
Time-Varying LoRA: Towards Effective Cross-Domain
Fine-Tuning of Diffusion Models

Zhan Zhuang1,2,∗ Yulong Zhang3,∗ Xuehao Wang1

Jiangang Lu3 Ying Wei3,† Yu Zhang1,†
1Southern University of Science and Technology

2City University of Hong Kong 3Zhejiang University
12250063@mail.sustech.edu.cn {zhangylcse, lujg, ying.wei}@zju.edu.cn

{xuehaowangfi, yu.zhang.ust}@gmail.com

Abstract

Large-scale diffusion models are adept at generating high-fidelity images and
facilitating image editing and interpolation. However, they have limitations when
tasked with generating images in dynamic, evolving domains. In this paper, we
introduce Terra, a novel Time-varying low-rank adapter that offers a fine-tuning
framework specifically tailored for domain flow generation. The key innovation of
Terra lies in its construction of a continuous parameter manifold through a time
variable, with its expressive power analyzed theoretically. This framework not only
enables interpolation of image content and style but also offers a generation-based
approach to address the domain shift problems in unsupervised domain adaptation
and domain generalization. Specifically, Terra transforms images from the source
domain to the target domain and generates interpolated domains with various
styles to bridge the gap between domains and enhance the model generalization,
respectively. We conduct extensive experiments on various benchmark datasets,
empirically demonstrate the effectiveness of Terra. Our source code is publicly
available on https://github.com/zwebzone/terra.

1 Introduction

Recently, text-to-image diffusion models [38, 47, 48, 45] have revolutionized computer vision
by synthesizing high-quality, creative images. Those models provide a user-friendly method for
generating images through text prompts. Furthermore, with advancements in fine-tuning techniques
of diffusion models [4], users can easily customize [83], edit [27], and interpolate [88, 80, 7] images.
A common approach involves using a low-rank adapter (LoRA) [25] to fine-tune diffusion models
with a few images to generate customized images. This inspires a generation-based approach to
address a fundamental and classical problem in machine learning known as domain shift.

Domain shift is commonly studied in the cross-domain learning [70, 82, 61] with two settings:
unsupervised domain adaptation (UDA) [40, 12, 94], which aims to transfer knowledge from a source
domain to a target domain, and domain generalization (DG) [89, 64], which focuses on training
a model on source domains and then generalizing to unseen target domains. Prior methods [91,
15, 68, 90, 73] have demonstrated the effectiveness of image translation and interpolation on the
learning paradigms based on mixup [79, 60], generative adversarial networks [16, 92], and diffusion
models [24, 36]. Considering the impressive capabilities of diffusion models and the efficiency
of fine-tuning techniques like LoRA, it is natural to extend them to generate domain flow, which
generates intermediate domains and bridges the source and target domains, as illustrated in Fig. 1(b).
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Figure 1: Illustration of the proposed Terra.

However, previous methods [36, 80] require multiple LoRAs to customize multiple domains, since
a single LoRA cannot effectively express knowledge of multiple domains with a plugin [77]. To
address this limitation, as illustrated in Fig. 1(a), we propose a Time-varying low-rank adapter
(Terra), which offers a framework for gradual domain transferring by constructing a continuous
parameter manifold. Instead of training multiple LoRAs for different domains, Terra maintains the
parameter efficiency. To this end, inspired by the perspective of dynamic flows [75], Terra introduces
a time variable t for each domain and incorporates a square matrix that varies with time t within the
original low-rank structure.

As depicted in Fig. 1(b), Terra enables the use of different time values t for various intermediate
domains. Consequently, Terra can generate intermediate images that are natural and smooth when
morphing in image pairs, subjects, and styles. For UDA tasks, we generate target samples and
transform the source samples into the target domain to form an expanded source domain. Due to
the smaller domain shifts, transferring from the expanded source domain to the target domain can
improve the performance of existing UDA methods. For DG tasks, we interpolate among all source
domains to generate images in various styles. Then, the generated samples are combined with the
source domain images to improve the performance of existing DG methods.

In summary, our contributions are four-fold:

• We introduce Terra, a novel framework that integrates a square matrix with a time variable
t into the original low-rank structure, facilitating effective and flexible knowledge sharing
across different domains while maintaining parameter efficiency.

• We provide a theoretical analysis of the expressive power of Terra, comparing it to LoRA.
• We demonstrate the application of Terra in image transformation and generation for UDA

tasks and image interpolation for DG tasks via Terra, respectively.
• Extensive experiments validate the effectiveness of Terra across various tasks, including

generative interpolation, unsupervised domain adaptation, and domain generalization.

2 Related Work

Fine-Tuning of Text-to-Image Diffusion Models. The impressive performance of diffusion mod-
els [24, 55] has sparked a surge of interest in text-to-image generation tasks. As the demand for
personalized content synthesis grows [83], pioneer works such as Textual Inversion [11] and Dream-
Booth [49] have proposed optimized text embedding and full fine-tuning frameworks to generate
subject images with limited reference samples. Recently, several parameter-efficient methods for
fine-tuning diffusion modules have been proposed, including adapters [54], LoRA [17, 50, 52],
singular value decomposition on weight matrices [20], subsets of cross-attention [56, 32], and image
prompt adapter [81, 76, 37, 66]. Among those methods, several have been developed to address the
challenges of multi-concept generation [32, 20, 17] and natural image interpolation [62, 30, 80, 88].
Different from those methods, Terra focuses on generation and interpolation within domain flows.
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Domain Adaptation and Generalization. UDA [74, 34, 13, 67, 87, 63] is designed to address the
challenge of adapting models trained on labeled source domains to unlabeled target domains. The
central premise of UDA methods is to learn domain-invariant features that minimize the domain
gap. UDA approaches primarily fall into two branches: discrepancy-based methods [34, 72, 93, 19]
and adversarial-based methods [13, 46, 85]. Conversely, DG [64, 89] seeks to train models that
could generalize well to unseen target domains using multiple source domains. Effective DG
methods, such as SWAD [5] and SAGM [65] enhance the generalization by identifying and leveraging
flatter minima of training losses landscapes. However, the performance of UDA and DG methods
can be constrained by the availability of training data. To address this limitation, recent data
augmentation techniques [73, 71, 84, 36] have been developed to improve the transfer effects of
UDA and DG methods. Those methods can be categorized into feature-level [71, 95, 42] and image-
level methods [73, 84, 36, 22], which enhance transfer performance through the transformation
or generation of auxiliary samples at the feature and image levels. For instance, MSGD [71] and
GGF [95] use intermediate domains to gradually reduce the domain shift between the source and
target domains, while BDG [73] employs pairs of cross-domain generators to synthesize domain-
specific data based on the other domains. Additionally, CDGA [22] leverages the latent diffusion
model to generate synthetic samples across domains and Domaindiff [36] trains LoRAs for each
source domain to conduct domain fusion.

3 Methodology

3.1 Preliminary

LoRA [25] uses two low-rank matrices, W down ∈ Rr×n and W up ∈ Rm×r, where r ≪ min(m,n),
to compute the weight matrix updates ∆W = W upW down ∈ Rm×n. The forward pass of the new
weights changes from h = W 0x to:

h = W 0x+ α∆Wx = W 0x+ αW upW downx, (1)

where α is a scaling factor for the magnitude of the changes applied to the original weights. Although
LoRA is primarily used for fine-tuning large language models, it is also employed in diffusion models
for personalizing image generators with limited training samples, targeting specific styles or subjects
[49, 52, 80]. The objective function in previous studies is expressed as noise matching:

L(∆θ) = Ex0,τ∼U(1,T ),c,ϵ∼N (0,1)

[
∥ϵ− ϵθ0+∆θ (xτ , τ, e(c))∥22

]
, (2)

where θ0 and ∆θ denote the parameters of the text-to-image diffusion model and LoRA, respectively.
The function e denotes the text encoder, and c corresponds to the text prompt. During the forward
diffusion process, the variable xτ is obtained by gradually adding noise to the initial image x0 using
the equation xτ =

√
ᾱτx0+

√
1− ᾱτ ϵ. Here ατ follows a decreasing schedule, and ᾱτ is calculated

as the cumulative product of α values up to timestep τ . In the objection function, the timestep τ is
sampled from a uniform distribution U(1, T ), where T denotes the total number of timesteps. And
the model is utilized to predict the noise ϵθ0+∆θ to estimate the true noise ϵ. After training, the
well-trained denoiser θ0 +∆θ can denoise noises and generate images within a few sampling steps.

3.2 Terra: Time-Varying Low-Rank Adapter

To address the need for fine-tuning diffusion models across multiple domains while maintaining the
parameter efficiency, we propose the Terra, as depicted in Fig. 1(a). Terra involves constructing a
LoRA flow that provides a parameter manifold by incorporating time-varying updates as

h(t) = W 0x+∆W (t)x = W 0x+W upK(t)W downx, K(t) = F(Wmid, t) (3)

where Wmid ∈ Rr×r, t is a one-parameter variable, and F is a time-dependent function. This
formulation enables the differentiable evolution of the parameters ∆W (t) based on a middle time-
varying matrix K(t). A simple form of F(W , t) is tW + I , where I represents an identity matrix.
Since r ≪ min(m,n), the parameter difference between Terra and LoRA with the same rank is
negligible. Furthermore, by setting the parameter t to 0, Terra will degenerate to LoRA. It is worth
noting that the form F(W , t) here is just one of the possible variations. More forms can be found in
Table 5 of Appendix B and a comparison with MoE-based LoRA [69] is provided in Appendix E.
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Here, we present a theoretical analysis of the expression power of the proposed Terra. We define Ir as
a diagonal matrix with its first r diagonal entries as 1 and the remaining entries as 0. In the following
theorem, we prove that Terra can effectively implement two LoRAs for specific downstream tasks by
constructing a parameter manifold with reduced parameters.

Theorem 1. (The Equivariance between Terra and Multiple LoRAs) Assume there exist two LoRAs
∆WA,∆WB ∈ Rm×n with ranks of p and q, respectively, that effectively solve two specific down-
stream tasks. Let k = max{rank([∆WA ∆WB ]), rank([∆W T

A ∆W T
B ])}, where rank(·) denotes

the rank of a matrix. Then, there exists a Terra with W up ∈ Rm×k, W down ∈ Rk×n, W mid ∈ Rk×k,
and K(t) = tW mid + Ir, such that the updated matrix ∆W (t) = W upK(t)W down, can simultane-
ously solve the two downstream task, that is, we have ∆W (0) = ∆WA and ∆W (1) = ∆WB .

