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Abstract

Decomposing complex problems into smaller
stages has proven to be highly effective in en-
hancing the reasoning capabilities of Large Lan-
guage Models (LLMs). However, as the reason-
ing process becomes more intricate, uncertain-
ties and errors tend to accumulate, making it
challenging to achieve precise final outcomes.
Overcoming this challenge and addressing un-
certainty in multi-step reasoning necessitates
innovative approaches. In this regard, we pro-
pose a novel macro-micro self-training method.
Our approach leverages self-evaluation and
self-modification to enable LLMs to contin-
uously refine their outputs. Through self-
evaluation, LLMs assess the accuracy of their
generated outputs, while the critical aspect
of self-modification allows for iterative refine-
ment of these outputs. To ensure comprehen-
sive refinement, we combine macro evaluation
and modification of the entire code structure
with micro analysis, where each line of code is
individually assessed and refined in line with
the problem statement. This dual approach en-
sures coherent handling of both syntax and se-
mantics. Empirically, our results demonstrate
the effectiveness of our approach, as it outper-
forms existing methods across all settings. Our
method enables LLMs to achieve new levels of
reasoning capability, providing superior perfor-
mance in various tasks.

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022)
have revolutionized Natural Language Processing
(NLP), showcasing a broad spectrum of capabil-
ities, such as text completion, translation, cod-
ing, intricate reasoning tasks (Zhang et al., 2021;
Sivakumar and Moosavi, 2023; Mialon et al., 2023).
Among them, the reasoning task, regarded as a
representative task for evaluating LLM’s intelli-
gence, is widely studied. Specifically, research has
delved into how LLMs reflect human-like content

effects in common-sense reasoning, including ab-
stract reasoning, understanding real-world knowl-
edge (Dasgupta et al., 2023), coupling with logic
programming (Yang et al., 2023), etc. Collectively,
these studies highlight the evolving sophistication
of LLMs in mimicking and potentially surpassing
human-level reasoning in various contexts. How-
ever, mathematical reasoning remains a challenge
for these models (Xu, 2023; Luo et al., 2023).

Various prompting approaches have been pro-
posed to enhance the reasoning ability of LLMs.
Chain-of-Thought (CoT) prompting has been a
notable advancement in improving LLMs’ mathe-
matical reasoning capabilities, facilitating step-by-
step problem-solving (Wei et al., 2022). Similarly,
Least-to-Most prompting breaks down complex
problems into simpler, more manageable subprob-
lems (Zhou et al., 2022). Program of Thoughts
(PoT) and Program-Aided Language models (PAL)
represent further progress, combining neural LLMs
with symbolic interpreters to enhance mathemati-
cal reasoning (Chen et al., 2022; Gao et al., 2022).
However, these reasoning methods often make er-
rors in various aspects, including logic organization
and calculation details, which underscore the need
for a robust self-enhancement mechanism. In this
context, (Xie et al., 2023) showcases the potential
of self-evaluation guided beam search as a means
to navigate the vast reasoning space with improved
accuracy. Additionally, (Jiao et al., 2023) utilizes
self-supervision through in-context learning to en-
hance reasoning capabilities. Furthermore, (Gul-
cehre et al., 2023) adopts a reinforcement learn-
ing framework to facilitate self-training. However,
these works can only solve step-by-step calculation
errors and ignore errors in overall logic.

To overcome this challenge, we propose a novel
methodology called Macro-Micro Self-Training
(M2ST) to enhance the mathematical capabilities
of LLMs. M2 ST incorporates self-training at both
the macro and micro levels, with the macro level
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Figure 1: Overall Workflow of Macro-Micro Self-Training (M2 SF).

