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Abstract
Imbalanced learning occurs in classification set-
tings where the distribution of class-labels is
highly skewed in the training data, such as when
predicting rare diseases or in fraud detection. This
class imbalance presents a significant algorithmic
challenge, which can be further exacerbated when
privacy-preserving techniques such as differen-
tial privacy are applied to protect sensitive train-
ing data. In this paper, we formalize approach-
specific privacy challenges faced by standard im-
balanced learning remedies and develop algo-
rithmic adaptations with proven DP guarantees.
We consider DP variants of pre-processing meth-
ods that privately augment the original dataset to
reduce the class imbalance, alongside DP vari-
ants of in-processing techniques, which adjust
the learning algorithm to account for the imbal-
ance. For each method, we either adapt an exist-
ing imbalanced learning technique to the private
setting or demonstrate its incompatibility with
differential privacy. Finally, we empirically evalu-
ate these privacy-preserving imbalanced learning
methods under various data and distributional set-
tings. We find that private synthetic data methods
perform well as a data pre-processing step, while
class-weighted ERMs are an alternative in higher-
dimensional settings where private synthetic data
suffers from the curse of dimensionality.

1. Introduction
The problem of imbalanced learning typically refers to
classification tasks where one of the label-classes is sub-
stantially underrepresented in the training data. This oc-
curs commonly in real-world applications, such as detecting
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fraudulent transactions (Makki et al., 2019), medical diag-
nostics for rare diseases (Singh et al., 2020; Yuan et al.,
2018), or predicting natural disasters (Johnson & Khoshgof-
taar, 2019). Applying standard machine learning algorithms
without adjustment can lead to poor predictions on rare
events because these methods are designed for training data
that are approximately balanced, or assume that false posi-
tives and false negatives have equal misclassification costs.

In the machine learning community, the problem of im-
balanced learning has been widely studied in non-private
settings (He & Garcia, 2009; Sun et al., 2009; Chawla et al.,
2004). This issue can be tackled with two main approaches.
The first approach is to use pre-processing techniques to
balance the training dataset, such as oversampling (Chawla
et al., 2002) or other data augmentation based methods.
The second approach is to use in-processing techniques to
modify the machine learning model itself to account for
the imbalance, such as bagging (Breiman, 1996) or loss
re-weighting (Karakoulas & Shawe-Taylor, 1998; Rigollet
& Tong, 2011; Scott, 2012; Tong, 2013; Xu et al., 2020b).

In applications when data are both sensitive and imbalanced
– for instance, in the detection of rare diseases (Ficek et al.,
2021) – we need machine learning tools that preserve pri-
vacy while maintaining high accuracy. Differential privacy
(abbreviated DP) has emerged as a powerful technical defi-
nition in machine learning and theoretical computer science
to address privacy concerns using formal algorithmic tools.
Many traditional machine learning algorithms have DP im-
plementations (Gong et al., 2020; Chaudhuri et al., 2011;
Abadi et al., 2016; Fletcher & Islam, 2017). However, ex-
tending such approaches to private data augmentation meth-
ods for imbalanced settings encounters two main challenges.
Firstly, it has been shown that private classifiers can amplify
minority group loss, magnifying bias and unfairness (Tran
et al., 2021; Pujol et al., 2020; Rosenblatt et al., 2024b).
Secondly, pre-processing techniques such as oversampling
run the risk of increasing sensitivity of the learning task,
thus increasing privacy loss. One must therefore be careful
when designing privacy-preserving techniques for imbal-
anced learning that improve performance with respect to the
minority class without over-inflating the privacy budget.
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Table 1: Summary of methods we consider alongside short
takeaways. The (Type) indicates the practical outlook for
each method: P (Positive), N (Negative), or M (Mixed).

Method (Type) Key Observations

Oversampling
(Pre-processing, N)

Sensitivity rises with repeated samples, leading
to excessive privacy loss.

SMOTE
(Pre-processing, N)

Sensitivity scales with dimension, rendering pri-
vacy loss impractical.

Private Synthetic Data
(Pre-processing, P)

Post-processed synthetic data preserves DP and
performs well for imbalanced tasks.

Bagging (Non-Private)
(In-processing, N)

Lacks meaningful privacy guarantees; too small
ϵ or δ values are infeasible.

Bagging (Private)
(In-processing, N)

Splitting the privacy budget across weak learners
impacts both privacy and utility.

Weighted ERM
(Pre-processing, P)

Theory shows how to incorporate class weights
into the objective while maintaining privacy.

Weighted DP-SGD
(Pre-processing, M)

Class weight adjustments for DP-SGD are
straightforward, but mixed performance.

1.1. Our Contributions

In this work, we explore both pre-processing and in-
processing methods for private imbalanced binary classi-
fication (and note that many of our methods have natural
extensions to the multi-class settings). In Section 3, we
account for the privacy degradation caused by the well-
known data-augmentation technique SMOTE (Chawla et al.,
2002), showing that its privacy loss scales as Θ(ϵ2dk) for d-
dimensional data and k new data points (unacceptably large
for practical settings). This motivates an alternative: using
black-box DP synthetic data techniques for augmenting mi-
nority data, which is trivially private via post-processing
(Proposition 8) and empirically effective.

Shifting to in-processing in Section 4, we evaluate model
bagging (Breiman, 1996); though prior work claimed an
‘intrinsic” DP guarantee for bagging (Liu et al., 2020), we
demonstrate that the resulting privacy parameters are not
meaningful (Proposition 4). As a positive in-processing re-
sult, we adapt the canonical private empirical risk minimiza-
tion (ERM) algorithm (Chaudhuri et al., 2011) to a class-
weighted variant (Algorithm 1, privacy given in Theorem 5).
DP-SGD also trivially allows for class weights (Algorithm 4,
privacy given in Proposition 6). However, we find that even
a strong neural model trained with class-weighted DP-SGD
performs poorly, suggesting neural models may not be ideal
for small to medium-sized privacy-preserving imbalanced
classification tasks on tabular data. Instead, our extensive
experiments on datasets from imblearn (Lemaitre et al.,
2017) suggest that training a strong non-private model (like
XGBoost) on DP class-balanced synthetic data yields the
best performance, followed by DP weighted ERM.

1.2. Related Work

Imbalanced learning and privacy. The problem of imbal-
anced data often arises in machine learning when the size
of one data class is considerably smaller than the other data
class. Prior work on imbalanced learning without privacy
constraints is extensive (Chawla et al., 2004; He & Garcia,
2009; Sun et al., 2009; Galar et al., 2011; Krawczyk, 2016;
López et al., 2013; Branco et al., 2016), alongside work
studying adjustments to common learning losses for imbal-
anced classification (Scott, 2012; Menon et al., 2013). The
challenge of handling imbalanced data in machine learning
becomes much harder when privacy constraints are added,
as accuracy for the minority class can be low even for non-
private classification (Lau & Passerat-Palmbach, 2021). Ad-
ditionally, prior work shows that differentially private al-
gorithms can disproportionally affect minority groups by
amplifying the lost of accuracy of a minority class (Bag-
dasaryan et al., 2019; Jaiswal & Provost, 2020) as well as
magnify bias and unfairness (Xu et al., 2020a; Pujol et al.,
2020; Farrand et al., 2020; Tran et al., 2021). Work by (Jor-
don et al., 2019) studies bagging under differential privacy
with the assumption of a publicly available data sample; we
do not make any such assumptions, and thus can operate in
the most general settings.

Private synthetic data generation. There has been much
progress in recent years on methods for differentially private
data synthesis and generation (McKenna et al., 2019; Vietri
et al., 2020; Rosenblatt et al., 2020; Aydore et al., 2021;
Zhang et al., 2021; Cai et al., 2021; Boedihardjo et al., 2022).
Some of the best-performing methods follow the Select-
Measure-Project paradigm (Tao et al., 2021; McKenna et al.,
2022); we discuss further in Section 3.3.

Private subsampling and deep learning. It is known that
randomly subsampling the input database before running
a private mechanism can improve the privacy guarantees
(known as amplification by subsampling) (Bassily et al.,
2014; Bun et al., 2015; Wang et al., 2016), although data-
dependent subsampling can have negative privacy impacts
(Bun et al., 2022). Relatedly, the advent of differentially
private gradient descent via gradient clipping and moments
accounting (Abadi et al., 2016; Sun et al., 2022) has led to
privatized versions of many standard deep learning models
that exhibit strong empirical performance (Gong et al., 2020;
Yousefpour et al., 2021), although private generative models
can intensify the imbalance in the data or offer a lower qual-
ity synthetic data (Cheng et al., 2021; Ganev et al., 2022).
Recent work has expressed skepticism over the performance
of these methods, hypothesizing instead that their strength
can be partially explained by the effect of unreported hyper-
parameter tuning in a “dishonestly” private manner (Paper-
not & Steinke, 2021; Redberg et al., 2024). Thus, we solely
run our models with default hyper-parameter settings.
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Personalized differential privacy. Our observation that
minority samples can incur larger privacy loss echoes the
literature on personalized (a.k.a. individualized) DP (PDP)
(Kifer & Machanavajjhala, 2011; Jorgensen et al., 2015),
which relaxes the global definition by assigning user-specific
budgets. In contrast, all results in this paper respect the
standard global DP guarantee; incorporating PDP into class-
imbalance learning pipelines remains an open direction.

2. Preliminaries
Imbalanced Learning. Let D = (X, y) denote a dataset,
where X is a set of d-dimensional instances from a known
range [−R,R]d and y is a vector of binary labels. Each
(xi, yi) ∈ [−R,R]d × {0, 1} is a single labeled training
example.1 We partition X into X0 and X1, respectively
denoting the sets of entries of X that are labeled with 0 and
1, where these sets are of size |X0| = n0 and |X1| = n1.
To model the imbalanced setting, we assume without loss
of generality that n1 ≪ n0.

We define r = n0

n1
> 1 to be the imbalance ratio between the

positive and negative label classes in the sample. The goal
of imbalanced learning is to develop a binary classifier that
accurately learns from the imbalanced dataset D. In other
words, we seek to learn a function f : [−R,R]d → {0, 1}
by minimizing a given loss function L weighted by class
imbalance in the training label distribution.

Differential Privacy. DP limits the effect of any individ-
ual’s data on a computation and ensures that little can be in-
ferred about the individual from an appropriately calibrated
randomized output. Intuitively, it bounds the maximum
amount that a single data entry can affect analysis performed
on the database. Two databases D,D′ are neighboring if
they differ in at most one entry. In this work, we present
results for the bounded variant of neighboring datasets, i.e.,
neighboring datasets are the same size, |D| = |D′|, and are
identical except for a single entry. All of our results can be
extended to the unbounded variant, i.e., where D′ can be
constructed through addition/removal, so |D| = |D′| ± 1
(Kifer & Machanavajjhala, 2011).

Definition 1 (Differential Privacy (Dwork et al., 2006)). An
algorithmM : D → R is (ϵ, δ)-differentially private if for
every pair of neighboring databases D,D′ ∈ D, and for
every subset of possible outputs S ⊆ R,

Pr[M(D) ∈ S] ≤ exp(ϵ) Pr[M(D′) ∈ S] + δ.

When δ = 0,M may be called ϵ-differentially private.

1We assume that X lies in a bounded range because this is
necessary for differentially private regression (see, e.g., (Chaudhuri
et al., 2011)). If a bound on the data points is not known a priori,
then one can use domain knowledge or using other private methods
such as Propose-Test-Release (Dwork & Lei, 2009).

A well-known technique for achieving (ϵ, 0)-DP is with
the Laplace mechanism (given in Appendix A). Alter-
natively, one can use the the Gaussian mechanism to
achieve (ϵ, δ)-DP (Dwork et al., 2006). In both cases,
noise is added to the output of a real valued function f
that depends on the sensitivity of f . For the Gaussian
mechanism, we consider the ℓ2 sensitivity of the function
(i.e. ∆2f = maxneighbors D,D′ ∥f(D) − f(D′)∥2, where
∥ · ∥2 denotes the Euclidean norm), and add noise sampled
from N

(
µ = 0, σ2 = (∆2f)

2 · 2 log( 1.25
δ )

ϵ2

)
. The Gaussian

mechanism further requires that ϵ < 1 for the privacy guar-
antees to hold. In settings where data points can be un-
bounded, clipping can be applied to project each Xi in
the range [−R,R]; doing so reduces the sensitivity of the
function, and hence the scale of noise that must be added.
Additionally, DP has a number of helpful properties. It
composes (Theorem 7) i.e. the privacy parameter degrades
gracefully as additional computations are performed on the
same database, and is robust to post-processing (Theorem
8), meaning that any further analysis on the output of a
differentially private algorithm cannot diminish the privacy
guarantees (formal statements available in Appendix A).

3. Pre-processing Methods for Private
Imbalanced Learning

In this section, we consider applying pre-processing meth-
ods for data augmentation to address class imbalance: given
a level of class imbalance in the training data, augment or
replace the dataset to increase support for the minority class.
After applying a pre-processing method, we can then pri-
vately learn a classifier on the augmented dataset. The first
two methods we consider – oversampling in Section 3.1
and SMOTE in Section 3.2 – are non-private pre-processing
methods; we show that both of these methods substantially
increase the sensitivity of the downstream private learning
mechanism. This increase in sensitivity is due to the fact
that these methods generate synthetic minority samples that
are highly dependent on the original data, so changing one
input point in the original database may lead to many points
being changed in the augmented database. This motivates
our consideration of private synthetic data generation for
data pre-processing in Section 3.3. In the case of private
synthetic data, we instead perform our privacy intervention
upstream, learning a DP parameterization of the distribution
of our data, from which we can draw arbitrary samples for
downstream, non-private model training.

3.1. Oversampling

A common technique for dealing with class imbalance in
data is to apply an oversampling algorithm that first gener-
ates N additional synthetic samples from the minority class,
before performing learning on the augmented dataset. The
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learning algorithm then takes as input the original dataset
D = (X, y), concatenated with the N new minority class
(positive label) samples. While N can be chosen freely
by the analyst, a common parameter regime is to choose
N = n0 − n1 to equalize the size of the two classes. A sim-
ple oversampling method is to replicate each minority point
in X1 either ⌈N/n1⌉ or ⌊N/n1⌋ times to ensure N total
new points; we refer to this as deterministic oversampling.2

As formalized in Proposition 2, deterministic oversampling
increases sensitivity of any downstream DP learning algo-
rithm by a multiplicative factor of ⌈N/n1⌉ + 1. This is
because the maximum of ⌈N/n1⌉ additional samples gener-
ated from each minority point, along with the minority point
themselves, will all be used in the downstream algorithm.

Proposition 2. Let D = (X, y) be a dataset with n1 minor-
ity instances, and letM be an arbitrary (ϵ, δ)-DP algorithm.
Instantiating M on the dataset D concatenated with the
output of oversampling to generate N additional minority
samples is (ϵ(⌈ Nn1

⌉+1), δ(⌈ Nn1
⌉+1))-differentially private.

3.2. SMOTE

The Synthetic Minority Oversampling TEchnique (SMOTE
(Chawla et al., 2002), Algorithm 2, deferred to Ap-
pendix B.1) is a more advanced oversampling technique
and has become a benchmark for imbalanced learning (see,
e.g., (Fernández et al., 2018)). For N iterations, the algo-
rithm: (1) selects an instance from the minority class, (2)
finds the k nearest neighbors of this point under ℓ2 distance
and samples one uniformly at random, and (3) generates
a new minority instance as a random convex combination
of the original instance and its selected nearest neighbor.
Unfortunately, Theorem 3 shows that applying SMOTE
as a pre-processing step before any differentially private
algorithm substantially increases the sensitivity of the down-
stream computation: the increase in effective epsilon is
exponential in d and linear in N . This dramatic increase in
the ϵ factor, if unaccounted for, leads to an overall ϵ′-DP
guarantee for extremely large ϵ′ values that provide mean-
ingless privacy guarantees.
Theorem 3. Let D = (X, y) be a d-dimensional dataset,
with n1 minority instances, and letM be an arbitrary ϵ-DP
algorithm. Then instantiatingM on D concatenated with
the output of SMOTE(X,N, k) is both (ϵ(20.4042d⌈ Nn1

⌉ +
1), 0)-DP and (ϵ′, δ)-DP, for any γ ≥ 0 and for,

ϵ′ = ϵ(1+γ)20.4042d
⌈
N

n1

⌉
1

k
, δ = e

k20.4042d⌈ N
n1

⌉
(
ϵ− γ2

k(2+γ)

)
.

A full proof of Theorem 3 is deferred to Appendix B.1. The-

2One could also randomly and independently sample a point
to replicate from the minority class N times, also exacerbating
downstream sensitivity. For simplicity of presentation we stick
with deterministic oversampling.

Table 2: SMOTE requires a dramatic adjustment to the
privacy parameter:(left) the adjusted values of input privacy
parameter ϵ′ to the DP algorithm for varying desired privacy
budgets ϵ, and (right) the resulting privacy budgets ϵ if ϵ′

is unadjusted, under practical assumptions: δ = 1/n2 with
n = 10000, d = 25, k = 5, γ = 0, ⌈N/n1⌉ = 1.

Input ϵ′ required for desired ϵ. Resulting ϵ from unadjusted ϵ′.

ϵ = 1 ϵ = 5 ϵ = 10 ϵ′ = 1 ϵ′ = 5 ϵ′ = 10

ϵ′ = 0.00469 0.02346 0.04692 ϵ = 213.21 1066.06 2132.1

orem 3 should be viewed as a negative result (i.e., SMOTE
makes ensuring downstream privacy very difficult). Addi-
tionally, we note that with only the (ϵ, 0)-DP result, one
might wonder whether the large increase in epsilon can be
avoided by allowing a positive δ. Thus, we include and
highlight the (ϵ, δ) result, which shows that this is not the
case; even when a strictly positive failure probability δ > 0
is allowed, the explosion in ϵ is still present (albeit reduced
by a 1/k factor). Intuitively, we frame the result as follows:
introducing new, minority class examples based on linear
interpolations of existing minority class examples leads to
significantly higher privacy sensitivity. See Table 2 for ex-
amples of how large practical ϵ values can become, after
adjusting for the sensitivity of SMOTE preprocessed data.

We further note that this negative result has implications
for more advanced class-imbalanced methods that embed
the SMOTE algorithm (SMOTEBoost (Chawla et al., 2003),
SMOTEBagging (Wang & Yao, 2009), etc.). For good mea-
sure, we empirically demonstrate the poor private perfor-
mance of SMOTE (with the proper sensitivity adjustment)
in Appendix B.1.

