qwen3
8B

Qwen3
8B +

CEPO

Qwen3
32B

Qwen3
32B +
CEPO

Qwen3
235B

DeepSeek
R1 [8]

o3-
mini

med. [16]

Grok3
Think [30]

AIME 2024 [2] 74.00 86.70 81.40 90.70 85.70 79.80 79.60 83.90
AIME 2025 [2] 68.33 80.00 72.90 83.30 81.50 70.00 74.80 77.30
GPQA [19] 59.25 62.45 66.83 70.03 71.10 71.50 76.80 80.20
LIVECODEBENCH [10] 55.69 60.48 65.70 71.86 70.70 64.30 66.30 70.60

Table 2: CEPO turbocharges recent GPT-OSS [17] models to top positions of Artificial Analysis
leaderboard for multiple tasks [1]. Evaluation setup details in Appendix B.

Benchmark gpt-oss-
20b

gpt-oss-
20b +

CEPO

gpt-oss-
120b

gpt-oss-
120b +
CEPO

Qwen3
235B

2507 [32]

Gemini
2.5

Pro [4]

Grok4 [31]

LIVECODEBENCH [10] 72.10 82.01 76.82 87.51 79.00 80.00 82.00
SCICODE [24] 35.40 40.10 36.20 41.00 42.00 43.00 46.00
GPQA [19] 70.70 76.01 76.50 82.57 79.00 84.40 87.70

between the CEPO strategy and the nature of the task, highlighting the Conductor’s role in maximally
leveraging the reasoning Engine to solve challenging problems.

We explore this dynamic by analyzing the framework’s impact on different model families and
reasoning tasks, which reveals several key observations:

Planning The utility of the planning component appears to be highly task-dependent. We observe
significant benefits on scientific reasoning benchmarks such as GPQA. However, its direct impact on
improving coding performance was more muted in our experiments. This suggests that a reasoning
model specifically post-trained to utilize an explicit planning phase could more fully exploit this
component.

Self-Reflection The iterative self-reflection component provides a consistent and strong accuracy
advantage across the models and tasks we evaluated. This benefit likely stems from two sources:
the model’s intrinsic ability to critique and refine its own work, and the framework’s process of
synthesizing insights from multiple execution attempts, effectively cross-pollinating ideas to produce
a superior final output.

Verification The verification step presents a significant opportunity for future improvement. We
observe a notable gap between the final performance of our Conductor and the theoretical maximum
achievable (i.e., the recall at best-of-N across multiple attempts), indicating that a more accurate
verifier could unlock substantial gains. This points to a promising direction for co-design: explicitly

Table 3: Performance comparison of Qwen3 [32] models, with and without components of our
proposed CEPO framework. Evaluation configuration details shown at Appendix B.

Config AIME 2025 GPQA LiveCodeBench SciCode

Qwen3 8B 68.33 59.25 58.05 31.70
CEPO 72.66 62.45 61.58 37.10
w/o planner 74.66 59.42 60.63 37.00
w/o self-reflection 69.72 60.65 59.61 19.60
recall@best_of_N 79.33 71.21 64.76 40.10
Qwen3 32B 74.00 66.83 66.77 35.40
CEPO 78.00 70.03 71.21 40.90
w/o planner 79.33 66.83 71.21 42.80
w/o self-reflection 76.00 67.27 67.40 33.40
recall@best_of_N 83.33 76.43 72.69 46.10
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Table 4: Performance of GPT-OSS [17] benefits from all the components of our CEPO framework
while showing room for accuracy boost by improving model capabilities in planning and verification.

Config GPQA LiveCodeBench SciCode

gpt-oss-20b 70.70 72.10 35.40
CEPO 76.01 82.01 40.10
w/o planner 72.89 81.48 42.90
w/o self-reflection 73.57 77.40 38.20
recall@best_of_N 81.31 83.17 45.50
gpt-oss-120b 76.50 76.82 36.20
CEPO 82.57 87.51 41.00
w/o planner 76.76 87.19 41.00
w/o self-reflection 78.84 82.79 38.80
recall@best_of_N 87.62 88.25 44.10

training the reasoning Engine to act as a verifier, for instance through reinforcement learning, to more
effectively guide the test-time computation.

4 Dynamic Problem Reformulation for Efficient Reasoning

CEPO employs dynamic problem reformulation, adapting its strategy based on the problem’s
complexity and the specific strengths of the Engine model. This allows the system to select the most
efficient and reliable path to a solution. We illustrate this capability with two examples below.