prioritizing overall reasoning logic and the mi-
cro level concentrating on one-step calculation.
The self-training process consists of two essential
components: self-evaluation and self-modification.
Through self-evaluation, LLMs can assess the
accuracy of their generated outputs, while self-
modification plays a critical role in iteratively refin-
ing the output. Figure 1 shows the detailed work-
flow of M2ST. Specifically, when inputting a math
word question to LLM, we first get a Python code
to solve it by PoT. Then M2ST will enhance this
code from both macro and micro level. At the
micro level, we utilize LLM for self-training pur-
poses, enabling self-evaluation of individual lines
to identify errors and subsequently self-modify
them. Additionally, at the macro level, we em-
ploy LLM to evaluate the code as a whole, deter-
mining if any logical errors exist, and performing
self-modifications if necessary. Moreover, in or-
der to integrate the improved codes obtained from
these two steps, we employ LLM itself to select the
superior version. This selection process is accom-
plished through a zero-shot prompt approach in-
spired by (Kadavath et al., 2022). The self-training
process will undergo multiple iterations until con-
vergence is achieved in the training. Our approach
has resulted in respectable improvements across
various reasoning tasks. For instance, by imple-
menting on Codex model (Chen et al., 2021), we
achieve accuracies of 83.4%, 59.3%, and 89.8%
on the GSMS8K, AQuA, and SVAMP benchmarks,

compared to the vanilla PoT reasoning-enhanced
Codex performance of 71.6%, 47.3%, and 82.4%,
respectively. Our further analysis on Llama-2 (Tou-
vron et al., 2023) demonstrates the efficiency of
our method in surpassing the self-training baseline
under equivalent computational budgets.

2 Methods

2.1 Background: Reasoning via Code

Starting from CoT, reasoning in multi-steps is
widely adopted for math word problems and com-
mon sense question-answering (Wei et al., 2023;
Lyu et al., 2023; Yoran et al., 2023). Among them,
PAL and PoT introduce solving math problems via
code through prompting. Specifically, PoT utilizes
LLMs, primarily Codex, to articulate reasoning
steps that include both textual and programming
language statements, culminating in an executable
program. This program is then processed by an ex-
ternal interpreter, effectively decoupling the compu-
tational workload from the reasoning process. Such
segregation allows PoT to circumvent the computa-
tional limitations of LLMs, leveraging the precision
of program interpreters for mathematical evalua-
tions and thereby enhancing the accuracy and effi-
ciency of solving numerical reasoning tasks (Chen
et al., 2023; Gao et al., 2023). In formal terms,
when presented with a mathematical word prob-
lem P, PoT (Chen et al., 2023) utilizes prompts
to guide the LLM in generating a Python code
solution denoted as C' = LLM (P|rwpor). Here,



C ={C,---,C,} represents the code, with each
C; representing a single line of code, and 7p,r
represents the few-shots prompt of PoT.

Self-evaluation Mechanisms in LLMs The
model’s capacity to assess its own accuracy, uti-
lizing metrics such as Expected Calibration Error
(ECE), serves as the foundation for self-evaluation
processes. In the rapidly evolving field of machine
learning, LL.Ms have demonstrated inherent cali-
bration properties, enabling them to introspectively
evaluate their own outputs. This introspective capa-
bility proves particularly valuable in tasks involv-
ing multiple-choice questions, where calibration
metrics like ECE effectively showcase the model’s
proficiency (Kadavath et al., 2022). The effective-
ness of this mechanism depends not only on the
model’s architecture but also on the complexity of
the task and the formulation of the prompt.

2.2 Macro-Micro Self-Training

M2ST integrates self-training at both the macro
and micro levels, where the macro level empha-
sizes overall reasoning logic while the micro level
focuses on one-step calculations. We proceed by
providing a formal definition and explanation of
these two self-training phases.

Macro Self-Training In macro self-training, our
main focus lies in the comprehensive reasoning
logic of the Python code. This encompasses under-
standing and rectifying errors such as miscalculat-
ing profits and improperly formulating equations to
determine the number of bags sold. The subsequent
example illustrates a specific flaw in the reasoning
logic, where a correct equation is not established.

1 Code to solve the math pr
def calculate_bags_sold(selling_price, total_profit,
profit_percentage) :
profit_per_bag = (profit_percentage / 100)
* selling_price
number_of_bags = total_profit / profit_per_bag
return number_of_bags

total_profit = 3
profit_percentage

bags_sold = calculate_bags_sold(selling_price,
total_profit, profit_percentage)
print (£"The number of bags sold is: {bags_sold}")

To evaluate the overall logic error, in ¢-th itera-
tion of the training phase, where the Python code

of the solution to the question is denoted as Ct,
self-evaluation is achieved by

Macro_SE = LLM(e| P, Cy, mpra-sg), (1)

where 7y 4—sE is the self-evaluation prompt as
shown in Table 1 and ¢; is the evaluation at this
iteration in the form of “Correct / Incorrect”. For
the aforementioned example, the format of e, is as
follows.

