Enhance Reasoning of Large Language Models via Macro-Micro
Self-Training

Anonymous ACL submission

Abstract

Decomposing complex problems into smaller
stages has proven to be highly effective in en-
hancing the reasoning capabilities of Large Lan-
guage Models (LLMs). However, as the reason-
ing process becomes more intricate, uncertain-
ties and errors tend to accumulate, making it
challenging to achieve precise final outcomes.
Overcoming this challenge and addressing un-
certainty in multi-step reasoning necessitates
innovative approaches. In this regard, we pro-
pose a novel macro-micro self-training method.
Our approach leverages self-evaluation and
self-modification to enable LLMs to contin-
uously refine their outputs. Through self-
evaluation, LLMs assess the accuracy of their
generated outputs, while the critical aspect
of self-modification allows for iterative refine-
ment of these outputs. To ensure comprehen-
sive refinement, we combine macro evaluation
and modification of the entire code structure
with micro analysis, where each line of code is
individually assessed and refined in line with
the problem statement. This dual approach en-
sures coherent handling of both syntax and se-
mantics. Empirically, our results demonstrate
the effectiveness of our approach, as it outper-
forms existing methods across all settings. Our
method enables LLMs to achieve new levels of
reasoning capability, providing superior perfor-
mance in various tasks.

1 Introduction

Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020; Chowdhery et al., 2022)
have revolutionized Natural Language Processing
(NLP), showcasing a broad spectrum of capabil-
ities, such as text completion, translation, cod-
ing, intricate reasoning tasks (Zhang et al., 2021;
Sivakumar and Moosavi, 2023; Mialon et al., 2023).
Among them, the reasoning task, regarded as a
representative task for evaluating LLM’s intelli-
gence, is widely studied. Specifically, research has
delved into how LLMs reflect human-like content

effects in common-sense reasoning, including ab-
stract reasoning, understanding real-world knowl-
edge (Dasgupta et al., 2023), coupling with logic
programming (Yang et al., 2023), etc. Collectively,
these studies highlight the evolving sophistication
of LLMs in mimicking and potentially surpassing
human-level reasoning in various contexts. How-
ever, mathematical reasoning remains a challenge
for these models (Xu, 2023; Luo et al., 2023).

Various prompting approaches have been pro-
posed to enhance the reasoning ability of LLMs.
Chain-of-Thought (CoT) prompting has been a
notable advancement in improving LLMs’ mathe-
matical reasoning capabilities, facilitating step-by-
step problem-solving (Wei et al., 2022). Similarly,
Least-to-Most prompting breaks down complex
problems into simpler, more manageable subprob-
lems (Zhou et al., 2022). Program of Thoughts
(PoT) and Program-Aided Language models (PAL)
represent further progress, combining neural LLMs
with symbolic interpreters to enhance mathemati-
cal reasoning (Chen et al., 2022; Gao et al., 2022).
However, these reasoning methods often make er-
rors in various aspects, including logic organization
and calculation details, which underscore the need
for a robust self-enhancement mechanism. In this
context, (Xie et al., 2023) showcases the potential
of self-evaluation guided beam search as a means
to navigate the vast reasoning space with improved
accuracy. Additionally, (Jiao et al., 2023) utilizes
self-supervision through in-context learning to en-
hance reasoning capabilities. Furthermore, (Gul-
cehre et al., 2023) adopts a reinforcement learn-
ing framework to facilitate self-training. However,
these works can only solve step-by-step calculation
errors and ignore errors in overall logic.

To overcome this challenge, we propose a novel
methodology called Macro-Micro Self-Training
(M2ST) to enhance the mathematical capabilities
of LLMs. M2 ST incorporates self-training at both
the macro and micro levels, with the macro level

User Input Macro-Micro Self-Evaluation Self-Modification
’ he Ve - Micro RS 1" \
S0 :

) | ¢ e e -

. ’, \

; Mathematical [1 Self-Evaluate on the 1st Line _
: Question Pl Syntax Errors? .
; Pl Self-Evaluate on the 2nd Line Logical Errors?

-

I

\\

3
>
o
3
oﬂ
Q
)
o —

~-—F-=-7 Macro
i s e

{

N

. Self-Evaluate on the Whole

t 1 Code

|

- |

AN Y

)

1

1

1

1

= 1

:
Self-Evaluate on the 3rd Line Semantic Err‘or‘s?: -
... !

1

U

Overall
Logic
Errors ?

1
1
1
1
1
1
1
.