3.3. Private Synthetic Data

We have shown that non-private data augmentation tech-
niques for imbalanced learning, like oversampling and
SMOTE, explode downstream privacy parameters by am-
plifying sensitivity. Private data pre-processing avoids this
limitation. Specifically, we propose leveraging existing pri-
vate synthetic data algorithms to produce a private balanced
dataset that is usable for learning. State-of-the-art methods
for producing synthetic data with a DP guarantee follow
the same general approach: first, they select DP measure-
ments to evaluate on the data (Select), then compute these
measurements on the sensitive data (Measure), and finally
fit a new distribution to those measurements (Project) (Liu
et al., 2021). New samples can then be drawn from the
private distributional model to combat data imbalance – one
simple and general approach is to draw enough new sam-
ples of the minority class to balance both classes. A formal
version of this procedure is given in Algorithm 3 (deferred
to Appendix B.2 for space); note that any DP synthetic data
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generation method could be substituted in to Stage 1 of Al-
gorithm 3. Furthermore, arbitrarily many samples can be
drawn from the privately fitted distributional model due to
post-processing (Theorem 8).

Algorithm 3 defaults to performing conditional sampling
to up-sample the minority class for parametric models (i.e.
condition a new generated sample on a fixed positive or
negative feature label), as this is sample efficient. For non-
parametric models, one can take a more general rejection
sampling approach. In Appendix E, we empirically com-
pare two state-of-the-art DP synthetic data methods: the
PrivBayes (Zhang et al., 2017) and Generative Networks
with the Exponential Mechanism (GEM) (Liu et al., 2021)
algorithms. Both GEM and PrivBayes are parametric mod-
els and thus permit conditional class sampling. We then
give our empirical results in Section 5 with GEM for clarity,
as we found it outperformed PrivBayes across the board.

4. In-processing Methods for Private
Imbalanced Learning

In-processing methods account for class imbalance by ad-
justing the learning process. They broadly fall into two main
categories: ensemble-based classifiers and cost-sensitive
classifiers. Our first in-processing method we consider in
Section 4.1 is bagging, which is an ensemble-based classi-
fier over splits of the training data. We show that although
bagging non-private learners does provide some inherent
privacy, the resulting DP parameters are not meaningful in
practice. Cost-sensitive classification assumes a greater cost
to misclassifying minority class examples in the training
data (Chawla et al., 2004); the primary approach to accom-
modate asymmetric misclassification costs are weighting
strategies during model training. In Section 4.2, we revisit
canonical results from (Chaudhuri et al., 2011) on differen-
tially private empirical risk minimization (ERM) and show
how to introduce sample weights. Finally, in Section 4.3, we
show that the widely-used differentially private stochastic
gradient descent (DP-SGD) methods for deep learning can
easily accommodate class-based weighting.

4.1. Bagging and Private Bagging

Bagging is used widely in practice in imbalanced learning
settings, as it has been shown to foster more diversity in
model parameters and may help mitigate overfitting to the
majority class by elevating minority class importance in
the bootstrapped training subsets. This empirical strength,
robustness, and improved bias-variance tradeoff of bagging
techniques in imbalanced learning is well known (Ueda &
Nakano, 1996; Moniz et al., 2017; Haixiang et al., 2017).

The standard bagging procedure (Breiman, 1996) is as fol-
lows: create m subsamples {D1, ..., Dm} of a training

dataset D by randomly subsampling k examples from D
(with or without replacement) to constitute each Di. Then
train a base model on each subsample Di using a base weak
learner. To generate a prediction ŷi for a given sample Xi,
take the majority vote of predictions from each weak learner.

Since the bagging procedure is randomized, recent work
has suggested that it is intrinsically differentially private,
based on the randomness in sampling and in the predictions
of the weak learners, which would imply that bagging is
a potential in-processing method for handling imbalanced
data. Specifically, Liu et al. (2020) showed that for a dataset
of size n, bagging with parameters (m, k) satisfies (ϵ, δ)-DP
for ϵ = m · k · ln(n+1

n ) and δ = 1− (n−1
n )m·k.

However, we highlight a significant issue with this approach,
simply by inverting these expressions, and solving for m
and k given commonly desired settings of ϵ and δ, namely
that δ is polynomially small in n.3 Proposition 4 states that
this re-parameterization reveals a major issue: we cannot
set δ to be very small without setting ϵ to be exceedingly
small as well; see Appendix C.1 for a simple proof.
Proposition 4. For a bagging classifier composed of non-
differentially private learners to achieve δ = n−c, then it
must also be that ϵ ≤ 1

n , for all c > 1.

Such a small ϵ value, paired with a constant-sensitivity func-
tion, would not allow the private output to sufficiently vary
across different databases, even if they differ in many data-
points, meaning that the private output cannot provide mean-
ingful accuracy. Therefore, non-private classifiers cannot
be used in bagging procedures to simultaneously provide
meaningful privacy and accuracy guarantees.

One approach to improving private bagging would be to use
private classifiers as the weak learners; in that setting, the
privacy would follow easily via composition over all the
private classifiers used. Given a dataset D and a bagging
procedure that trains m (ϵ, δ)-DP regression models, then by
advanced composition (Dwork et al., 2014), for any δ′ > 0,
this version of private bagging would satisfy (ϵ′,mδ + δ′)-
DP for ϵ′ =

√
2m ln(1/δ′) · ϵ+mϵ(eϵ − 1). As we show

empirically in Appendix C.1 (Figure 3), this can still result
in poor empirical performance in reasonable settings. One
explanation is that since many private weak learners are
needed, the privacy budget is “spread too thinly” over all
the classifiers. That is, to satisfy a desired ϵ′ privacy budget,
the per-learner privacy parameter ϵ has to be small, thus
significantly reducing performance.

Tighter composition analyses exist based on moments ac-
countants (Abadi et al., 2016; Wang et al., 2019), where
the dataset is also subsampled for each computation. These
methods are most effective when only a small fraction of

3Many even prefer a stronger requirement, which is that δ is
cryptographically small, or negligible, in n.
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the dataset are included in each subsample; to contrast,
many bagging procedures rely on much larger sub-samples
disbursed among fewer learners (Sun et al., 2015). Addition-
ally, in Appendix C.1, we explore a range of private bagging
configurations – including disjoint splits (exploiting parallel
composition), stratified sampling to preserve minority-class
representation (under different privacy assumptions), and
alternative voting schemes – yet find these bagging variants
similarly yield limited performance under class imbalance.
Overall, these empirical results are negative for bagging:
one potential reason is that since so few minority class ex-
amples existed in the dataset, subsampling further reduces
the number of minority examples available to each weak
learner. We provide further insights in Appendix C.1.

4.2. Weighted Approaches

Cost-sensitive classification assumes a greater cost to mis-
classifying minority class examples and is a well-studied
and practically effective method for combating class imbal-
ance (Zhou & Liu, 2005). Weighting strategies during model
training are the primary approach used to accommodate mis-
classification costs (Chawla et al., 2004). In Section 4.2.1
we show how to adapt the private ERM given in (Chaudhuri
et al., 2011) under a bounded weighting scheme. Later in
Section 4.3 we show that DP-SGD can be modified to ac-
commodate weights naturally. We also evaluate weighting
strategies with additive noise mechanisms under distribu-
tional assumptions where the Bayes optimal classifier is
known (e.g., a Gaussian mixture). This follows the setting
of (Yang & Xu, 2020), but within a differential privacy
framework. We present this as a “warm-up” problem and
refer interested readers to Appendix C.2 for details.

4.2.1. WEIGHTED PRIVATE ERM

Standard Empirical Risk Minimization (ERM) trains a
model by minimizing an average loss function over a dataset,
i.e., optimizing parameters of some model class to reduce
the gap between predicted and true data values (Vapnik,
1991; Devroye et al., 2013). Many cost-sensitive approaches
to class imbalance rely on sample-weighted objective mini-
mization in the ERM framework, where the minority class
samples are up-weighted in the loss function relative to the
sample majority (Tang et al., 2008). We show in Theorem 5
that the differentially private empirical risk minimization
(ERM) procedure of (Chaudhuri et al., 2011) can be adapted
to accommodate such minority sample weights, which we
outline in Algorithm 1. Weighting samples in the objective
function allows us to tune the impact of the minority class
on the final model parameters.

We instantiate Algorithm 1 with the weight functionW(D)
as the inverted class frequency for each sample in our
experiments in Section 5. More formally, for a dataset

D = {(xi, yi)}ni=1, where yi ∈ {0, . . . , k} represents the
class label of each sample, we compute the class frequen-
cies for class k as π̂k = 1

n

∑n
i=1 I[yi = k]. The inverted

class frequency vector π̂−1 = (1/π̂0, . . . , 1/π̂k) gives the
sample weights wi =

1
πyi
· ∥π̂−1∥−1

1 ∈ [0, 1], where each
sample is weighted according to the inverse frequency of
its class in the dataset. We choose this weighting scheme
to align with our “warm-up” results in Appendix C.2 along
with prior work (Chawla et al., 2004; Galar et al., 2011).

Algorithm 1 Weighted ERM w/ Objective Perturbation

1 Inputs: Data D = {xi, yi} with yi ∈ {0, . . . , k},
parameters ϵ, λ, c, loss ℓ(yi,x

T
i β), weight function

W : D → [0, 1]n

2 Output: Approximate minimizer βpriv .
3 Let w =W(D), ϵ′′ = 4cd

n(λ+∆) , ϵ′ = ϵ− ϵ′′.
4 If ϵ′ > 0 then ∆ = 0 else ∆ = c

n
(
eϵ/4−1

) − λ, ϵ′ = ϵ
3

(ensuring ϵ′ ≥ 0 as in (Chaudhuri et al., 2011)).

5 Draw vector b according to PDF ν(b) ∝ e−
ϵ′∥b∥

3 .
6 Compute βpriv = argminβ{ 1n

∑n
i=1 wi · ℓ(yi,x

T
i β) +

1
nb

Tβ + 1
2∆∥β∥

2}. =0

Theorem 5 states that Algorithm 1 is still DP. To accommo-
date changes in class balance between neighboring datasets,
our privacy analysis handles scenarios where neighboring
datasets differ on a minority class label, thereby slightly
altering class proportions and associated sample weights.

Sketch of Theorem 5. Specifically, we show that the total
change in weights, if the minority class size and label propor-
tions changed by one, is bounded as

∑n
i=1 |wi−w′

i| ≤ 2− 1
n .

Consequently, we must adjust the sensitivity of the pertur-
bation vector b. A previous bound of 2 was shown without
weights in (Chaudhuri et al., 2011), and under our weighting
scheme we show that it’s necessary to adjust that bound to
∥b − b′∥2 ≤ 3, and to adjust the algorithm accordingly.
Here we offer an intuitive sketch of the key idea. Recall
that objective-perturbation ensures privacy by adding a ran-
dom linear term b⊤β whose scale matches the sensitivity of
the weighted loss. When one minority label flips between
neighboring datasets, the class proportions, and hence the
sample weights, change by at most 1/n. This perturbs the
weighted empirical risk by O(1/n) in ℓ2 norm, and thus we
show that we can retain privacy by inflating the noise radius
from 2 (standard ERM) to 3. Importantly, the convexity and
smoothness of the loss still guarantee a unique minimizer,
and the optimization landscape remains well-behaved. A
full proof, with all the necessary adjustments and details
introduced by the weighting, is deferred Appendix C.3.1.

Theorem 5. Algorithm 1 instantiated with a loss function
ℓ(y, η) that is convex and twice differentiable with respect
to η, with | ∂∂η ℓ(y, η)| ≤ 1 and | ∂

2

∂η2 ℓ(y, η)| ≤ c for all y, is
ϵ-differentially private.
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Although our theoretical (and empirical in Section 5) re-
sults focus on a logistic regression ERM algorithm, our
results directly apply to the kernel method and SVM given
in (Chaudhuri et al., 2011). Surprisingly, no adaptation of
private ERM under sample weights was previously known;
(Giddens et al., 2023) had recently considered the problem
for more complicated weighting schemes, but under some
undesirable assumptions (more on this in Appendix C.3).

4.3. Weighted DP-SGD

Competitive approaches to many private classification prob-
lems are given with deep learning models, often tuned using
a variant of the differentially private stochastic gradient de-
scent (DP-SGD) algorithm (Bassily et al., 2014; Abadi et al.,
2016) (canonical version given in Algorithm 4, but with
weighted cross-entropy loss). DP-SGD follows an iterative
process of sampling mini-batches of the data, computing
gradients on the sampled points, clipping the gradients to
have a bounded ℓ2-norm to reduce sensitivity, adding noise
that scales with ϵ and the clipping parameter to preserve
privacy, and finally updating the model using the resulting
clipped noisy gradients.

For cost-sensitive gradient updates under class imbalance,
it is straightforward to show that weights can be incorpo-
rated into a standard binary classification loss L(y, ŷ;w)
(e.g. cross-entropy) while maintaining privacy. Proposi-
tion 6 formalizes this claim, with the simple proof deferred
to Appendix D. It’s worth noting, however, that incorporat-
ing weights may alter the per-sample gradients in ways that
complicate naive sensitivity arguments. In Appendix D.1,
we provide a refined analysis (Lemma 19) showing that the
overall gradient sensitivity in the weighted setting can be
bounded by 2C/B, ensuring the same privacy guarantees
where here B denotes the DP-SGD mini-batch size.
Proposition 6. Algorithm 4, a standard DP-SGD
procedure with weighted cross-entropy loss given by
L(y, ŷ;w) = − 1

n

∑n
i=1 wi [yi log(ŷi) + (1− yi) log(1− ŷi)],

is (ϵ, δ)-differentially private.

5. Experiments
We evaluate methods under varying privacy and
class imbalance conditions on real datasets from the
imblearn (Lemaitre et al., 2017) repository, with
imbalance ratios r ∈ [8.6, 130] and sizes n ∈ [336, 11183]
(full summary in Table 11, deferred to Appendix E). For
private classifiers, we evaluate (1) GEM as a pre-processing
step to generate balanced synthetic data for a non-private
XGBoost model (GEM + NonPriv. XGBoost, Algorithm 3,
Section 3.3), (2) a private in-processing ERM logistic
regression model without class weights (Priv. LogReg,
(Chaudhuri et al., 2011), Section 4.2), (3) a private
in-processing ERM logistic regression model with sample

weights (Priv. Weighted LogReg, Algorithm 1, Section 4.2
i.e. private ERM under class weighting), and (4) an
in-processing DP-SGD-trained FTTransformer model
(Huang et al., 2020) with sample-weighted cross-entropy
loss (Priv. Weighted FTT, Algorithm 4, Section 4.3). Note
that we defer some additional visualizations that help build
intuition for the effect of private noise on each classifier’s
decision boundary (using synthetic data) to Appendix D.2,
along with complete results and details (Section E).

5.1. Philosophy: Pipelines, not Isolated Models

Throughout the empirical component of this work we con-
sider the overall learning pipeline, that couples a privacy
mechanism with the downstream model best suited to that
mechanism. DP mechanisms are never deployed in a vac-
uum: their performance depends strongly on how they are
paired with downstream architectures, optimization routines,
and hyperparameter regimes. In particular, our philosophy
is motivated by three observations: (1.) Synthetic-data gen-
erators decouple privacy from prediction, so their natural
partner is a strong non-private tabular learner (e.g. boosted
trees). (2.) Weighted DP-SGD is expressly tuned for deep
networks; forcing it onto a linear model would artificially
depress its performance. (3.) Prior DP benchmarks (Ja-
yaraman & Evans, 2019; Suriyakumar et al., 2021) like-
wise compare methods in their most effective configura-
tions. Accordingly, the atomic unit of comparison is the
pipeline: ⟨ DP mechanism, intermediate data,
final predictor ⟩. Table 1 should be interpreted as
comparing best-effort pipelines under a common (ϵ, δ) bud-
get, rather than as an architecture-controlled ablation.

5.2. Evaluations on Real Data

We next empirically evaluate the performance of our meth-
ods for private binary classification under class imbal-
anced data using eight datasets from the Imbalanced-learn
(Lemaitre et al., 2017) repository. These datasets represent a
variety of settings, with imbalance ratios r ∈ [8.6, 130] and
sizes n ∈ [336, 11183]; see Table 11 for complete details.

In Figure 1, we show how performance varies with privacy
level; our performance metrics include general metrics like
AUC, F1, and Precision, as well as metrics that are more
tailored to imbalanced classification, such as Recall, Worst
Class Accuracy, etc. The macro-average accuracy (Macro-
Avg-ACC) helps evaluate performance across both classes
without bias toward the majority class, while the geometric
mean (G-Mean) balances sensitivity and specificity. Higher
is better for all metrics. Figure 1 presents results on the
mammography dataset, which was representative of general
trends for all datasets. Complete plots are presented in
Figures 6 to 13 in Appendix E.
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Table 3: Average performance rankings of the DP imbal-
anced learning approaches, across all ϵ settings and datasets.
Average ranks are in [1, 4] and in descending order, so lower
is better. We adopt the Olympic medal convention: gold ,

silver and bronze cells signify first, second and third best
performance, respectively.

Model AUC F1 Bal-ACC Precision

GEM + XGBoost 1.45 1.45 1.48 1.45
Priv. LogReg 2.77 2.62 2.89 2.62
Priv. Weighted LogReg 3.19 2.65 2.59 2.65
Priv. Weighted FTT 2.89 3.58 3.34 3.58

Recall Worst-ACC Macro-ACC G-Mean

GEM + XGBoost 2.26 1.45 1.48 1.45
Priv. LogReg 2.20 2.89 2.89 2.86
Priv. Weighted LogReg 2.11 2.59 2.59 2.59
Priv. Weighted FTT 3.70 3.37 3.34 3.40

Varying Privacy Budget We observed that for all datasets,
the GEM+XGBoost method improved with increased pri-
vacy budget. Figure 1 presents results on the mammography
dataset, which is representative of general trends. Higher
dimensionality increased the difficulty across the board
(e.g., there was a larger difference between non-private
performance and private performance with, for example,
the car_eval_4 dataset (Figure 10)), but we did not find
a meaningful trend or interaction between imbalance ratio
and dimensionality. Absolute dataset size correlated with
the classification performance, as expected. Complete plots
are presented in Figures 6-13 in Section E.