With the self-evaluation result, LLM is em-
ployed to achieve self-modification, denoted as

Macro_SM = LLM(Ci41|P, Ct, er,mamra—sm ),  (2)

where 7yr 4— g is the self-modification prompt as
shown in Table 1 and C}%, is the new modified
code. For the aforementioned example, Cyy is as
follows.

def solution():
bag_sell = Symbol('bag_sell', positive=True)

selling_price = 100
profit = 3000
profit_percentage = 25
solution = solve_it (bag_sell % selling_price
x profit_percentage / 100 - profit, bag_sell)
ans = solution[bag_sell]

return ans

Micro Self-Training In micro self-training, our
main focus lies on each calculation in the Python
code. This includes understanding and rectifying
errors, such as using incorrect numbers or perform-
ing incorrect calculations. The subsequent example
illustrates a specific flaw in the incorrect calcula-
tion equation.

def solution():
hours_to_write_one_article = 4
num_articles_on_monday = 5
num_articles_on_tuesday =
num_articles_on_monday * 2 / 5



Math Problem: Two friends are eating a jar full of candies. Had P eaten alone, it would have taken him 10 minutes to finish the
candies in the jar. Had Q eaten alone, it would have taken her 5 minutes to finish half the jar. Since both of them are eating
simultaneously, how many minutes would it take them to empty the jar?

!

Initial Python Code Generated

Self-Evaluation + Self-Modification (Both Micro and Macro)

Output (A) RefinedCode Micro
def solution():

P = Symbol('P',

Q = symbol('Q’,

time taken by P 10

time_taken_by Q 5}

solution = solve_it ([P - time_taken by P, Q -
time_taken_by Q], [P, QI])

ans = solution[Q]

return ans

positive=True)
positive=True)

i

Output (B) RefinedCode Macro
def solution():

P = Symbol('P', positive=True)

Q = Symbol('Q', positive=True)

time_ taken by P = 10

time_ taken by Q9 = 5

solution = solve it ([P - time taken by P, Q -
time taken by Q1, [P, QI)

ans = solution[P]

return ans

Multiple- Choice Question Sent to the LLM: Which Python code can answer the question?

LLM Chooses One Output and Explains Why
Answer: (A)

Explanation: The correct answer is (A). The question is asking for the time taken by Q to finish the

answer is the value of Q.

|

jar. Hence, the

Figure 2: Illustration of the Combination Method.

num_articles_on_wednesday =
num_articles_on_tuesday x 2
total_num_articles = num_articles_on_monday
+ num_articles_on_tuesday
+ num_articles_on_wednesday
ans = total_num_articles
* hours_to_write_one_article
return ans

To evaluate the one-line calculation error, in ¢-th
iteration of the training phase, where the Python
code of the solution to the question is denoted as
Ci = {C’ft)7 e 7C’r(f)}, where Ci(t) represents the
t-th line code, self-evaluation is achieved by

Micro_SE = LLM(e\"|P,Cy, mar1-s8), ()

where myr7—gE is the self-evaluation prompt as
shown in Table 1 and egt) is the evaluation at this
iteration in the form of “Correct / Incorrect”. For

the aforementioned example, the format of e is.

With the self-evaluation result, LLM is em-
ployed to achieve self-modification, denoted as

Micro_SM = LLM(C V| P, Cy el marr—sa), (4)

where 77— g 1S the self-modification prompt as
shown in Table 1 and C’ftﬂ) is the new modified
code. For the aforementioned example, Cyy1 is as
follows.