In Theorem 1, the number of trainable parameters of Terra is governed by |Θ| = (m + n)k + k2,
contrasting with that of two LoRAs |Θ| = (m + n)(p + q). Note that k represents the maximum
rank of the matrices obtained by concatenating the row and column spaces of the two LoRA matrices,
which is not greater than the sum of the ranks of the two LoRA matrices, i.e., k ≤ p+ q.

Drawing inspiration from prior research on the expressive power of LoRA [78], we further demon-
strate the expressive power of Terra. Here, we focus on the multi-layer feedforward neural network
with identity activation functions, and the analysis can be extended to fully connected neural networks
and transformer networks [78]. Assuming that the target models f̄A and f̄B for two specific tasks, as
well as the frozen model f0, are linear, they can be represented as:

f̄A(x) = WAx, f̄B(x) = WBx, f0(x) = WL · · ·W 1x =

(∏L

l=1
W l

)
x,

where the frozen model has L layers with consistent dimensions. We define the error matrices
EA := WA −

∏L
l=1 W l, and EB := WB −

∏L
l=1 W l, and their ranks as REA

= rank(EA)
and REB

= rank(EB). By utilizing Terra ∆W (t), we can modify the pre-trained frozen model to
closely approximate the two target models WA and WB . We denote the d-th largest singular value
of W by σd(W ), and the best rank-r approximation [8] of W by LRr(W ). The following theorem
presents an upper bound for the approximation error with a rank-k Terra.

Theorem 2. (The Expressive Power of Terra) For each layer l, the rank-k Terra has updated matrix
∆W (t)l, and the function of time-varying matrix is K(t)l = tW mid,l + Ĩ . Assume that all weight
matrices of the frozen model (W l)

L
l=1,

∏L
l=1 W l + LRr(EA), and

∏L
l=1 W l + LRr(EB) are

non-singular for all r ≤ k(L− 1). Then the approximation error satisfies

min
∆W (t)

(∥∥∥∥∥
L∏

l=1

(W l +∆W (0)l)−WA

∥∥∥∥∥
2

+

∥∥∥∥∥
L∏

l=1

(W l +∆W (1)l)−WB

∥∥∥∥∥
2

)
≤ 2σ∗

kL+1, (4)

where the σ∗
kL+1 as the (kL+ 1)-th largest singular values obtained by merging the singular values

of EA and EB . Moreover, when k ≥
⌈
REA

+REB

L

⌉
, the approximation error is zero.

We compare the approximation errors of Terra and multiple LoRAs with consistent parameter sizes for
the above target models. We consider a rank of 2k for Terra and two k-rank LoRA in both tasks. Prior
work [78] establishes an upper bound on LoRA’s approximation error as σkL+1(EA) + σkL+1(EB).
In Theorem 2, we demonstrate that Terra’s approximation error bound is 2σ∗

2kL+1. Considering the
definition of σ∗, it is evident that our Terra’s error bound is not greater than LoRA’s.

Terra is capable of cross-domain generative tasks, where samples from different domains possess
different t’s. In the following sections, we show the use of Terra in three different learning problems.

3.3 Warm Up: Constructing Evolving Visual Domains via Terra

In this section, we show the first application of Terra to construct evolving visual domains for
generative interpolation between two image domains DS and DT characterized by the differences in
the style or subject, which is the key to apply Terra to UDA and DG.
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Figure 2: The illustration of the training process of constructing evolving visual domains via Terra.

Our method is different from existing methods [53, 55, 88, 80] that employ direct interpolation
between two images on embedding using spherical linear interpolation (a.k.a slerp). To accomplish
this, Terra incorporates a continuous time variable t. Training on the source images involves setting
t to 0, yielding the formulation ∆W (0) = W upK(0)W down. Similarly, for the target images, t
is set to 1, leading to ∆W (1) = W upK(1)W down. In the context of fine-tuning text-to-image
diffusion models, we employ image descriptions to construct prompts for diffusion models, where
the corresponding class label is denoted by “A [class]”, where “[class]” denotes the placeholder for
the class label. Finally, the training objective, as depicted in Fig. 2, is formulated as follows

L(∆θ) = Eϵ∼N (0,1),τ∼U(1,T )

[
ExS

0 ∼DS ,t=0

∥∥ϵ− ϵθ0+∆θ

(
xS
τ , τ, e(c

S), t
)∥∥2

2

+ExT
0 ∼DT ,t=1

∥∥ϵ− ϵθ0+∆θ

(
xT
τ , τ, e(c

T ), t
)∥∥2

2

]
,

(5)

where ∆θ represents the parameters of the Terra, cS and cT denote the text prompts for the source
and target, and xS

0 and xT
0 represent the source and target samples. Formally, we construct evolving

visual domains by the following two stages: (1) Fine-tune the parameters of Terra (i.e., ∆θ =
Wup ∪Wmid ∪Wdown) using Eq. (5), where the first part with t = 0 uses source samples DS and the
second part with t = 1 uses target samples DT . (2) Generate an intermediate domain by uniformly
sampling t from [0, 1] and inputting the text prompt and a random noise into the fine-tuned diffusion
model corresponding to domain t for the backward process.

3.4 Generation-based Unsupervised Domain Adaptation via Terra

Built on the first application introduced in the previous section, we introduce the second application of
Terra in UDA. Under the UDA setting, we have a labeled source domain DS and an unlabeled target
domain DT . To alleviate domain shifts, we propose a two-stage framework utilizing a generation-
based approach to augment the source domain.

Similar to the construction of evolving domains discussed in Section 3.3, the first stage sets out to train
the parameters of Terra that accommodate source domain generation with t = 0 and target domain
generation with t = 1. This enables the generation of target images according to the class labels and
transitive source images into the target domain. However, due to the polysemous words on the class
labels, directly generating images with the text prompt may cause unexpected results. For example,
“mouse” usually refers to a rodent, but in some datasets, it refers to a computer mouse. Therefore, we
leverage the source samples to conduct semantic alignment between images and class labels while the
unlabeled target domain samples contribute to learning style information for fine-tuning the diffusion
model. To achieve this, we adopt the same objective function as Eq. (5), where we set t = 0 for
source training with the prompt “A [class]” and t = 1 for target training with the prompt “An image”.

The second stage involves synthesizing a transitive source domain that can benefit the learning of
UDA methods, as depicted in Fig. 3(a). We employ two approaches to achieve this. First, we set
t = 1 to synthesize target samples from Gaussian noises for each category with the corresponding
prompt, i.e., “A [class]”. Those synthesized samples constitute a generated target domain denoted
by DT̂ . Second, we transform the source samples into the target domain while preserving semantic
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Figure 3: The illustration of the proposed generation-based UDA and DG frameworks via Terra.

information. This is achieved by first setting t = 0 and applying DDIM inversion [55] to convert
the source images into noise. Then, with setting t = 1, we use the diffusion model equipped with
Terra to denoise, resulting in the adapted source domain DŜ . After generating images, we combine
the adapted source domain and the generated target domain to form a transitive source domain
DE = DŜ ∪ DT̂ . Here the transitive source domain could have a smaller domain gap to the target
domain than the original source domain due to the generation process, which could facilitate the
knowledge transfer from the transitive source domain to the target domain.

Finally, we conduct transfer learning from the transitive source domain to the target domain by using
an existing UDA method. The objective function is formulated as

f̂uda = argmin
f

1

|DE |
∑

(x,y)∈DE

ℓce(f(x), y) + βℓuda(DE ,DT ), (6)

where ℓce(·, ·) denotes the cross-entropy loss, β > 0 is a trade-off parameter, and ℓuda(·, ·) is a
transfer loss (e.g., domain discrepancy loss [34, 72, 93] and domain discrimination loss [13, 46, 85])
used to alleviate the domain shift. In this manner, our method can be integrated with any off-the-shelf
UDA methods to enhance the transfer performance.

3.5 Generation-based Domain Generalization via Terra

In this section, we study the application of Terra to DG problems. Under the DG setting, we have
K source domains {Dk = {(xk

i , y
k
i )}

nk
i=1}Kk=1, where nk denotes the number of samples in Dk. To

enhance the generalization capability, as shown in Fig. 3(b) and detailed as follows, Terra is adopted
to synthesize new source domains by interpolating among existing source domains. Consequently, we
expect a more generalized learner that well adapts to both existing and synthesized source domains.

In the first stage, to accommodate the various styles exhibited by multiple source domains, we utilize
a network g(·) to predict sample-level t for the Terra. The t-predictor g(·) aims to generate similar t
values for images from the same domain. Moreover, due to the diverse range of styles in the training
set, each t = g(x) is represented as a vector instead of a scalar value used in previous settings. This
allows us to better capture various styles and intra-domain differences. Specifically, we train the
network g(·) via contrastive learning and the loss function to be minimized is formulated as

Lcon(g) =

K∑
k=1

nk∑
i=1

 nk∑
j=1
j ̸=i

∥g(xk
i )− g(xk

j )∥2 +
K∑
l=1
l ̸=k

nl∑
m=1

max(0, δ − ∥g(xk
i )− g(xl

m)∥2)

 , (7)

where δ is a predefined positive margin and ∥·∥2 denotes the Euclidean distance. In Eq. (7), the first
term in the sum is to enforce samples from the same domain yield similar outputs, while the second
term is to encourage the distance between the outputs corresponding to samples from two domains to
be larger than the margin via the hinge loss.
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with other methods can be found in Appendix C.1.

Upon learning of the g(·), we can obtain t’s for all the samples in all the source domains. Then based
on t’s, we fine-tune the diffusion model using Terra with the prompt “A [class]”, and the training
objective is formulated as

L(∆θ) = Eϵ∼N (0,1),τ∼U(1,T )

[
K∑

k=1

Ex0∼Dk,t=g(x0) ∥ϵ− ϵθ0+∆θ (xτ , τ, e(c), t)∥22

]
. (8)

After fine-tuning, in the second stage, we set t to various values to generate diverse samples for
each category with the corresponding prompt. The generated samples could originate from various
domains which may be beyond the original source domains {Dk}Kk=1 but we do not need to identify
their specific domains. We combine these generated samples with the original source domain samples
to form expanded domains DE , which can improve the generalization capability of models. The
objective function of DG based on Terra is formulated as

f̂dg = argmin
f

1

|DE |
∑

(x,y)∈{DE}

ℓce(f(x), y) + βℓdg(DE), (9)

where β > 0 is a trade-off parameter, and ℓdg(·) is a domain generalization loss (e.g., Sharpness-
Aware Minimization (SAM)-based loss [10, 5, 65] and representation learning-based loss [1, 13, 2])
used to improve the generalization capabilities. In this manner, our method can be integrated with
any off-the-shelf DG methods to enhance their performance.