Send the Code Back

4

(oY
-2
o
o
wn
o®
o<
o =
Q >
® s

\

(R ——

Figure 1: Overall Workflow of Macro-Micro Self-Training (M2 SF).

prioritizing overall reasoning logic and the mi-
cro level concentrating on one-step calculation.
The self-training process consists of two essential
components: self-evaluation and self-modification.
Through self-evaluation, LLMs can assess the
accuracy of their generated outputs, while self-
modification plays a critical role in iteratively refin-
ing the output. Figure 1 shows the detailed work-
flow of M2ST. Specifically, when inputting a math
word question to LLM, we first get a Python code
to solve it by PoT. Then M2ST will enhance this
code from both macro and micro level. At the
micro level, we utilize LLM for self-training pur-
poses, enabling self-evaluation of individual lines
to identify errors and subsequently self-modify
them. Additionally, at the macro level, we em-
ploy LLM to evaluate the code as a whole, deter-
mining if any logical errors exist, and performing
self-modifications if necessary. Moreover, in or-
der to integrate the improved codes obtained from
these two steps, we employ LLM itself to select the
superior version. This selection process is accom-
plished through a zero-shot prompt approach in-
spired by (Kadavath et al., 2022). The self-training
process will undergo multiple iterations until con-
vergence is achieved in the training. Our approach
has resulted in respectable improvements across
various reasoning tasks. For instance, by imple-
menting on Codex model (Chen et al., 2021), we
achieve accuracies of 83.4%, 59.3%, and 89.8%
on the GSMS8K, AQuA, and SVAMP benchmarks,

compared to the vanilla PoT reasoning-enhanced
Codex performance of 71.6%, 47.3%, and 82.4%,
respectively. Our further analysis on Llama-2 (Tou-
vron et al., 2023) demonstrates the efficiency of
our method in surpassing the self-training baseline
under equivalent computational budgets.

2 Methods

2.1 Background: Reasoning via Code

Starting from CoT, reasoning in multi-steps is
widely adopted for math word problems and com-
mon sense question-answering (Wei et al., 2023;
Lyu et al., 2023; Yoran et al., 2023). Among them,
PAL and PoT introduce solving math problems via
code through prompting. Specifically, PoT utilizes
LLMs, primarily Codex, to articulate reasoning
steps that include both textual and programming
language statements, culminating in an executable
program. This program is then processed by an ex-
ternal interpreter, effectively decoupling the compu-
tational workload from the reasoning process. Such
segregation allows PoT to circumvent the computa-
tional limitations of LLMs, leveraging the precision
of program interpreters for mathematical evalua-
tions and thereby enhancing the accuracy and effi-
ciency of solving numerical reasoning tasks (Chen
et al., 2023; Gao et al., 2023). In formal terms,
when presented with a mathematical word prob-
lem P, PoT (Chen et al., 2023) utilizes prompts
to guide the LLM in generating a Python code
solution denoted as C' = LLM (P|rwpor). Here,

C ={C,---,C,} represents the code, with each
C; representing a single line of code, and 7p,r
represents the few-shots prompt of PoT.

Self-evaluation Mechanisms in LLMs The
model’s capacity to assess its own accuracy, uti-
lizing metrics such as Expected Calibration Error
(ECE), serves as the foundation for self-evaluation
processes. In the rapidly evolving field of machine
learning, LL.Ms have demonstrated inherent cali-
bration properties, enabling them to introspectively
evaluate their own outputs. This introspective capa-
bility proves particularly valuable in tasks involv-
ing multiple-choice questions, where calibration
metrics like ECE effectively showcase the model’s
proficiency (Kadavath et al., 2022). The effective-
ness of this mechanism depends not only on the
model’s architecture but also on the complexity of
the task and the formulation of the prompt.

2.2 Macro-Micro Self-Training

M2ST integrates self-training at both the macro
and micro levels, where the macro level empha-
sizes overall reasoning logic while the micro level
focuses on one-step calculations. We proceed by
providing a formal definition and explanation of
these two self-training phases.

Macro Self-Training In macro self-training, our
main focus lies in the comprehensive reasoning
logic of the Python code. This encompasses under-
standing and rectifying errors such as miscalculat-
ing profits and improperly formulating equations to
determine the number of bags sold. The subsequent
example illustrates a specific flaw in the reasoning
logic, where a correct equation is not established.

1 Code to solve the math pr
def calculate_bags_sold(selling_price, total_profit,
profit_percentage) :
profit_per_bag = (profit_percentage / 100)
* selling_price
number_of_bags = total_profit / profit_per_bag
return number_of_bags

total_profit = 3
profit_percentage

bags_sold = calculate_bags_sold(selling_price,
total_profit, profit_percentage)
print (£"The number of bags sold is: {bags_sold}")

To evaluate the overall logic error, in ¢-th itera-
tion of the training phase, where the Python code

of the solution to the question is denoted as Ct,
self-evaluation is achieved by

Macro_SE = LLM(e| P, Cy, mpra-sg), (1)

where 7y 4—sE is the self-evaluation prompt as
shown in Table 1 and ¢; is the evaluation at this
iteration in the form of “Correct / Incorrect”. For
the aforementioned example, the format of e, is as
follows.

