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Cell Image Segmentation by Feature Random
Enhancement Module
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Abstract. In order to perform semantic segmentation with high accu-
racy, it is important to extract good features using an encoder. Although
loss function is optimized in training deep neural network. far layers from
the layers for computing loss function are difficult to train. Skip connec-
tion is effective for this problem but there are still far layers from the loss
function even if we use skip connection. In this paper, we propose the
Feature Random Enhancement Module which enhances the features only
in training. By emphasizing the features at far layers from loss function,
we can train those layers works well and the accuracy was improved.
In experiments, we evaluated the proposed module on two kinds of cell
image datasets, and our module improved the segmentation accuracy
without increasing computational cost in test phase.

Keywords: cell,Semantic Segmentation,U-Net

Fig. 1. U-Net and the problem
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1 Introduction

In recent years, the development of deep learning technology has been remark-
able, and there is a demand to use it in various situations. Among them, the
segmentation of cell images obtained by microscopes, which is performed manu-
ally by human experts and tends to produce subjective results, requires objective
results by the same criteria using deep learning technology [1]. However, the op-
timal network for segmentation using deep learning has not been established
yet. Even if the accuracy is not so high, it is actually used in the field of cell
biology to obtain objective results. Therefore, automatic segmentation method
with high accuracy is desired. U-Net is still widely used for segmentation of mi-
croscope images because the computational cost is not high, it works well for
small number of training images and high accuracy is obtained without adjust-
ing hyperparameters. For this reason, many improvements of U-Net have been
proposed for microscope images [6-8].

This study belongs to one of those variations and improves the accuracy
of U-Net. While conventional improvement is done by deepening, the proposed
method in this paper does not require any additional computational resources
at all during inference. Therefore,it retains the advantage of U-Net in that it
requires fewer computing resources. Therefore, it is a very significant proposal
in the segmentation of medical images where there is a demand for lightweight
and accurate models.

A neural network such as CNN basically uses backpropagation of loss for
training. For this reason, there is a phenomenon that near layers to the layer for
computing loss are more updated in comparison with far layers [3]. In order to
solve the problem, ResNet [4] used skip connection and improved the accuracy.
U-Net [2] is famous deep neural network for cell segmentation task. U-Net also
has skip connection between encoder and decoder. It contributes to improve the
accuracy. In general, it is well known that skip connection gives the information
of location and fine objects which were lost in encoder to decoder. However, we
consider that the same theory as ResNet is used in skip connection to improve
the accuracy. By using skip connection, the loss is propagated to encoder well,
and weights are successfully updated. This is also the reason why U-net improved
the accuracy in comparison with standard Encoder-Decoder CNN.

Figure 1 shows the structure of U-net. We see that skip connection is effective
to propagate the loss to encoder. However, the layers shown as yellow in the
Figure are the farthest from the loss at the final layer. Therefore, in the case of
U-net, the yellow layer in Figure 1 is the most difficult to train though the layer
has semantic information. In this paper, we propose new module to train those
layers effectively.

We consider to enhance the feature map at yellow layer which is the farthest
layer from the loss function. Since the yellow layer is difficult to learn, network
learns to decrease the feature values at the yellow layer not to affect the out-
put. In order to alleviate the difficulty of learning, we select some feature maps
randomly at yellow layer and increased the absolute value of the feature map
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multiplied by a large constant value. This allows the features at yellow layer to
be used effectively for segmentation.

In experiments, we evaluated our method on two kinds of cell image datasets.
Intersection over Union (IoU) is used as an evaluation measure. The effectiveness
of the proposed module was shown in comparison with the conventional U-Net
without our module and U-net with SuperVision that loss function is computed
at yellow layer.

The structure of this paper is as follows. Section 2 describes related works.
Section 3 describes the details of the proposed method. Experimental result on
two kinds of cell image datasets are shown in section 4. Finally, we summarize
our work and discusses future works in section 5.

2 Related works

U-Net is a kind of Encoder-Decoder CNN [5]. Unlike the PSPNet [9], the Encoder-
Decoder CNN does not use features in parallel, but features are extracted in se-
ries. Thus, in Encoder-Decoder CNN, far layers from the layer for computing loss
are not updated well. ResNet and U-net solved this problem by skip connection.

There is also a technique called Deep supervision proposed in Deeply-Supervised
Nets [10] to address the problem. In deep supervision, loss is also computed at
middle layer. Far layers from final layer are updated well by supervision. U-
Net++ [11] also used this technique. However, forcing loss from the ground
truth in the middle of U-Net may not obtain an intermediate representation for
better inference. In addition, U-Net ++ has a structure in which the output
image is restored by the decoder from various parts of the encoder, and the
decoders are connected to each other. However, the advantage of U-Net, which
is a small computational resource, is vanished. This is accompanied by a large
increase in the number of parameters due to multiple decoders. In this paper,
we propose new methods based on the merits and demerits of these previous
studies.