# Fix

r the errors 1in ve code
def solution():
average_hour_to_write_article = 4
num_articles_on_monday = 5
num_articles_on_tuesday = num_articles_on_monday
* 2/ 5 + num_articles_on_monday
num_articles_on_wednesday
= num_articles_on_tuesday * 2
total_num_articles = num_articles_on_monday
+ num_articles_on_tuesday
+ num_articles_on_wednesday
ans = total_num_articles
+ average_hour_to_write_article

return ans

Combination With two answers modified at the
macro and micro levels, it is necessary to propose
a method for combining them into a single answer
that represents the optimized result for this iteration.
One intuitive approach is to merge these two steps
sequentially, where the code is first passed through
one stage and then pushed into another stage. How-
ever, experimental results have also confirmed that
this approach leads to lower results due to the ac-
cumulation of errors at each stage. Therefore, we
propose combining the two codes by selecting one
with the assistance of LLM, which is done by

LLM(Ct41|P, Macro_SM, Micro_SM, Tarerge), (5)

where 7 serge Tepresents the prompt used to com-
bine two codes, as illustrated in Table 1. Further-
more, Figure 2 provides a concrete example for
further clarification.

3 Experiments

3.1 Setup

Benchmarks. In our research, our primary objec-
tive was to enhance the reasoning abilities of LLMs



Task

Few-Shots Prompt

Math Problem: {question}
# Python code, return ans

Micro Self-Evaluation {python code}

The calculation: {one line code} is (A) Correct (B) Incorrect
Answer: (A) Correct / (B) Incorrect, because {reason}

Math Problem: {question}
# Python code, return ans

Micro Self-Modification {python code}

# The {one line code} is incorrect, because {reason}
# Modify above {one line code}

Math Problem: {question}
# Python code, return ans

Macro Self-Evaluation {python code}

Is the Python code (A) Correct (B) Incorrect
Answer: (A) Correct / (B) Incorrect, because {reason}

Math Problem: {question}
# Python code, return ans

Macro Self-Modification {python code}

# The overall Python code is incorrect, because {reason}
# Modify above Python code

Math Problem: {question}
(A) {python code} (B) {python code}

Combine Macro and Micro  Answer (A) / (B)

Explanation: The correct answer is {correct answer} because

Table 1: Few-shots prompts for self-evaluation and self-modification in the micro and macro level.

specifically for solving math word problems. To ac-
complish this, we utilized a selection of diverse and
challenging datasets, namely GSM8K (Cobbe et al.,
2021), AQuA (Ling et al., 2017), SVAMP (Patel
et al., 2021), and TabWMP (Lu et al., 2023). Each
dataset possesses distinct characteristics and com-
plexities, providing valuable opportunities to test
and enhance various aspects of LLMs.

Baselines. We consider two types of baselines:
(1) Chain-of-Thought (CoT) (Wei et al., 2022)
prompting in free-text reasoning and (2) Program-
Aided Language models (PAL) (Ling et al., 2017)
and Program-of-Thought (PoT) (Chen et al., 2022)
prompting in program-aided reasoning. In addition
to these baselines, we employ self-training tech-
niques, utilizing (4) Self-Evaluation Guided Beam
Search (SEGBS) (Xie et al., 2023), which lever-
ages self-evaluation as a signal during beam search,
and (5) LogicLLM (Jiao et al., 2023), which em-
ploys self-supervision through in-context learning
to enhance reasoning capabilities. To facilitate self-
evaluation, we adopt a task formulation similar to
multiple-choice question answering, following the
approach outlined by Kadavath et al. (2022).

Prompt Detailed settings of few-shot prompts
for self-evaluation and self-modification in the mi-
cro and macro level are shown in Table 1.

Backbone Models. We employed a thorough
testing approach using both open-source and
closed-source LLMs as the backbone models. For
the open-source category, we utilized Vicuna-13B
vl.5 (Zheng et al., 2023), which is a chat model
fine-tuned on the LLaMa-2 (Touvron et al., 2023)
framework. In the closed-source category, we em-
ployed Code-Davinci-002 and ChatGPT (gpt-3.5-
turbo-0613) (OpenAl, 2022), both built on the foun-
dation of GPT-3 (Brown et al., 2020).