With the self-evaluation result, LLM is em-
ployed to achieve self-modification, denoted as

Macro_SM = LLM(Ci41|P, Ct, er,mamra—sm), (2)

where 7yr 4— g is the self-modification prompt as
shown in Table 1 and C}%, is the new modified
code. For the aforementioned example, Cyy is as
follows.

def solution():
bag_sell = Symbol('bag_sell', positive=True)

selling_price = 100
profit = 3000
profit_percentage = 25
solution = solve_it (bag_sell % selling_price
x profit_percentage / 100 - profit, bag_sell)
ans = solution[bag_sell]

return ans

Micro Self-Training In micro self-training, our
main focus lies on each calculation in the Python
code. This includes understanding and rectifying
errors, such as using incorrect numbers or perform-
ing incorrect calculations. The subsequent example
illustrates a specific flaw in the incorrect calcula-
tion equation.

def solution():
hours_to_write_one_article = 4
num_articles_on_monday = 5
num_articles_on_tuesday =
num_articles_on_monday * 2 / 5

Math Problem: Two friends are eating a jar full of candies. Had P eaten alone, it would have taken him 10 minutes to finish the
candies in the jar. Had Q eaten alone, it would have taken her 5 minutes to finish half the jar. Since both of them are eating
simultaneously, how many minutes would it take them to empty the jar?

!

Initial Python Code Generated

Self-Evaluation + Self-Modification (Both Micro and Macro)

Output (A) RefinedCode Micro
def solution():

P = Symbol('P',

Q = symbol('Q’,

time taken by P 10

time_taken_by Q 5}

solution = solve_it ([P - time_taken by P, Q -
time_taken_by Q], [P, QI])

ans = solution[Q]

return ans

positive=True)
positive=True)

i

Output (B) RefinedCode Macro
def solution():

P = Symbol('P', positive=True)

Q = Symbol('Q', positive=True)

time_ taken by P = 10

time_ taken by Q9 = 5

solution = solve it ([P - time taken by P, Q -
time taken by Q1, [P, QI)

ans = solution[P]

return ans

Multiple- Choice Question Sent to the LLM: Which Python code can answer the question?

LLM Chooses One Output and Explains Why
Answer: (A)

Explanation: The correct answer is (A). The question is asking for the time taken by Q to finish the

answer is the value of Q.

|

jar. Hence, the

Figure 2: Illustration of the Combination Method.

num_articles_on_wednesday =
num_articles_on_tuesday x 2
total_num_articles = num_articles_on_monday
+ num_articles_on_tuesday
+ num_articles_on_wednesday
ans = total_num_articles
* hours_to_write_one_article
return ans

To evaluate the one-line calculation error, in ¢-th
iteration of the training phase, where the Python
code of the solution to the question is denoted as
Ci = {C’ft)7 e 7C’r(f)}, where Ci(t) represents the
t-th line code, self-evaluation is achieved by

Micro_SE = LLM(e\"|P,Cy, mar1-s8), ()

where myr7—gE is the self-evaluation prompt as
shown in Table 1 and egt) is the evaluation at this
iteration in the form of “Correct / Incorrect”. For

the aforementioned example, the format of e is.

With the self-evaluation result, LLM is em-
ployed to achieve self-modification, denoted as

Micro_SM = LLM(C V| P, Cy el marr—sa), (4)

where 77— g 1S the self-modification prompt as
shown in Table 1 and C’ftﬂ) is the new modified
code. For the aforementioned example, Cyy1 is as
follows.

Fix

r the errors 1in ve code
def solution():
average_hour_to_write_article = 4
num_articles_on_monday = 5
num_articles_on_tuesday = num_articles_on_monday
* 2/ 5 + num_articles_on_monday
num_articles_on_wednesday
= num_articles_on_tuesday * 2
total_num_articles = num_articles_on_monday
+ num_articles_on_tuesday
+ num_articles_on_wednesday
ans = total_num_articles
+ average_hour_to_write_article

return ans

Combination With two answers modified at the
macro and micro levels, it is necessary to propose
a method for combining them into a single answer
that represents the optimized result for this iteration.
One intuitive approach is to merge these two steps
sequentially, where the code is first passed through
one stage and then pushed into another stage. How-
ever, experimental results have also confirmed that
this approach leads to lower results due to the ac-
cumulation of errors at each stage. Therefore, we
propose combining the two codes by selecting one
with the assistance of LLM, which is done by

LLM(Ct41|P, Macro_SM, Micro_SM, Tarerge), (5)

where 7 serge Tepresents the prompt used to com-
bine two codes, as illustrated in Table 1. Further-
more, Figure 2 provides a concrete example for
further clarification.