There are some methods that we referred to consider a new method. In
the proposed method, feature enhancement is performed on some feature maps
during training. There are many techniques for weighting feature maps. SENet
[12] proposed to weight important channels. Attention, which has been proposed
in the field of natural languages [13], is also used in the field of images. In
recent years, many methods have been proposed that focus on channels [14-16].
Attention-U-net used attention for skip connection [17].

Dropout [18] is also related to our approach. Dropout sets a part of the
feature map to 0 in only training. This prevents overfitting by randomly removing
elements only during training. Our method randomly enhances some feature
maps at farthest layer from loss function. We do not set some elements to 0 and
enlarge some feature maps. When some elements are set to 0, backpropagation
from the element is stopped. In our method, features are enlarged randomly to
use backpropagation effectively for the farthest layer.
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Fig. 2. Feature Random Enhancement Module

3 Proposed method

This section describes the proposed method. Section 3.1 gives the overview of
the proposed method. Section 3.2 mentions the implementation details of our
method.

3.1 Overview of the proposed method

When we obtain segmentation result by U-Net, the magnitude of features at
yellow layer as shown in Fig. 1 is often smaller than that of features at skip
connection from encoder to decoder. Fig.3 shows the fact when U-net is trained
on two different datasets. Two lines in each graph show the average feature values
at yellow layer in Fig.1 and those at skip connection from encoder to decoder.
Note that both features are extracted after ReLU function. Since those two
feature maps are concatenated in the U-net, the magnitude of features should
be similar. Fig.3 shows that the encoder’s output is obviously smaller than the
features at skip connection. This demonstrates the yellow layer is not trained
well because the layer is farthest from loss function.

Table 1. mIoU due to differences in enhancement at test phase

Transgenic mouse cell dataset Drosophila dataset

baseline(U-Net + SEblock)[%] 59.50 73.98
the random enhancement in test phase[%] 60.52 76.85

without random enhancement in test phase[%] 61.62 76.95
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Fig. 3. Comparison of feature values at the yellow layer and skip connection

Both features at yellow layer and skip connection are concatenated and nor-
malized by batch renormalization. This normalizes like to 0 mean and 1 variance.
In addition, the perfect average of 0 means and 1 variance is not effective, so
there are scale and shift parameters learned.

After normalization, the yellow layer still has small features in comparison
with skip connection though yellow layer has semantic information.

Does this fact show that yellow layer is not required? Our answer is “NO”.
This phenomenon is caused from that near layers to the layers for computing loss
are updated well and far layers are not updated well. Yellow layer in Figure 1
is the farthest layer from loss function because encoder is updated through skip
connection. Therefore, network learns he layers connected by a skip connection
in comparison with the yellow layer because it is difficult to update the yellow
layer. Thus, normalization do not work well if there is a difference in the ease of
updating such as between near and far layers.

Therefore, the proposed method emphasizes the features at the farthest layer
from loss function because it is not trained well by back-propagation. Main
purpose of our proposed module is to train the farthest layer well. Thus, this
enhancement is used in only training.

Although we show the result in section 4.4, the proposed module emphasizes
the outputs of the selected filters but it affects the non-enhanced filters. The
outputs of non-enhanced filters enlarged automatically. Furthermore, Table 1 in
section 4 shows that the accuracy is improved when we do not enhance features
in test phase. Surprisingly, the network without enhancing features in test phase
is better than the network with enhancing features. This is because features at
the farthest layer from the loss function are already enlarged by our module in
training phase.

From this result, At test phase, we think that emphasizing all the parallel
filters is fatal break the balance in training phase. Also, with the same random
enhancement as in training, the output of the selected filter will be enhanced, but
it will be more accurate if it is not enhanced during testing.Therefore, we think
that the impact of enhancement during training is greater for the non-enhanced
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filter than for the selected filter.Thus, we do not need to use our module in test
phase.

Thus, the computational cost of the network does not increase in test phase.
However, the accuracy is improved without changing the inference time or com-
putational resources. This is an advantage of the proposed method because many
methods deepened the network to improve the accuracy.

To describe the proposed method for U-Net, the encoder’s output is enhanced
by multiplying feature maps selected randomly by X. The number of feature
maps selected randomly is denoted as B. The feature maps are re-selected each
epoch and the network weight is updated during training.