Hyperparameters The only hyper-parameter re-
quiring tuning in our approach is the number of
training iterations. Since all four tasks we evalu-
ate are reasoning tasks, we select the validation
set of GSM8K to fine-tune this parameter for each
model. Once optimized on the GSMS8K validation
set, we generalize the chosen number of training
iterations across all tasks. Moreover, we select PoT
as the foundational method for generating the ini-
tial Python code due to its superior stability and
performance compared to PAL.

3.2 Main Results

Performance Across Different Methods and
Models The empirical results outlined in Table 2
illustrates the performance enhancements brought
about by the M2 ST approach across various mod-
els. In the “code-davinci-002” model, M2ST sig-



Models Method | GSMBK AQuA  SVAMP TabWMP
CoT 65.6 453 74.8 65.2
PAL 72.0 - 79.4 ;
. PoT 71.6 54.1 85.2 732
Code-Davinci-002  gpapg 80.2 55.9 89.6 79.1
LogicLLM | 762 473 82.4 69.7

M2SF 83.472.2 593134 89.810.2 81.912.8
CoT 40.7 29.4 48.4 415
PAL 49.1 - 53.1 -
. PoT 48.6 32.9 53.2 443
Vicuna-13b v1.5 SEGBS 52.3 332 56.8 46.2
LogicLLM | 452 30.4 50.6 4.7

M2ST 55.913.6  34.212.0 579111  49.413.2
CoT 79.4 53.1 79.3 76.2
PAL 81.6 X 85.8 R
PoT 82.3 57.2 86.6 79.5
ChatGPT SEGBS 84.3 59.5 88.4 82.7
LogicLLM | 80.7 55.9 83.3 78.4

M2ST 86.512.2 62.673.1 89.210.8 84.812.1

Table 2: Main results of M2 ST on reasoning tasks GSM8K, AQuA, SVAMP, TabWMP under Code-davinci-002,

Vicuna-13b v1.5 and ChatGPT.

nificantly outperforms other methods, achieving re-
markable improvements with an accuracy increase
of 2.2% on GSMS8K, 3.4% on AQuA, 0.2% on
SVAMP, and 2.8% on TabWMP compared to the
next best method, SEGBS. This underscores the ef-
ficacy of the M2 ST methodology in refining LLMs’
reasoning processes through its innovative evalua-
tion and modification strategy.

Consistency Across Backbone Models Analy-
sis of the M2SF method across different models,
including “Vicuna-13b v1.5” and “ChatGPT”, re-
veals consistent performance enhancement. For
instance, within the Vicuna-13b v1.5 model, M2ST
demonstrates significant accuracy improvements
of 3.6% on GSMS8K, 2.0% on AQuA, 1.1% on
SVAMP, and 3.2% on TabWMP, over SEGBS. Sim-
ilarly, in the ChatGPT model, M2ST leads with an
accuracy increase of 2.2% on GSM8K, 3.1% on
AQuA, 0.8% on SVAMP, and 2.1% on TabWMP.
These results highlight the robustness and adapt-
ability of the M2 ST approach across various LLM
architectures, marking a significant step forward in
enhancing LLM reasoning capabilities.

3.3 Further Analysis

Micro and Macro Only. To demonstrate the ef-
fectiveness of combining macro and micro self-
training, we conduct an ablation analysis by com-
paring its performance with that of single-phrase
self-training. The detailed results of this analysis
can be found in Table 3. In this comparison, we

consider SEGBS as the baseline since it represents
a special case of micro-only self-training without
self-modification.

Our findings reveal that both micro-only and
macro-only approaches consistently outperform
PoT and PAL, providing evidence for the effec-
tiveness of self-training. Specifically, in the case
of code-davinci-002, micro-only achieves an av-
erage performance improvement of 3.1% across
the four tasks compared to PoT, while macro-only
demonstrates an average performance increase of
4.3% across the same tasks compared to PoT. Nev-
ertheless, it is worth noting that both micro-only
and macro-only approaches perform inferiorly to
SEGBS. This outcome is expected since SEGBS
utilizes beam search, which significantly expands
the search space, allowing for more comprehensive
exploration.