4 Experiments

4.1 Experimental Setups

For the UDA experiments, we utilize three benchmark datasets, including Office31 [51], which
consists of 4,110 images from 31 categories across three domains: Amazon (A), Webcam (W), and
Dslr (D); Office-Home [59], containing 15,588 images from 65 categories across four domains: Art
(Ar), Clipart (Cl), Product (Pr), and Real-World (Rw); and VisDA [43], featuring 207,785 images
from 12 categories across two domains: Synthetic and Real. For the DG experiments, we employ
the PACS [33], Office-Home, and VLCS [9] datasets. The PACS dataset contains 9,991 images from
seven categories across four domains: Art painting (A), Cartoon (C), Photo (P), and Sketch (S), and
VLCS contains 10,729 images from five categories across four domains: VOC2007 (V), LabelMe (L),
Caltech101 (C), and SUN09 (S). The baselines and implementation details are put in Appendix B.
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4.2 Experiments on Generative Interpolation Tasks

For generative interpolation tasks, we conduct qualitative and quantitative evaluations of our method,
focusing on morphing in image pairs, subjects, and styles.

For morphing in image pairs, we train Terra by setting t = 0 for the first image and t = 1 for the
second one with a text prompt “An oil painting of a person”. After training, we produce intermediate
images by uniformly transitioning t from 0 to 1 with the same text prompt. The experimental results
can be found in the first row of Fig. 4. We also provide qualitative comparisons with other baselines
in Fig. 8. As can be seen, Terra produces natural and smooth interpolation between two images.

In addition to its ability to perform image morphing, Terra can perform style and subject morphing,
a capability that DiffMorpher [80] lacks. Due to page limit, implementation details are put in
Appendix B. As shown in the second and third rows of Fig. 4, Terra is capable of generating a
sequence of intermediate images as a seamless transition in styles and subjects.

Table 1: Quantitative evaluation of gener-
ative interpolation tasks. We evaluate the
fidelity and smoothness of the generated in-
termediate images in terms of FID (↓) and
PPL (↓).

image pairs styles subjects

FID PPL FID PPL FID PPL

DGP (GAN-based) [41] 223.82 1.98 - - - -
DDIM [55] 176.34 1.35 - - - -

LoRA Interp. [80] 89.37 0.91 256.64 1.02 194.17 1.24
DiffMorpher [80] 78.26 0.77 - - - -

Terra (ours) 62.25 0.95 187.88 0.32 181.85 0.72
Terra+DiffM. 44.80 0.72 - - - -

To quantitatively evaluate the quality of the interme-
diate images and the smoothness of the transition, we
utilize the Frechet Inception Distance (FID) [23] and
Perceptual Path Length (PPL) [29] metrics, following
the setting in DiffMorpher [80]. As shown in Table 1,
the quantitative results demonstrate that Terra achieves
comparable performance to DiffMorpher and outper-
forms DGP, DDIM, and LoRA Interpolation. Note that
DiffMorpher is specifically designed for morphing by
customized techniques such as attention interpolation,
adaptive normalization, and a new sampling sched-
ule. Equipped with the customized techniques used in
DiffMorpher, Terra is even better than DiffMorhper.

Table 2: Transfer accuracies (%) on the Office-Home and VisDA datasets under UDA setting. The
best performance is highlighted in bold.

Method Office-Home VisDA
Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg mean

ERM [58] 44.06 67.12 74.26 53.26 61.96 64.54 51.91 38.90 72.94 64.51 43.84 75.39 59.39 51.47
DANN [13] 52.53 62.57 73.20 56.89 67.02 68.34 58.37 54.14 78.31 70.78 60.76 80.57 65.29 79.02
AFN [72] 52.58 72.42 76.96 64.90 71.14 72.91 64.08 51.29 77.83 72.21 57.46 82.09 67.99 74.64

CDAN [35] 54.21 72.18 78.29 61.97 71.43 72.39 62.96 55.68 80.68 74.71 61.22 83.68 69.12 80.74
MDD [86] 56.37 75.53 79.17 62.95 73.21 73.55 62.56 54.86 79.49 73.84 61.45 84.06 69.75 81.10
SDAT [46] 58.20 77.46 81.35 66.06 76.45 76.41 63.70 56.69 82.49 76.02 62.09 85.24 71.85 83.23
MSGD [71] 58.70 76.90 78.90 70.10 76.20 76.60 69.00 57.20 82.30 74.90 62.70 84.50 72.40 84.60

MCC [28] 56.83 79.81 82.66 67.80 77.02 77.82 66.98 55.43 81.79 73.95 61.41 85.44 72.24 83.32
MCC+Terra 63.49 81.51 83.46 72.52 82.89 81.25 73.20 61.66 83.16 74.36 63.45 84.41 75.45 85.39

ELS [85] 57.79 77.65 81.62 66.59 76.74 76.43 62.69 56.69 82.12 75.63 62.85 85.35 71.84 83.40
ELS+Terra 64.62 82.33 83.60 71.19 84.25 80.31 73.00 63.57 83.81 76.20 66.56 85.70 76.26 86.86

4.3 Experiments on Unsupervised Domain Adaptation

In this section, we evaluate the proposed generation-based UDA method via Terra as introduced in
Section 3.4. The comparison results against state-of-the-art UDA methods on the Office-Home and
VisDA datasets are shown in Tables 2. Due to page limit, detailed results for VisDA and Office31 are
shown in Tables 7 and 8 of Appendix C.2 and more results with CoVi and PMTrans are shown in
Table 10. The standard deviations from three experiments are presented in Appendix D.

As can be seen, our method has achieved significant performance improvements of 4.42%, 3.46%,
and 1.07% for ELS on the Office-Home, VisDA, and Office31 datasets, respectively, surpassing all the
baseline methods. Thus, Terra can serve as a good plugin for existing UDA methods.

The effectiveness of our method can be further verified through the t-SNE [57] visualizations, as
depicted in Fig. 5. The adapted source domain DŜ and the generated target domain DT̂ exhibit
a smaller domain discrepancy to the target domain DT than the original source domain, thereby
reducing the domain gaps. Additionally, Fig. 6 presents example images illustrating the transformation
from the source domain to the target domain. It can be observed that the style transfer is achieved
while preserving the semantic information and subject shapes.
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Source Domain
Target Domain
Adapted Source Domain
Generated Target Domain

(a) Backpack

Source Domain
Target Domain
Adapted Source Domain
Generated Target Domain

(b) Bike

Source Domain
Target Domain
Adapted Source Domain
Generated Target Domain

(c) Drill

Source Domain
Target Domain
Adapted Source Domain
Generated Target Domain

(d) Sneakers

Figure 5: T-SNE visualization of the source domain, target domain, adapted source domain, and
generated target domain in four classes of the Pr→Cl task on Office-Home under UDA setting.

Art → Clipart Art → Product Art → Real World

“An alarm clock”

“A bed”

“A desk lamp”

Clipart → Art Clipart → Product Clipart → Real World

“A bottle”

“A drill”

“A backpack”

Product → Art Product → Clipart Product → Real World

“A sneaker”

“A computer”

“A fan”

Real World → Art Real World → Clipart Real World → Product

“A bucket”

“A mouse”

“A shelf”

Figure 6: Examples of the source images from DS and corresponding adapted images from DŜ for
the Office-Home tasks under UDA setting. The text prompts are shown on the left. For instance, the
first image pair showcases an image from the Art domain and its corresponding generated image to
Clipart domain based on the text prompt “An alarm clock”.

Table 3: Ablation studies on the Office-Home dataset under UDA setting. The best is in bold.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

DS → DT 57.79 77.65 81.62 66.59 76.74 76.43 62.69 56.69 82.12 75.63 62.85 85.35 71.84
DŜ → DT 61.25 78.89 80.71 68.25 79.03 75.59 66.50 60.84 80.55 73.30 65.10 84.97 72.92
DT̂ → DT 58.66 80.71 80.94 69.74 80.68 78.95 69.70 54.20 81.68 71.92 56.98 82.03 72.18
DE → DT 64.62 82.33 83.60 71.19 84.25 80.31 73.00 63.57 83.81 76.20 66.56 85.70 76.26

The ablation studies of ELS+Terra presented in Table 3 show that the best performance is achieved
when transferring from the expanded domain DE to the target domain DT , validating the necessity and
effectiveness of combining the adapted source domain with the generated target domain. To highlight
the design advantages, we conduct a comparison with SDXL’s prior knowledge in Appendix C.5.

4.4 Experiments on Domain Generalization

In this section, we conduct experiments on the PACS, Office-Home, and VLCS datasets to evaluate the
effectiveness of our DG method proposed in Section 3.5. The results presented in Table 4 clearly
reveal that our method achieves notable performance improvements across all tasks based on three
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Table 4: Accuracies (%) on the PACS and OfficeHome datasets under DG setting. The best is in bold.

Method PACS OfficeHome
A C P S Avg Ar Cl Pr Rw Avg

MIRO [6] 87.25 76.95 97.83 77.65 84.92 67.01 55.58 78.82 81.02 70.61
CDGA [22] 87.30 80.90 96.60 82.50 86.80 60.50 56.50 77.10 80.60 68.70
ERM [58] 87.00 78.23 98.05 74.35 84.41 63.41 52.61 77.20 77.63 67.71
ERM+DomainDiff [36] 84.90 82.90 95.50 79.00 85.60 57.60 49.20 73.00 75.20 63.70
ERM+Terra 89.51 79.66 98.20 78.64 86.50 65.43 53.79 78.99 80.30 69.63
SAGM [65] 85.72 81.13 96.59 77.46 85.23 65.55 55.09 78.68 79.39 69.68
SAGM+Terra 91.34 82.28 96.78 80.80 87.80 66.70 56.53 79.64 81.91 71.19
SWAD [5] 89.67 83.13 97.48 82.78 88.27 66.08 57.37 79.58 80.49 70.88
SWAD+Terra 91.07 83.50 98.18 84.62 89.34 68.02 58.31 80.56 82.03 72.23
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Figure 7: Visualization of learned time variables on the PACS dataset under the DG setting.

state-of-the-art DG methods (i.e., ERM, SWAD, and SAGM). Furthermore, our method outperforms
the stable diffusion generation-based method, DomainDiff, which requires training a separate LoRA
for each source domain while our method maintains the parameter efficiency with only one single
low-rank structure and different t to capture diverse styles.

Additionally, Fig. 7 shows the learned values of t. The t predictor assigns distinct t values to each
domain, enabling Terra to generate different interpolated images among the source domains based on
varying t values. Moreover, the random sampling of t effectively covers the target domain, offering
a clearer understanding of the rationale behind our approach that the generated samples may bring
useful information for the target domain. We also show some generated images of the expanded
domains on the PACS dataset in Fig. 10 of Appendix C. As can be seen, using Terra can generate
diverse styles of images that are different from the source domains. With the expanded domains, the
generalization capability of the source model can be improved.