Additionally, in our experiments, we found that more minor-
ity examples led to more stable improved performance from
the GEM+XGBoost model. For example, the mammogra-
phy (Figure 1) and abalone (Figure 13) datasets, both of
which have the highest number of minority class examples,
also exhibited the best performance for the GEM+XGBoost
synthesizer at low levels of epsilon, and the most stable
performance overall across varied privacy parameters.

In Table 3, we present average rankings across all datasets
and epsilon values for the four privacy-preserving imbal-
anced learning approaches we explore; here, lower is better,
and highest average performance in each row is highlighted
according to the Olympic medal convention (gold, silver,
bronze). GEM + XGBoost performs best, ranking highest
across 7 of the 8 metrics on average. As expected, Priv.
Weighted LogReg performs worse than its unweighted coun-
terpart on overall metrics. Overall metrics are well known to
be poor indicators in imbalanced learning, as many of them
weight negative and positive class performance equally (He
& Garcia, 2009). However, on the metrics more appropriate
for imbalanced classification, Priv. Weighted LogReg outper-
forms the unweighted variant in 3 out of 4 metrics, and has
the best average Recall among all private models. In stark
contrast, Priv. Weighted FTT consistently under-performed.

Figure 1: Performance for mammography dataset for over-
all performance metrics (AUC, F1, Balanced Accuracy,
Precision) and metrics appropriate for imbalanced clas-
sification settings (Recall, Worst Class Accuracy, Macro
Average Accuracy, Geometric Mean) under varying ϵ ∈
{0.05, 0.1, 0.5, 1.0, 5.0} and over 10 random initializations.

0.0

0.5

1.0
AUC F1

0.0

0.5

1.0
Balanced Acc. Precision

0.0

0.5

1.0
Recall Worst Class Acc.

10 1 1000.0

0.5

1.0
Macro Avg. Acc.

10 1 100

G-Mean

GEM + NonPriv. XGBoost
Priv. LogReg
Priv. Weighted LogReg

Priv. Weighted FTT
Best Non. Priv.

Empirical Takeaways. Private variants of neural models
(Priv. Weighted FTT, for example) may be inappropriate
in general for relatively low-data regimes under class im-
balance due to minority example sparsity, especially when
weighted ERM based methods like Priv. Weighted LogReg
perform well and are less expensive to train. Moreover,
pre-processing with private synthetic data (GEM + Non-
Priv. XGBoost) displayed the most robust performance
across varying privacy levels and imbalanced datasets in
our experiments, consistently ranking highest across nearly
all metrics. Unfortunately, DP data synthesis is limited to
low-dimensional datasets (Rosenblatt et al., 2022). Priv.
Weighted LogReg performed best in terms of Recall, and
performed second best on average in terms of the other im-
balanced classification metrics. Our empirical results lead
us to recommend these two methods, pre-processing with
private synthetic data or weighted ERM based methods,
depending on chosen metric or data context.

Explaining GEM’s Strong Performance One plausible
explanation for GEM’s strong performance is rooted in well-
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studied properties of differentially private synthetic data
generation (Tao et al., 2021; McKenna et al., 2022; Qian
et al., 2024). In particular, DP synthetic data algorithms
rely heavily on k-way counting queries, which are precisely
the kinds of aggregate statistics that differential privacy is
designed to protect and measure accurately. By focusing
on low-dimensional correlations and co-occurrence relation-
ships – which may be sufficient for many classification tasks
(Hollmann et al., 2025) – GEM can capture and preserve
essential structure in the data with high fidelity. Moreover,
class-conditional sampling allows GEM to up-sample mi-
nority classes similarly to SMOTE, mitigating imbalance
at its root. While a formal theory to explain these phenom-
ena would likely require distributional assumptions and an
extensive theoretical framework, our experiments suggest
these capabilities help explain GEM’s performance.

6. Conclusion and Future Work
Private binary classification under class imbalance is espe-
cially challenging. We showed that standard non-private
methods like SMOTE and bagging become ill-suited for DP,
largely because they inflate the downstream privacy loss. By
contrast, private weighted ERM and DP private synthetic
data generation approaches can preserve privacy and yield
good performance, although DP synthetic data methods suf-
fer from the curse of dimensionality, which is a significant
limitation in most practical settings (McKenna et al., 2019;
Rosenblatt et al., 2022).

While our study focused on binary classification (a com-
mon setting in fraud detection, rare-disease diagnosis, spam
filtering, etc.), many of our ideas naturally extend to mul-
tiple classes. Pre-processing. For oversampling or
SMOTE, Proposition 2 and Theorem 3 depend on the fac-
tor ⌈N/n1⌉, i.e. the maximum number of synthetic sam-
ples per real minority point. In the multiclass setting we
could simply replace this by maxk∈[c]⌈Nk/nk⌉, analyze
each class independently, and take the worst-case bound.
In-processing. Weighted ERM admits multinomial logis-
tic regression with categorical cross-entropy; the convex-
ity assumptions required by Theorem 5 continue to hold.
Likewise, DP-SGD uses the same gradient-clipping routine
with a softmax loss, so the sensitivity bound of Lemma 19
carries over verbatim. Synthetic data. GEM and other Se-
lect–Measure–Project synthesizers already model the joint
distribution of all attributes; conditioning on a categorical
target variable merely changes the sampling query. With
these natural extensions in mind, we leave a rigorous end-
to-end evaluation of multiclass performance to future work.

In addition, there are ample open questions about the inter-
play between differential privacy and imbalanced learning.
New imbalanced-learning-specific loss functions (Cui et al.,
2019; Cao et al., 2019; Li et al., 2021) might further im-

prove private classification. Hybrid methods that leverage
DP synthetic data in lower-dimensional embeddings before
training a weighted ERM model also warrant exploration.
We hope our initial findings prompt broader theoretical and
empirical advances in private imbalanced classification.

Impact Statement
Learning algorithms are deployed more and more in sensi-
tive domains, such as healthcare and finance, necessitating
algorithms that ensure data privacy, particularly in the pres-
ence of class imbalance (for example, when fairness or
equity are a concern). Our work highlights the challenges of
applying standard imbalanced learning techniques in differ-
entially private settings, identifying both algorithmic tools
that work and those that do not. We believe that combin-
ing DP techniques with imbalanced classification strategies
can lead to the safeguarding of individual-level information
while maintaining strong predictive performance in high
stakes settings. Nonetheless, deploying these approaches in
practice would require careful consideration of the domain
constraints, and likely some collaboration with policymak-
ers and other stakeholders to ensure responsible use.
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A. Deferred Preliminaries
In this section, we provide some standard preliminaries for DP mechanisms that were deferred for length. One well-known
technique for achieving (ϵ, 0)-DP is by adding Laplace noise. The Laplace distribution with scale b is the distribution with
probability density function: h(x|b) = 1

2b exp(−
|x|
b ). The Laplace Mechanism of (Dwork et al., 2006) takes in a real-valued

function f , a database D, and a privacy parameter ϵ, and produces the (random) output: f(D) + Lap(∆f/ϵ). For the
Laplace mechanism, the sensitivity of a real-valued function f is defined as: ∆f = maxneighbors D,D′ |f(D)− f(D′)|.

Additionally, here are formal statements of two key theorems in differential privacy. Composition (Theorem 7) states that
applying two differentially private algorithms sequentially results in combined privacy guarantees of (ϵ1 + ϵ2, δ1 + δ2).
Post-processing (Theorem 8) notes that any post-processing of the output of a differentially private mechanism preserves its
original privacy guarantees.

Theorem 7 (Basic Composition (Dwork et al., 2006)). LetM1 be an algorithm that is (ϵ1, δ1)-DP, and letM2 be an
algorithm that is (ϵ2, δ2)-DP. Then their composition (M1,M2) is (ϵ1 + ϵ2, δ1 + δ2)-DP.

Theorem 8 (Post-processing (Dwork et al., 2006)). LetM : D → R be an algorithm that is ϵ-differentially private, and let
f : R → R′ be an arbitrary function. Then f ◦M : D → R′ is ϵ-differentially private.

15



Differential Privacy Under Class Imbalance: Methods and Empirical Insights

B. Pre-processing Methods and Analysis

Algorithm 2 SMOTE(X1, N , k) (Chawla et al., 2002)

1 Input: minority class instances X1 = {x1, . . . xn}, dataset dimension d, number of points to be generated N , number of
nearest neighbors k.

2 Output: N synthetic minority class samples
for i = 1, . . . , n do

3 Compute k nearest ℓ2 neighbors of xi from X1: (x1
i , . . . , x

k
i )

end for
for t = 1, . . . , N do

4 i = t mod n, where 0 mod n is interpreted as n
5 Randomly choose x′

i, one of the k nearest neighbors of xi

for j = 1, . . . d do
6 Sample uj uniformly from [0, 1]
7 zt,j = (1− uj)x

′
i,j + uj · xi,j

end for
8 return (zt, 1)

end for=0

B.1. SMOTE

Before offering the complete proof of the SMOTE result (Theorem 3), we provide a brief sketch to help guide the reader. We
first define the quantity Y = |SMOTE(X,N, k)⊕ SMOTE(X ′, N, k)| which gives the symmetric difference between
SMOTE applied to two neighboring datasets X, X ′, where ⊕ denotes symmetric difference. Y can be fully described as a
sum of Bernoulli random variables with parameters that depend on k, N , n1, and the maximum number of times one point
from Rd can appear among k-nearest neighbors of other points from Rd. SMOTE only takes in the minority class data,
and does not use majority class data at all in generating new synthetic data. Thus, without loss of generality, Theorem 3
only considers the modification of a minority class example that has a positive label; if the minority class was actually the
negative label, this could be dealt with in the analysis simply by renaming.

Now, to bound the maximum number of times one point can appear among k-nearest neighbors of other points, denoted
l(d, k), we require Lemma 9. This lemma lower bounds l(d, k) via a geometric argument that relies on the notion of a
kissing number K(d), defined as the greatest number of equal non-overlapping spheres in Rd that can touch another sphere
of the same size (Musin, 2008; Jenssen et al., 2018).

Lemma 9. Let l(d, k) be the maximum number of times one point from Rd can appear among the k-nearest neighbors of n1

other points from Rd. Then, l(d, k) = min{k ·K(d), n1}.

The exact value of the kissing number K(d) for general d is an open problem, but is known to be asymptotically bounded by
k20.2075d(1+o(1)) ≤ l(d, k) ≤ k20.4042d (Wyner, 1965; Musin, 2008; Kabatiansky & Levenshtein, 1978). Returning to Y ,
we then apply a one-sided Chernoff bound constraining the probability that Y is much greater than its mean. Plugging in
Lemma 9 and appropriate parameters yields Theorem 3.

Now, for the formal proof, following a restatement of Theorem 3.
Theorem 3. Let D = (X, y) be a d-dimensional dataset, with n1 minority instances, and letM be an arbitrary ϵ-DP
algorithm. Then instantiatingM on D concatenated with the output of SMOTE(X,N, k) is both (ϵ(20.4042d⌈ Nn1

⌉+1), 0)-DP
and (ϵ′, δ)-DP, for any γ ≥ 0 and for,

ϵ′ = ϵ(1 + γ)20.4042d
⌈
N

n1

⌉
1

k
, δ = e

k20.4042d⌈ N
n1

⌉
(
ϵ− γ2

k(2+γ)

)
.

Proof. Let D = (X, y) and D′ = (X ′, y′) be two neighboring datasets such that D′ = D ∪ {(x, 1)}, and let M be an
arbitrary ϵ-DP algorithm. For the remainder of the proof, fix SMOTE parameters N ∈ N and k ∈ Z+. Define l(d, k) to be
the maximum number of times one point from Rd can appear among the k-nearest neighbors of an arbitrary set of other
points in Rd. To simplify notation, we may denote l(d, k) as simply l when d and k are clear from context.
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To compare the outputs of SMOTE(X,N, k) and SMOTE(X ′, N, k), we fix the internal randomness of SMOTE between
these two runs, which includes randomly choosing a nearest neighbor and randomly sampling u inside the for-loop. That is,
an output point will be different only if the new point x in X ′ replaces the selected nearest neighbor x′

i that was chosen
under X . For each iteration where x replaces a previous nearest neighbor, there is a 1/k probability that x is the selected
nearest neighbor.

Define the random variable Y = |SMOTE(X,N, k)⊕ SMOTE(X ′, N, k)|, where ⊕ denotes a symmetric difference.
Then Y can be described as the sum of independent Bernoulli random variables that are 1 if x is the selected k-nearest
neighbor. Each trial has success probability 1/k, and there are l⌈ Nn1

⌉ total trials, corresponding to the l datapoints that can be
neighbors to x and the ⌈ Nn1

⌉ iterations through the database. For simplicity of presentation, we drop the ceiling notation for

the remainder of the proof, but it is implied if N is not divisible by n1. Thus Y ∼ Binomial
(

l·N
n1

, 1/k
)

and E[Y ] = l·N
n1·k .

Note that using the upper bound Y ≤ lN
n1

, we can obtain an immediate DP guarantee for M applied to the output of SMOTE
using group privacy. Specifically, since Y ≤ lN

n1
, we know that changing one entry of X would change up to lN

n1
entries of

the output of SMOTE, which is equivalent to changing lN
n1

+ 1 entries of the input to M (since the input to M is the original
database X concatenated with the output of SMOTE). Thus by the group privacy property of DP, these lN

n1
+ 1 entries that

depend on x would jointly receive a (ϵ( lNn1
+ 1), 0)-DP guarantee.

However, since Y is a random variable, one can instead use a high probability bound on Y as it may lead to an improved ϵ
bound. There is some chance that Y will fail to satisfy this bound, and this failure probability will later be incorporated into
the δ parameter of DP. Using a one-sided Chernoff bound, we bound the probability that Y is significantly greater than its
mean:

Pr

[
Y ≥ (1 + γ)

lN

n1k

]
≤ e−

γ2

2+γ
lN
n1k , (1)

for any γ ≥ 0.

For ease of notation, let Nl = l ·N/n1, and let T (D) = (X, y) ∪ SMOTE(X,N, k). Then for an arbitrary set of outputs
S ⊂ Range(M), we can obtain the following bounds on the output of M ◦ T on D and D′:

Pr[M(T (D)) ∈ S] =

Nl∑
j=1

Pr [M(T (D)) ∈ S|Y = j] · Pr[Y = j]

≤
Nl∑
j=1

eϵ·j Pr[M(T (D′)) ∈ S|Y = j] · Pr[Y = j]

=

(1+γ)Nl
k∑

j=1

eϵ·j Pr[M(T (D′)) ∈ S|Y = j] · Pr[Y = j] +

Nl∑
j=

(1+γ)Nl
k +1

eϵ·j Pr[M(T (D′)) ∈ S|Y = j] · Pr[Y = j]

≤ eϵ·(1+γ)Nl/k

(1+γ)Nl/k∑
j=1

Pr[M(T (D′)) ∈ S|Y = j] Pr[Y = j] + eϵ·Nl Pr[Y ≥ (1 + γ)
Nl

k
]

≤ eϵ·(1+γ)Nl/k Pr[M(T (D′)) ∈ S] + eϵ·Nl− γ2

2+γ

Nl
k .

The first equality is due to the law of total probability, the second step is due to the group privacy property of DP, and the
third step separates the sum into small and large j values based on the parameter γ. In the fourth and fifth steps, we bound
each coefficient eϵj by the largest value of j in the respective sum. For small j values we then the apply the law of total
probability; for large j, we upper bound each term Pr[M(T (D′)) ∈ S|Y = j] by 1, so the remaining sum is simply the
probability that Y is greater than the smallest “large” j value, which is then bounded by the one-sided Chernoff bound of
Equation (1).

Therefore, the composition of first applying SMOTE and then applying M to the original dataset along with the output of

SMOTE is
(
ϵ(1 + γ) lN

n1k
, eϵ

lN
n1

− γ2

2+γ
lN
kn1

)
-differentially private.

Next, we prove Lemma 9, which gives a lower bound for a parameter l(d, k) that describes the maximum number of times
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one point from Rd can appear among k-nearest neighbors of other points from Rd. The proof is a geometric argument that
relies on the notion of kissing number K(d), which is the greatest number of equal sized non-overlapping spheres in Rd that
can touch another sphere of the same size (Musin, 2008; Jenssen et al., 2018).

Lemma 9. Let l(d, k) be the maximum number of times one point from Rd can appear among the k-nearest neighbors of n1

other points from Rd. Then, l(d, k) = min{k ·K(d), n1}.

Proof. Trivially l(d, k) ≤ n1 so in the following, we will consider the case where n1 is sufficiently large. Also w.l.o.g. we
will consider K(d) kissing number spheres of radius r = 1.

Consider constructing a point set S around the origin O = (0, ..., 0) ∈ Rd such that S contains points whose 1-nearest
neighbor is O. We next define the points xi ∈ Rd, s.t. S = {x1, ..., xK(d)} where each xi is the center point in each of the
K(d) kissing point spheres around the unit sphere centered at O. By construction, each ||xi||2 = 2 and ||xi − xj ||2 ≥ 2 for
every other xj ∈ S.

We have so far a set S with cardinality |S| = K(d), which contains the K(d) centroids whose 1-nearest neighbor is O.
Recall that we allow ourselves to break ties in distance arbitrarily. Ties are often broken probabilistically in k-nearest
implementations, but we are considering the “worst-case” scenario for our analysis of S.

We now demonstrate that we cannot locally increase S. That is, K(d) is the maximum number of points who can share a
1-nearest neighbor with O. We show this by contradiction.

Consider adding a new point xK(d)+1 into the set S of 1-nearest neighbors with O. How can xK(d)+1 be a valid 1-nearest
neighbor of O? If ||xK(d)+1||2 > 2, O is certainly not its 1-nearest neighbor; instead, for some xi ∈ S, ||xK(d)+1−xi||2 <
||xK(d)+1 −O||2 by construction. If ||xK(d)+1||2 ≤ 2 then it would either: (1) Have O as its 1-nearest neighbor, implying
that ||xK(d)+1 − O||2 ≤ ||xK(d)+1 − xi||2 for all xi ∈ S, which then implies that ||xj − xK(d)+1||2 ≤ ||xj − O||2
for at least one point xj ∈ S, thus either shrinking |S| or leaving it the same size, or, (2) Have a fixed xj ∈ S as its
1-nearest neighbor, implying that ||xK(d)+1 − xj ||2 ≥ ||xK(d)+1 − xi||2 for all xi ∈ S and O, but then implying that
||xj − xK(d)+1||2 ≤ ||xa −O||2 for some other xa ∈ S by the triangle inequality, again shrinking |S|. Thus, a new point
xK(d)+1 cannot be added to S when k = 1, and l(d, 1) = K(d).