However, the performance of M2ST surpasses
that of SEGBS, providing compelling evidence
for the necessity and effectiveness of combining
macro and micro self-training. Specifically, M2ST
achieves an average improvement of 2.7% over the
maximum performance between micro-only and
macro-only self-training under code-davinci-002.
Moreover, when considering the minimum perfor-
mance between micro-only and macro-only self-
training, M2 ST exhibits an average improvement
of 4.6%. These results further highlight the advan-
tages of integrating macro and micro self-training
within the M2 ST framework.



Models Method \ GSMSK AQuA SVAMP TabWMP
PAL 72.0 - 79.4 -
PoT 71.6 54.1 85.2 73.2
Code-Davinci-002 SEGBS 80.2 55.9 89.6 79.1
Micro-Only | 78.4/1.8 52.6/3.3 88214 77.8/1.3
Macro-Only | 77.5/2.7 56.510.6 87.3/2.3 79.410.3
M2SF 83.412.2 59.313.4 89.870.2 81.912.8
PAL 49.1 - 53.1 -
PoT 48.6 32.9 53.2 443
Vicuna-13b v1.5 SEGBS 52.3 332 56.8 46.2
Micro-Only | 51.2/1.1 31.7)1.5 55.6/1.2 453]0.9
Macro-Only | 50.8/1.5 33.1/0.1 54.5]2.3 45.1]1.1
M2ST 55.913.6 34.212.0 57.971.1 49.413.2
PAL 81.6 - 85.8 -
PoT 82.3 57.2 86.6 79.5
ChatGPT SEGBS 84.3 59.5 88.4 82.7
Micro-Only | 84.510.2 58.9/0.6 88.770.3 82.1/0.6
Macro-Only | 83.0/1.3 57.3]/2.2 87.2[1.2 823,04
M2ST 86.512.2 62.613.1 89.270.8 84.812.1

Table 3: Ablation analysis on micro-only and macro-only. PAL and PoT are listed to illustrate the effectiveness of
self-training. | represents accuracy increases compared to SEGBS while | represents the opposite.

Macro and Micro One by One. Instead of se-
lecting either macro or micro self-training with
prompts, an intuitive method involves subjecting
the Python code to both self-training methods se-
quentially. To validate the effectiveness of this
selection approach over the sequential method, we
perform a corresponding ablation analysis. This
analysis aims to verify the validity of the selection
process rather than the sequential application of
the two self-training methods. Detailed results are
shown in Table 4.

Our findings demonstrate that regardless of
whether micro self-training is performed first or
macro self-training is performed first, the sequen-
tial application of these two steps consistently
yields inferior performance compared to perform-
ing both steps individually. Specifically, the micro-
macro sequence leads to a performance decrease
of 2.3%, while the macro-micro sequence results
in a performance decrease of 2.7%. We attribute
this decline in performance to the accumulation
of errors at each step. Therefore, the selection ap-
proach, where one of the methods is chosen, avoids
this problem and consistently delivers better perfor-
mance.

Training Iteration. As the M2ST method is
based on self-training, it is of utmost importance
to establish the criteria for convergence. To accom-
plish this, we choose the validation set of GSM8K
and fine-tune the convergence parameter for each

model. After optimizing this parameter on the
GSMBSK validation set, we apply the selected num-
ber of training iterations to all tasks in a general-
ized manner. In order to examine the impact of
this hyper-parameter on performance, we conduct
a comprehensive ablation analysis, the results of
which are depicted in the following Figure 3 and
Figure 4. We choose the number of iterations in
the range [0, 10] and test on four reasoning tasks.
We find that for the code-davinci-002 model, the
optimal performance is achieved with 5 iterations,
while for the ChatGPT model, the best performance
occurs with 3 iterations. Beyond these optimal
numbers, the performance starts to decline due to
overfitting and the accumulation of errors. It is
crucial to strike a balance between the number of
iterations and performance to avoid such issues.

