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Abstract

Decomposing complex problems into smaller001
stages has proven to be highly effective in en-002
hancing the reasoning capabilities of Large Lan-003
guage Models (LLMs). However, as the reason-004
ing process becomes more intricate, uncertain-005
ties and errors tend to accumulate, making it006
challenging to achieve precise final outcomes.007
Overcoming this challenge and addressing un-008
certainty in multi-step reasoning necessitates009
innovative approaches. In this regard, we pro-010
pose a novel macro-micro self-training method.011
Our approach leverages self-evaluation and012
self-modification to enable LLMs to contin-013
uously refine their outputs. Through self-014
evaluation, LLMs assess the accuracy of their015
generated outputs, while the critical aspect016
of self-modification allows for iterative refine-017
ment of these outputs. To ensure comprehen-018
sive refinement, we combine macro evaluation019
and modification of the entire code structure020
with micro analysis, where each line of code is021
individually assessed and refined in line with022
the problem statement. This dual approach en-023
sures coherent handling of both syntax and se-024
mantics. Empirically, our results demonstrate025
the effectiveness of our approach, as it outper-026
forms existing methods across all settings. Our027
method enables LLMs to achieve new levels of028
reasoning capability, providing superior perfor-029
mance in various tasks.030

1 Introduction031

Large Language Models (LLMs) (Radford et al.,032

2019; Brown et al., 2020; Chowdhery et al., 2022)033

have revolutionized Natural Language Processing034

(NLP), showcasing a broad spectrum of capabil-035

ities, such as text completion, translation, cod-036

ing, intricate reasoning tasks (Zhang et al., 2021;037

Sivakumar and Moosavi, 2023; Mialon et al., 2023).038

Among them, the reasoning task, regarded as a039

representative task for evaluating LLM’s intelli-040

gence, is widely studied. Specifically, research has041

delved into how LLMs reflect human-like content042

effects in common-sense reasoning, including ab- 043

stract reasoning, understanding real-world knowl- 044

edge (Dasgupta et al., 2023), coupling with logic 045

programming (Yang et al., 2023), etc. Collectively, 046

these studies highlight the evolving sophistication 047

of LLMs in mimicking and potentially surpassing 048

human-level reasoning in various contexts. How- 049

ever, mathematical reasoning remains a challenge 050

for these models (Xu, 2023; Luo et al., 2023). 051

Various prompting approaches have been pro- 052

posed to enhance the reasoning ability of LLMs. 053

Chain-of-Thought (CoT) prompting has been a 054

notable advancement in improving LLMs’ mathe- 055

matical reasoning capabilities, facilitating step-by- 056

step problem-solving (Wei et al., 2022). Similarly, 057

Least-to-Most prompting breaks down complex 058

problems into simpler, more manageable subprob- 059

lems (Zhou et al., 2022). Program of Thoughts 060

(PoT) and Program-Aided Language models (PAL) 061

represent further progress, combining neural LLMs 062

with symbolic interpreters to enhance mathemati- 063

cal reasoning (Chen et al., 2022; Gao et al., 2022). 064

However, these reasoning methods often make er- 065

rors in various aspects, including logic organization 066

and calculation details, which underscore the need 067

for a robust self-enhancement mechanism. In this 068

context, (Xie et al., 2023) showcases the potential 069

of self-evaluation guided beam search as a means 070

to navigate the vast reasoning space with improved 071

accuracy. Additionally, (Jiao et al., 2023) utilizes 072

self-supervision through in-context learning to en- 073

hance reasoning capabilities. Furthermore, (Gul- 074

cehre et al., 2023) adopts a reinforcement learn- 075

ing framework to facilitate self-training. However, 076

these works can only solve step-by-step calculation 077

errors and ignore errors in overall logic. 078

To overcome this challenge, we propose a novel 079

methodology called Macro-Micro Self-Training 080

(M2ST) to enhance the mathematical capabilities 081

of LLMs. M2ST incorporates self-training at both 082

the macro and micro levels, with the macro level 083
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Figure 1: Overall Workflow of Macro-Micro Self-Training (M2SF).