Next we generalize this result from 1-nearest neighbors to k nearest neighbors, demonstrating that l(d, k) = kK(d). We
will do this by duplicating points in S from the 1-nearest neighbor construction to create a set S′, and then again show by
contradiction that this set S′ cannot locally increase in size.

For k-nearest neighbor, we construct a set of points S′ as follows, where each xj
i for j ∈ {1, ..., k} is an exact replica of xi

from S. Thus, S′ = {x1
1, x

1
2, ..., x

1
K(d)} ∪ ... ∪ {x

k
1 , x

k
2 , ..., x

k
K(d)}. Note that |S′| = kK(d), where we have k duplicates of

the set S from the 1-nearest neighbor example.

For each point xj
i ∈ S′, there are k − 1 points {x1

i , ..., x
k
i } ≠ xj

i for which ||xj
i − xc

i ||2 = 0. As before, the distance from
the origin to each point ||xj

i − O|| = 2 by construction, and for each xj
i and the kK(d) − k + 1 points xb

a that are not
duplicates of xj

i , ||xj
i − xb

a|| ≥ 2. Thus for S′ of size kK(d), then O is a k-nearest neighbor of every point in S′, using
worst-case tie breaking.

We next show that the number of points with O as a nearest neighbor cannot increased by adding a new point xj+1
K(d)+1

to S′. The argument is analogous to the argument for 1-nearest neighbor. If ||xj+1
K(d)+1||2 > 2, then O is certainly not its

k-nearest neighbor; instead, for some size k set {x1
i , ..., x

k
i } ⊂ S′, ||xj+1

K(d)+1 − xj
i ||2 < ||xj+1

K(d)+1 −O||2 by construction.

If ||xj+1
K(d)+1||2 ≤ 2 then it would either:

• Have O in its set of k-nearest neighbors, implying that ||xj+1
K(d)+1 −O||2 ≤ ||xj+1

K(d)+1 − xj
i ||2 for at least one xj

i ∈ S′,

which then implies that ||xa
i − xj+1

K(d)+1||2 ≤ ||x
a
i − O||2 for at least one point xa

i ∈ S, thus either shrinking |S′| or
leaving it the same size.

• Have an entire set {x1
i , ..., x

k
i } ∈ S′ as its k-nearest neighbors, again shrinking |S| by the triangle inequality as in the

1-nearest neighbor argument.

Thus, we have shown that |S′| cannot be locally improved, and that l(d, k) = kK(d).

18



Differential Privacy Under Class Imbalance: Methods and Empirical Insights

The exact value of the kissing number K in general d dimensions is an open problem, but is known to be lower bounded
by K ≥ 20.2075d(1+o(1)) (Wyner, 1965; Musin, 2008) and upper bounded by K ≤ 20.4042d (Kabatiansky & Levenshtein,
1978). Thus when n1 is not too small, k20.2075d(1+o(1)) ≤ l(d, k) ≤ k20.4042d. We note that even though the exact value of
the kissing number is unknown, its bounds are asymptotically tight, with exponential dependence on d.

Plugging in the maximum value of k20.4042d for l(d, k) into the differentially privacy bounds derived above recovers the
guarantees of the theorem.

Empirical Results: SMOTE Here we present simple empirical results illustrating that SMOTE as a pre-processing step
before differentially private learning results in extremely poor performance. Figure 2 presents the performance of SMOTE
as a pre-processing method before DP logistic regression with three different ϵ values, compared with non-private logistic
regression and DP logistic regression without SMOTE applied. The evaluation is performed on the mammography dataset
(see Section 5) with a variety of imbalance ratios created by subsampling.

As predicted, downstream performance degrades significantly after SMOTE-induced ϵ adjustments as described in Table 2.
Note how proper privacy adjustments after SMOTE (dotted lines) negatively impact performance compared to DP logistic
regression without SMOTE (solid red line). This empirically confirms our negative result of Theorem 3, that SMOTE should
not be a preferred pre-processing method for differentially private imbalanced learning.
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Figure 2: SMOTE pre-processing on downstream DP logistic regression (with adjusted ϵ) on the mammography dataset.
Data was subsampled (log-scale x-axis: n ∈ [500, 1000, 2000, 5000, 10000]) and evaluated across imbalance ratios r ∈
[4, 8, 16, 32].

B.2. Re-sampling with DP Synthetic Data

The privacy of Algorithm 3 is straightforward to see: as long as the data synthesizer in Stage 1 is (ϵ, δ)-DP, then Stage 2 will
retain the same privacy guarantee by post-processing (Theorem 8).

Proposition 10. Algorithm 3 is (ϵ, δ)-differentially private.

Algorithm 3 Balancing w/ Private Data Synthesizer

1 Input: (ϵ, δ)-differentially private data synthesizer S , original dataset D, desired number of samples N , and any additional
parameters for S, P .

2 Output: A balanced dataset D′ where n0 = n1.
3 Stage 1: Parameterize a Distribution
4 Learn/parameterize a differentially private distribution θ over the data domain i.e. θ ← S(D,P).
5 Stage 2: Sample a New Dataset D′

if θ is parametric then
6 Sample N/2 minority examples D′

n1
∼ θ | n1, then sample N/2 majority examples D′

n0
∼ θ | n0.

7 return concatenation [D′
n1
, D′

n0
].

else if θ is non-parametric then
8 Perform rejection sampling based on class label to draw balanced samples (i.e., ensure n0 = n1 = N/2 in the final

dataset D′ by sampling from S(D) until target sizes are reached).
end if

9 return D′ =0
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C. In-processing Methods and Analysis
C.1. Bagging and Private Bagging

Proposition 4. For a bagging classifier composed of non-differentially private learners to achieve δ = n−c, then it must
also be that ϵ ≤ 1

n , for all c > 1.

Proof. From Theorem 3 in (Liu et al., 2020), given a training dataset of size n and an arbitrary non-private base learner,
bagging with replacement with m base models and a subsample size of k has privacy parameters ϵ = m · k · log(n+1

n ) and

δ = 1−
(
n−1
n

)m·k
. Solving for m · k in the δ equation and plugging in δ = n−c yields,

m · k =
log(1− n−c)

log(n− 1)− log(n)
.

Plugging this in to the expression for ϵ gives, for n > 1,

ϵ = log(1− n−c)
log(n+ 1)− log(n)

log(n− 1)− log(n)

= log(1− n−c)
log
(
1 + n−1

)
log (1− n−1)

≤ log(1− n−1)
log
(
1 + n−1

)
log (1− n−1)

= log
(
1 + n−1

)
Thus, for c > 1, applying the bound of log(1 + x) ≤ x yields the result.

Empirical exploration We also present some empirical results for DP Bagging to illustrate its poor performance as an
in-processing method for DP imbalanced learning. Figure 3 presents the performance of DP bagging using DP logistic
regression as a weak learner, compared against the two baselines of non-private logistic regression and DP logistic regression
without bagging. For each DP-LR in the Bagged classifier, the privacy budget was split among the estimators using advanced
composition (setting ϵ = 1/2 and δ = 1/n2). The evaluation is performed on the mammography dataset (see Section 5)
with a variety of imbalance ratios created by subsampling. As predicted, we observe that private bagging underperformed
relative to a single DP logistic regression classifier across sample sizes and imbalance ratios.

Disjoint Parallel Composition vs. Bootstrapped Bagging One natural approach to improving privacy in bagging is to
train each weak learner on disjoint subsets of the dataset (rather than on bootstrapped or overlapping subsets). In principle,
using parallel composition may yield a better overall privacy guarantee than the standard bootstrapped setting with advanced
composition: because each individual’s data can only appear in one of the weak learners, the overall privacy cost does not
grow with the number of learners in the same way that it does under advanced composition.

To this end, we first evaluated a uniformly sampled disjoint bagging method that partitions the dataset into k subsets of size
N/k, trains one DP logistic regression (DPLR) learner per subset, and then aggregates predictions via majority vote. Table 4
(for imbalance ratio r = 8) and Table 5 (for r = 32) compare this Disjoint approach against the Adv. Comp. version, where
each weak learner is trained on a bootstrapped subsample and the privacy budget is composed using advanced composition
rules. We vary the total number of learners k ∈ {5, 10, 20} and report F1 scores (mean ± std. dev. over 10 runs). Overall,
performance remains modest for both methods, and one method is not clearly better than the other, indicating that simply
introducing parallel composition via disjoint partitions does not substantially improve the utility of private bagging when
the dataset is imbalanced. One reason is that the disjoint splits further reduce the already limited number of minority-class
examples available to each learner, exacerbating data imbalance and minority class scarcity.

Stratified Disjoint Splits We also examined a variant of the disjoint-split approach that leverages stratified sampling to
preserve minority-class representation in each partition. This setting presupposes that the practitioner can publicly observe
class labels when constructing subsamples; thus, this setting is not directly comparable with privacy assumptions we make
for other methods in this paper. Nonetheless, for comparison, we report results in Table 6 (r = 8) and Table 7 (r = 32).
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While stratification can slightly improve the representation of minority samples in each split, performance still remains
limited. The main challenge is that each weak learner’s privacy noise is amplified by the small per-learner sample size,
leading to weak models that do not effectively capture minority class signal.

Soft vs. hard voting A second potential avenue for mitigating the degradation from private learning within bagged
ensembles is to adopt different voting schemes when aggregating predictions. While hard voting uses a simple majority of
discrete class predictions, soft voting first averages predicted probabilities across learners and then applies a threshold (see,
e.g., (Bauer & Kohavi, 1999) for an analysis of such voting mechanisms in the non-private setting). Tables 8 (imbalance
r = 8) and 9 (r = 32) show the effect of switching from hard voting to soft voting in the standard advanced composition
bagging scheme (i.e. where each weak learner is bootstrapped). In some scenarios, soft voting slightly outperforms hard
voting, but in other settings the results are mixed.
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Bagging Performance (F1) Across Imbalance Ratios r (r = n0/n1, data=mammography)

n

F1

LR, Non-Private DPLR Bagged DPLR (n_estimators=5) Bagged DPLR (n_estimators=10) Bagged DPLR (n_estimators=20)

Figure 3: F1 score performance on subsamples of the mammography dataset (imblearn) comparing differentially
private logistic regression (DPLR) and DP bagging (DPLR as weak learner). Data was subsampled (log-scale x-axis:
n ∈ [500, 1000, 2000, 5000, 10000]) and evaluated across imbalance ratios r ∈ [4, 8, 16, 32].

Method n=500 n=1000 n=2000 n=5000 n=10000

LR, Non-Private 0.662± 0.109 0.741± 0.076 0.721± 0.073 0.740± 0.031 0.716± 0.022

Bagged DPLR, Adv. Comp. (nestimators = 5) 0.177± 0.124 0.178± 0.115 0.164± 0.128 0.094± 0.048 0.217± 0.116
Bagged DPLR, Disjoint (nestimators = 5) 0.205± 0.086 0.207± 0.099 0.213± 0.146 0.170± 0.087 0.166± 0.118

Bagged DPLR, Adv. Comp. (nestimators = 10) 0.273± 0.197 0.138± 0.093 0.142± 0.076 0.201± 0.066 0.254± 0.142
Bagged DPLR, Disjoint (nestimators = 10) 0.113± 0.078 0.068± 0.062 0.249± 0.190 0.121± 0.076 0.150± 0.075

Bagged DPLR, Adv. Comp. (nestimators = 20) 0.150± 0.153 0.159± 0.114 0.160± 0.120 0.249± 0.116 0.186± 0.193
Bagged DPLR, Disjoint (nestimators = 20) 0.189± 0.179 0.248± 0.185 0.162± 0.137 0.263± 0.116 0.253± 0.119

Table 4: Bagging performance with disjoint learners (uniform sampling), F1 score for imbalance ratio r = 8.

Method n=500 n=1000 n=2000 n=5000 n=10000

LR, Non-Private 0.400± 0.299 0.509± 0.170 0.548± 0.152 0.618± 0.079 0.547± 0.065

Bagged DPLR, Adv. Comp. (nestimators = 5) 0.074± 0.071 0.069± 0.065 0.052± 0.035 0.036± 0.024 0.056± 0.065
Bagged DPLR, Disjoint (nestimators = 5) 0.082± 0.074 0.055± 0.048 0.068± 0.045 0.097± 0.045 0.060± 0.040

Bagged DPLR, Adv. Comp. (nestimators = 10) 0.011± 0.033 0.026± 0.043 0.048± 0.029 0.052± 0.034 0.064± 0.055
Bagged DPLR, Disjoint (nestimators = 10) 0.034± 0.081 0.108± 0.087 0.047± 0.038 0.096± 0.059 0.068± 0.052

Bagged DPLR, Adv. Comp. (nestimators = 20) 0.000± 0.000 0.000± 0.000 0.097± 0.084 0.070± 0.042 0.062± 0.062
Bagged DPLR, Disjoint (nestimators = 20) 0.000± 0.000 0.000± 0.000 0.063± 0.055 0.061± 0.034 0.065± 0.049

Table 5: Bagging performance with disjoint learners (uniform sampling), F1 score for imbalance ratio r = 32.
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Method n=500 n=1000 n=2000 n=5000 n=10000

LR, Non-Private 0.662± 0.109 0.743± 0.000 0.712± 0.000 0.667± 0.000 0.714± 0.000

DPLR 0.291± 0.110 0.131± 0.153 0.254± 0.168 0.205± 0.151 0.157± 0.092

Bagged DPLR, Adv. Comp. (nestimators = 5) 0.074± 0.071 0.069± 0.065 0.052± 0.035 0.036± 0.024 0.056± 0.065
Bagged DPLR, Stratified (nestimators = 5) 0.154± 0.084 0.233± 0.147 0.197± 0.101 0.249± 0.122 0.168± 0.083

Bagged DPLR, Adv. Comp. (nestimators = 10) 0.273± 0.197 0.138± 0.093 0.142± 0.076 0.201± 0.066 0.254± 0.142
Bagged DPLR, Stratified (nestimators = 10) 0.220± 0.101 0.189± 0.110 0.167± 0.098 0.147± 0.092 0.192± 0.108

Bagged DPLR, Adv. Comp. (nestimators = 20) 0.150± 0.153 0.159± 0.114 0.160± 0.120 0.249± 0.116 0.186± 0.193
Bagged DPLR, Stratified (nestimators = 20) 0.157± 0.086 0.149± 0.083 0.200± 0.111 0.158± 0.090 0.205± 0.080

Table 6: Bagging performance with disjoint learners (stratified sampling), F1 score for imbalance ratio r = 8.

Method n=500 n=1000 n=2000 n=5000 n=10000

LR, Non-Private 0.400± 0.299 0.286± 0.000 0.375± 0.000 0.571± 0.000 0.473± 0.000

DPLR 0.086± 0.055 0.168± 0.173 0.064± 0.061 0.074± 0.044 0.070± 0.074

Bagged DPLR, Adv. Comp. (nestimators = 5) 0.074± 0.071 0.069± 0.065 0.052± 0.035 0.036± 0.024 0.056± 0.065
Bagged DPLR, Stratified (nestimators = 5) 0.058± 0.049 0.084± 0.069 0.063± 0.037 0.077± 0.057 0.075± 0.058

Bagged DPLR, Adv. Comp. (nestimators = 10) 0.011± 0.033 0.026± 0.043 0.048± 0.029 0.052± 0.034 0.064± 0.055
Bagged DPLR, Stratified (nestimators = 10) 0.050± 0.063 0.039± 0.029 0.067± 0.044 0.082± 0.023 0.055± 0.037

Bagged DPLR, Adv. Comp. (nestimators = 20) 0.000± 0.000 0.000± 0.000 0.097± 0.084 0.070± 0.042 0.062± 0.062
Bagged DPLR, Stratified (nestimators = 20) 0.000± 0.000 0.087± 0.050 0.087± 0.044 0.064± 0.051 0.054± 0.044

Table 7: Bagging performance with disjoint learners (stratified sampling), F1 score for imbalance ratio r = 32.

Method n=500 n=1000 n=2000 n=5000 n=10000

LR, Non-Private 0.662± 0.109 0.741± 0.076 0.721± 0.073 0.740± 0.031 0.716± 0.022

Bagged DPLR, Soft (nestimators = 5) 0.262± 0.093 0.220± 0.127 0.208± 0.105 0.206± 0.143 0.230± 0.157
Bagged DPLR, Hard (nestimators = 5) 0.074± 0.071 0.069± 0.065 0.052± 0.035 0.036± 0.024 0.056± 0.065

Bagged DPLR, Soft (nestimators = 10) 0.212± 0.074 0.226± 0.098 0.123± 0.065 0.238± 0.179 0.205± 0.167
Bagged DPLR, Hard (nestimators = 10) 0.273± 0.197 0.138± 0.093 0.142± 0.076 0.201± 0.066 0.254± 0.142

Bagged DPLR, Soft (nestimators = 20) 0.205± 0.170 0.265± 0.177 0.280± 0.114 0.127± 0.071 0.154± 0.092
Bagged DPLR, Hard (nestimators = 20) 0.150± 0.153 0.159± 0.114 0.160± 0.120 0.249± 0.116 0.186± 0.193

Table 8: Performance table for imbalance ratio r = 8, Hard vs. Soft voting.

Method n=500 n=1000 n=2000 n=5000 n=10000

LR, Non-Private 0.400± 0.299 0.509± 0.170 0.548± 0.152 0.618± 0.079 0.547± 0.065

Bagged DPLR, Soft (nestimators = 5) 0.074± 0.038 0.066± 0.044 0.060± 0.046 0.073± 0.058 0.083± 0.070
Bagged DPLR, Hard (nestimators = 5) 0.074± 0.071 0.069± 0.065 0.052± 0.035 0.036± 0.024 0.056± 0.065

Bagged DPLR, Soft (nestimators = 10) 0.049± 0.074 0.047± 0.054 0.033± 0.024 0.064± 0.038 0.039± 0.032
Bagged DPLR, Hard (nestimators = 10) 0.011± 0.033 0.026± 0.043 0.048± 0.029 0.052± 0.034 0.064± 0.055

Bagged DPLR, Soft (nestimators = 20) 0.000± 0.000 0.085± 0.156 0.019± 0.028 0.059± 0.037 0.083± 0.036
Bagged DPLR, Hard (nestimators = 20) 0.000± 0.000 0.000± 0.000 0.097± 0.084 0.070± 0.042 0.062± 0.062

Table 9: Performance table for imbalance ratio r = 32, Hard vs. Soft voting.
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C.2. Warm-up: A Known Population

As a warm-up, we quantify the estimation error of the Bayes optimal classifier for a known Gaussian mixture.