3 Experiments

3.1 Setup

Benchmarks. In our research, our primary objec-
tive was to enhance the reasoning abilities of LLMs

Task

Few-Shots Prompt

Math Problem: {question}
Python code, return ans

Micro Self-Evaluation {python code}

The calculation: {one line code} is (A) Correct (B) Incorrect
Answer: (A) Correct / (B) Incorrect, because {reason}

Math Problem: {question}
Python code, return ans

Micro Self-Modification {python code}

The {one line code} is incorrect, because {reason}
Modify above {one line code}

Math Problem: {question}
Python code, return ans

Macro Self-Evaluation {python code}

Is the Python code (A) Correct (B) Incorrect
Answer: (A) Correct / (B) Incorrect, because {reason}

Math Problem: {question}
Python code, return ans

Macro Self-Modification {python code}

The overall Python code is incorrect, because {reason}
Modify above Python code

Math Problem: {question}
(A) {python code} (B) {python code}

Combine Macro and Micro Answer (A) / (B)

Explanation: The correct answer is {correct answer} because

Table 1: Few-shots prompts for self-evaluation and self-modification in the micro and macro level.

specifically for solving math word problems. To ac-
complish this, we utilized a selection of diverse and
challenging datasets, namely GSM8K (Cobbe et al.,
2021), AQuA (Ling et al., 2017), SVAMP (Patel
et al., 2021), and TabWMP (Lu et al., 2023). Each
dataset possesses distinct characteristics and com-
plexities, providing valuable opportunities to test
and enhance various aspects of LLMs.

Baselines. We consider two types of baselines:
(1) Chain-of-Thought (CoT) (Wei et al., 2022)
prompting in free-text reasoning and (2) Program-
Aided Language models (PAL) (Ling et al., 2017)
and Program-of-Thought (PoT) (Chen et al., 2022)
prompting in program-aided reasoning. In addition
to these baselines, we employ self-training tech-
niques, utilizing (4) Self-Evaluation Guided Beam
Search (SEGBS) (Xie et al., 2023), which lever-
ages self-evaluation as a signal during beam search,
and (5) LogicLLM (Jiao et al., 2023), which em-
ploys self-supervision through in-context learning
to enhance reasoning capabilities. To facilitate self-
evaluation, we adopt a task formulation similar to
multiple-choice question answering, following the
approach outlined by Kadavath et al. (2022).

Prompt Detailed settings of few-shot prompts
for self-evaluation and self-modification in the mi-
cro and macro level are shown in Table 1.

Backbone Models. We employed a thorough
testing approach using both open-source and
closed-source LLMs as the backbone models. For
the open-source category, we utilized Vicuna-13B
vl.5 (Zheng et al., 2023), which is a chat model
fine-tuned on the LLaMa-2 (Touvron et al., 2023)
framework. In the closed-source category, we em-
ployed Code-Davinci-002 and ChatGPT (gpt-3.5-
turbo-0613) (OpenAl, 2022), both built on the foun-
dation of GPT-3 (Brown et al., 2020).

Hyperparameters The only hyper-parameter re-
quiring tuning in our approach is the number of
training iterations. Since all four tasks we evalu-
ate are reasoning tasks, we select the validation
set of GSM8K to fine-tune this parameter for each
model. Once optimized on the GSMS8K validation
set, we generalize the chosen number of training
iterations across all tasks. Moreover, we select PoT
as the foundational method for generating the ini-
tial Python code due to its superior stability and
performance compared to PAL.

3.2 Main Results

Performance Across Different Methods and
Models The empirical results outlined in Table 2
illustrates the performance enhancements brought
about by the M2 ST approach across various mod-
els. In the “code-davinci-002” model, M2ST sig-

Models Method | GSMBK AQuA SVAMP TabWMP
CoT 65.6 453 74.8 65.2
PAL 72.0 - 79.4 ;
. PoT 71.6 54.1 85.2 732
Code-Davinci-002 gpapg 80.2 55.9 89.6 79.1
LogicLLM | 762 473 82.4 69.7

M2SF 83.472.2 593134 89.810.2 81.912.8
CoT 40.7 29.4 48.4 415
PAL 49.1 - 53.1 -
. PoT 48.6 32.9 53.2 443
Vicuna-13b v1.5 SEGBS 52.3 332 56.8 46.2
LogicLLM | 452 30.4 50.6 4.7

M2ST 55.913.6 34.212.0 579111 49.413.2
CoT 79.4 53.1 79.3 76.2
PAL 81.6 X 85.8 R
PoT 82.3 57.2 86.6 79.5
ChatGPT SEGBS 84.3 59.5 88.4 82.7
LogicLLM | 80.7 55.9 83.3 78.4

M2ST 86.512.2 62.673.1 89.210.8 84.812.1

Table 2: Main results of M2 ST on reasoning tasks GSM8K, AQuA, SVAMP, TabWMP under Code-davinci-002,

Vicuna-13b v1.5 and ChatGPT.

nificantly outperforms other methods, achieving re-
markable improvements with an accuracy increase
of 2.2% on GSMS8K, 3.4% on AQuA, 0.2% on
SVAMP, and 2.8% on TabWMP compared to the
next best method, SEGBS. This underscores the ef-
ficacy of the M2 ST methodology in refining LLMs’
reasoning processes through its innovative evalua-
tion and modification strategy.