Besides, we conduct an ablation study on the form of Terra and the dimensionality of t in Appendix B,
demonstrating that refining Terra’s form can further enhance its expressive power. We also compare
Terra with other domain generalization morphing techniques, as shown in Appendix C.4, to verify its
effectiveness in expanding source domains for improved generalization.

5 Conclusion and Future Works

In this paper, we introduce Terra, a framework that facilitates effective cross-domain modeling
through the construction of a continuous parameter manifold. Terra incorporates a time-varying
parameter within the manifold of domains, enabling flexible and smooth interpolations. This approach
facilitates effective knowledge sharing across different domains by training only a single low-rank
adaptor. Additionally, based on the designed generation-based strategies, Terra can serve as a plugin
for existing UDA and DG methods to enhance performance. We also theoretically analyze the
expressive capabilities of Terra. Extensive experiments demonstrate the superior performance of
Terra in a range of tasks. For future works, we aim to extend Terra to cover more settings, including
different modalities, larger datasets, and more complex tasks.

Acknowledgements

This work was supported by NSFC key grant 62136005 and NSFC general grant 62076118.

10



References
[1] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv

preprint arXiv:1907.02893, 2019.

[2] G. Blanchard, A. A. Deshmukh, U. Dogan, G. Lee, and C. Scott. Domain generalization by
marginal transfer learning. Journal of Machine Learning Research, 22(2):1–55, 2021.

[3] A. Brock, J. Donahue, and K. Simonyan. Large scale gan training for high fidelity natural image
synthesis. In International Conference on Learning Representations, 2018.

[4] H. Cao, C. Tan, Z. Gao, Y. Xu, G. Chen, P.-A. Heng, and S. Z. Li. A survey on generative
diffusion models. IEEE Transactions on Knowledge and Data Engineering, 2024.

[5] J. Cha, S. Chun, K. Lee, H.-C. Cho, S. Park, Y. Lee, and S. Park. Swad: Domain generalization
by seeking flat minima. Advances in Neural Information Processing Systems, 34:22405–22418,
2021.

[6] J. Cha, K. Lee, S. Park, and S. Chun. Domain generalization by mutual-information regulariza-
tion with pre-trained models. In European Conference on Computer Vision, pages 440–457.
Springer, 2022.

[7] Z. Chen, H. Li, F. Wang, O. Zhang, H. Xu, X. Jiang, Z. Song, and E. H. Wang. Rethinking the
diffusion models for missing data imputation: A gradient flow perspective. Advances in Neural
Information Processing Systems, 38:1–50, 2024.

[8] C. Eckart and G. Young. The approximation of one matrix by another of lower rank. Psychome-
trika, 1(3):211–218, 1936.

[9] C. Fang, Y. Xu, and D. N. Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1657–1664, 2013.

[10] P. Foret, A. Kleiner, H. Mobahi, and B. Neyshabur. Sharpness-aware minimization for efficiently
improving generalization. In International Conference on Learning Representations, 2020.

[11] R. Gal, Y. Alaluf, Y. Atzmon, O. Patashnik, A. H. Bermano, G. Chechik, and D. Cohen-Or. An
image is worth one word: Personalizing text-to-image generation using textual inversion. arXiv
preprint arXiv:2208.01618, 2022.

[12] Y. Ganin and V. Lempitsky. Unsupervised domain adaptation by backpropagation. In Interna-
tional Conference on Machine Learning, pages 1180–1189. PMLR, 2015.

[13] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. March, and
V. Lempitsky. Domain-adversarial training of neural networks. Journal of Machine Learning
Research, 17(59):1–35, 2016.

[14] R. H. Goldman. Transformations as exponentials. Graphics Gems II, 2:332, 1991.

[15] R. Gong, W. Li, Y. Chen, and L. V. Gool. Dlow: Domain flow for adaptation and generalization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 2477–2486, 2019.

[16] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems,
volume 27, pages 2672–2680, Jan. 2014.

[17] Y. Gu, X. Wang, J. Z. Wu, Y. Shi, Y. Chen, Z. Fan, W. Xiao, R. Zhao, S. Chang, W. Wu, et al.
Mix-of-show: Decentralized low-rank adaptation for multi-concept customization of diffusion
models. Advances in Neural Information Processing Systems, 36, 2024.

[18] I. Gulrajani and D. Lopez-Paz. In search of lost domain generalization. In International
Conference on Learning Representations, 2021.

[19] P. Guo, J. Zhu, and Y. Zhang. Selective partial domain adaptation. In BMVC, page 420, 2022.

11



[20] L. Han, Y. Li, H. Zhang, P. Milanfar, D. Metaxas, and F. Yang. Svdiff: Compact parameter
space for diffusion fine-tuning. arXiv preprint arXiv:2303.11305, 2023.

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[22] S. Hemati, M. Beitollahi, A. H. Estiri, B. A. Omari, X. Chen, and G. Zhang. Cross domain
generative augmentation: Domain generalization with latent diffusion models. arXiv preprint
arXiv:2312.05387, 2023.

[23] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium. Advances in Neural Information
Processing Systems, 30, 2017.

[24] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840–6851, 2020.

[25] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA:
Low-rank adaptation of large language models. In International Conference on Learning
Representations, 2022.

[26] T. Huang, J. Liu, S. You, and C. Xu. Active generation for image classification. arXiv preprint
arXiv:2403.06517, 2024.

[27] Y. Huang, J. Huang, Y. Liu, M. Yan, J. Lv, J. Liu, W. Xiong, H. Zhang, S. Chen, and L. Cao.
Diffusion model-based image editing: A survey. arXiv preprint arXiv:2402.17525, 2024.

[28] Y. Jin, X. Wang, M. Long, and J. Wang. Minimum class confusion for versatile domain
adaptation. In European Conference on Computer Vision, pages 464–480. Springer, 2020.

[29] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing and improving
the image quality of stylegan. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 8110–8119, 2020.

[30] B. Kawar, S. Zada, O. Lang, O. Tov, H. Chang, T. Dekel, I. Mosseri, and M. Irani. Imagic: Text-
based real image editing with diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 6007–6017, 2023.

[31] A. Kumar, T. Ma, and P. Liang. Understanding self-training for gradual domain adaptation. In
International conference on machine learning, pages 5468–5479. PMLR, 2020.

[32] N. Kumari, B. Zhang, R. Zhang, E. Shechtman, and J.-Y. Zhu. Multi-concept customization of
text-to-image diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1931–1941, 2023.

[33] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales. Deeper, broader and artier domain general-
ization. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
5542–5550, 2017.

[34] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with deep adaptation
networks. In International Conference on Machine Learning, pages 97–105. PMLR, 2015.

[35] M. Long, Z. Cao, J. Wang, and M. I. Jordan. Conditional adversarial domain adaptation.
Advances in Neural Information Processing Systems, 31, 2018.

[36] Q. Miao, J. Yuan, S. Zhang, F. Wu, and K. Kuang. Domaindiff: Boost out-of-distribution
generalization with synthetic data. In IEEE International Conference on Acoustics, Speech and
Signal Processing, pages 5640–5644. IEEE, 2024.

[37] C. Mou, X. Wang, L. Xie, Y. Wu, J. Zhang, Z. Qi, and Y. Shan. T2i-adapter: Learning adapters
to dig out more controllable ability for text-to-image diffusion models. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pages 4296–4304, 2024.

12



[38] A. Q. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. Mcgrew, I. Sutskever, and
M. Chen. Glide: Towards photorealistic image generation and editing with text-guided diffusion
models. In International Conference on Machine Learning, pages 16784–16804. PMLR, 2022.

[39] C. C. Paige and M. A. Saunders. Towards a generalized singular value decomposition. SIAM
Journal on Numerical Analysis, 18(3):398–405, 1981.

[40] S. J. Pan, I. W. Tsang, J. T. Kwok, and Q. Yang. Domain adaptation via transfer component
analysis. IEEE transactions on Neural Networks, 22(2):199–210, 2010.

[41] X. Pan, X. Zhan, B. Dai, D. Lin, C. C. Loy, and P. Luo. Exploiting deep generative prior for
versatile image restoration and manipulation. In European Conference on Computer Vision,
2020.

[42] D. Peng, Q. Ke, Y. Lei, and J. Liu. Unsupervised domain adaptation via domain-adaptive
diffusion. arXiv preprint arXiv:2308.13893, 2023.

[43] X. Peng, B. Usman, N. Kaushik, J. Hoffman, D. Wang, and K. Saenko. Visda: The visual
domain adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.

[44] R. Penrose. A generalized inverse for matrices. In Mathematical proceedings of the Cambridge
philosophical society, volume 51, pages 406–413. Cambridge University Press, 1955.

[45] D. Podell, Z. English, K. Lacey, A. Blattmann, T. Dockhorn, J. Müller, J. Penna, and R. Rombach.
Sdxl: Improving latent diffusion models for high-resolution image synthesis. arXiv preprint
arXiv:2307.01952, 2023.

[46] H. Rangwani, S. K. Aithal, M. Mishra, A. Jain, and V. B. Radhakrishnan. A closer look at
smoothness in domain adversarial training. In International Conference on Machine Learning,
pages 18378–18399. PMLR, 2022.

[47] M. D. M. Reddy, M. S. M. Basha, M. M. C. Hari, and M. N. Penchalaiah. Dall-e: Creating
images from text. UGC Care Group I Journal, 8(14):71–75, 2021.

[48] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis
with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10684–10695, 2022.

[49] N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. Dreambooth: Fine tuning
text-to-image diffusion models for subject-driven generation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 22500–22510, 2023.

[50] N. Ruiz, Y. Li, V. Jampani, W. Wei, T. Hou, Y. Pritch, N. Wadhwa, M. Rubinstein, and
K. Aberman. Hyperdreambooth: Hypernetworks for fast personalization of text-to-image
models. arXiv preprint arXiv:2307.06949, 2023.

[51] K. Saenko, B. Kulis, M. Fritz, and T. Darrell. Adapting visual category models to new domains.
In European Conference on Computer Vision, volume 6314, pages 213–226. Springer, 2010.

[52] V. Shah, N. Ruiz, F. Cole, E. Lu, S. Lazebnik, Y. Li, and V. Jampani. Ziplora: Any subject in
any style by effectively merging loras. In European Conference on Computer Vision, pages
422–438. Springer, 2025.

[53] K. Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pages 245–254, 1985.