Example 11. Let {Xi, yi}ni=1 ∈ Rd=1 × {0, 1}n be randomly sampled such that X is a mixture of Gaussians and y is a
binary class label. Specifically, let {Xi | yi = 1} ∼ N (µ1, σ

2) and {Xi | yi = 0} ∼ N (µ0, σ
2). The domain of X here is

a priori unbounded, but we can later bound X with clipping to reduce sensitivity.

This setting was also studied in (Yang & Xu, 2020), who showed that the Bayes optimal classifier is given by fθ(X) =
I(X ≥ θ) for θ = (µ0 + µ1)/2 (see (Hart et al., 2000) for a textbook treatment). That is, assign the positive label if and
only if X > θ. We construct a private estimate of θ to build intuition for the effect of noise on imbalanced learning.

The private classification mechanismMBOC : R 7→ {0, 1} makes private estimates of µ0, µ1 by first clipping each Xi

to lie in the range [−R,R] before applying the Gaussian mechanism to the clipped data to compute the empirical mean.4

Formally, define,

µ̂b =
1

nb

nb∑
i=1

CLIP(Xi, R) +N
(
0, (

2R

nb
)2 ·

2 log(1.25δ )

ϵ2

)
,

for b ∈ {0, 1}, where CLIP denotes clipping Xi into the range [−R,R]. Then a natural mechanism for privately computing
the Bayes Optimal Classifier isMBOC(X) = I(X ≥ θ̂) for θ̂ = µ̂1+µ̂2

2 .

Proposition 12. The mechanismMBOC is (2ϵ, 2δ)-differentially private. Assume max{|µ1|, |µ2|} ≤ B for some known
bound B and R > B + σ

√
2 log(4n/β). For any imbalance ratio r ≥ 1, with probability at least 1− β/2, the θ̂ produced

byMBOC satisfies ∣∣∣θ̂ − θ
∣∣∣ ≤ 2

√
log(4/β)

√
σ2

n0

(1 + r) +
2R2 log(1.25/δ)

n2
0ϵ

2
· (1 + r2) .

Furthermore, for any estimator θ̃ of θ, with probability at least 1− β/2,

|θ̃ − θ| ≥ σ
√

(1+r)
n0

Φ−1(1− β/2),

where Φ(·) denotes the cumulative distribution function of a standard normal distribution.

The proof of this is relatively straightforward. As a sketch, privacy guarantees follow from the Gaussian Mechanism. For
the accuracy guarantee, we first provide a high probability bound on the potential affects of clipping the data to R, and then
provide a high-probability error bound accounting for the noise added to each of the (ϵ, δ)-differentially private estimates µ̂0

and µ̂1. The proof relies on known bounds for the population mean of X (for example, if X is a mixture of Gaussians over
AGE, one could assume a minimum of 0 and a maximum of 120).

Proof. Recall our private mean estimates for each class are,

µ̂0 =
1

n0

∑
i∈{Yi=0}

CLIP(Xi, R) +G0 , µ̂1 =
1

n1

∑
i∈{Yi=1}

CLIP(Xi, R) +G1,

where G0 ∼ N (0, σ2
DP0

), G1 ∼ N (0, σ2
DP1

) and CLIP(x,R) = max{−R,min(x,R)}. This clipping function guarantees
the sensitivity of our private mean computation function is ∆f = 2R

ny
. Thus, the Gaussian mechanism gives (ϵ, δ)-DP with

variance σ2
DP = ∆f2 2 log(1.25/δ)

ϵ2 = 8R2 log(1.25/δ)
n2
yϵ

2 .

First, we’ll argue that with our choice of R with probability 1 − β/2 clipping does not bias the data. To see this let
{Zi}ni=1

iid∼ N(0, σ2). We will use the following standard concentration result for the maximum of sub-Gaussian random
variables to bound them.

Lemma 13 ((Rigollet & Hütter, 2023)). Let Z1, . . . , Zn
iid∼ N(0, σ2). Then, Pr(max1≤i≤n |Zi| > t) ≤ 2ne−

t2

2σ2 .

4This is the canonical private mean estimator, but we note that improved methods exist (Biswas et al., 2020; Kulesza et al., 2023).
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Consecutively using the triangle inequality, Lemma 13, and R > B + σ
√
2 log(4n/β) we see that,

Pr[ max
1≤i≤n

|Xi| > R] ≤ Pr[ max
1≤i≤n

|Zi|+B > R] ≤ 2ne−
(R−B)2

2σ2 ≤ β/2.

Therefore, with probability at least 1− β/2,

θ̂ − θ =
1

2

(
1

n0

∑
i∈{Yi=0}

CLIP(Xi, R)− µ0 +G0 +
1

n1

∑
i∈{Yi=1}

CLIP(Xi, R)− µ1 +G1

)

=
1

2

 1

n0

∑
i∈{Yi=0}

(Xi − µ0) +G0 +
1

n1

∑
i∈{Yi=1}

(Xi − µ1) +G1


∼ 1

2
N
(
0,

σ2

n0
+

σ2

n1
+ σ2

DP1
+ σ2

DP0

)
=

1

2
N
(
0,

σ2

n0
(1 + r) +

2R2 log(1.25/δ)

n2
0ϵ

2
· (1 + r2)

)
(2)

Combining (2) with the fact that for Z ∼ N (0, ν2) we have the inequality Pr(|Z| > t) ≤ 2e−
t2

2ν2 we conclude that with
probability 1− β,

|θ̂ − θ| ≤

√
σ2

n0
(1 + r) +

2R2 log(1.25/δ)

n2
0ϵ

2
· (1 + r2)

√
2 log(4/β).

This completes the utility proof of the proposed estimator.

Let’s now turn to the question of the best achievable deviation. We note that in this example the MLE of θ is available in
closed form, namely θ̂MLE = (X̄0 + X̄1)/2, where X̄0 = 1

n0

∑n
i=1(1 − yi)Xi and X̄1 = 1

n1

∑n
i=1 yiXi. Furthermore

θ̂MLE ∼ N(0, (1+r)σ2

4n0
) is the minimum variance unbiased estimator. It is well know that in this case the narrowest

confidence interval for θ is [θ̂ − σ
√
(1 + r)/n0Φ

−1(1− β/2), θ̂ + σ
√

(1 + r)/n0Φ
−1(1− β/2)].

Proposition 12 tells us that in Example 11, a private classifier from the ideal model class has privacy error that scales linearly
in the class imbalance parameter r, which is minimized under no class imbalance. Unfortunately, imbalanced data often has
r ≫ 1; for example, when detecting spam on Twitter (Analytics, 2009), r ≈ 32, and in the datasets used in Section 5 in our
empirical evaluations, r ranges between 8.6 and 130.

Linking to Imbalanced Metrics A natural question, building on Proposition 12, is how we might weight samples when
calculating θ to improve performance on imbalanced metrics, such as Recall, under this simple population model. To do
this, we consider a re-weighted classifier, fθγ , where the weights γ are tied to class prevalence. We can then reason about

weights under this classifier and show, for example, that the true positive rate can be written as TPR = Φ
(

(1−γ)(µ1−µ0)
σ

)
.

This analysis informs setting weights based on class prevalence estimates (e.g., γ = 1/Pr(yi = 1)) to better target
imbalance-focused metrics like Recall.

Formal Discussion Consider the re-weighted classifier fθγ where θγ = γµ1 + (1− γ)µ0. Note that the optimal Bayes
classifier is in this model class, and can be written fθ1/2(X). We will denote the Gaussian random variables for the majority
and minority classes as Z0 ∼ N (µ0, σ

2
0) and Z1 ∼ N (µ1, σ

2
1) respectively, and the Gaussian random variable for the added,

zero-centered noise for privacy as Z ∼ N (0, σ2).

Then, we can derive a population version of true positive rate under fθγ as,

TPR = Pr(fθγ (X) = 1|Y = 1)

= Pr(Z1 ≥ γµ1 + (1− γ)µ0)

= Φ(
(1− γ)(µ1 − µ0)

σ
) .
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Our original imbalance ratio r is a sample-specific estimate of the true population imbalance ratio, r∗ = Pr(Y =
0)/Pr(Y = 1). Here, we will consider r∗, alongside a population version of positive rate PR = Pr(Y = 1) = 1

1+r∗ . This

gives us insight into an exact form of the Recall metric for Example 11, which is TP
P = Φ( (1−γ)(µ1−µ0)

σ )(1 + r∗). Note that
Recall gets worse as the imbalance ratio increases. However taking γ < 1/2 improves Recall relative to the standard optimal
Bayes classifier. One way to choose such a γ is to take the inverse probability weight γ = 1/Pr(Y = 1) = 1 + r∗. These
population parameter considerations motivate an empirical weighted counterpart to fθ1/2(X). Such precise distributional
knowledge is rarely known in practice and unverifiable under differential privacy (where the data cannot be accessed directly
without noise mechanisms). Instead we will by default account for r by setting weights inversely proportional to class
prevalence in our weighted methods, as motivated by this reasoning and prior work (Chawla et al., 2004).

Quantifying the Benefits of Re-weighting in Imbalanced Metrics Here we provide detailed calculations showing that
the re-weighted classifier fθγ outperforms the optimal Bayes classifier fθ1/2 in various imbalanced metrics, summarized in
Table 10. Recall that fθγ is a threshold-based classifier defined as

fθγ (X) = I(X ≥ θγ), (3)

where θγ = γµ1 + (1 − γ)µ0. The parameter θγ is a weighted average of the means for each class, µ1 and µ0, with γ
controlling the weight given to each class.

Metric Formula

Recall (Re(γ)) (1 + r∗) · Φ ((1− γ)∆)

Precision (Pre(γ)) Φ((1−γ)∆)
Φ((1−γ)∆)+(1+r∗)·[1−Φ(γ∆)]

Balanced Accuracy (BA(γ)) Φ((1−γ)∆)+Φ(γ∆)
2

F1 Score (F1(γ)) Φ((1−γ)∆)

Φ((1−γ)∆)+ 1
2 [1−Φ(γ∆)]

Table 10: Some imbalanced classification metrics, defined as functions of the imbalance weight parameter γ for the
reweighted classifier fθγ , where ∆ = µ1−µ0

σ for ease of presentation.

Recall Metric. The True Positive Rate (TPR) is defined as the probability that the classifier correctly identifies a positive
instance. For a given X sampled from the positive class (Y = 1), we have,

TPR = Pr(fθγ (X) = 1 | Y = 1)

= Pr(Z1 ≥ γµ1 + (1− γ)µ0) .

Since X | Y = 1 is distributed as N (µ1, σ
2), we can standardize this normal variable as,

TPR = Pr
(
X − µ1

σ
≥ γµ1 + (1− γ)µ0 − µ1

σ

)
.

Thus, the TPR can be written using the cumulative distribution function (CDF) of the standard normal, denoted here as Φ,
given

TPR = Φ

(
(1− γ)(µ1 − µ0)

σ

)
.

We define the population imbalance ratio r∗ as the ratio of the probability of the negative class to the probability of the
positive class i.e.

r∗ =
Pr(Y = 0)

Pr(Y = 1)
.
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The total probability of positives (i.e. positive rate PR is just

PR = Pr(Y = 1) =
1

1 + r∗
.

Recall is defined as the ratio of true positives to the total actual positives, or

Recall =
TPR

PR
=

Φ
(

(1−γ)(µ1−µ0)
σ

)
1

1+r∗

.

Simplifying gives,

Recall = Re(γ) = (1 + r∗) · Φ
(
(1− γ)(µ1 − µ0)

σ

)
.

This shows that Re(γ) decreases as the imbalance ratio r∗ increases, because the term (1 + r∗) magnifies the effect of the
Gaussian term.

This implies that Re(γ) can be improved relative to the Bayes Optimal Classifier by choosing γ < 1
2 . This adjustment shifts

the threshold θγ to be more inclusive of the positive class, thereby increasing the true positive rate.

Precision Metric. Precision is defined as the ratio of true positive rate to all positive predictions, or

Precision =
TPR

TPR+ FPR
,

where FPR denotes False Positive Rate.

False Positive Rate (FPR) are defined as the probability that the classifier incorrectly identifies a negative instance as positive.
For X sampled from the negative class (Y = 0),

FPR = Pr(fθγ (X) = 1 | Y = 0)

= Pr(Z0 ≥ γµ1 + (1− γ)µ0) .

We can similarly standardize this normal variable:

FPR = Pr
(
X − µ0

σ
≥ γµ1 + (1− γ)µ0 − µ0

σ

)
,

which simplifies to,

FPR = Pr
(
Z ≥ γ(µ1 − µ0)

σ

)
,

where Z ∼ N (0, 1). Thus, FPR can be written as:

FPR = 1− Φ

(
γ(µ1 − µ0)

σ

)
.

This yields

Precision = Pre(γ) =
TPR

TPR+ FPR
=

Φ
(

(1−γ)(µ1−µ0)
σ

)
Φ
(

(1−γ)(µ1−µ0)
σ

)
+ (1 + r∗) ·

[
1− Φ

(
γ(µ1−µ0)

σ

)] .
As r∗ increases, the FPR becomes larger, leading to a potential decrease in Pre(γ). This result shows that in adjusting γ,
better performance can be achieved on either Re(γ) or Pre(γ).
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Balanced Accuracy. Balanced accuracy is defined as the average of TPR and TNR. We require the following explicit
formulas for TPR and TNR, where TPR was previously defined for Recall:

TPR = Φ

(
(1− γ)(µ1 − µ0)

σ

)
,

and

TNR = Pr (Z0 ≤ θγ) = Pr
(
Z ≤ γ

(
µ1 − µ0

σ

))
= Φ

(
γ(µ1 − µ0)

σ

)
.

Therefore, Balanced Accuracy is simply

BA(γ) =
Φ
(

(1−γ)(µ1−µ0)
σ

)
+Φ

(
γ(µ1−µ0)

σ

)
2

.

F1 Score. F1 Score can be written as:

F1 Score =
2 · TPR

2 · TPR + FPR + FNR
.

The expressions for TPR, FPR, and FNR have been previously derived as follows:

TPR = Φ

(
(1− γ)(µ1 − µ0)

σ

)
,

FPR = 1− Φ

(
γ(µ1 − µ0)

σ

)
,

FNR = 1− Φ

(
(1− γ)(µ1 − µ0)

σ

)
.

Substituting these yields an expression for the F1 Score:

F1(γ) =
2 · Φ

(
(1−γ)(µ1−µ0)

σ

)
2 · Φ

(
(1−γ)(µ1−µ0)

σ

)
+
[
1− Φ

(
γ(µ1−µ0)

σ

)]
+
[
1− Φ

(
(1−γ)(µ1−µ0)

σ

)] .
Simplifying yields:

F1(γ) =
Φ
(

(1−γ)(µ1−µ0)
σ

)
Φ
(

(1−γ)(µ1−µ0)
σ

)
+ 1

2

[
1− Φ

(
γ(µ1−µ0)

σ

)] .
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C.3. Weighted Private ERMs

Assumptions from (Giddens et al., 2023). We list here (for completeness) the undesirable assumptions from (Giddens
et al., 2023) that we overcome. Their privacy proof works only for loss functions that take in a single argument, which
excludes standard models like logistic regression, SVM, and others. Additionally, they made the assumption that the
difference of weights across neighboring datasets goes to 0 as n → ∞, which is too strong for our inverse proportional
weights strategy. We also note that in differential privacy, sensitivity is analyzed under worst case assumptions even if the
influence of a single data point diminishes as n grows large. One therefore should avoid privacy statements that rely on
asymptotic assumptions.

Notation for ERM Proof. For parity and ease of comparison, we will use mostly overlapping notation with (Chaudhuri
et al., 2011). We will denote the Euclidean norm of x ∈ Rd by ∥x∥2. For an integer n, the notation [n] will represent the
set {1, 2, . . . , n}. Boldface will be used for vectors, and calligraphic type for sets. For a square matrix A, the induced
L2-norm will be indicated by ∥A∥2. Algorithms will accept as input training data D = (xi,yi) ∈ X × Y : i = 1, 2, . . . , n,
consisting of n data-label pairs. In binary classification, the data space is X = Rd and the label set is Y = 0, 1. It will
be assumed throughout that X is the unit ball, hence ∥xi∥2 ≤ 1. Note that the extension of the proof to ∥xi∥2 ≤ q is
straightforward and commonly implemented in practice. This is also how we implemented our code.

We aim to construct a predictor f : X → Y . The quality of our predictor on the training data is assessed using a nonnegative
loss function ℓ : Y × Y → R. In regularized empirical risk minimization (ERM), we select a predictor f that minimizes
the regularized empirical loss, optimizing over f within a hypothesis class H. The regularizer λN(f) is used to prevent
over-fitting, for some function N of the predictor. Altogether, this yields the ERM loss function:

J(f ,D) = 1

n

n∑
i=1

ℓ(yi, f(xi)) + λN(f) .

We can slightly modify the regularized ERM by introducing a weighting scheme to correct for class imbalance. Let
w = [w1, w2, . . . , wn] be a vector of sample weights, where each wi corresponds to a weight assigned to the i-th sample in
the dataset D. This yields,

J(f ,D,w) =
1

n

n∑
i=1

wi · ℓ(yi, f(xi)) + λN(f).

We consider weights wi that do not explicitly affect the regularization term λN(f), as is standard, as regularization should
penalize model complexity independent of class imbalance or weighting.

Ridge Regression. From here on, we will focus on ridge regression, so instead of a penalty of the form λN(f) we will
use λ

2 ∥β∥
2
2, where our predictor is xTβ and β is a vector of coefficients that can be multiplied with a sample vector x to

produce a prediction.

A common choice of weight vector w = [w1, w2, . . . , wn] is to compose weights such that they correspond to the inverse
frequency of the class label in the training set (Provost & Fawcett, 1997). In other words, wi is inversely proportional to the
prevalence of the class label yi associated with each sample (xi,yi). Let n be the number of total samples in dataset D, and
Y be the set of unique class labels. Then let π̂k = 1

n

∑n
i=1 I[yi = k], π̂−1 = (π̂−1

0 , π̂−1
1 ) and define the weights

wk =
∥π̂−1∥−1

1

πk
for k ∈ {0, 1}. (4)

Considering neighboring datasets and class weights Consider D = {(xi, yi)}ni=1 = {x,y} (where x and y are the
feature and label vectors, respectively), and where yi ∈ {0, . . . , k}, and a class weight wi as defined above.