Adaptive Path Selection We observe that models have strong implicit preferences for solving
problems in a certain way (Table 5); for instance, some mathematical problems are solved more
reliably through direct textual reasoning (“mental math”), while others are better suited for code
generation and execution. Our orchestration flow (Algorithm 2, Appendix C) captures this insight by
exploring multiple solution paths and prioritize the one that is most likely to succeed for that specific
model. This adaptive approach yields solid gains, boosting the performance of both the Qwen3 8B
and Qwen3 32B models on the AIME 2024 and AIME 2025 math benchmarks as shown in Table 6,
beating out larger, math-specific models [21]. More qualitative examples are at Appendix D.

Table 5: Adaptive Path Selection Maximizes Performance The Pass@10 success rate is highest
when the system can choose the optimal solution path, as direct reasoning (“mental math”) and code
generation excel on different subsets of problems. Dataset here is 15 hard questions from Numina
Math dataset [12].

Mental Math only Coding only Mental Math or Code
93% 93% 100%

Table 6: Adaptive path selection via code generation provides a significant performance boost
for mathematical reasoning. The table shows ablation results where adding the adaptive coding
reformulation to CEPO yields large gains on the AIME benchmarks.

Model AIME 2024 AIME 2025 Model AIME 2024 AIME 2025
Qwen3 8B 74.00 68.33 Qwen3 32B 81.40 74.00
CEPO w/o coding 83.33 72.66 CEPO w/o coding 84.00 78.00
CEPO 86.67 80.00 CEPO 90.70 83.30

Iterative Refinement with Rich Feedback In complex tasks like code generation, a model’s first
attempt may not be perfect. When our framework executes a generated piece of code, it captures
the execution feedback (e.g., interpreter error messages or incorrect output). The problem is then
reformulated and presented back to the model, including the original prompt along with this rich
feedback and an instruction to correct its previous mistakes. This iterative refinement loop, where the
task is progressively clarified based on execution results, leads to significant improvements in code
generation accuracy (Table 7).
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Table 7: Performance gains for the Qwen3 8B and Qwen3 32B models on the LiveCodeBench
benchmark using iterative self-refinement. Evaluation configuration details shown at Appendix B.

Model Baseline CEPO CEPO with Tests
Qwen3 8B 55.69 56.29 60.48
Qwen3 32B 65.70 67.07 71.86

5 Conclusion

In this work, we demonstrated that intelligent orchestration is a parameter-efficient path to elite
performance. Our framework propelled medium-sized open-source models, such as the Qwen3 32B
and GPT-OSS, to the top of competitive leaderboards, allowing them to outperform models multiple
times their size. These findings point towards a future of co-designing LLMs and their reasoning
frameworks. Instead of relying on rigid, fixed templates, orchestration should be dynamically guided
by model capabilities and problem complexity. The next frontier is to move beyond monolithic rea-
soning engines and forge models with a toolkit of capabilities - such as planning, task decomposition,
verification, reflection - enabling the conductor to transform from a mere prompter into a true director
of computational thought.
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A Related Work

Many prior work on reasoning models has largely focused on instilling advanced thinking capabilities
into model weights through multiple stages of training — from pretraining [28, 13], supervised
fine-tuning [33, 15], to pruning [23] and reinforcement learning [20, 22, 35, 5, 14].

In contrast to these training-based approaches, an emerging line of research investigates training-free
algorithms that operate purely at inference time. State-of-the-art reasoning systems such as OpenAI’s
o1 [9] and o3-mini [16], DeepSeek R1 [8], and Gemini 2.5 [4] achieve their performance largely by
allocating substantial computation at inference. Techniques like Chain-of-Thought prompting [29],
Monte Carlo Tree Search [18], and CoT-decoding [27] improve reasoning by broadening exploration
of intermediate thinking trajectories and systematically breaking down complex problems into clear
sub-tasks.

Foundational test-time strategies, such as Chain-of-Thought and Monte Carlo Tree Search, emerged
in the era of large-scale LLMs and were often designed to leverage their massive parameter counts,
creating a high barrier to entry. However, the recent advent of powerful, parameter-efficient reasoning
models challenges this dependency on scale and warrants new research into orchestration techniques
built to maximize their unique capabilities. Therefore, recent research has moved toward building
multi-agent, iterative frameworks on top of smaller LLMs [6, 26, 25], with support of ultra long-
context, [34, 11], and integrating planning, decomposition, self-reflection, and verification into unified
orchestration pipelines.