Consistency Across Backbone Models Analy-
sis of the M2SF method across different models,
including “Vicuna-13b v1.5” and “ChatGPT”, re-
veals consistent performance enhancement. For
instance, within the Vicuna-13b v1.5 model, M2ST
demonstrates significant accuracy improvements
of 3.6% on GSMS8K, 2.0% on AQuA, 1.1% on
SVAMP, and 3.2% on TabWMP, over SEGBS. Sim-
ilarly, in the ChatGPT model, M2ST leads with an
accuracy increase of 2.2% on GSM8K, 3.1% on
AQuA, 0.8% on SVAMP, and 2.1% on TabWMP.
These results highlight the robustness and adapt-
ability of the M2 ST approach across various LLM
architectures, marking a significant step forward in
enhancing LLM reasoning capabilities.

3.3 Further Analysis

Micro and Macro Only. To demonstrate the ef-
fectiveness of combining macro and micro self-
training, we conduct an ablation analysis by com-
paring its performance with that of single-phrase
self-training. The detailed results of this analysis
can be found in Table 3. In this comparison, we

consider SEGBS as the baseline since it represents
a special case of micro-only self-training without
self-modification.

Our findings reveal that both micro-only and
macro-only approaches consistently outperform
PoT and PAL, providing evidence for the effec-
tiveness of self-training. Specifically, in the case
of code-davinci-002, micro-only achieves an av-
erage performance improvement of 3.1% across
the four tasks compared to PoT, while macro-only
demonstrates an average performance increase of
4.3% across the same tasks compared to PoT. Nev-
ertheless, it is worth noting that both micro-only
and macro-only approaches perform inferiorly to
SEGBS. This outcome is expected since SEGBS
utilizes beam search, which significantly expands
the search space, allowing for more comprehensive
exploration.

However, the performance of M2ST surpasses
that of SEGBS, providing compelling evidence
for the necessity and effectiveness of combining
macro and micro self-training. Specifically, M2ST
achieves an average improvement of 2.7% over the
maximum performance between micro-only and
macro-only self-training under code-davinci-002.
Moreover, when considering the minimum perfor-
mance between micro-only and macro-only self-
training, M2 ST exhibits an average improvement
of 4.6%. These results further highlight the advan-
tages of integrating macro and micro self-training
within the M2 ST framework.

Models Method \ GSMSK AQuA SVAMP TabWMP
PAL 72.0 - 79.4 -
PoT 71.6 54.1 85.2 73.2
Code-Davinci-002 SEGBS 80.2 55.9 89.6 79.1
Micro-Only | 78.4/1.8 52.6/3.3 88214 77.8/1.3
Macro-Only | 77.5/2.7 56.510.6 87.3/2.3 79.410.3
M2SF 83.412.2 59.313.4 89.870.2 81.912.8
PAL 49.1 - 53.1 -
PoT 48.6 32.9 53.2 443
Vicuna-13b v1.5 SEGBS 52.3 332 56.8 46.2
Micro-Only | 51.2/1.1 31.7)1.5 55.6/1.2 453]0.9
Macro-Only | 50.8/1.5 33.1/0.1 54.5]2.3 45.1]1.1
M2ST 55.913.6 34.212.0 57.971.1 49.413.2
PAL 81.6 - 85.8 -
PoT 82.3 57.2 86.6 79.5
ChatGPT SEGBS 84.3 59.5 88.4 82.7
Micro-Only | 84.510.2 58.9/0.6 88.770.3 82.1/0.6
Macro-Only | 83.0/1.3 57.3]/2.2 87.2[1.2 823,04
M2ST 86.512.2 62.613.1 89.270.8 84.812.1

Table 3: Ablation analysis on micro-only and macro-only. PAL and PoT are listed to illustrate the effectiveness of
self-training. | represents accuracy increases compared to SEGBS while | represents the opposite.

Macro and Micro One by One. Instead of se-
lecting either macro or micro self-training with
prompts, an intuitive method involves subjecting
the Python code to both self-training methods se-
quentially. To validate the effectiveness of this
selection approach over the sequential method, we
perform a corresponding ablation analysis. This
analysis aims to verify the validity of the selection
process rather than the sequential application of
the two self-training methods. Detailed results are
shown in Table 4.