[54] K. Sohn, N. Ruiz, K. Lee, D. C. Chin, I. Blok, H. Chang, J. Barber, L. Jiang, G. Entis, Y. Li,
et al. Styledrop: Text-to-image generation in any style. arXiv preprint arXiv:2306.00983, 2023.

[55] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International
Conference on Learning Representations, 2020.

[56] Y. Tewel, R. Gal, G. Chechik, and Y. Atzmon. Key-locked rank one editing for text-to-image
personalization. In ACM SIGGRAPH 2023 Conference Proceedings, pages 1–11, 2023.

13



[57] L. Van der Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(11), 2008.

[58] V. Vapnik. The nature of statistical learning theory. Springer science & business media, 1999.

[59] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5018–5027, 2017.

[60] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-Paz, and Y. Bengio. Mani-
fold mixup: Better representations by interpolating hidden states. In International Conference
on Machine Learning, pages 6438–6447. PMLR, 2019.

[61] C. Wang, J. Gao, Y. Hua, and H. Wang. Cross-domain learning with normalizing flow. In
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1–5. IEEE, 2023.

[62] C. J. Wang and P. Golland. Interpolating between images with diffusion models. arXiv preprint
arXiv:2307.12560, 2023.

[63] H. Wang, J. Fan, Z. Chen, H. Li, W. Liu, T. Liu, Q. Dai, Y. Wang, Z. Dong, and R. Tang.
Optimal transport for treatment effect estimation. Advances in Neural Information Processing
Systems, 36:1–15, 2023.

[64] J. Wang, C. Lan, C. Liu, Y. Ouyang, T. Qin, W. Lu, Y. Chen, W. Zeng, and S. Y. Philip.
Generalizing to unseen domains: A survey on domain generalization. IEEE Transactions on
Knowledge and Data Engineering, 35(8):8052–8072, 2022.

[65] P. Wang, Z. Zhang, Z. Lei, and L. Zhang. Sharpness-aware gradient matching for domain
generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3769–3778, 2023.

[66] Q. Wang, X. Bai, H. Wang, Z. Qin, and A. Chen. Instantid: Zero-shot identity-preserving
generation in seconds. arXiv preprint arXiv:2401.07519, 2024.

[67] X. Wang, P. Guo, and Y. Zhang. Unsupervised domain adaptation via bidirectional cross-
attention transformer. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 309–325. Springer, 2023.

[68] X. Wang, K. Yu, C. Dong, X. Tang, and C. C. Loy. Deep network interpolation for continuous
imagery effect transition. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 1692–1701, 2019.

[69] X. Wu, S. Huang, and F. Wei. Mixture of loRA experts. In International Conference on
Learning Representations, 2024.

[70] H. Xia and Z. Ding. Structure preserving generative cross-domain learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4364–4373,
2020.

[71] H. Xia, T. Jing, and Z. Ding. Maximum structural generation discrepancy for unsupervised do-
main adaptation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(3):3434–
3445, 2023.

[72] R. Xu, G. Li, J. Yang, and L. Lin. Larger norm more transferable: An adaptive feature norm
approach for unsupervised domain adaptation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1426–1435, 2019.

[73] G. Yang, H. Xia, M. Ding, and Z. Ding. Bi-directional generation for unsupervised domain
adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages
6615–6622, 2020.

[74] Q. Yang, Y. Zhang, W. Dai, and S. J. Pan. Transfer learning. Cambridge, U.K.: Cambridge
Univ. Press, 2020.

14



[75] F. Ye, X. Wang, Y. Zhang, and I. W. Tsang. Multi-task learning via time-aware neural ode. In
International Joint Conference on Artificial Intelligence, pages 4495–4503, 2023.

[76] H. Ye, J. Zhang, S. Liu, X. Han, and W. Yang. Ip-adapter: Text compatible image prompt
adapter for text-to-image diffusion models. arXiv preprint arXiv:2308.06721, 2023.

[77] T. Zadouri, A. Üstün, A. Ahmadian, B. Ermis, A. Locatelli, and S. Hooker. Pushing mixture of
experts to the limit: Extremely parameter efficient moe for instruction tuning. In The Twelfth
International Conference on Learning Representations, 2023.

[78] Y. Zeng and K. Lee. The expressive power of low-rank adaptation. In International Conference
on Learning Representations, 2023.

[79] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. In International Conference on Learning Representations, 2018.

[80] K. Zhang, Y. Zhou, X. Xu, X. Pan, and B. Dai. Diffmorpher: Unleashing the capability of
diffusion models for image morphing. arXiv preprint arXiv:2312.07409, 2023.

[81] L. Zhang, A. Rao, and M. Agrawala. Adding conditional control to text-to-image diffusion
models. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages
3836–3847, 2023.

[82] P. Zhang, H. Dou, Y. Yu, and X. Li. Adaptive cross-domain learning for generalizable person
re-identification. In European Conference on Computer Vision, pages 215–232. Springer, 2022.

[83] X. Zhang, X.-Y. Wei, W. Zhang, J. Wu, Z. Zhang, Z. Lei, and Q. Li. A survey on personalized
content synthesis with diffusion models. arXiv preprint arXiv:2405.05538, 2024.

[84] Y. Zhang, S. Chen, W. Jiang, Y. Zhang, J. Lu, and J. T. Kwok. Domain-guided conditional
diffusion model for unsupervised domain adaptation. arXiv preprint arXiv:2309.14360, 2023.

[85] Y. Zhang, J. Liang, Z. Zhang, L. Wang, R. Jin, T. Tan, et al. Free lunch for domain ad-
versarial training: Environment label smoothing. In International Conference on Learning
Representations, 2023.

[86] Y. Zhang, T. Liu, M. Long, and M. Jordan. Bridging theory and algorithm for domain adaptation.
In International Conference on Machine Learning, pages 7404–7413. PMLR, 2019.

[87] Y. Zhang, Y. Yao, S. Chen, P. Jin, Y. Zhang, J. Jin, and J. Lu. Rethinking guidance information
to utilize unlabeled samples: A label encoding perspective. In International Conference on
Machine Learning, 2024.

[88] P. Zheng, Y. Zhang, Z. Fang, T. Liu, D. Lian, and B. Han. Noisediffusion: Correcting noise for
image interpolation with diffusion models beyond spherical linear interpolation. In International
Conference on Learning Representations, 2024.

[89] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy. Domain generalization: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45:4396–4415, 2023.

[90] K. Zhou, Y. Yang, Y. Qiao, and T. Xiang. Domain generalization with mixstyle. In International
Conference on Learning Representations, 2020.

[91] J.-Y. Zhu, P. Krähenbühl, E. Shechtman, and A. A. Efros. Generative visual manipulation on the
natural image manifold. In European Conference on Computer Vision, pages 597–613. Springer,
2016.

[92] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on
Computer Vision, pages 2223–2232, 2017.

[93] Y. Zhu, F. Zhuang, J. Wang, G. Ke, J. Chen, J. Bian, H. Xiong, and Q. He. Deep subdomain
adaptation network for image classification. IEEE Transactions on Neural Networks and
Learning Systems, 32(4):1713–1722, 2020.

15



[94] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He. A comprehensive
survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020.

[95] Z. Zhuang, Y. Zhang, and Y. Wei. Gradual domain adaptation via gradient flow. In International
Conference on Learning Representations, 2024.

16



A Proofs

Lemma 1. Given two matrices A,B ∈ Rm×n, and rank(·) denotes the rank of a matrix. Then,
rank([AB]) ≤ rank(A) + rank(B) and rank([AT BT ]) ≤ rank(A) + rank(B).

Lemma 2. Given two matrices A ∈ Rm×n,B ∈ Rn×q, and rank(·) denotes the rank of a matrix.
Then, rank([AB]) ≤ min (rank(A), rank(B)).

Theorem 3. (Generalized Singular Value Decomposition (GSVD) [39]) For given matrices A,B ∈
Rm×n, let CT = [AT BT ] and denote its rank by r = rank(C), there exist orthogonal matrices
UA,UB ∈ Rm×m, Q ∈ Rn×n and W ∈ Rk×k so that

UA
TAQ = ΣA

[
WTR, 0

]
, UB

TBQ = ΣB

[
WTR, 0

]
, (10)

ΣA =

[
IA

SA

OA

]
, ΣB =

[
OB

SB

IB

]
, (11)

where R is real diagonal contains the nonzero singular values of C in decreasing order, ΣA,ΣB ∈
Rm×k are real non-negative block-diagonal matrices, where IA ∈ Rr×r and IB ∈ Rk−r−s×k−r−s

are identity matrices, OA ∈ Rm−r−s×k−r−s and OB ∈ Rm−k−r×r are zero matrices with possibly
no rows or no columns, and SA = [αr+1, . . . , αr+s] and SB = [βr+1, . . . , βr+s]. And we have

1 > αr+1 ≥ · · · ≥ αr+s > 0, 0 < βr+1 ≤ · · · ≤ βr+s < 1, α2
i + β2

i = 1, i ∈ [r+1, r+ s].

Indeed, GSVD is a powerful tool in numerical linear algebra and data analysis. It can be seen as an
extension of the singular value decomposition (SVD). Notably, when the matrix B is the identity
matrix, the GSVD of matrix A and B simplifies to the SVD of matrix A.
Theorem 1. (The Equivariance between Terra and Multiple LoRAs) Assume there exist two LoRAs
∆WA,∆WB ∈ Rm×n with ranks of p and q, respectively, that effectively solve two specific down-
stream tasks. Let k = max{rank([∆WA ∆WB ]), rank([∆W T

A ∆W T
B ])}, where rank(·) denotes

the rank of a matrix. Then, there exists a Terra with W up ∈ Rm×k, W down ∈ Rk×n, W mid ∈ Rk×k,
and K(t) = tW mid + Ir, such that the updated matrix ∆W (t) = W upK(t)W down, can simultane-
ously solve the two downstream task, that is, we have ∆W (0) = ∆WA and ∆W (1) = ∆WB .

Proof. Our goal is to find matrices W up, W down, and Wmid to satisfy ∆W (0) = W upW down =
∆WA, and ∆W (1) = Wup(Wmid + I)W down = ∆WB .

From Theorem 3, since k ≥ rank([∆W T
A ∆W T

B ]), we know GSVD can decompose the two LoRA
adapters with a common right generalized singular vectors X ∈ Rk×n:

∆WA = UAΣAX, ∆WB = UBΣBX. (12)

Similarly, we can transpose the matrices of the two LoRA adapters, since k ≥ rank([∆WA ∆WB ]),
and use GSVD again, then we have a common left generalized singular vectors Y ∈ Rm×k:

∆WA = YZAVA, ∆WB = YZBVB. (13)

For each matrix W, there exists a pseudo-inverse (a.k.a. the Moore-Penrose inverse [44]) W+ such
that WW+W = W. Then we have a special decomposition of the LoRA adapters:

∆WA = UAΣAX

= UAΣA(XX+X)

= ∆WAX
+X

= YY+∆WAX
+X ≜ YKAX,

(14)

where KA ∈ Rk×k. Similarly, we have:

∆WB = Y(Y+∆WBX
+)X ≜ YKBX. (15)

Assume the SVD of KA is of the following form:

KA = UKΛVK, (16)
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where UK,VK ∈ Rk×k are orthogonal matrices.