Recall n1 ≪ n0. We then have weights,

wi =

{
n
n1

( n
n1

+ n
n0

)−1 if i ∈ I1
n
n0

( n
n1

+ n
n0

)−1 if i ∈ I0
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where I0 and I1 are the set of row indexes of x that partitions it into x(0) and x(1) (denoting the majority and minority class
feature vectors, respectively). Note that n

n1
= 1

π̂1
, and thus ( n

n1
+ n

n0
)−1 = ( 1

π̂1
+ 1

π̂0
)−1.

Recall that for privacy, we consider neighboring dataset x′ of size n = n0 + n1. We will denote the new weights of
neighboring dataset features x′ by {w′

i}ni=1.

We note that neighboring datasets will have weights that fall under one of two cases below. Without loss of generality we
will assume they differ in the jth data point.

C1: The differing sample between the neighboring sets is such that x′
j ̸= xj , but keeps the same label i.e. y′j = yj . This

implies that wi − w′
i = 0 ∀ i = 1, . . . , n. Under this case, there is no change in weights between neighboring datasets

D and D′.

C2: The differing sample between the neighboring sets is such that x′
j ̸= xj and also y′j ̸= yj . In this case we need to

reason about the effect this difference entails on the class weights.

In Case 2, it follows that,
1

π̂′
1

+
1

π̂1
=

{
n

n1−1 −
n
n1

= n
n1(n1−1) if I1 ⊂ I ′1

n
n1+1 −

n
n1

= n
n1(n1+1) if I ′1 ⊂ I1

,

where if I ′1 ⊂ I1 means that the minority class gets even smaller between the two neighboring datasets. The complementary
scenario is,

1

π̂′
0

+
1

π̂0
=

{
n

n0+1 −
n
n0

= −n
n0(n0+1) if I1 ⊂ I ′1

n
n0−1 −

n
n0

= n
n0(n0−1) if I ′1 ⊂ I1

.

Since by assumption n1 ≪ n0, we have that 1
π̂1

= n
n1
≫ n

n0
= 1

π̂0
. We analyze these two scenarios independently.

Scenario 1: when I ′1 ⊂ I1 i.e. the minority becomes smaller. Then we have,

1

π̂′
1

+
1

π̂′
0

= n

(
1

n1 − 1
+

1

n0 + 1

)
=

n(n1 + n0)

(n0 + 1)(n1 − 1)
=

n2

(n0 + 1)(n1 − 1)
,

So,

w′
i =


n

n1−1
(n1−1)(n0+1)

n2 , if i ∈ I1,

n
n0+1

(n1−1)(n0+1)
n2 , if i /∈ I1,

while 1
π̂1

+ 1
π̂0

= n
(

1
n1

+ 1
n0

)
= n2

n1n0
, and

wi =


n
n1
· n1n0

n2 , if i ∈ I1,

n
n0
· n1n0

n2 , if i ∈ I0.

Therefore, ∑
i̸=j

|wi − w′
i| =

∑
i ̸=j,i∈I′

1

|wi − w′
i|+

∑
i̸=j,i/∈I′

1

|wi − w′
i|

= (n1 − 1)

∣∣∣∣n0

n
− n0 + 1

n

∣∣∣∣+ n0

∣∣∣∣n1

n
− n1 − 1

n

∣∣∣∣
=

n1 − 1

n
+

n0

n
= 1− 1

n

In Scenario 2, we have I1 ⊂ I ′1 i.e. (minority becomes larger). Thus,

1

π̂′
1

+
1

π̂′
0

=
n

n1 + 1
+

n

n0 − 1
=

n2

(n1 + 1)(n0 − 1)
,
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, and

w′
i =


n

n1+1
(n1+1)(n0−1)

n2 = n0−1
n , if i ∈ I ′1,

n
n0−1

(n0−1)(n1+1)
n2 = n1+1

n , if i /∈ I ′1.

.

Therefore, ∑
i ̸=j

|wi − w′
i| = n1 ·

∣∣∣∣n0 − 1

n
− n0

n

∣∣∣∣+ (n0 − 1) ·
∣∣∣∣n1 + 1

n
− n1

n

∣∣∣∣
=

n1 + n0 − 1

n
= 1− 1

n

We have thus shown that the total change in weights, if the minority class size and label proportions change by one, is
bounded as

∑n
i ̸=j |wi − w′

i| ≤ 1− 1
n . We give this intermediate result in Lemma 14.

Lemma 14. Consider D = {(xi, yi)}ni=1 = {x,y}, where yi ∈ {0, 1} and a neighboring data set D′ differing in the jth
data point. Then, for the weights defined in (4) we have that

∑
i ̸=j |wi − w′

i| ≤ 1− 1
n .

Now, for completeness, we reproduce standard definitions in the form they appear in (Chaudhuri et al., 2011), including a
slightly stronger variation of Definition 1 then what is described in Section 2.

Assumptions on loss. We make almost the same loss assumptions as (Chaudhuri et al., 2011). Here, we restate definitions
of strictly convex and τ -strongly convex from their paper for convenience. We also require the convex loss function ℓ(·, ·) to
be twice differentiable functions with respect to the second argument, and such that | ∂∂η ℓ(y, η)| ≤ 1 and | ∂

2

∂η2 ℓ(y, η)| ≤ c
for some fixed c.

Definition 15. A function H(β) over β ∈ Rd is strictly convex if for all α ∈ (0, 1), β, and β′,

H
(
αβ + (1− α)β′) < αH(β) + (1− α)H(β′).

It is τ -strongly convex if for all α ∈ (0, 1), β, and β′,

H
(
αβ + (1− α)β′) ≤ αH(β) + (1− α)H(β′)− 1

2
τα(1− α)

∥∥β − β′∥∥2
2
.

Privacy model. Assume A(D) generates a classifier, and let D′ be a dataset that differs from D in one entry (assumed
to be the private value of one individual). They are neighboring datasets in the standard sense, e.g. D′ and D share n− 1
points (xi, yi). The algorithm A ensures DP if, for any set S , the probability that A(D) ∈ S is close to the probability that
A(D′) ∈ S, with the probability taken over the randomness in the algorithm.

Definition 16. An algorithm A(B) taking values in a set T provides ϵ-DP if

sup
S⊆T

sup
D,D′

µ (S | B = D)
µ (S | B = D′)

≤ eϵ,

where the first supremum is over all measurable S ⊆ T , the second is over all datasets D and D′ differing in a single
entry, and µ(·|B) is the conditional distribution (measure) on T induced by the output A(B) given a dataset B. The ratio is
interpreted to be 1 whenever the numerator and denominator are both 0.

We also restate sensitivity, as it appears in (Chaudhuri et al., 2011). Consider g : (Rm)n → R, a scalar function of
z1, . . . , zn, where each zi ∈ Rm represents the private value of individual i; the sensitivity of g is defined as follows.

Definition 17. The sensitivity of a function g : (Rm)n → R is the maximum change in the value of g when one entry of the
input database changes. More formally, the sensitivity S(g) of g is defined as:

S(g) = max
i∈[n]

max
z1,...,zn,z′

i

|g(z1, . . . , zi−1, zi, zi+1, . . . , zn)− g(z1, . . . , zi−1, z
′
i, zi+1, . . . , zn)| .

For the function A(D) = argmin J(β,D), the output is a vector A(D) + b, where b is random noise with a density of
ν(b) = 1

αe
−γ∥b∥, where α is the normalizing constant. The parameter γ depends on ϵ and the L2-sensitivity of A(·).
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Definition 18. The L2-sensitivity of a vector-valued function is defined as the maximum change in the L2 norm of the value
of g when one entry of the input database changes. More formally,

S(A) = max
i

max
z1,...,zn,z′

i

∥A(z1, . . . , zi, . . .)−A(z1, . . . , z
′
i, . . .)∥2 .

Objective perturbation. The approach to private ERM first proposed by (Chaudhuri et al., 2011) adds noise to the
objective function itself and then produces the minimizer of the perturbed objective. The perturbed objective is:

Jpriv(β,D) = J(β,D) + 1

n
bTβ,

Note that the privacy parameter here does not depend on the sensitivity of the of the classification algorithm. That is, the
privacy parameter ϵ is determined by the amount of noise added to the objective function through 1

nb
Tβ, and it depends on

the properties of the loss function and the regularizer rather than on the sensitivity of the classification algorithm’s output.
With the addition of a weight vector w, this is perturbed objective becomes:

Jpriv(β,D,w) = J(β,D,w) +
1

n
bTβ,

C.3.1. PRIVACY OF ALGORITHM 1

In this section, we show that Algorithm 1 using the weighted ERM objective function Jpriv(β,D,w) is ϵ-differentially
private. e.g. the output of the weighted Jpriv(β,D,w) is (ϵ, 0)-differentially private. We assume for each wi ∈ w, |wi| ≤ 1.
Note in particular that our analysis covers the case of logistic regression, which as stated, (Chaudhuri et al., 2011) does not.
Still, much of what follows is a adapted directly from the proof given by (Chaudhuri et al., 2011), with careful accounting
for the weights vector w; for sake of completeness and ease of comparison, all steps are stated as closely as possible to what
appears in the prior work.

Theorem 5. Algorithm 1 instantiated with a loss function ℓ(y, η) that is convex and twice differentiable with respect to η,
with | ∂∂η ℓ(y, η)| ≤ 1 and | ∂

2

∂η2 ℓ(y, η)| ≤ c for all y, is ϵ-differentially private.

Proof. Consider βpriv output by Algorithm 1. Note,

βpriv = argmin
β


1

n

n∑
i=1

wiℓ
(
yi,x

T
i β
)
+

1

2
(λ+∆)∥β∥22︸ ︷︷ ︸

weighted-ERM objective

+
1

n
bTβ︸ ︷︷ ︸

objective perturbation

 (5)

We observe that given any fixed βpriv and a fixed dataset D, there always exists a b such that Algorithm 1 outputs βpriv

on input D. Because ℓ is differentiable and convex, and N(·) is differentiable, we can take the gradient of the objective
function and set it to 0 at βpriv . Therefore, we set

0 = ∇Jpriv(βpriv,D,w)

= ∇J(βpriv,D,w) +
1

n
b+∆βpriv

=
1

n

n∑
i=1

wi · ∇ℓ(yi,xT
i βpriv) + (λ+∆)βpriv +

1

n
b,

and therefore

b = −
n∑

i=1

wi · ℓ′(yi,xT
i βpriv)xi − n(λ+∆)βpriv. (6)

We claim that as ℓ is twice differentiable and J(β,D) + ∆
2 ∥β∥

2
2 is strongly convex, given a dataset D =

(x1, y1), . . . , (xn, yn), there is a bijection between b and βpriv. Equation (6) shows that two different b values can-
not result in the same βpriv . Furthermore, since the objective is strictly convex, for a fixed b and D, there is a unique βpriv;
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therefore the map from b to βpriv is injective. The relation Equation (6) also shows that for any βpriv , there exists a b for
which βpriv is the minimizer, so the map from b to βpriv is surjective.

To show ϵ-DP, we need to compute the ratio g(βpriv|D)/g(βpriv|D′) of the densities of βpriv under the two datasets D
and D′. This ratio can be written as:

g(βpriv|D)
g(βpriv|D′)

=
µ(b|D)
µ(b′|D′)

·
|det(J(βpriv → b|D))|−1

|det(J(βpriv → b′|D′))|−1
,

where J(βpriv → b|D), J(βpriv → b|D′) are the Jacobian matrices of the mappings from βpriv to b, and µ(b|D) and
µ(b|D′) are the densities of b given the output βpriv, when the datasets are D and D′ respectively.

First, we bound the ratio of the Jacobian determinants. Let b(j) denote the j-th coordinate of b. From Equation (6) we have,

b(j) = −
n∑

i=1

wi · ℓ′(yi,βT
privxi)x

(j)
i − n(λ+∆)β

(j)
priv .

Given a dataset D, the (j, k)-th entry of the Jacobian matrix J(f → b|D) is

∂b(j)

∂β
(k)
priv

= −
∑
i

wi · ℓ′′(yi,βT
privxi)x

(j)
i x

(k)
i − n(λ+∆)I(j = k),

where I(·) is the indicator function. We note that the Jacobian is defined for all βpriv because ∥β∥22 and ℓ are globally twice
differentiable.

Let D and D′ be two datasets which differ in the value of the n-th item such that
D = {(x1, y1), . . . , (xn−1, yn−1), (xn, yn)} and D′ = {(x1, y1), . . . , (xn−1, yn−1), (x

′
n, y

′
n)}. Moreover, we define

matrices A and E as follows

A = nλI +

n∑
i=1

wi · ℓ′′(yi,βT
privxi)xix

T
i + n∆Id

E =

n∑
i=1

[
−wi ℓ

′′(yi,β
T
privxi)xix

T
i + w′

i ℓ
′′(y′i,β

T
privx

′
i)x

′
ix

′T
i .
]

Then, J(βpriv → b|D) = −A, and J(βpriv → b|D′) = −(A+ E).

We now account for the fact that some wi and yi may change across neighboring datasets. Consider each summand inside E.
If i is not the one that changed (i.e., i ̸= n), then y′i = yi and x′

i = xi. The change in that term is purely from the difference
in weights wi vs. w′

i. Since ∥xi∥2 ≤ 1 and ℓ′′(·) ≤ c, one gets ∥(w′
i)

2ℓ′′(. . . )xix
T
i − wiℓ

′′(. . . )xix
T
i ∥2 ≤ 2c|w′

i − wi|.
By Lemma 14, summing over all such i ̸= n yields a total ≤ 2c

∑
i ̸=n |w′

i − wi| ≤ 2c(1 − 1
n ). For i = n (the changed

point), the difference can alter xn vs. x′
n and ℓ′′, but still, the norm is at most 2c. Adding them up gives

∥E∥2 ≤ 2c

(
1− 1

n

)
+ 2c ≤ 4c.

Consider,

|det(J(βpriv → b|D′))|
|det(J(βpriv → b|D))|

=
|det(A+ E)|
|detA|

By sub-multiplicativity of the spectral norm, and recalling det(A+ E) = exp
(
tr log(I +A−1E)

)
, we can get,∣∣∣det(A+E)

detA

∣∣∣ = ∣∣det(I +A−1E)
∣∣ ≤ exp

(
tr(A−1E)

)
≤ exp

(
4cd

n(λ+∆)

)
.

Thus, we will define ϵ′′ = 4cd
n(λ+∆) , and set ϵ′ = ϵ− ϵ′′. Hence | det(A+E)|

| det(A)| ≤ eϵ
′′

.
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Next, we bound the ratio of the densities of b. Recall that |ℓ′(z)| ≤ 1, for any z and |wi|, |yi|, ∥xi∥ ≤ 1, and Lemma 14
shows that

∑
i̸=j |wi − w′

i| ≤ 1− 1
n , so we have that,

∥b′ − b∥2 =

∥∥∥∥∥∥wjℓ
′(yj , x

T
j βpriv)xj − w′

jℓ
′(yj , x

′T
j βpriv)x

′
j +

∑
i ̸=j

(wi − w′
i) ℓ

′(yi, x
T
i βpriv)xi

∥∥∥∥∥∥
2

≤ 2 +
∑
i̸=j

|wi − w′
i| = 2 + 1− 1

n
.

This implies that,

∥b∥ − ∥b′∥ ≤ ∥b− b′∥ ≤ 3.

which differs slightly from the original (Chaudhuri et al., 2011) work, which bounded ∥b− b′∥ ≤ 2. With this bound
adjustment, we can write:

µ(b|D)
µ(b′|D′)

=
∥b∥d−1e−ϵ′∥b∥/3 · 1

surf(∥b∥)

∥b′∥d−1e−ϵ′∥b′∥/3 · 1
surf(∥b′∥)

≤ eϵ
′(∥b∥−∥b′∥)/3 ≤ eϵ

′
,

where surf(x) denotes the surface area of the sphere in d dimensions with radius x. Here the last step follows from the fact
that surf(x) = s(1)xd−1, where s(1) is the surface area of the unit sphere in Rd.

Finally, we are ready to bound the ratio of densities:

g(βpriv|D)
g(βpriv|D′)

=
µ(b|D)
µ(b′|D′)

·
|det(J(βpriv → b|D′))|
|det(J(βpriv → b′|D))|

=
µ(b|D)
µ(b′|D′)

· |det(A+ E)|
|detA|

≤ eϵ
′
· eϵ−ϵ′

≤ eϵ.

Thus, Algorithm 1 satisfies Definition 16.
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D. DP-SGD FTTransformer
For completeness, we give the DP-SGD algorithm with the weighted cross-entropy loss explicitly embedded in Algorithm 4.
For more details on the DP-SGD algorithm, see (Abadi et al., 2016) and see (Yousefpour et al., 2021) for details on the
empirical implementation.

Algorithm 4 Differentially Private SGD (with weighted Cross-Entropy Loss)

1 Inputs: Database D = {xi, yi} with n entries where each yi ∈ {0, 1}, privacy parameters (ϵ, δ), learning rate η, clipping
norm C, minibatch size B, batch sampling probability q = L/n, number of iterations T , initial random model parameters
θ.

2 Output: Model parameters θpriv.
for iteration t = 1 to T do

3 Construct a batch of expected size L by sampling each point into the batch with probability q
4 Partition the batch into minibatches of size B

for each minibatch b do
5 Compute model predictions ŷi = f(xi; θ) for each i ∈ b.
6 Compute binary weighted cross-entropy loss as

L(y, ŷ;w) = − 1
B

∑B
i=1 wi [yi log(ŷi) + (1− yi) log(1− ŷi)]

7 Compute per-sample gradients∇Li = wi (ŷi − yi)xi

8 Clip gradients ∇̃Li = ∇Li ·min
(
1, C

∥∇Li∥2

)
9 Parameterize σ2 for (ϵ′, δ′)-DP, where ϵ′ = O

(
ϵ/
√
T log

(
1
δ

))
, for (ϵ, δ)-DP overall (Abadi et al., 2016).

10 Add noise: ∇̃Li = ∇̃Li +N (0, σ2C2I)

11 Update model parameters θ = θ − η · 1
B

∑B
i=1 ∇̃Li

end for
end for

12 Return differentially private model parameters: θpriv = θ. =0

Proposition 6. Algorithm 4, a standard DP-SGD procedure with weighted cross-entropy loss given by L(y, ŷ;w) =

− 1
n

∑n
i=1 wi [yi log(ŷi) + (1− yi) log(1− ŷi)], is (ϵ, δ)-differentially private.