Our findings demonstrate that regardless of
whether micro self-training is performed first or
macro self-training is performed first, the sequen-
tial application of these two steps consistently
yields inferior performance compared to perform-
ing both steps individually. Specifically, the micro-
macro sequence leads to a performance decrease
of 2.3%, while the macro-micro sequence results
in a performance decrease of 2.7%. We attribute
this decline in performance to the accumulation
of errors at each step. Therefore, the selection ap-
proach, where one of the methods is chosen, avoids
this problem and consistently delivers better perfor-
mance.

Training Iteration. As the M2ST method is
based on self-training, it is of utmost importance
to establish the criteria for convergence. To accom-
plish this, we choose the validation set of GSM8K
and fine-tune the convergence parameter for each

model. After optimizing this parameter on the
GSMBSK validation set, we apply the selected num-
ber of training iterations to all tasks in a general-
ized manner. In order to examine the impact of
this hyper-parameter on performance, we conduct
a comprehensive ablation analysis, the results of
which are depicted in the following Figure 3 and
Figure 4. We choose the number of iterations in
the range [0, 10] and test on four reasoning tasks.
We find that for the code-davinci-002 model, the
optimal performance is achieved with 5 iterations,
while for the ChatGPT model, the best performance
occurs with 3 iterations. Beyond these optimal
numbers, the performance starts to decline due to
overfitting and the accumulation of errors. It is
crucial to strike a balance between the number of
iterations and performance to avoid such issues.

4 Related Work

Calibration and Self-Evaluation in Large Lan-
guage Models LILMs have broad knowledge but
face challenges with calibration—aligning predic-
tions with actual outcomes—a critical concern
in high-stakes fields like healthcare and finance
(Ouyang et al., 2022). Studies indicate that even
advanced LLMs struggle with calibration, empha-
sizing the need for effective solutions (Jiang et al.,
2021; Liang et al., 2023). Research has been
geared towards enhancing LLMs’ self-assessment
and calibration. (Kadavath et al., 2022) show that

Models Method | GSMSK AQuA SVAMP TabWMP
Micro-Only | 78.4 52.6 88.2 77.8
Macro-Only | 77.5 56.5 87.3 79.4
Code-Davinci-002 Micro-Macro | 76.8/1.6 51.3/3.9 87.6/0.6 76.5/2.9
Macro-Micro | 75.3/3.1 54.7/1.8 86.1/2.1 75.6/3.8
M2SF 83.415.0 59.312.8 89.871.6 81.912.5
Micro-Only | 51.2 31.7 55.6 453
Macro-Only | 50.8 33.1 54.5 45.1
. Micro-Macro | 50.8/0.4 30.3/2.8 53.2[2.4 44.7,0.6
Vieuna-13b VIS \p cro-Micro | 50.310.0 298,33 534120 435,16
M2ST 55.914.7 342711.1 579123 494714.1
Micro-Only | 84.5 58.9 88.7 82.1
Macro-Only | 83.0 57.3 87.2 82.3
Micro-Macro | 83.7/0.8 56.7/2.2 854/3.3 81.6/0.7
ChatGPT Macro-Micro | 823/2.2 565,24 86.1,2.6 80.9.1.4
M2ST 86.512.0 62.613.7 89.270.5 84.812.5

Table 4: Ablation analysis on micro-macro and macro-micro. Micro-only and macro-only are listed for comparison.
" represents accuracy increases compared to the maximum between micro-only and macro-only while | represents

the opposite.

o
38

\//\.

—e— GSM8K
AQuUA

—A— SVAMP

—— TabWMP

Accuracy
S 8 = @
3 # 8 8

@
&

@
3

w
a

0 2 4 6 8 10
Number of Iterations

Figure 3: Accuracy of Code-Davinci-002 on four tasks
with different numbers of iterations.

a —e— GSM8K
N AQUA

—— SVAMP

— TabWMP

35

Number of Iterations

Figure 4: Accuracy of Vicuna-13b-v1.5 on two tasks
with different numbers of iterations.

larger models can reliably evaluate their output
across tasks. (Jain et al., 2023) introduce a self-
supervised method for assessing LLM behavior on
real-world data. (Zhu et al., 2023) explore how
training influences model calibration, and (Zhao
et al., 2023) propose a self-supervision framework
for automatic LLM calibration and error correction,
boosting LLLM accuracy and reliability in sensitive
applications without manual intervention.