The closest approaches is Dropout. Similarly, dropout is used only during
training, and some neurons are randomly set to 0. If there is an element set to
0, the backpropagation stops at that element. It is a method of learning in a
small network and allowing for ensembles. The proposed method differs from
Dropout. We use an adjustable magnification emphasis not setting to 0. This is
to improve the case where there is a difference in the ease of updating between
the near and far layers.

The proposed method can be implemented in addition to Dropout. However,
this does not mean that Dropout will be replaced by the proposed method. In
addition to the same proportion of parameters to be acted upon as in Dropout,
there is a parameter that is difficult to learn. It is the magnification of the
emphasis. Therefore, it is difficult to implement it in many places. Implementing
it at the farthest layer from the loss function solves the problem presented in
this paper and is the most effective.

Figure 2 shows the detailed description of the proposed method. In the pro-
posed method, we multiply X by all values in the selected feature maps which are
the end of encoder shown as yellow layer in Figure 1. This operation is performed
only in training phase. The enhanced feature maps are selected randomly. Thus,
all channels in encoder’s output are not enhanced. We need to select hyperpa-
rameters X and B appropriately. Hyperparameters were searched by using the
optimization with Tree-structured Parzen Estimator (TPE) [19] which is a new
method in Bayesian optimization.

4 Experiments

This section shows the experimental results of the proposed method. Section
4.1 describes the dataset used in experiments, and the experimental results are
shown in section 4.2. In section 4.3, additional experiments are conducted for
considerations.

4.1 Dataset

In this paper, we conduct experiments on two kinds of cell image datasets. The
first dataset includes only 50 fluorescent images of the liver of a transgenic mouse
expressing a fluorescent marker on the cell membrane and nucleus [20]. The size
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of the image is 256 256 pixels and consists of three classes; cell membrane, cell
nucleus, and background. We use 35 images for training, 5 images for validation,
and 10 images for test.

The second dataset includes 20 Drosophila feather images [21]. The size of
the image is 1024 x 1024 pixels and consists of four classes; cell membrane,
mitochondria, synapse, and background. Training and inference were performed
by cropping 16 images of 256 256 pixels from one image without overlap due to
GPU memory size. Intersection over Union (IoU) and Mean IoU were used as
evaluation measure for both datasets.

Fig. 4. U-Net with SE block

4.2 Implementation details

The proposed method introduces a module that randomly enhances the features
at the final layer of encoder during training. We call it “Feature Random En-
hancement Module”. Fig. 3 shows the U-Net used in this paper. As shown in Fig.
3, the proposed module was implemented on a standard U-Net with SE block.

Some feature maps are selected from 512 feature maps at the farthest layer
from the loss function which is shown as the bottom right in Fig. 4 at training
phase, and the value in the feature map is multiplied by X.

4.3 Results

In all experiments, we trained all methods till 2000 epochs in which the learning
converges sufficiently, and evaluation is done when the highest mIoU accuracy
is obtained for validation images. We used softmax cross entropy. The hyper-
parameters B and X were searched 50 times using the Tree-structured Parzen
Estimator algorithm (TPE), which seems to be a sufficient number.
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For comparison, we evaluate U-Net with only SE block. This is the baseline.
We also evaluate the U-net with SE block which uses SuperVision instead of
the proposed module in order to show the effectiveness of Feature Enhancement
module. SuperVision uses 1x1 convolution to change three or four channels at
the end of encoder, and resize it to the size of input image and softmax cross
entropy loss is computed.

When we use SuperVision, we must optimize two losses; the first loss is
standard softmax cross entropy loss at the final layer and the second loss is for
supervision. In general, the balancing weight for two losses should be optimized.

Loss=(1- λ)*Loss.1+ λ*Loss.2(1)

where is λ the balancing weight. The parameter is also optimized by TPE. The
search was performed 15 times to find the appropriate parameter. Since λ is a
single parameter, the number of searches is smaller than that of the two param-
eters B and X in our method.

First, we describe the experimental results for the mouse cell dataset. Table
2 shows the results when we use B = 162 and X = 632 which gives the highest
mean IoU for validation set. From Table 2, the accuracy of the proposed method
is improved in all classes compared with the conventional U-Net with SE block,
and 2.12% improvement on mean IoU is confirmed.

The accuracy of mean IoU is not improved by U-Net with SuperVision (λ =
0.3257 determined by TPE) even if loss is computed at the end of encoder that
our module is used. Figure 5 shows the qualitative results. In Fig. 5, (a) is input
image, (b) is ground truth, (c) and (d) are the results by the conventional U-Net
with SE block and U-Net with SE block and SuperVision, respectively, and (e)
is the result by the proposed method. We see that cell image is blurred and it is
difficult for not experts to assign class labels. This is because cells are killed by
strong light and images are captured with low illuminance.