Proof. L(y, ŷ;w) does not effect the sensitivity of the gradient∇Li with respect to each sample; the gradient is bounded
by the norm bound C due to clipping. When each per-sample gradient ∇Li is clipped to ∇̃Li = ∇Li ·min

(
1, C

∥∇Li∥2

)
,

the sensitivity of the gradient is limited to 2C. Adding Gaussian noise calibrated to this sensitivity ensures that the overall
training procedure satisfies (ϵ, δ)-DP. Re-weighting of samples in the loss function pre-clipping does not affect these privacy
guarantees.

D.1. Note on Weighted DP-SGD Sensitivity

We note that in the standard unweighted case where wi = 1 for all i = 1, . . . , n clipping guarantees that the minibatch
average gradient 1

B

∑
i∈b ∇̃Li has sensitivity 2C/B. This is used in the noise calibration of standard implementations

of noisy DP-SGD. We note however that in the weighted case all the ∇̃Li could change due to the weights wi, making
the sensitivity in fact 2C. We show below that in fact the sensivity of the average 1

B

∑
i∈b∇Li is bounded by 2C/B if

∥∇Li∥ ≤ C.

Lemma 19 (Sensitivity of Weighted DP-SGD under Class Weights). For each mini-batch b of size B, let ∇̃Li = wi(ŷi −
yi)xi denote the weighted per-sample gradient. Suppose that ∥(ŷi − yi)xi∥ ≤ C Then,∥∥∥∑

i∈b

(∇̃Li − ∇̃L′
i)
∥∥∥
2
≤ 2Cn0

Bn
− C

n
<

2C

B
.

Proof. By construction, wi depends only on the ratio of n1 and n0. In the refined analysis given by Lemma 14, we showed
that the total change in weights satisfies

∑n
i=1 |wi−w′

i| ≤ 1− 1
n . We will show something analogous here for the gradients;

consider two neighboring datasets D and D′ differing in one sample.
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Weights are wi (recall n1 ≪ n0). As before, let,

wi =


n0

n , if i ∈ I1,

n1

n , if i ∈ I0,

(7)

, where I0 and I1 are the set of row indexes of X that partitions it into D0 and D1. We can denote n
n1

= 1
π̂1

, and
thus ( n

n1
+ n

n0
)−1 = ( 1

π̂1
+ 1

π̂0
)−1 Keeping the minibatches equal for D, D′, we have, ∇̃Li = wi(ŷi − yi)xi. so

∇̃Li − ∇̃L′
i =

(wi − w′
i)(ŷi − yi)xi, i ̸= j,

wj(ŷj − yj)xj − w′
j(ŷ

′
j − y′j)x

′
j , i = j.

We’ll first consider the case I ′1 ⊂ I1 i.e. the minority becomes smaller. Then we have,

1

π̂′
1

+
1

π̂′
0

= n

(
1

n1 − 1
+

1

n0 + 1

)
=

n(n1 + n0)

(n0 + 1)(n1 − 1)
=

n2

(n0 + 1)(n1 − 1)
.

So,

w′
i =


n

n1−1
(n1−1)(n0+1)

n2 , if i ∈ I1,

n
n0+1

(n1−1)(n0+1)
n2 , if i /∈ I1,

,

while 1
π̂1

+ 1
π̂0

= n
(

1
n1

+ 1
n0

)
= n2

n1n0
, and

wi =


n
n1
· n1n0

n2 , if i ∈ I1,

n
n0
· n1n0

n2 , if i ∈ I0.

,

We’ll consider this now with the difference in the loss between the two sets,

∇̃Li − ∇̃L′
i =



(
n0

n −
n0+1

n

)
(ŷi − yi)xi, i ∈ I1, i ̸= j,(

n1

n −
n1−1

n

)
(ŷi − yi)xi, i ∈ I0,

n0

n (ŷj − yj)xj − n0+1
n (ŷ′j − y′j)x

′
j , i = j.

After simplifying, we get,

∇̃Li − ∇̃L′
i =


− 1

n (ŷi − yi)xi, i ∈ I1, i ̸= j,

1
n (ŷi − yi)xi, i ∈ I0,

n0

n (ŷj − yj)xj − n0+1
n (ŷ′j − y′j)x

′
j , i = j.

Conversely, when I1 ⊂ I ′1 (i.e. the minority gets larger), we have

∇̃Li − ∇̃L′
i =


1
n (ŷi − yi)xi, i ∈ I1,

− 1
n (ŷi − yi)xi, i ∈ I0, i ̸= j,

n1

n (ŷj − yj)xj − n1+1
n (ŷ′j − yj)xj , i = j.

Therefore,
1

B

∥∥∥∥∥∑
i∈bk

(
∇̃Li − ∇̃L′

i

)∥∥∥∥∥
2

≤ B − 1

B
· C
n

+
C

B
· 2n0 + 1

n
=

2Cn0

Bn
− C

n
.
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D.2. Visualizing Decision Boundaries

Next we explore the effect of differential privacy on decision boundaries by presenting visualizations on 2-dimensional
synthetic data. These visualizations of decision boundaries help develop intuition for how private noise impacts model
predictions, particularly in class-imbalanced settings.

We generate a small (n = 1000) synthetic 2-dimensional mixture of Gaussians, where majority (negative) and minority
(positive) classes are separable in the feature space. Specifically, the random vector [X1, X2] is sampled from the following

process: with probability 0.9, [X1, X2] ∼ N ([0, 0],

[
4 0
0 4

]
), and with probability 0.1, [X1, X2] ∼ N ([4, 4],

[
4 0
0 4

]
).

Thus, the mixture has two components: one centered at [0, 0] and the other at [4, 4], both independent and with variance 4.

Figure 4 compares the decision boundaries of non-differentially private and differentially private classifiers on this data,
allowing us to directly observe the impact of the privacy preserving methods on how the model makes decisions. The blue
points represent majority (negative) class examples, while the red points represent minority (positive) class examples. The
blue region denotes where the model will predict a negative label, and the red region denotes where the model will predict a
positive label. The underlying data distributions are also visible in these figures, represented as an mean-centered ellipse
capturing 2 standard deviations of the 2d-Gaussian.

Inspecting Figure 4 helps build intuition for the effect of DP on decision boundaries. We observe that Priv. Weighted FTT
fails to learn a meaningful decision boundary (labeling everthing negative), while Priv. LogReg is catastrophically noisy
(flipping the decision boundary). GEM + NonPriv. XGBoost (Algorithm 3) is lossy relative to SMOTE + NonPriv. XGBoost,
but maintains a class separating boundary.

SMOTE + NonPriv. XGBoost NonPriv. LogReg NonPriv. XGBoost (With SW) NonPriv. Weighted FTT (With SW)

GEM + NonPriv. XGBoost Priv. LogReg Priv. Weighted LogReg Priv. Weighted FTT

Figure 4: Top row shows decision boundaries of non-DP classifiers (high performance on the task, AUC ∈ [0.94, 0.97]).
Bottom row illustrates the decision boundaries of DP classifiers (ϵ = 1.0, δ = 1e-5 where applicable), which perform
worse. The underlying true data generating function for each class is represented as an ellipse (dotted white line), where the
center of the ellipse is the mean and each point on the dotted line represents 2 standard deviations from the mean.
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E. Additional Experimental Results and Details
Methods Evaluated Here, we restate exhaustively the range of methods we evaluate under different privacy and class
imbalance conditions. We categorize methods as pre-processing or in-processing methods.

We evaluate: (1) a private synthetic data method (GEM) as a pre-processing step, generating a class-balanced sample for a
downstream, non-private XGBoost model (GEM + NonPriv. XGBoost, Section 3.3), (2) a private ERM logistic regression
model as an in-processing step without class weights (Priv. LogReg, exact method from (Chaudhuri et al., 2011), see
Section 4.2), (3) a private ERM logistic regression model as an in-processing step with sample weights (Priv. Weighted
LogReg, our modified algorithm under class weighting, Algorithm 1 in Section 4.2), and (4) a DP-SGD trained FTTransformer
model as an in-processing step with sample weights in the cross-entropy loss (Priv. Weighted FTT, Section 4.3).

We also compare the performance of these methods against the following non-private baselines: (1) a vanilla XGBoost model
with in-processing sample weights (NonPriv. Weighted XGBoost), (2) an XGBoost model without class sample weights,
using SMOTE as a pre-processing step (SMOTE + NonPriv. XGBoost), (3) a logistic regression model with and without
sample weights (as in-processing) (NonPriv. Weighted LogReg / NonPriv. LogReg), and (4) a non-private FTTransformer
model with and without sample weights in the cross-entropy loss (as in-processing) (NonPriv. Weighted FTT / NonPriv.
FTT). These methods serve as baselines for comparison to measure the effects of adding differential privacy, and the role of
weighting in model performance.

Experimental Details All datasets we chose were purposefully low-dimensional enough to be run with GEM. Neural
models (GEM and FTTransformer) were trained using an NVIDIA T4 GPU, with ϵ ∈ {0.05, 0.1, 0.5, 1.0, 5.0} (privacy
budget range following guidance from (McKenna et al., 2022)). Private models were trained for 20 epochs, while non-
private models were trained for 100 epochs with early stopping. FTTransformer was initialized with default architecture
hyper-parameters (dimension=32, depth=6, 8 heads, dropout of 0.1). DP-SGD was performed with the Opacus pytorch
library using recommended parameters (Yousefpour et al., 2021). No hyperparameter tuning was performed for the private
models to ensure “honest” comparisons (Papernot & Steinke, 2021); hyperparameters were lightly tuned for non-private
models using randomized cross-validation. Results are given with standard deviations over 10 randomly seeded data splits
and parameter initializations. GEM models are computationally expensive (Liu et al., 2021; Rosenblatt et al., 2024a); they
were trained in parallel on the same NVIDIA T4 and took over 50 compute hours. XGBoost and LogReg models trained
within seconds, while FTTransformer models required minutes.

ID Name Repository & Target r = n0

n1
Size n # Features

1 ecoli UCI, target: imU 8.6 336 7
2 yeast_me2 UCI, target: ME2 28 1,484 8
3 solar_flare_m0 UCI, target: M-0 19 1,389 32
4 abalone UCI, target: 7 9.7 4,177 10
5 car_eval_34 UCI, target: good, v good 12 1,728 21
6 car_eval_4 UCI, target: vgood 26 1,728 21
7 mammography UCI, target: minority 42 11,183 6
8 abalone_19 UCI, target: 19 130 4,177 10

Table 11: Imbalanced learning datasets used from the imblearn package.

GEM Summary. Much of tabular private synthetic data generation has focused on matching distributions based on the
broad class of linear statistical queries, often referred to as counting queries. The objective is generally set up as follows:
you are given a finite set of queries Q, and the objective is to construct a synthetic dataset D such that the maximum error
across all queries in Q, defined as maxq∈Q |q(D)|, is minimized.

GEM is an (ϵ, δ)-DP neural method that fits a private, parameterized weight distribution Gθ, where θ represents the learnable
parameters of the model. It follows the Select-Measure-Project paradigm, and its main novelty lies in the project step: the
method fits a neural network, denoted as Gθ, to approximate a distribution over the data domain in a differentially private
manner. This network generates a product distribution Pθ, where Pθ represents the output distribution over a discretized
version of the data domain.
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Hyperparameter Value Description

k 3 Dimension of marginal considered in random query workload.
T 100 Number of iterations for the GEM algorithm.
α 0.67 Weighting parameter for the GEM algorithm.
loss_p 2 The p-norm used in the loss function.
lr 1e−4 Learning rate for the optimizer in the GEM algorithm.
max_idxs 100 Maximum number of indices considered during each iteration.
max_iters 100 Maximum number of iterations for optimization.
ema_weights_beta 0.9 Smoothing parameter for exponential moving average weights.
embedding_dim 512 Dimensionality of the embedding space for the neural network generator.

Table 12: Hyperparameters we used when running GEM and their respective descriptions.

The process works by sampling random Gaussian noise vectors z, which are passed through the neural network Gθ to output
a distribution Pθ(z) in the same domain as the target data. This product distribution is normalized to ensure it behaves as a
valid marginal probability vector. Once fit, arbitrarily many samples can be generated from the fully specified distribution
Pθ.

Any statistical query q can be described as a function mapping Pθ to a value in [0, 1], i.e., q(Pθ) =
∑

x∈X ϕ(x)Pθ(x),
where ϕ(x) is the predicate function defining the query. Any query q is differentiable with respect to the parameters θ of
the model. Given a set of queries q̃i ∈ Q̃1:T , which are privately selected using the Exponential Mechanism, and answers
ãi ∈ Ã1:T privately computed using an additive noise mechanism, a natural loss function for the parameterization θ is given
by:

LGEM

(
θ, Q̃1:T , Ã1:T

)
=
∑
i∈[T ]

|q̃i(Pθ)− ãi| .

GEM iteratively updates θ to minimize this loss function, incorporating the observed queries and answers. The most
common linear query class used are k-way marginal queries (Hardt et al., 2012; Vietri et al., 2020; Aydore et al., 2021). In
our experiments, we parameterized GEM to use 3-way marginal queries. We detail other hyperparameter settings for GEM
in Table 12.

PrivBayes Summary. PrivBayes builds a Bayesian network to approximate the joint distribution of the data by factorizing
it into a sequence of conditional probabilities, which it can then sample from to create differentially private synthetic data.
To ensure DP, it first selects an attribute ordering using mutual information (privatized by an additive noise mechanism) to
determine parent-child relationships. Then, for each attribute, it estimates the attribute’s conditional probability distribution
given its parent attributes using a DP noise-perturbed frequency table. Once the Bayesian network is constructed, synthetic
data points are generated by sampling from the learned network.

FTTransformer Summary. We adapt a recently proposed transformer-based model, FTTransformer (Gorishniy et al.,
2021), to the DP setting, which involves minor adjustments to the model architecture for compatibility with Opacus
(Yousefpour et al., 2021). FTTransformer is a neural tabular data classifier that is competitive with well-known gradient
boosting tree-based methods like XGBoost (Chen & Guestrin, 2016); its novelty lies in data transformations for attenuation
by the attention layers in a transformer architecture (Wolf et al., 2020; Tay et al., 2022; Khan et al., 2022). Our empirical
results rely on modifications to implementations for DP-SGD from the Opacus library (Yousefpour et al., 2021) and the base
implementation for FTTransformer from (Huang et al., 2020).

After experimenting with different neural architectures in the non-private setting, we found that the FTTransformer
architecture was significantly better than other methods on tabular data tasks, even for imbalanced classification. However,
when transitioning to the private setting, we found that all of the neural methods using DP-SGD had trouble under class
imbalance. FTTransformer still performed best among these (albeit poorly relative to other model classes), so we included
the Private FTTransformer implementation to represent the class of neural models trained with DP-SGD (using a weighted
cross-entropy loss, which helped a little on imbalanced classification metrics).
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Figure 5: Comparison of PrivBayes (Zhang et al., 2017) and GEM (Liu et al., 2021) as private preprocessing steps on the
mammography dataset, with XGBoost as the downstream non-private classifier. PrivBayes, while generally weaker, shows
similar performance trends to GEM as ϵ increases and is a strong private pre-processing step for imbalanced classification.

E.1. Performance of models on all imblearn datasets

This section presents figures that detail exhaustive performance across privacy parameter (i.e., varying ϵ from 0.01 to 5.0)
for all the datasets listed in Table 11.
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Figure 6: Privacy-preserving predictors across ϵ settings for ecoli dataset.
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Figure 7: Privacy-preserving predictors across ϵ settings for abalone dataset.
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Figure 8: Privacy-preserving predictors across ϵ settings for car_eval_34 dataset.
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Figure 9: Privacy-preserving predictors across ϵ settings for solar_flare_m0 dataset.
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Figure 10: Privacy-preserving predictors across ϵ settings for car_eval_4 dataset.
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Figure 11: Privacy-preserving predictors across ϵ settings for yeast_me2 dataset.
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Figure 12: Privacy-preserving predictors across ϵ settings for mammography dataset.
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Figure 13: Privacy-preserving predictors across ϵ settings for abalone_19 dataset.
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E.2. Complete non-private results

Table 13: Ecoli Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 0.94 ± 0.04 0.09 ± 0.12 0.53 ± 0.04 0.3 ± 0.42 / 0.06 ± 0.07 0.06 ± 0.07 0.53 ± 0.04 0.15 ± 0.19 0.11 ± 0.16
Identity + NonPriv. Weighted LogReg 0.93 ± 0.04 0.55 ± 0.11 0.77 ± 0.08 0.52 ± 0.12 / 0.61 ± 0.17 0.61 ± 0.17 0.77 ± 0.08 0.75 ± 0.1 0.51 ± 0.13
Identity + NonPriv. XGBoost 0.91 ± 0.07 0.63 ± 0.15 0.77 ± 0.09 0.77 ± 0.19 / 0.56 ± 0.17 0.56 ± 0.17 0.77 ± 0.09 0.73 ± 0.12 0.61 ± 0.16
Identity + NonPriv. Weighted XGBoost 0.91 ± 0.08 0.65 ± 0.16 0.8 ± 0.1 0.72 ± 0.18 / 0.63 ± 0.2 0.63 ± 0.2 0.8 ± 0.1 0.77 ± 0.13 0.63 ± 0.17
SMOTE + NonPriv. LogReg 0.94 ± 0.04 0.61 ± 0.09 0.88 ± 0.06 0.47 ± 0.1 / 0.89 ± 0.11 0.83 ± 0.07 0.88 ± 0.06 0.88 ± 0.06 0.59 ± 0.1
SMOTE + NonPriv. Weighted LogReg 0.94 ± 0.04 0.51 ± 0.07 0.86 ± 0.05 0.36 ± 0.06 / 0.91 ± 0.1 0.79 ± 0.06 0.86 ± 0.05 0.85 ± 0.05 0.5 ± 0.08
SMOTE + NonPriv. Weighted XGB 0.94 ± 0.04 0.68 ± 0.1 0.85 ± 0.07 0.65 ± 0.12 / 0.74 ± 0.15 0.74 ± 0.14 0.85 ± 0.07 0.84 ± 0.08 0.65 ± 0.11
SMOTE + NonPriv. XGBoost 0.94 ± 0.04 0.7 ± 0.11 0.85 ± 0.08 0.7 ± 0.16 / 0.74 ± 0.18 0.74 ± 0.17 0.85 ± 0.08 0.84 ± 0.1 0.68 ± 0.12
Identity + NonPriv. Weighted FTTransformer 0.51 ± 0.12 0.12 ± 0.09 0.51 ± 0.04 0.12 ± 0.10 / 0.13 ± 0.11 0.13 ± 0.11 0.51 ± 0.04 0.21 ± 0.21 0.09 ± 0.09