4 Related Work

Calibration and Self-Evaluation in Large Lan-
guage Models LILMs have broad knowledge but
face challenges with calibration—aligning predic-
tions with actual outcomes—a critical concern
in high-stakes fields like healthcare and finance
(Ouyang et al., 2022). Studies indicate that even
advanced LLMs struggle with calibration, empha-
sizing the need for effective solutions (Jiang et al.,
2021; Liang et al., 2023). Research has been
geared towards enhancing LLMs’ self-assessment
and calibration. (Kadavath et al., 2022) show that



Models Method | GSMSK AQuA SVAMP TabWMP
Micro-Only | 78.4 52.6 88.2 77.8
Macro-Only | 77.5 56.5 87.3 79.4
Code-Davinci-002  Micro-Macro | 76.8/1.6  51.3/3.9 87.6/0.6 76.5/2.9
Macro-Micro | 75.3/3.1 54.7/1.8 86.1/2.1 75.6/3.8
M2SF 83.415.0 59.312.8 89.871.6 81.912.5
Micro-Only | 51.2 31.7 55.6 453
Macro-Only | 50.8 33.1 54.5 45.1
. Micro-Macro | 50.8/0.4 30.3/2.8 53.2[2.4 44.7,0.6
Vieuna-13b VIS \p cro-Micro | 50.310.0 298,33 534120 435,16
M2ST 55.914.7 342711.1 579123 494714.1
Micro-Only | 84.5 58.9 88.7 82.1
Macro-Only | 83.0 57.3 87.2 82.3
Micro-Macro | 83.7/0.8 56.7/2.2 854/3.3 81.6/0.7
ChatGPT Macro-Micro | 823/2.2 565,24 86.1,2.6  80.9.1.4
M2ST 86.512.0 62.613.7 89.270.5 84.812.5

Table 4: Ablation analysis on micro-macro and macro-micro. Micro-only and macro-only are listed for comparison.
" represents accuracy increases compared to the maximum between micro-only and macro-only while | represents

the opposite.
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Figure 3: Accuracy of Code-Davinci-002 on four tasks
with different numbers of iterations.
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Figure 4: Accuracy of Vicuna-13b-v1.5 on two tasks
with different numbers of iterations.

larger models can reliably evaluate their output
across tasks. (Jain et al., 2023) introduce a self-
supervised method for assessing LLM behavior on
real-world data. (Zhu et al., 2023) explore how
training influences model calibration, and (Zhao
et al., 2023) propose a self-supervision framework
for automatic LLM calibration and error correction,
boosting LLLM accuracy and reliability in sensitive
applications without manual intervention.

Self Training Self-training, a semi-supervised
learning paradigm, has been pivotal in advanc-
ing LLM capabilities. The key idea is to assign
pseudo labels from a learned classifier to unlabeled
data, and use these pseudo-labeled examples to
further improve the original model training (He
et al., 2020; Zhang et al., 2022). (Huang et al.,
2022)’s study that demonstrated LLMs’ ability to
self-improve using only unlabeled datasets. In ad-
dition, the emergence of Reinforced Self-Training
(ReST) showcases a novel stride in aligning LLMs
with human preferences, particularly in the realm
of language modeling (Gulcehre et al., 2023). Re-
cent methodologies like Self-Instruct and CRITIC
further enhance LLMs’ autonomy in generating,
critiquing, and refining outputs (Paul et al., 2024;
Wang et al., 2022; Gou et al., 2023).

5 Conclusion

In conclusion, our proposed Macro-Micro Self-
Training (M2ST) method marks a significant ad-
vancement in the domain of LLMs, particularly in
enhancing their mathematical reasoning capabili-
ties. By ingeniously integrating macro and micro
levels of self-training, our methodology not only
addresses errors in logic and calculation at their re-
spective scales but also harmonizes them through a
robust selection process, thereby mitigating the ac-
cumulation of inaccuracies. Empirical evaluations
across diverse benchmarks and models underscore
the superiority of M2ST over existing approaches,
demonstrating its effectiveness in refining LLMs’
reasoning processes for a variety of complex tasks.



Limitation

One limitation of the proposed method is its re-
stricted applicability to scenarios that involve incre-
mental reasoning, where problems can be broken
down into smaller steps. This limits its usabil-
ity in complex, non-linear problems that require
holistic analysis or simultaneous consideration of
multiple factors. Additionally, the method’s se-
quential nature leads to a decrease in reasoning
speed compared to parallel or concurrent reason-
ing approaches, making it less suitable for time-
critical applications or situations that demand real-
time decision-making. These limitations should be
taken into account when considering the implemen-
tation of the method.
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