We can represent the diagonal matrix Λ as Λ = diag(σ1, σ2, . . . , σr, 0, . . . , 0). Define Λ+ whose
first r rows have 1/σ1, 1/σ2, . . . , 1/σr on the diagonal, and the product of Λ and Λ+is a square
matrix whose first r diagonal entries are 1 and whose others are 0, i.e. Ir. Then, we can get

∆W (t) = Y (t(KB −KA) +KA)X

= Y (t(KB −KA) +UKΛVK)X

= YUKUK
T (t(KB −KA) +UKΛVK)VK

TVKX

= YUK

(
tUK

T (KB −KA)VK
T +Λ

)
VKX

= YUK

(
tUK

T (KB −KA)VK
TΛ+ + Ir

)
ΛVKX

= W up
(
tWmid + Ir)

)
W down.

(17)

Finally, we can construct the following matrices to prove the theorem:

W up = YUK, Wmid = UK
T (KB −KA)VK

TΛ+, W down = ΛVKX. (18)

Theorem 2. (The Expressive Power of Terra) For each layer l, the rank-k Terra has updated matrix
∆W (t)l, and the function of time-varying matrix is K(t)l = tW mid,l + Ĩ . Assume that all weight
matrices of the frozen model (W l)

L
l=1,

∏L
l=1 W l + LRr(EA), and

∏L
l=1 W l + LRr(EB) are

non-singular for all r ≤ k(L− 1). Then the approximation error satisfies

min
∆W (t)

(∥∥∥∥∥
L∏

l=1

(W l +∆W (0)l)−WA

∥∥∥∥∥
2

+

∥∥∥∥∥
L∏

l=1

(W l +∆W (1)l)−WB

∥∥∥∥∥
2

)
≤ 2σ∗

kL+1, (4)

where the σ∗
kL+1 as the (kL+ 1)-th largest singular values obtained by merging the singular values

of EA and EB . Moreover, when k ≥
⌈
REA

+REB

L

⌉
, the approximation error is zero.

Proof. We first adopt a similar construction consistently with the prior work [78]:

SA :=

L∏
l=1

(W l +∆W (0)l)−
L∏

l=1

W l SB :=

L∏
l=1

(W l +∆W (1)l)−
L∏

l=1

W l. (19)

Then, the approximate error can be represented as:

min
∆W (t)

(∥∥∥∥∥
L∏

l=1

(W l +∆W (0)l)−WA

∥∥∥∥∥
2

+

∥∥∥∥∥
L∏

l=1

(W l +∆W (1)l)−WB

∥∥∥∥∥
2

)
= min

∆W (t)
(∥SA −EA∥2 + ∥SB −EB∥2) .

(20)

Following the prior work, we can also decompose SA into an accumulation of SAl
as follows:

SA =∆W (0)L

L−1∏
l=1

(∆W (0)l +W l) +WL∆W (0)L−1

L−2∏
l=1

(∆W (0)l +W l)

+ . . .+

(
L∏

l=2

W l

)
(∆W (0)1 +W 1)−

L∏
l=1

W l

=

L∑
l=1

[(
L∏

i=l+1

W i

)
∆W (0)l

(
l−1∏
i=1

(W i +∆W (0)i)

)]
︸ ︷︷ ︸

:=SAl

.

(21)
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Similarly, we have SB =
∑L

l=1 SBl
,SBl

=
(∏L

i=l+1 W i

)
∆W (1)l

(∏l−1
i=1 (W i +∆W (1)i)

)
.

We select the largest kL largest terms of the singular values of EA and EB , and we denote there are
p values from EA and q values from EB . To prove the theorem, we need to show the following:

min
∆W (t)

(∥SA −EA∥2 + ∥SB −EB∥2) ≤ 2σ∗
kL+1. (22)

Define E′
A = LRp(EA),E′

B = LRq(EB), based on the Eckart-Young Theorem [8], then we have:∥∥E′
A −EA

∥∥
2
+
∥∥E′

B −EB

∥∥
2
≤ σp+1(EA) + σq+1(EB) ≤ 2σ∗

kL+1. (23)

Based on (22) and (23), if we can construct Terra parameter ∆W (t) to make SA = E′
A and

SB = E′
B , then we will finish the proof. We refer to the SVD of E′

A and E′
B as:

E′
A = UAΛAVA, E′

B = UBΛBVB, (24)

We introduce QA,l and QB,l to divide E′
A and E′

B into L parts:
L∑

l=1

E′
AQA,l = E′

A

L∑
l=1

E′
BQB,l = E′

B, (25)

We define Ia:b as a diagonal matrix whose diagonal entries from the a-th to b-th position are 1 and
others are 0. Here we define the matrices (QA,l)

L
l=1 and (QB,l)

L
l=1 by:

QA,l = VAIR(l−1)+1:RlVA
T ,QB,l = 0, for Rl < p,

QA,l = VAIR(l−1)+1:pVA
T ,QB,l = VBI1:Rl−pVB

T , for p ≤ Rl < p+ l,

QA,l = 0,QB,l = VBIR(l−1)−p+1:Rl−pVB
T , for p+ l ≤ Rl.

(26)

It easy to find that rank(QA,l) + rank(QB,l) ≤ R. Based on Lemma 1, we have

rank
([
E′

AQA,l E′
BQB,l

])
≤ k, rank

([(
E′

AQA,l

)T (
E′

BQB,l

)T ]) ≤ k. (27)

Now, we show a feasible solution to make SA = E′
A and SB = E′

B follows these conditions:

∆̂W (0)l = (

L∏
i=l+1

W i)
−1E′

AQA,l(

l−1∏
i=1

(W i + ∆̂W (0)i))
−1, for all l ∈ [L], (28)

∆̂W (1)l = (

L∏
i=l+1

W i)
−1E′

BQB,l(

l−1∏
i=1

(W i + ∆̂W (1)i))
−1, for all l ∈ [L], (29)

rank
(
W l + ∆̂W (0)l

)
= rank

(
W l + ∆̂W (1)l

)
= D, for all l ∈ [L− 1]. (30)

Based on the assumptions of (W l)
L
l=1,

∏L
l=1 W l + LRr(EA), and

∏L
l=1 W l + LRr(EB) are

non-singular for all r ≤ k(L − 1) and the Eq. (28) and Eq. (29), it’s easy to prove that Eq. (30) is
satisfied [78].

Using the Lemma 2 and Eq. (27), we can show rank
([

∆̂W (0)l ∆̂W (1)l

])
≤ k by

rank
([

∆̂W (0)l ∆̂W (1)l

])

= rank

[E′
AQA,l E′

BQB,l

]  (
l−1∏
i=1

(W i + ∆̂W (0)i))
−1

(
l−1∏
i=1

(W i + ∆̂W (1)i))
−1




≤ rank
([
E′

AQA,l E
′
BQB,l

])
≤ k

Similarly, we can also get rank([ ̂
∆W (0)

T
l

̂
∆W (1)

T
l ]) ≤ k. Then, based on Theorem 1, for each

layer l, we can prove that there exists a Terra can satisfies ∆W (0)l = ∆̂W (0)l and ∆W (1)l =

∆̂W (1)l, thereby completing the proof.
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B Baselines and Implementation Details

Baselines. For the generative interpolation tasks, we use DGP [41], DDIM [55], DiffMorpher [80],
and LoRA Interpolation for comparison. DGP leverages large-scale pre-trained GAN [3] for im-
age morphing. DDIM means the DDIM inversion and latent interpolation as discussed in [55].
DiffMorpher performs image morphing between two images by interpolating corresponding two
LoRAs and latent noises. LoRA Interpolation represents directly training two LoRAs and performing
interpolation. For the UDA tasks, we compare with ERM [58] and various UDA methods, including
AFN [72], MDD [86], MCC [28], DANN [13], CDAN [35], SDAT [46], ELS [85], and MSGD [71].
We integrate the proposed Terra with the state-of-the-art UDA methods, i.e., MCC, and ELS. For
the DG tasks, we compare with ERM [58], MIRO [6], CDGA [22], SWAD [5], SAGM [65], and
DomainDiff [36]. Note that previous works [18, 5] have found that ERM is effective in DG and
outperforms previous DG methods. Thus, we integrate Terra with ERM and the state-of-the-art DG
methods, i.e., SWAD, and SAGM.

Implementation Details. The text-to-image diffusion model used in this paper is the Stable
Diffusion XL (SDXL) model [45]. The default resolutions of the generated images are 1024×1024.
The rank of LoRA is set as 16 for generative interpolation tasks and 32 for generation-based UDA
and DG tasks. All experiments are conducted on an NVIDIA A100 GPU with three random trials.

For generative interpolation tasks, the training data utilized is sourced from the repository of Diff-
morpher3 and the LoRAs from Hugging Face space “LoRA the Explorer”4. The training images can
be found in the supplementary materials provided. For morphing in styles, given images in crayon
and watercolor styles for training, we set t = 0 for training on the crayon images and t = 1 for
training on the watercolor images, with the prompt being “An image”. During the inference phase, by
uniformly transitioning t from 0 to 1 and using the text prompt “A high-speed train”, the generated
results are shown in the second row of Fig. 4. For morphing in subject, given five images of cats and
eight images of dogs, we set t = 0 for training on the cat images and t = 1 for training on the dog
images, with the prompt being “A pet”. During the inference phase, by uniformly transitioning t from
0 to 1 and using the text prompt “A pet on the lawn”, the generated results are shown in the last row
of Fig. 4.

For UDA tasks, We generate 50 images per category for the Office31 and Office-Home, and 1000
images per category for the VisDA datasets. For images translated from the source domain to the
target domain, we scale the long side of each source image to 1024 pixels, adjusting the short
side proportionally. Following [46], the ResNet-50 is used as the backbone on the Office31 and
Office-Home datasets, and the ResNet-101 [21] is used as the backbone on the VisDA-2017 dataset.
The learning rate scheduler follows [13]. For MCC+Terra and ELS+Terra, we follow the settings as
the original papers [28, 85].