Self Training Self-training, a semi-supervised
learning paradigm, has been pivotal in advanc-
ing LLM capabilities. The key idea is to assign
pseudo labels from a learned classifier to unlabeled
data, and use these pseudo-labeled examples to
further improve the original model training (He
et al., 2020; Zhang et al., 2022). (Huang et al.,
2022)’s study that demonstrated LLMs’ ability to
self-improve using only unlabeled datasets. In ad-
dition, the emergence of Reinforced Self-Training
(ReST) showcases a novel stride in aligning LLMs
with human preferences, particularly in the realm
of language modeling (Gulcehre et al., 2023). Re-
cent methodologies like Self-Instruct and CRITIC
further enhance LLMs’ autonomy in generating,
critiquing, and refining outputs (Paul et al., 2024;
Wang et al., 2022; Gou et al., 2023).

5 Conclusion

In conclusion, our proposed Macro-Micro Self-
Training (M2ST) method marks a significant ad-
vancement in the domain of LLMs, particularly in
enhancing their mathematical reasoning capabili-
ties. By ingeniously integrating macro and micro
levels of self-training, our methodology not only
addresses errors in logic and calculation at their re-
spective scales but also harmonizes them through a
robust selection process, thereby mitigating the ac-
cumulation of inaccuracies. Empirical evaluations
across diverse benchmarks and models underscore
the superiority of M2ST over existing approaches,
demonstrating its effectiveness in refining LLMs’
reasoning processes for a variety of complex tasks.

Limitation

One limitation of the proposed method is its re-
stricted applicability to scenarios that involve incre-
mental reasoning, where problems can be broken
down into smaller steps. This limits its usabil-
ity in complex, non-linear problems that require
holistic analysis or simultaneous consideration of
multiple factors. Additionally, the method’s se-
quential nature leads to a decrease in reasoning
speed compared to parallel or concurrent reason-
ing approaches, making it less suitable for time-
critical applications or situations that demand real-
time decision-making. These limitations should be
taken into account when considering the implemen-
tation of the method.

References

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde de Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021. Evaluating
large language models trained on code.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W Cohen. 2022. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts

prompting: Disentangling computation from reason-
ing for numerical reasoning tasks.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems.

Ishita Dasgupta et al. 2023. Language models show
human-like content effects on reasoning tasks. arXiv
preprint arXiv:2207.07051.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. arXiv preprint arXiv:2211.10435.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct

with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srini-
vasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen
Wang, Chenjie Gu, Wolfgang Macherey, Arnaud
Doucet, Orhan Firat, and Nando de Freitas. 2023.
Reinforced self-training (rest) for language model-
ing.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio
Ranzato. 2020. Revisiting self-training for neural
sequence generation.

http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2211.12588
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2204.02311
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2211.10435
http://arxiv.org/abs/2308.08998
http://arxiv.org/abs/2308.08998
http://arxiv.org/abs/2308.08998
http://arxiv.org/abs/1909.13788
http://arxiv.org/abs/1909.13788
http://arxiv.org/abs/1909.13788

Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu,
Xuezhi Wang, Hongkun Yu, and Jiawei Han. 2022.
Large language models can self-improve.

Neel Jain, Khalid Saifullah, Yuxin Wen, John Kirchen-
bauer, Manli Shu, Aniruddha Saha, Micah Goldblum,
Jonas Geiping, and Tom Goldstein. 2023. Bring your
own data! self-supervised evaluation for large lan-
guage models.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How can we know when language
models know? on the calibration of language models
for question answering.

Fangkai Jiao, Zhiyang Teng, Shafiq Joty, Bosheng Ding,
Aixin Sun, Zhengyuan Liu, and Nancy F Chen. 2023.
Logicllm: Exploring self-supervised logic-enhanced
training for large language models. arXiv preprint
arXiv:2305.13718.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, Scott Johnston, Sheer El Showk, Andy
Jones, Nelson Elhage, Tristan Hume, Anna Chen,
Yuntao Bai, Sam Bowman, Stanislav Fort, Deep
Ganguli, Danny Hernandez, Josh Jacobson, Jack-
son Kernion, Shauna Kravec, Liane Lovitt, Ka-
mal Ndousse, Catherine Olsson, Sam Ringer, Dario
Amodei, Tom Brown, Jack Clark, Nicholas Joseph,
Ben Mann, Sam McCandlish, Chris Olah, and Jared
Kaplan. 2022. Language models (mostly) know what
they know. CoRR, abs/2207.05221.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Lad-
hak, Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue
Wang, Keshav Santhanam, Laurel Orr, Lucia Zheng,
Mert Yuksekgonul, Mirac Suzgun, Nathan Kim,
Neel Guha, Niladri Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2023. Holistic eval-
uation of language models.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion : Learning to solve and explain algebraic word
problems.

Pan Lu, Liang Qiu, Kai-Wei Chang, Ying Nian Wu,
Song-Chun Zhu, Tanmay Rajpurohit, Peter Clark,
and Ashwin Kalyan. 2023. Dynamic prompt learning
via policy gradient for semi-structured mathematical
reasoning.