Our work builds on this trajectory by demonstrating that carefully designed test-time orchestration
can amplify small- and medium-scale models to outperform models many times their size, offering a
practical path toward scalable and cost-efficient reasoning systems.
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B Evaluations Details

For Qwen3 family results in Table 1 and 7, we use the evaluation setup in Qwen3 Technical Report
[32] and reach parity with the reported scores for both Qwen3-8B and Qwen3-32B models. In our
orchestration framework, for AIME, we adopt our adaptive path selection algorithm which allows the
model to solve the problem using code; for LiveCodeBench, we utilize public tests and execution
feedback for iterative self-refinement, with the same date range and release version used in [32]:
release v5 from 2024-08-01 to 2025-02-01.

For gpt-oss family results in Table 2 and all component-wise analysis in Table 3 and 4, we run
the benchmarks in Artificial Analysis [1] compliant way and reach parity for both gpt-oss-20B and
gpt-oss-120B models. For LiveCodeBench, we didn’t use public tests and execution feedback for
LiveCodeBench since this is not used by Artificial Analysis; and use the same date range and release
version in [1]: release v6 from 2024-07-01 to 2025-01-01.

C CEPO and Adaptive Path Selection Algorithmic Illustration

Algorithm 1: CEPO-Simple (w/o Adaptive Path Selection)
Input : Question Q

Planning Agent θplan
Execution Agent θexecute
Self-Reflection Agent θreflection
Verification Agent θverify

Parameters : best_of_n: number of attempts
n_plans: number of plans and executions per attempt

Output : Final answer Â
S ← [ ]
for i← 1 to best_of_n do
E ← [ ]
for j ← 1 to n_plans do

πj ← θplan(Q)
ej ← θexecute(Q, πj) // optionally apply self-refinement here
E ← E ∪ {ej}

si ← θreflection(E)
S ← S ∪ {si}

Â← θverify(Q,S)
return Â

8



Algorithm 2: CEPO-Adaptive for Math Problems
Input : Question Q

Planning Agent θplan
Execution Agent θexecute
Self-Refinement Agent θreflection
Verification Agent θverify
Coding Agent θcode

Parameters : num_attempts_CEPO: number of attempts to use CEPO-Simple flow
num_attempts_baseline: number of attempts to use the executor agent directly
num_attempts_coding: number of attempts to use the coding agent
n_plans: number of plans and executions per attempt inside CEPO-Simple
best_of_n: number of attempts inside CEPO-Simple

Output : Final answer Â

Helper routines:
StrictMajority(A): returns (has_maj, a⋆) where a⋆ occurs > |A|

2 times; otherwise
(false,⊥).
PluralityVote(A): returns the mode(s)M with maximal frequency (may contain ties).

S ← [ ] // collector for all candidate answers
Baseline (direct executor)
B ← [ ]
for i← 1 to num_attempts_baseline do

bi ← θexecute(Q)
B ← B ∪ {bi}

S ← S ∪ B
if |PluralityVote(B)| = 1 and StrictMajority(B).has_maj = true then

return the unique b⋆ from PluralityVote(B)
Coding agent pass
C ← [ ]
for i← 1 to num_attempts_coding do

ci ← θcode(Q)
C ← C ∪ {ci}

S ← S ∪ C
if StrictMajority(C).has_maj = true then

return StrictMajority(C).a⋆

CEPO-Simple passes
D ← [ ] // answers from CEPO-Simple
for i← 1 to num_attempts_ CEPO do

di ← CEPO-Simple(Q, θplan, θexecute, θreflection, θverify; best_of_n; n_plans)
D ← D ∪ {di}

S ← S ∪ D
Global aggregation
M← PluralityVote(S)
return the modes a⋆ ∈M
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D Examples for Adaptive Path Selection

Example 1: AIME 2024 question where CEPO w/o code fails for Qwen3-8B

Question:
Each vertex of a regular octagon is independently colored either red or blue with equal
probability. The probability that the octagon can then be rotated so that all of the blue vertices
end up at positions where there were originally red vertices is m

n , where m and n are relatively
prime positive integers. What is m+ n?