For DG tasks, we generate 400, 160, and 400 images per category for the PACS, Office-Home, and
VLCS datasets, respectively. The dimension of parameter t is set as two, with each dimension sampled
from -2 to 2 at intervals of 0.1 to generate diverse samples. We employ ResNet-50 as the backbone
and adopt the same training, evaluation protocols, and hyperparameter search results as outlined in
[5, 65, 6]. ResNet-50 is also used as the backbone for t prediction network g(·).

Table 5: Possible forms of Terra and corresponding differentiable functions.

General Diagonal

Linear Exponential Cosine

F(W, t) tW + I exp(tW ) cos(tW )
d
dtF(W, t) W W · exp(tW ) − sin(tW )
F(W, 0) I Jr I

3https://github.com/Kevin-thu/DiffMorpher/
4https://huggingface.co/spaces/multimodalart/LoraTheExplorer
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We provide three possible forms of Terra listed in Table 5, i.e., Linear, Exponential, and Cosine. We
apply the Linear form of Terra for generative interpolation and UDA tasks and the “Cosine-Sine”
form, a variant of “Cosine”, for DG tasks. Specifically, the form of “Cosine-Sine” is cos(tW ) on
the diagonal of K(t), and sin(tW ) at other positions. To provide more insights, we elaborate on the
guiding principles behind the choice of these forms:

◦ Linear: The tW + I is the simplest form, related to a straight and steady flow, which is sufficient
for two domains according to Theorem 1 and 2. Its constant velocity of weight changes ensures
smooth morphing and is suitable for simple interpolating between two domains under the UDA
setting.

◦ Cosine-Sine: This form is adopted because of the bounded range and non-linearity of trigonometric
functions, preventing image collapse during generation and enabling a complex parameter manifold
to capture relationships between multiple domains. We recommend using this form in complex
scenarios, such as interpolating multiple domains in DG.

◦ Exponential: etW = I +
∑∞

k=1
tk

k!W
k, implemented using “torch.matrix_exp”, also defines a

smooth curve in a high-dimensional manifold. This form is more expressive and suitable for
handling multiple domains. Notably, it is related to three types of transformations: scalings,
rotations, and shears [14].

Table 6: Evaluation on the dimension of time variable t and Linear form (dim2) of Terra on the PACS
dataset under the DG setting. The best is in bold.

Method PACS
A C P S Avg

ERM 87.00±0.46 78.23±1.16 98.05±0.06 74.35±3.43 84.41
ERM+Terra (dim1) 88.29±1.35 82.36±0.46 97.53±0.28 73.31±1.50 85.37
ERM+Terra (dim2) 89.51±0.67 79.66±0.03 98.20±0.00 78.64±2.08 86.50
ERM+Terra (dim3) 89.26±1.70 81.72±2.22 97.94±0.30 76.11±1.11 86.26
ERM+Terra (Linear) 87.47±0.75 80.17±0.46 97.85±0.28 77.16±1.50 85.66

Empirically, the “Cosine-Sine” form of Terra brings better performance for DG compared with the
Linear form according to the results shown in Table 6. As can be seen, ERM+Terra with dimension 2
achieves the best average performance, thus we use 2 as the default dimension for DG tasks.

C More Experimental Results

C.1 Results on Generative Interpolation Tasks

DGP (GAN-based)

LoRA Interp.

Terra

DDIM

DiffMorpher

Terra + DiffM.

Figure 8: Qualitative results of image morphing using various methods. “Terra + DiffM.” integrates
Terra with DiffMorpher. As shown, our method generates smooth and natural intermediate images.

The qualitative comparisons of image morphing using various methods are shown in Fig. 8. We
perform more qualitative samples of our Terra in Fig. 9. These samples further demonstrate Terra’s
ability to handle morphing under various scenarios.

21



Figure 9: Supplementary samples of qualitative evaluation. The four rows display examples of
morphing in image pairs, styles, and objects (purple-to-dog bags, colorful-to-shiny sneakers).

Cartoon Photo Sketch Generated samples

Figure 10: Example images of the expanded domains on the PACS dataset under the DG setting.

C.2 Results on More Datasets

Table 7: Transfer accuracies (%) on the VisDA dataset under UDA setting. The best is in bold.

Method aero bicycle bus car horse knife motor person plant skate train truck mean

ERM [58] 81.71 22.46 54.08 76.21 74.83 10.69 83.81 18.71 80.88 28.66 79.66 5.98 51.47
DANN [13] 94.75 73.47 83.46 47.91 87.00 88.30 88.47 77.18 88.16 90.05 87.21 42.26 79.02
AFN [72] 93.13 54.76 81.03 69.74 92.36 75.88 92.11 73.83 93.16 55.55 90.48 23.63 74.64

CDAN [35] 94.55 74.41 82.22 58.92 90.56 96.22 89.71 78.90 86.11 89.06 84.81 43.42 80.74
MDD [86] 92.68 65.26 82.29 66.78 91.68 92.09 93.18 79.67 92.12 84.95 83.85 48.66 81.10
SDAT [46] 94.51 83.56 74.28 65.78 93.00 95.83 89.61 80.04 90.86 91.47 84.95 54.93 83.23
MSGD [71] 97.50 83.40 84.40 69.40 95.90 94.10 90.90 75.50 95.50 94.60 88.10 44.90 84.60

MCC [28] 95.26 86.14 77.12 69.98 92.83 94.84 86.52 77.78 90.26 90.98 85.68 52.52 83.32
MCC+Terra 96.20 87.27 78.77 70.59 94.18 95.49 85.08 85.48 92.24 93.20 86.26 59.88 85.39

ELS [85] 94.76 83.38 75.44 66.45 93.16 95.14 89.09 80.13 90.77 91.06 84.09 57.36 83.40
ELS+Terra 95.98 87.12 81.60 70.84 95.14 96.29 88.47 87.78 94.75 94.06 86.47 63.83 86.86
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Table 8: Transfer accuracies (%) on the Office31 dataset under the UDA setting. The best is in bold.
Method A→W D→W W→D A→D D→A W→A Avg

ERM [58] 77.07±0.11 96.60±0.00 99.20±0.00 81.08±1.22 64.11±0.15 64.01±0.11 80.35
DANN [13] 89.85±1.34 97.95±0.06 99.90±0.08 83.26±0.68 73.28±0.65 73.75±0.39 86.33
AFN [72] 91.82±0.63 98.77±0.07 100.00±0.00 95.12±0.53 72.43±0.50 70.71±0.32 88.14

CDAN [35] 92.42±1.75 98.62±0.18 100.00±0.00 91.44±1.19 74.61±0.79 72.80±0.45 88.32
MDD [86] 93.55±1.00 98.66±0.15 100.00±0.00 93.92±0.10 75.29±0.68 73.95±0.18 89.23
SDAT [46] 91.32±1.83 98.83±0.12 100.00±0.00 95.25±1.03 76.97±0.67 73.19±0.34 89.26
MSGD [71] 95.50±0.50 99.20±0.30 100.00±0.00 95.60±0.30 77.30±0.40 77.00±0.50 90.80

MCC [28] 94.09±0.38 98.32±0.08 99.67±0.09 94.25±1.47 75.89±0.50 75.46±0.20 89.61
MCC+Terra 94.55±0.06 99.03±0.06 100.00±0.00 96.46±0.09 78.64±0.18 79.37±0.12 91.34

ELS [85] 93.84±0.51 98.78±0.06 100.00±0.00 95.78±0.20 77.72±0.54 75.13±0.16 90.21
ELS+Terra 94.09±0.17 99.21±0.06 100.00±0.00 96.25±0.48 78.67±0.28 79.45±0.11 91.28

Table 9: Testing accuracies (%) on the VLCS dataset under the DG setting. The best is in bold.

Method VLCS
C L S V Avg

MIRO 98.10±0.69 64.05±1.59 73.31±1.78 76.36±0.76 77.95
ERM 97.76±1.06 63.11±1.50 72.17±0.29 76.56±2.87 77.40
ERM+Terra 98.79±0.03 65.54±1.07 71.04±0.45 77.66±0.43 78.25
SAGM 98.35±0.36 65.29±0.43 75.22±1.09 79.13±2.22 79.50
SAGM+Terra 99.21±0.53 66.52±0.31 73.95±0.30 80.80±0.31 80.12
SWAD 98.74±0.22 62.70±0.43 74.09±0.94 75.64±1.35 77.79
SWAD+Terra 98.94±0.27 63.98±0.02 73.91±0.23 80.19±0.26 79.26

The complete results on the VisDA dataset under the UDA setting are shown in Table 7. The results
on the Office31 dataset under the UDA setting are shown in Table 8, and the results on the VLCS
dataset under the DG setting are shown in Table 9. As can be seen, Terra is still effective in the two
datasets.

C.3 Results with More Baselines

Moreover, the results with CoVi and PMTrans are shown in Table 10. Notably, Terra consistently
improves performance in all tasks with those UDA methods, further verifying the effectiveness of our
method.

Table 10: Comparative analysis with two baseline methods on Office-Home under UDA setting.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

CoVi 58.50 78.10 80.00 68.10 80.00 77.00 66.40 60.20 82.10 76.60 63.60 86.50 73.10
CoVi+Terra 64.56 80.65 83.36 71.45 81.03 80.77 70.83 64.86 84.07 76.76 64.19 87.18 75.81

PMTrans 82.17 91.55 92.36 89.40 92.48 92.49 87.92 80.57 92.88 88.94 82.34 94.45 88.96
PMTrans+Terra 83.57 93.21 92.69 89.57 92.79 93.02 89.14 82.74 93.63 89.54 83.00 94.50 89.78

C.4 Comparison of Morphing Works

In addition, for a fair comparison of Terra’s effectiveness in expanding source domains that generalize
better, we include the comparison against off-the-shelf DG + morphing works on Office-Home. That
is, we train a LoRA for each domain and adopt LoRA Interp./DiffMorpher to interpolate. The results
shown in Table 11 verify the effectiveness of Terra, since Terra interpolates between domains instead
of images and thus better models the distributions in two domains.
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Table 11: Comparison of morphing works on Office-Home using the off-the-shelf method (SWAD)
under DG setting. Note that DiffMorpher exhibits lower performance due to the large gap between
image pairs, even within the same class.

Method Ar Cl Pr Rw Avg

SWAD 66.08 57.37 79.58 80.49 70.88
+DiffMorpher 64.06 57.43 77.91 81.04 70.11
+LoRA Interp. 67.23 58.06 80.09 81.33 71.68
+Terra 68.02 58.31 80.56 82.03 72.23

C.5 SDXL Prior

To further highlight the design advantages of Terra, we conduct a comparison with data augmentation
with SDXL’s prior knowledge. Specifically, we design several methods to synthesize data based on
the SDXL model and evaluate their effectiveness on UDA tasks:

(i) SDXL (random): We use the prompt “A [CLASS]” to generate samples for each class, where
[CLASS] denotes the placeholder for the label.