H. Luo, Q. Sun, C. Xu, P. Zhao, J. Lou, C. Tao, X. Geng,
Q. Lin, S. Chen, and D. Zhang. 2023. Wizardmath:

10

Empowering mathematical reasoning for large lan-
guage models via reinforced evol-instruct.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, Edouard Grave, Yann LeCun, and
Thomas Scialom. 2023. Augmented language mod-
els: a survey.

OpenAl. 2022. Introducing chatgpt.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve simple
math word problems?

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beat-
riz Borges, Antoine Bosselut, Robert West, and Boi
Faltings. 2024. Refiner: Reasoning feedback on in-
termediate representations.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

J. A. Sivakumar and N. S. Moosavi. 2023. Fermat: An
alternative to accuracy for numerical reasoning.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022. Self-instruct: Aligning lan-
guage models with self-generated instructions. arXiv
preprint arXiv:2212.10560.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. arXiv
preprint arXiv:2201.11903.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models.

http://arxiv.org/abs/2210.11610
http://arxiv.org/abs/2306.13651
http://arxiv.org/abs/2306.13651
http://arxiv.org/abs/2306.13651
http://arxiv.org/abs/2306.13651
http://arxiv.org/abs/2306.13651
http://arxiv.org/abs/2012.00955
http://arxiv.org/abs/2012.00955
http://arxiv.org/abs/2012.00955
http://arxiv.org/abs/2012.00955
http://arxiv.org/abs/2012.00955
https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/10.48550/arXiv.2207.05221
https://doi.org/10.48550/arXiv.2207.05221
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/2211.09110
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/2209.14610
http://arxiv.org/abs/2209.14610
http://arxiv.org/abs/2209.14610
http://arxiv.org/abs/2209.14610
http://arxiv.org/abs/2209.14610
http://arxiv.org/abs/2308.09583v1
http://arxiv.org/abs/2308.09583v1
http://arxiv.org/abs/2308.09583v1
http://arxiv.org/abs/2308.09583v1
http://arxiv.org/abs/2308.09583v1
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2301.13379
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2302.07842
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2203.02155
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/2103.07191
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2304.01904
http://arxiv.org/abs/2305.17491v1
http://arxiv.org/abs/2305.17491v1
http://arxiv.org/abs/2305.17491v1
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903
http://arxiv.org/abs/2201.11903

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, Min-
Yen Kan, Junxian He, and Qizhe Xie. 2023. Self-
evaluation guided beam search for reasoning.

H. Xu. 2023. No train still gain. unleash mathematical
reasoning of large language models with monte carlo
tree search guided by energy function.

Zhun Yang et al. 2023. Coupling large language models
with logic programming for robust and general rea-
soning from text. arXiv preprint arXiv:2307.07696.

Ori Yoran, Tomer Wolfson, Ben Bogin, Uri Katz, Daniel
Deutch, and Jonathan Berant. 2023. Answering
questions by meta-reasoning over multiple chains
of thought.

Q. Zhang, L. Wang, S. Yu, S. Wang, Y. Wang, J. Jiang,
and E.-P. Lim. 2021. Noahqa: Numerical reasoning
with interpretable graph question answering dataset.

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and
Jinjun Xiong. 2022. How does unlabeled data im-
prove generalization in self-training? a one-hidden-
layer theoretical analysis.

Theodore Zhao, Mu Wei, J. Samuel Preston, and Hoi-
fung Poon. 2023. Automatic calibration and error
correction for generative large language models via
pareto optimal self-supervision.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Fric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. arXiv preprint arXiv:2306.05685.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc Le, et al. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Chiwei Zhu, Benfeng Xu, Quan Wang, Yongdong
Zhang, and Zhendong Mao. 2023. On the calibration
of large language models and alignment.

11

http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2305.00633
http://arxiv.org/abs/2309.03224v3
http://arxiv.org/abs/2309.03224v3
http://arxiv.org/abs/2309.03224v3
http://arxiv.org/abs/2309.03224v3
http://arxiv.org/abs/2309.03224v3
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2304.13007
http://arxiv.org/abs/2109.10604v2
http://arxiv.org/abs/2109.10604v2
http://arxiv.org/abs/2109.10604v2
http://arxiv.org/abs/2201.08514
http://arxiv.org/abs/2201.08514
http://arxiv.org/abs/2201.08514
http://arxiv.org/abs/2201.08514
http://arxiv.org/abs/2201.08514
http://arxiv.org/abs/2306.16564
http://arxiv.org/abs/2306.16564
http://arxiv.org/abs/2306.16564
http://arxiv.org/abs/2306.16564
http://arxiv.org/abs/2306.16564
http://arxiv.org/abs/2311.13240
http://arxiv.org/abs/2311.13240
http://arxiv.org/abs/2311.13240