Ground Truth Answer:
371

Output from Qwen3-8B + CEPO w/o coding (Truncated due to space):
To determine the probability that a randomly colored octagon (with each vertex independently
colored red or blue with equal probability) can be rotated so that all blue vertices end up on
positions that were originally red, we analyze the combinatorial structure of the problem.
**Understanding the Problem**
We are given an octagon with 8 vertices, each independently colored ......
**Strategy and Key Observations**
Let define Ak as the set of all colorings where $ B + k, cap B = emptyset, ......
**Final Answer**
The probability that the octagon can be rotated so that all blue vertices end up on red positions
is 121

256 , where m = 121 and n = 256 are relatively prime.Thus, the final result is:

377

Output from Qwen3-8B + CEPO with coding:� �
import math
count = 0
for num in range (256):

color = [(num >> i) & 1 for i in range (8)]
blue = [i for i in range (8) if color[i] == 1]
found = False
for k in range (8):

valid = True
for b in blue:

pos = (b + k) % 8
if color[pos] != 0:

valid = False
break

if valid:
found = True
break

if found:
count += 1

g = math.gcd(count , 256)
m = count // g
n = 256 // g
print(m + n)� �
Code Execution Result: 371

This is a geometry problem that requires complex reasoning and very long chain-of-thought,
for which Qwen3-8B might struggle. However, the small-size model is able to solve this
problem using just a few lines of code.

Figure 2: Example of AIME 2024 question where "mental math" prompt fails but code generation
succeeds
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Example 2: AIME 2025 question where CEPO w/o code fails for Qwen3-8B

Question:
Let N denote the number of ordered triples of positive integers (a, b, c) such that a, b, c ≤ 36

and a3 + b3 + c3 is a multiple of 37. Find the remainder when N is divided by 1000.

Ground Truth Answer:
735

Output from Qwen3-8B + CEPO w/o coding (Truncated due to space):
To solve the problem, we are asked to count the number of ordered triples (a, b, c) of positive
integers such that:- 1 ≤ a, b, c ≤ 36 = 729- a3 + b3 + c3 is divisible by 37 = 2187. Then,
we are to compute this number modulo 1000.
Step 1: Total Number of Triples.Each of a, b, c can independently range from 1 to 729 = 36,
so the total number of ordered triples is...

Ntotal = (36)3 = 318

Step 2: Modulo Condition. We are interested in the number of such triples (a, b, c)...

a3 + b3 + c3 ≡ 0 (mod 37)

Step 3: Uniform Distribution AssumptionA key insight is that **modulo 3k**, the function
x 7→ x3 is **not uniformly distributed**, as shown in small cases (e.g., modulo 9, where
cube residues are not all distinct or evenly distributed)...
Step 4: Final Computation: Now, compute:

311 = 177147

Now take modulo 1000:
177147 mod 1000 = 147

### Final Answer
147

Output from Qwen3-8B + CEPO with coding:� �
m = 3**7
max_a = 3**6
freq = [0] * m
for a in range(1, max_a + 1):

r = pow(a, 3, m)
freq[r] += 1

C = [0] * m
for r1 in range(m):

for r2 in range(m):
s = (r1 + r2) % m
C[s] += freq[r1] * freq[r2]

total = 0
for s in range(m):

target = (-s) % m
total += C[s] * freq[target]

print(total % 1000)� �
Code Execution Result: 735

This is a hard combinatorial number theory problem which requires a lot of sequential
reasoning and memory, and it is very difficult to fit all these thinking into a 40960 context
window of Qwen-3 Model. However, when we ask the model to solve it with code, it only
takes a few tokens to reach the correct result.

Figure 3: Example of AIME 2025 question where "mental math" prompt fails but code generation
succeeds
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Example 3: AIME 2024 question where CEPO w/o code fails for Qwen3-32B

Question:
Define f(x) = ||x| − 1

2 | and g(x) = ||x| − 1
4 |. Find number of intersections of the graphs of

y = 4g(f(sin(2πx))) and x = 4g(f(cos(3πy))).