In conventional method (c), there are many undetected and over detection of
cell membrane or nucleus. In addition, in conventional method (d), furthermore,
there are many undetected membranes. However, in the proposed method (e),
more accurate segmentation results are obtained. This is because the proposed
module enables to extract features from areas where training has not been done
successfully in conventional method. In addition, the method using SuperVision
gave lower accuracy than the proposed method. The encoder output is in the
center of the network with lower resolution and many channels. I do not consider
that forcing the loss from the middle output with ground truth image will always
give an intermediate representation for good segmentation result.

Next, the experimental results are described for the Drosophila dataset. Ta-
ble 3 shows the results when we use B =8 and X =250 when the highest mIoU
is obtained for validation set. Table 3 shows that the accuracy of the proposed
method is higher than that of the U-Net with SE block, and the mean IoU was
improved by 2.97%. Furthermore, we see that the accuracy is improved in com-
parison with the U-Net with SE block and SuperVision(λ = 0.2781 determined
by TPE).



360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

ECCV

#25
ECCV

#25

ECCV-20 submission ID 25 9

Figure 6 shows qualitative results. In Fig. 6, (a) is the input image, (b) is
ground truth, (c) and (d) are the results by the U-Net with SE block and U-Net
with SE block and SuperVision, and (e) is the results by the proposed method. In
the Drosophila dataset, the image seems to contain enough information but it is
difficult for ordinary people to assign correct class labels to each pixel. However,
we confirmed that the proposed method (e) performs better segmentation for
menbrane, nuclear in cropped image’s edge, synapse with small area.

Figure 7 and 8 show the results of hyperparameter search using the TPE
algorithm. The vertical and horizontal axes show the hyperparameters B and X
in the proposed module. Red points mean high mean IoU for validation set, and
the blue points mean low accuracy. We see that the TPE algorithm focuses on
searching for places with high accuracy. Of course, optimal B and X depend on
the dataset. However, we can find good hyperparameters by TPE.

Table 2. IoU of Transgenic mouse cell dataset

menbrane[%] nuclear[%] background[%] mIoU[%]

U-Net + SEblock 37.78 65.75 74.96 59.50
U-Net + SEblock + Supervision 39.23 64.99 73.34 59.19

Proposed method 40.53 67.58 76.75 61.62

Fig. 5. Segmentation results on transgenic mouse cell images
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Table 3. IoU of the Drosophila dataset

menbrane[%] nuclear[%] background[%] Synapus[%] mIoU[%]

U-Net + SEblock 91.80 76.87 76.89 50.46 73.98

U-Net + SEblock + Supervision 92.39 77.77 78.24 52.21 75.15

Proposed method 92.93 78.71 78.02 58.14 76.95

Fig. 6. Segmentation results on the Drosophila dataset

Fig. 7. TPE algorithm of Transgenic mouse cell
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Fig. 8. TPE algorithm of Drosophila feather

4.4 Additional Experiments

The proposed method emphasizes some feature maps randomly at each epoch
to prevent over-fitting. However, as shown in Table 4, applying 10,000 enhance-
ments to the ten filters fixed during training can improve IoU accuracy by about
1%. We observe the sum of the values in the feature map that ReLU function is
used after convolution.

Figure 9 (b) shows the sum of emphasized feature map by the proposed
module, and (c) shows the sum of feature map that is not emphasized though
the proposed module is used. In (a), the sum of feature map gradually decreases
and it is no longer used for output. On the other hand, in (b) and (c), the sum
of feature map increased through training. This means that the feature maps at
the end of encoder have large value automatically and those features are used
to obtain segmentation results. The proposed method emphasizes some feature
maps randomly at each epoch to prevent over-fitting. Therefore, from the change
of the value of (c) compared with (a), it can be said that the proposed module
has an effect on the feature maps that are not emphasized.

Table 4. For additional experiment,IoU of Transgenic mouse cell dataset

menbrane[%] nuclear[%] background[%] mIoU[%]

U-Net + SEblock 37.78 65.75 74.96 59.50
Proposed method(additional experiment) 40.43 67.34 73.71 60.49
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Fig. 9. Sum of feature map with/without Feature Enhancement module

5 Conclusion

In this paper, we introduced the Feature Random Enhancement Module, which
is enhanced feature map randomly only during training, and succeeded in im-
proving the accuracy on cell image segmentation. We could propose the method
for improving accuracy though the amount of computation during inference does
not change.

A future task is to establish a method for deriving the parameters of the pro-
posed module. Although TPE seems to be effective for parameter search from
the results, it requires training for each parameter until the accuracy converges.
Therefore, the computational cost for inference is fast but training takes longer
time. Thus, we would like to study whether parameters can be determined faster
without convergence.
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