Table 14: Abolone Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 0.81 ± 0.02 0.0 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 / 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Identity + NonPriv. Weighted LogReg 0.81 ± 0.02 0.38 ± 0.03 0.73 ± 0.03 0.27 ± 0.03 / 0.63 ± 0.04 0.63 ± 0.04 0.73 ± 0.03 0.72 ± 0.03 0.32 ± 0.04
Identity + NonPriv. XGBoost 0.84 ± 0.02 0.19 ± 0.05 0.55 ± 0.02 0.29 ± 0.08 / 0.14 ± 0.04 0.14 ± 0.04 0.55 ± 0.02 0.36 ± 0.05 0.15 ± 0.06
Identity + NonPriv. Weighted XGBoost 0.84 ± 0.02 0.35 ± 0.04 0.66 ± 0.03 0.3 ± 0.04 / 0.43 ± 0.05 0.43 ± 0.05 0.66 ± 0.03 0.62 ± 0.04 0.28 ± 0.05
SMOTE + NonPriv. LogReg 0.83 ± 0.02 0.36 ± 0.01 0.78 ± 0.02 0.22 ± 0.01 / 0.87 ± 0.03 0.69 ± 0.02 0.78 ± 0.02 0.77 ± 0.01 0.34 ± 0.02
SMOTE + NonPriv. Weighted LogReg 0.82 ± 0.02 0.31 ± 0.01 0.76 ± 0.02 0.19 ± 0.01 / 0.94 ± 0.03 0.58 ± 0.02 0.76 ± 0.02 0.74 ± 0.01 0.31 ± 0.02
SMOTE + NonPriv. Weighted XGB 0.84 ± 0.02 0.37 ± 0.04 0.69 ± 0.03 0.3 ± 0.04 / 0.49 ± 0.07 0.49 ± 0.07 0.69 ± 0.03 0.66 ± 0.04 0.3 ± 0.05
SMOTE + NonPriv. XGBoost 0.84 ± 0.02 0.32 ± 0.04 0.64 ± 0.03 0.29 ± 0.03 / 0.36 ± 0.06 0.36 ± 0.06 0.64 ± 0.03 0.57 ± 0.04 0.25 ± 0.04
Identity + NonPriv. Weighted FTTransformer 0.70 ± 0.03 0.06 ± 0.09 0.52 ± 0.04 0.19 ± 0.20 / 0.07 ± 0.14 0.07 ± 0.14 0.52 ± 0.04 0.19 ± 0.19 0.08 ± 0.08

Table 15: Car_eval_34 Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 1.0 ± 0.0 0.86 ± 0.05 0.89 ± 0.04 0.95 ± 0.03 / 0.79 ± 0.08 0.79 ± 0.08 0.89 ± 0.04 0.89 ± 0.05 0.85 ± 0.05
Identity + NonPriv. Weighted LogReg 1.0 ± 0.0 0.85 ± 0.03 0.98 ± 0.0 0.74 ± 0.05 / 1.0 ± 0.0 0.97 ± 0.01 0.98 ± 0.0 0.98 ± 0.0 0.84 ± 0.03
Identity + NonPriv. XGBoost 1.0 ± 0.0 0.96 ± 0.02 0.98 ± 0.02 0.94 ± 0.03 / 0.97 ± 0.03 0.97 ± 0.03 0.98 ± 0.02 0.98 ± 0.02 0.95 ± 0.02
Identity + NonPriv. Weighted XGBoost 1.0 ± 0.0 0.94 ± 0.03 0.99 ± 0.0 0.89 ± 0.05 / 1.0 ± 0.0 0.99 ± 0.01 0.99 ± 0.0 0.99 ± 0.0 0.94 ± 0.03
SMOTE + NonPriv. LogReg 1.0 ± 0.0 0.85 ± 0.03 0.98 ± 0.0 0.74 ± 0.04 / 1.0 ± 0.0 0.97 ± 0.01 0.98 ± 0.0 0.98 ± 0.0 0.84 ± 0.03
SMOTE + NonPriv. Weighted LogReg 1.0 ± 0.0 0.73 ± 0.03 0.97 ± 0.0 0.58 ± 0.03 / 1.0 ± 0.0 0.94 ± 0.01 0.97 ± 0.0 0.97 ± 0.0 0.74 ± 0.02
SMOTE + NonPriv. Weighted XGB 1.0 ± 0.0 0.95 ± 0.02 0.99 ± 0.01 0.92 ± 0.05 / 0.99 ± 0.02 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.95 ± 0.02
SMOTE + NonPriv. XGBoost 1.0 ± 0.0 0.96 ± 0.02 0.98 ± 0.01 0.94 ± 0.04 / 0.97 ± 0.03 0.97 ± 0.03 0.98 ± 0.01 0.98 ± 0.01 0.95 ± 0.02
Identity + NonPriv. Weighted FTTransformer 1.00 ± 0.00 0.92 ± 0.04 0.96 ± 0.03 0.91 ± 0.04 / 0.94 ± 0.06 0.93 ± 0.06 0.96 ± 0.03 0.03 ± 0.03 0.04 ± 0.04

Table 16: Solar_flare_m0 Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 0.79 ± 0.06 0.03 ± 0.05 0.51 ± 0.02 0.15 ± 0.34 / 0.01 ± 0.03 0.01 ± 0.03 0.51 ± 0.02 0.05 ± 0.11 0.04 ± 0.1
Identity + NonPriv. Weighted LogReg 0.79 ± 0.06 0.25 ± 0.08 0.67 ± 0.08 0.17 ± 0.05 / 0.44 ± 0.16 0.44 ± 0.16 0.67 ± 0.08 0.62 ± 0.11 0.22 ± 0.1
Identity + NonPriv. XGBoost 0.73 ± 0.04 0.09 ± 0.09 0.53 ± 0.03 0.17 ± 0.16 / 0.06 ± 0.06 0.06 ± 0.06 0.53 ± 0.03 0.19 ± 0.17 0.08 ± 0.09
Identity + NonPriv. Weighted XGBoost 0.74 ± 0.04 0.2 ± 0.05 0.61 ± 0.04 0.15 ± 0.04 / 0.31 ± 0.09 0.31 ± 0.09 0.61 ± 0.04 0.53 ± 0.07 0.15 ± 0.06
SMOTE + NonPriv. LogReg 0.76 ± 0.07 0.19 ± 0.04 0.67 ± 0.06 0.11 ± 0.02 / 0.58 ± 0.12 0.57 ± 0.1 0.67 ± 0.06 0.66 ± 0.07 0.17 ± 0.06
SMOTE + NonPriv. Weighted LogReg 0.75 ± 0.07 0.17 ± 0.03 0.69 ± 0.06 0.1 ± 0.02 / 0.75 ± 0.13 0.63 ± 0.03 0.69 ± 0.06 0.69 ± 0.06 0.17 ± 0.06
SMOTE + NonPriv. Weighted XGB 0.7 ± 0.04 0.09 ± 0.06 0.52 ± 0.04 0.09 ± 0.06 / 0.1 ± 0.08 0.1 ± 0.08 0.52 ± 0.04 0.27 ± 0.16 0.04 ± 0.07
SMOTE + NonPriv. XGBoost 0.7 ± 0.05 0.07 ± 0.06 0.52 ± 0.02 0.08 ± 0.07 / 0.06 ± 0.05 0.06 ± 0.05 0.52 ± 0.02 0.2 ± 0.15 0.03 ± 0.05
Identity + NonPriv. Weighted FTTransformer 0.76 ± 0.06 0.09 ± 0.12 0.53 ± 0.04 0.20 ± 0.27 / 0.06 ± 0.08 0.06 ± 0.08 0.53 ± 0.04 0.20 ± 0.20 0.14 ± 0.14
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Table 17: Car_eval_4 Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 1.0 ± 0.0 0.75 ± 0.1 0.82 ± 0.07 0.93 ± 0.08 / 0.64 ± 0.13 0.64 ± 0.13 0.82 ± 0.07 0.79 ± 0.08 0.76 ± 0.1
Identity + NonPriv. Weighted LogReg 1.0 ± 0.0 0.75 ± 0.06 0.99 ± 0.0 0.6 ± 0.08 / 1.0 ± 0.0 0.97 ± 0.01 0.99 ± 0.0 0.99 ± 0.0 0.76 ± 0.05
Identity + NonPriv. XGBoost 1.0 ± 0.0 0.98 ± 0.06 0.99 ± 0.03 0.98 ± 0.07 / 0.98 ± 0.05 0.98 ± 0.05 0.99 ± 0.03 0.99 ± 0.03 0.98 ± 0.06
Identity + NonPriv. Weighted XGBoost 1.0 ± 0.0 0.85 ± 0.06 0.99 ± 0.0 0.74 ± 0.09 / 1.0 ± 0.0 0.99 ± 0.01 0.99 ± 0.0 0.99 ± 0.0 0.85 ± 0.06
SMOTE + NonPriv. LogReg 1.0 ± 0.0 0.81 ± 0.06 0.99 ± 0.0 0.68 ± 0.08 / 1.0 ± 0.0 0.98 ± 0.01 0.99 ± 0.0 0.99 ± 0.0 0.82 ± 0.05
SMOTE + NonPriv. Weighted LogReg 1.0 ± 0.0 0.77 ± 0.06 0.99 ± 0.0 0.63 ± 0.08 / 1.0 ± 0.0 0.98 ± 0.01 0.99 ± 0.0 0.99 ± 0.0 0.78 ± 0.05
SMOTE + NonPriv. Weighted XGB 1.0 ± 0.0 0.96 ± 0.06 1.0 ± 0.0 0.92 ± 0.1 / 1.0 ± 0.0 1.0 ± 0.01 1.0 ± 0.0 1.0 ± 0.0 0.96 ± 0.06
SMOTE + NonPriv. XGBoost 1.0 ± 0.0 0.97 ± 0.05 0.99 ± 0.01 0.95 ± 0.09 / 0.99 ± 0.02 0.99 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.97 ± 0.05
Identity + NonPriv. Weighted FTTransformer 0.99 ± 0.01 0.82 ± 0.10 0.94 ± 0.07 0.78 ± 0.14 / 0.90 ± 0.14 0.89 ± 0.13 0.94 ± 0.07 0.07 ± 0.07 0.10 ± 0.10

Table 18: Yeast_me2 Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 0.88 ± 0.06 0.0 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 / 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Identity + NonPriv. Weighted LogReg 0.88 ± 0.06 0.27 ± 0.07 0.66 ± 0.04 0.22 ± 0.07 / 0.37 ± 0.08 0.37 ± 0.08 0.66 ± 0.04 0.59 ± 0.07 0.25 ± 0.07
Identity + NonPriv. XGBoost 0.93 ± 0.03 0.33 ± 0.13 0.62 ± 0.05 0.52 ± 0.18 / 0.25 ± 0.11 0.25 ± 0.11 0.62 ± 0.05 0.49 ± 0.11 0.34 ± 0.13
Identity + NonPriv. Weighted XGBoost 0.94 ± 0.03 0.46 ± 0.13 0.77 ± 0.08 0.38 ± 0.13 / 0.58 ± 0.15 0.58 ± 0.15 0.77 ± 0.08 0.74 ± 0.1 0.45 ± 0.14
SMOTE + NonPriv. LogReg 0.9 ± 0.04 0.29 ± 0.04 0.84 ± 0.07 0.18 ± 0.03 / 0.81 ± 0.14 0.78 ± 0.11 0.84 ± 0.07 0.84 ± 0.07 0.34 ± 0.06
SMOTE + NonPriv. Weighted LogReg 0.9 ± 0.04 0.2 ± 0.01 0.82 ± 0.04 0.11 ± 0.01 / 0.89 ± 0.1 0.74 ± 0.03 0.82 ± 0.04 0.82 ± 0.04 0.26 ± 0.03
SMOTE + NonPriv. Weighted XGB 0.92 ± 0.04 0.4 ± 0.09 0.71 ± 0.04 0.39 ± 0.12 / 0.45 ± 0.08 0.45 ± 0.08 0.71 ± 0.04 0.66 ± 0.07 0.39 ± 0.09
SMOTE + NonPriv. XGBoost 0.92 ± 0.04 0.42 ± 0.12 0.71 ± 0.06 0.41 ± 0.15 / 0.45 ± 0.12 0.45 ± 0.12 0.71 ± 0.06 0.66 ± 0.1 0.41 ± 0.12
Identity + NonPriv. Weighted FTTransformer 0.51 ± 0.10 0.03 ± 0.04 0.50 ± 0.05 0.02 ± 0.03 / 0.09 ± 0.16 0.09 ± 0.16 0.50 ± 0.05 0.22 ± 0.22 0.05 ± 0.05

Table 19: Mammography Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 0.9 ± 0.02 0.53 ± 0.05 0.7 ± 0.03 0.8 ± 0.07 / 0.4 ± 0.06 0.4 ± 0.06 0.7 ± 0.03 0.63 ± 0.05 0.55 ± 0.05
Identity + NonPriv. Weighted LogReg 0.91 ± 0.02 0.4 ± 0.02 0.84 ± 0.02 0.27 ± 0.02 / 0.73 ± 0.05 0.73 ± 0.05 0.84 ± 0.02 0.84 ± 0.03 0.43 ± 0.03
Identity + NonPriv. XGBoost 0.94 ± 0.02 0.69 ± 0.04 0.79 ± 0.03 0.82 ± 0.05 / 0.59 ± 0.06 0.59 ± 0.06 0.79 ± 0.03 0.77 ± 0.04 0.69 ± 0.03
Identity + NonPriv. Weighted XGBoost 0.94 ± 0.02 0.65 ± 0.04 0.87 ± 0.03 0.57 ± 0.04 / 0.75 ± 0.06 0.75 ± 0.06 0.87 ± 0.03 0.86 ± 0.04 0.65 ± 0.04
SMOTE + NonPriv. LogReg 0.91 ± 0.02 0.29 ± 0.01 0.86 ± 0.02 0.17 ± 0.01 / 0.82 ± 0.05 0.82 ± 0.05 0.86 ± 0.02 0.86 ± 0.02 0.35 ± 0.02
SMOTE + NonPriv. Weighted LogReg 0.92 ± 0.02 0.19 ± 0.01 0.85 ± 0.02 0.11 ± 0.01 / 0.88 ± 0.03 0.82 ± 0.01 0.85 ± 0.02 0.85 ± 0.02 0.27 ± 0.01
SMOTE + NonPriv. Weighted XGB 0.92 ± 0.02 0.66 ± 0.04 0.87 ± 0.02 0.58 ± 0.06 / 0.75 ± 0.04 0.75 ± 0.04 0.87 ± 0.02 0.86 ± 0.02 0.65 ± 0.04
SMOTE + NonPriv. XGBoost 0.93 ± 0.02 0.65 ± 0.04 0.86 ± 0.03 0.59 ± 0.05 / 0.73 ± 0.05 0.73 ± 0.05 0.86 ± 0.03 0.85 ± 0.03 0.65 ± 0.04
Identity + NonPriv. Weighted FTTransformer 0.88 ± 0.03 0.21 ± 0.16 0.59 ± 0.08 0.40 ± 0.34 / 0.19 ± 0.17 0.19 ± 0.17 0.59 ± 0.08 0.23 ± 0.23 0.16 ± 0.16

Table 20: Abolone_19 Dataset

Metrics Standard ↑ Imbalanced ↑
Approach AUC F1 Bal-ACC Prec./Recall Worst-ACC Avg-ACC G-Mean MCC

Non-Private ↓

Identity + NonPriv. LogReg 0.75 ± 0.11 0.0 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 / 0.0 ± 0.0 0.0 ± 0.0 0.5 ± 0.0 0.0 ± 0.0 0.0 ± 0.0
Identity + NonPriv. Weighted LogReg 0.72 ± 0.11 0.06 ± 0.05 0.59 ± 0.1 0.03 ± 0.03 / 0.25 ± 0.18 0.25 ± 0.18 0.59 ± 0.1 0.42 ± 0.25 0.07 ± 0.07
Identity + NonPriv. XGBoost 0.72 ± 0.12 0.03 ± 0.09 0.51 ± 0.03 0.1 ± 0.32 / 0.02 ± 0.05 0.02 ± 0.05 0.51 ± 0.03 0.04 ± 0.13 0.04 ± 0.13
Identity + NonPriv. Weighted XGBoost 0.76 ± 0.11 0.04 ± 0.04 0.55 ± 0.07 0.02 ± 0.02 / 0.15 ± 0.15 0.15 ± 0.15 0.55 ± 0.07 0.29 ± 0.26 0.04 ± 0.06
SMOTE + NonPriv. LogReg 0.82 ± 0.06 0.05 ± 0.01 0.76 ± 0.08 0.02 ± 0.0 / 0.72 ± 0.18 0.68 ± 0.13 0.76 ± 0.08 0.75 ± 0.09 0.11 ± 0.03
SMOTE + NonPriv. Weighted LogReg 0.83 ± 0.06 0.03 ± 0.0 0.73 ± 0.06 0.02 ± 0.0 / 0.8 ± 0.13 0.66 ± 0.02 0.73 ± 0.06 0.73 ± 0.05 0.08 ± 0.02
SMOTE + NonPriv. Weighted XGB 0.79 ± 0.1 0.08 ± 0.06 0.57 ± 0.06 0.06 ± 0.04 / 0.17 ± 0.11 0.17 ± 0.11 0.57 ± 0.06 0.36 ± 0.2 0.09 ± 0.07
SMOTE + NonPriv. XGBoost 0.78 ± 0.09 0.08 ± 0.07 0.57 ± 0.07 0.06 ± 0.05 / 0.15 ± 0.15 0.15 ± 0.15 0.57 ± 0.07 0.31 ± 0.23 0.08 ± 0.08
Identity + NonPriv. Weighted FTTransformer 0.56 ± 0.09 0.01 ± 0.01 0.53 ± 0.10 0.00 ± 0.01 / 0.20 ± 0.38 0.12 ± 0.22 0.53 ± 0.10 0.29 ± 0.29 0.04 ± 0.04
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