Ground Truth Answer:
385

Output from Qwen3-32B + CEPO w/o coding (Truncated due to space):
To determine the number of intersections between the graphs of the functions ... we begin by
analyzing the structure and behavior of the component functions involved.
**Step 1: Understanding the Base Functions...This function is piecewise linear with a Ẅs̈hape
over the interval [−1, 1]. It has peaks at x = 0 and x = ±1 (value 1

2 ) and valleys at ...
**Step 2: Mapping the Composites**#### **Function 1: y = 4g(f(sin(2πx)))** The inner
function has a period of 1 and oscillates between −1 and 1. Taking the absolute value gives
| sin(2πx)|, which oscillates between ...
**Step 3: Counting Valid Intersections**We now consider the number of **valid inter-
sections** between the graphs. The graphs are defined by:- The first function has **16
segments** with slopes... Thus, the total number of valid intersections is: 96 + 96 = 192

Output from Qwen3-32B + CEPO with coding:� �
import math
from scipy.optimize import root
import numpy as np
def h(z):

fz = abs(abs(z) - 0.5)
return 4 * abs(fz - 0.25)

def equations(vars):
x, y = vars
eq1 = y - h(math.sin(2 * math.pi * x))
eq2 = x - h(math.cos(3 * math.pi * y))
return [eq1 , eq2]

x_values = np.linspace(0, 1, 100)
y_values = np.linspace(0, 1, 100)
solutions = set()
for x0 in x_values:

for y0 in y_values:
sol = root(equations , [x0, y0], method=’hybr’)
x_sol , y_sol = sol.x
if 0 <= x_sol <= 1 and 0 <= y_sol <= 1:
rounded_sol = (round(x_sol , 6), round(y_sol , 6))
y_check = h(math.sin(2 * math.pi * x_sol))
x_check = h(math.cos(3 * math.pi * y_sol))
if abs(y_check - y_sol) < 1e-5 \
and abs(x_check - x_sol) < 1e-5:
solutions.add(rounded_sol)

print(len(solutions))� �
Code Execution Result: 385

This is a complex problem which mixes analysis of piecewise functions, trigonometric
composition, and geometric interpretation. Even a medium size Qwen3-32B model struggles
to get it correct using CEPOwithout code. Code generation takes the model out of the local
optimal in an innovative way.

Figure 4: Another Example of AIME 2024 question where "mental math" prompt fails but code
generation succeeds
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Example 4: AIME 2025 question where CEPO w/o code fails for Qwen3-32B

Question:
Alex divides a disk into four quadrants with two perpendicular diameters intersecting at the
center of the disk. He draws 25 more line segments through the disk, drawing each segment
by selecting two points at random on the perimeter of the disk in different quadrants and
connecting those two points. Find the expected number of regions into which these 27 line
segments divide the disk.

Ground Truth Answer:
204

Output from Qwen3-32B + CEPO w/o coding (Truncated due to space):
Final Review and Error Analysis: The initial solution incorrectly applied the general formula
for the expected number of regions formed by random chords:

E(R) = 1 +

(
n

2

)
+

(
n

4

)
This formula assumes **no constraints** on the endpoints of the chords. However, in the
problem, the chords are **constrained** to ... Correct Approach: To compute the expected
number of regions formed by 27 line segments (2 fixed diameters and 25 random chords
connecting points in different quadrants), we proceed in steps: 1. **Initial Setup**- The disk
is first divided into 4 quadrants by two perpendicular diameters. These diameters intersect at
the center, forming **4 initial regions**.- Alex then draws **25 additional chords**, where
each chord connects two points on the circle perimeter in **different quadrants**. The total
number of line segments is therefore **27**. 2. **Expected Intersections** ...
Final Answer

287

3

This is the **expected number of regions** into which the 27 line segments divide the disk.

Output from Qwen3-32B + CEPO with coding:� �
import fractions
# Calculate each part of the expected intersections
I_1 = 1 # Intersection between the two original diameters
I_2 = 25 * 2 * fractions.Fraction(2, 3) # Intersections between

original diameters and added chords
# Number of pairs of added chords
num_pairs_added = (25 * 24) // 2
I_3 = num_pairs_added * fractions.Fraction (17, 36) #

Intersections between pairs of added chords
# Total expected intersections
E_I = I_1 + I_2 + I_3
E_R = 1 + 27 + E_I
print(int(E_R))� �
Code Execution Result: 204

This is a geometric probability / combinatorial geometry problem. As shown above, CEPO
without coding struggles to get the correct answer even after extensive self-reflection. In the
code generation output, the model calculates some magic numbers in <think> section (too
long to fit in) and finish the problem utilizing those numbers precomputed.

Figure 5: Another Example of AIME 2025 question where "mental math" prompt fails but code
generation succeeds
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