(ii) SDXL (styles): We first use the prompt “Generate 50 prompts describing diverse styles for
image generation” to ask GPT-4, and then use the prompt “A [CLASS], an everyday object in
office and home, in the style of [STYLE]” to generate samples, where [STYLE] denotes the
placeholder for style prompts generated by GPT-4 (e.g. “Classic”, “Modern”).

(iii) SDXL (target): Based on (ii), we use the name of the target domain (e.g. “Clipart”) to replace
the [STYLE] as the new placeholder for exploring the SDXL prior on the target domain.

(iv) SDXL (target styles): We use the prompt “Generate 50 prompts describing [TARGET] style
for image generation” to ask GPT-4 and obtain more detailed style prompts for synthesis.

(v) SDXL (selected): Inspired by [26], we use a confidence-based activate learning method to
filter out poor-quality and misclassified samples generated in (iv) and select valid samples.

The comparison results on Office-Home for UDA are shown in Table 12. Terra outperforms the
comparison methods, indicating that despite the boost in accuracy from target style design and active
learning, the prior knowledge is insufficient to align with the downstream tasks. This issue can be
further mitigated through finetuning with Terra, which demonstrates the design advantages of Terra.

Table 12: Comparison of target-like samples generation by SDXL prior on Office-Home based on
ELS under UDA setting.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

SDXL (random) 56.88 73.64 80.38 69.18 73.64 80.40 68.93 56.54 80.38 68.93 56.54 73.64 69.92
SDXL (styles) 55.23 77.09 80.26 68.11 77.09 80.26 68.11 55.23 80.45 68.11 55.23 77.04 70.18
SDXL (target) 59.70 75.51 82.26 66.67 75.51 82.26 66.67 59.70 82.26 66.67 59.70 75.51 71.04

SDXL (target styles) 60.76 79.52 81.68 70.95 79.52 81.68 70.95 60.76 81.68 70.95 60.76 79.52 73.23
SDXL (selected) 61.63 79.81 82.19 71.98 79.73 81.82 71.69 61.58 82.07 72.76 62.15 80.42 73.99

Terra 64.62 82.33 83.60 71.19 84.25 80.31 73.00 63.57 83.81 76.20 66.56 85.70 76.26

D Standard Deviations of Experiments

The standard deviations of three random experiments on the Office-Home, VisDA, and ablation studies
under UDA setting are shown in Tables 13, 14, and 15, respectively. Table 16 presents the standard
deviations on the PACS and OfficeHome datasets under DG setting.

E Comparison with Other LoRA Variants

In cross-domain learning based on MoLE [69], the process can be viewed as first training LoRAs on
different domains separately, followed by training a gating function to integrate the trained LoRAs.
Although both MoLE and Terra are designed for diffusion model customization, they differ in several
key aspects:
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Table 13: The standard deviation of three random experiments on Office-Home under UDA setting.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr

ERM [58] 0.25 0.26 0.42 0.17 0.20 0.15 0.07 0.17 0.05 0.34 0.33 0.01
DANN [13] 0.44 0.72 0.38 0.02 0.30 0.39 0.58 0.47 0.59 0.84 0.14 0.51
AFN [72] 0.16 0.30 0.06 0.23 0.31 0.14 0.32 0.15 0.02 0.19 0.18 0.22

CDAN [35] 0.25 0.62 0.22 0.37 0.58 0.30 0.57 0.36 0.16 0.33 0.23 0.35
MDD [86] 0.51 0.32 0.06 0.24 0.73 0.41 0.36 0.53 0.24 0.03 0.09 0.11
SDAT [46] 0.51 0.44 0.24 0.13 0.41 0.01 1.46 0.40 0.11 0.46 0.19 0.29

MCC [28] 0.59 0.22 0.16 0.27 0.52 0.16 0.16 0.38 0.25 0.35 0.35 0.23
MCC+Terra 0.21 0.11 0.14 0.25 0.28 0.18 0.18 0.29 0.25 0.15 0.06 0.11

ELS [85] 0.83 0.45 0.38 0.08 0.46 0.19 0.39 0.39 0.08 0.02 0.44 0.05
ELS+Terra 0.06 0.30 0.14 0.30 0.37 0.21 0.10 0.18 0.13 0.68 0.24 0.16

Table 14: The standard deviation of three random experiments on VisDA under UDA setting.

Method aero bicycle bus car horse knife motor person plant skate train truck

ERM [58] 9.90 2.64 3.26 2.20 1.35 3.60 1.41 1.03 1.80 3.97 0.79 0.67
DANN [13] 0.39 1.94 0.38 2.80 0.80 3.40 0.76 0.86 0.72 2.00 0.32 2.72
AFN [72] 0.69 3.84 1.80 2.55 1.48 2.51 0.48 2.08 2.47 3.93 1.11 1.27

CDAN [35] 0.38 3.72 2.55 1.36 0.53 0.52 0.14 2.58 0.67 0.49 2.61 2.43
MDD [86] 2.40 9.46 1.18 0.66 0.85 4.01 0.65 1.81 1.21 4.30 1.58 0.33
SDAT [46] 1.40 2.64 1.60 1.67 0.48 0.92 0.82 0.24 0.78 0.84 1.36 0.60

MCC [28] 0.12 0.92 2.91 0.39 0.28 0.54 0.80 0.87 0.15 0.77 0.55 2.25
MCC+Terra 0.21 0.59 0.12 0.69 0.60 0.60 0.56 0.35 0.40 0.35 0.47 0.88

ELS [85] 0.93 1.20 1.39 0.47 0.15 0.95 1.38 0.73 1.59 1.02 1.35 0.27
ELS+Terra 0.34 0.79 0.41 1.31 0.06 0.39 0.85 0.43 0.92 0.64 0.26 0.19

Table 15: The standard deviation of three random experiments of ablation studies of ELS+Terra on
Office-Home under UDA setting.

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr

DS → DT 0.83 0.45 0.38 0.08 0.46 0.19 0.39 0.39 0.08 0.02 0.44 0.05
DŜ → DT 0.31 0.09 0.22 0.06 0.13 0.34 0.33 0.15 0.24 0.13 0.01 0.08
DT̂ → DT 0.36 0.18 0.43 0.17 0.28 0.14 0.07 0.08 0.25 0.39 0.09 0.59
DE → DT 0.06 0.30 0.14 0.30 0.37 0.21 0.10 0.18 0.13 0.68 0.24 0.16

Table 16: The standard deviation on the PACS and OfficeHome datasets under DG setting.

Method PACS OfficeHome
A C P S Ar Cl Pr Rw

MIRO [6] 1.22 1.66 0.21 1.18 0.39 0.49 0.30 0.43
CDGA [22] 1.50 1.60 0.70 0.90 1.20 0.30 0.40 0.20
ERM [58] 0.46 1.16 0.06 3.43 0.72 0.63 0.34 0.49
ERM+DomainDiff [36] 1.60 0.00 0.00 0.90 0.40 0.60 0.60 0.90
ERM+Terra 0.75 1.57 0.37 3.47 0.15 0.74 0.15 0.14
SAGM [65] 0.86 1.48 0.74 2.49 0.33 0.79 0.38 0.06
SAGM+Terra 0.12 0.61 0.30 1.86 0.67 0.63 0.58 0.36
SWAD [5] 0.08 0.73 0.04 0.38 0.17 0.17 0.10 0.65
SWAD+Terra 0.10 0.03 0.28 0.83 0.28 0.21 0.45 0.37

Objective: MoLE focuses on combining multiple pre-trained LoRAs to achieve multi-concept
customization, whereas Terra aims to learn a single adapter structure that can capture multiple
domains and construct a domain flow for generation.

Training: MoLE only optimizes the gating function to preserve the characteristics of trained LoRAs
on different domains, whereas Terra participates in the diffusion fine-tuning stage and aims to learn
domain-general knowledge and domain-specific knowledge, allowing for control over different
domains through a time variable.
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Expressiveness: MoLE uses a separate gating function for each LoRA layer, which requires entropy-
based balancing to resolve conflicts when combining multiple LoRAs. In contrast, Terra achieves
domain adaptation through a single time variable t, making it more stable. For two-domain interpola-
tion, Terra and MoLE have similar expressiveness. Considering two domains with time variables t1
and t2, we have

∆W (αt1 + (1− α)t2) = BK(αt1 + (1− α)t2)A

= (αt1 + (1− α)t2)BWA+BA

= α∆W (t1) + (1− α)∆W (t2).

(31)

This is equivalent to the linear arithmetic composition in MoLE.

Finally, the relation between MoLE and Terra is similar to that between Gaussian Mixture Model
(GMM) and Gaussian Process (GP). GMM composes a complex distribution by multiple Gaussian
distributions, and GP is a distribution over functions within a continuous domain (such as time).
Analogously, MoLE excels at composition capabilities, while Terra excels at constructing a manifold.

F Broader Impact and Ethics Statements

The ability to generate realistic images can be misused to create deepfakes or other deceptive content,
potentially leading to misinformation and privacy violations. While our work has the potential to
advance the field of PEFT and generation-based cross-domain learning, it is crucial to address the
associated risks, particularly in terms of ethical considerations.

G Limitation and Failure Cases

Despite showing promising results in data-augmentation-based UDA and DG, Terra has some
limitations. Generating images via Terra for data augmentation requires additional storage space. For
UDA tasks, we generate target domain samples and transform source domain samples into the target
domain, without utilizing Terra’s ability to generate intermediate domains. Note that the intermediate
domain can be leveraged by using methods in gradual domain adaptation [31], but we have not
explored this due to different settings. We leave it for future studies. Additionally, while we have
adapted to downstream domains through fine-tuning, our model may still be influenced by the prior
of the foundation model to some extent.

We acknowledge that a small number of generated images may exhibit poor quality due to the conflict
between SD prior knowledge and the knowledge required for downstream tasks. We showcase some
failure cases in Fig. 11. However, the number of those poor-quality images is small, and it does not
affect the overall performance of the model.

Chair TableComputer Webcam

Class Confusion Incomplete Content 

Spoon

Noisy Backgrounds

Bottle Drill Telephone

Strong Prompt Influences

Figure 11: Illustration of failure cases in generated samples.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See Abstract and last two paragraphs in Introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 3.2 and Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See supplemental material for the code and Appendix B for the experimental
details.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code and data can be found in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details can be found in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The standard deviation of three random experiments with different seeds are
shown in Table 8, 9 and 13-16.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read and complied with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There are no such risks in this paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See the cited reference and supplemental material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper dos not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not human subjects research.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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