prioritizing overall reasoning logic and the mi-084

cro level concentrating on one-step calculation.085

The self-training process consists of two essential086

components: self-evaluation and self-modification.087

Through self-evaluation, LLMs can assess the088

accuracy of their generated outputs, while self-089

modification plays a critical role in iteratively refin-090

ing the output. Figure 1 shows the detailed work-091

flow of M2ST. Specifically, when inputting a math092

word question to LLM, we first get a Python code093

to solve it by PoT. Then M2ST will enhance this094

code from both macro and micro level. At the095

micro level, we utilize LLM for self-training pur-096

poses, enabling self-evaluation of individual lines097

to identify errors and subsequently self-modify098

them. Additionally, at the macro level, we em-099

ploy LLM to evaluate the code as a whole, deter-100

mining if any logical errors exist, and performing101

self-modifications if necessary. Moreover, in or-102

der to integrate the improved codes obtained from103

these two steps, we employ LLM itself to select the104

superior version. This selection process is accom-105

plished through a zero-shot prompt approach in-106

spired by (Kadavath et al., 2022). The self-training107

process will undergo multiple iterations until con-108

vergence is achieved in the training. Our approach109

has resulted in respectable improvements across110

various reasoning tasks. For instance, by imple-111

menting on Codex model (Chen et al., 2021), we112

achieve accuracies of 83.4%, 59.3%, and 89.8%113

on the GSM8K, AQuA, and SVAMP benchmarks,114

compared to the vanilla PoT reasoning-enhanced 115

Codex performance of 71.6%, 47.3%, and 82.4%, 116

respectively. Our further analysis on Llama-2 (Tou- 117

vron et al., 2023) demonstrates the efficiency of 118

our method in surpassing the self-training baseline 119

under equivalent computational budgets. 120

2 Methods 121

2.1 Background: Reasoning via Code 122

Starting from CoT, reasoning in multi-steps is 123

widely adopted for math word problems and com- 124

mon sense question-answering (Wei et al., 2023; 125

Lyu et al., 2023; Yoran et al., 2023). Among them, 126

PAL and PoT introduce solving math problems via 127

code through prompting. Specifically, PoT utilizes 128

LLMs, primarily Codex, to articulate reasoning 129

steps that include both textual and programming 130

language statements, culminating in an executable 131

program. This program is then processed by an ex- 132

ternal interpreter, effectively decoupling the compu- 133

tational workload from the reasoning process. Such 134

segregation allows PoT to circumvent the computa- 135

tional limitations of LLMs, leveraging the precision 136

of program interpreters for mathematical evalua- 137

tions and thereby enhancing the accuracy and effi- 138

ciency of solving numerical reasoning tasks (Chen 139

et al., 2023; Gao et al., 2023). In formal terms, 140

when presented with a mathematical word prob- 141

lem P , PoT (Chen et al., 2023) utilizes prompts 142

to guide the LLM in generating a Python code 143

solution denoted as C = LLM(P |πPoT ). Here, 144
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C = {C1, · · · , Cn} represents the code, with each145

Ci representing a single line of code, and πPoT146

represents the few-shots prompt of PoT.147

Self-evaluation Mechanisms in LLMs The148

model’s capacity to assess its own accuracy, uti-149

lizing metrics such as Expected Calibration Error150

(ECE), serves as the foundation for self-evaluation151

processes. In the rapidly evolving field of machine152

learning, LLMs have demonstrated inherent cali-153

bration properties, enabling them to introspectively154

evaluate their own outputs. This introspective capa-155

bility proves particularly valuable in tasks involv-156

ing multiple-choice questions, where calibration157

metrics like ECE effectively showcase the model’s158

proficiency (Kadavath et al., 2022). The effective-159

ness of this mechanism depends not only on the160

model’s architecture but also on the complexity of161

the task and the formulation of the prompt.162

2.2 Macro-Micro Self-Training163

M2ST integrates self-training at both the macro164

and micro levels, where the macro level empha-165

sizes overall reasoning logic while the micro level166

focuses on one-step calculations. We proceed by167

providing a formal definition and explanation of168

these two self-training phases.169

Macro Self-Training In macro self-training, our170

main focus lies in the comprehensive reasoning171

logic of the Python code. This encompasses under-172

standing and rectifying errors such as miscalculat-173

ing profits and improperly formulating equations to174

determine the number of bags sold. The subsequent175

example illustrates a specific flaw in the reasoning176

logic, where a correct equation is not established.177

# Math Problem: A grocer makes a 25% profit on the
# selling price for each bag of flour it sells.
# If he sells each bag for $100 and makes $3,000 in
# profit, how many bags did he sell?
# Question: How to solve the problem by Python code?
# Write Python Code to solve the math problem.

def calculate_bags_sold(selling_price, total_profit,
profit_percentage):

profit_per_bag = (profit_percentage / 100)

* selling_price
number_of_bags = total_profit / profit_per_bag
return number_of_bags

selling_price = 100
total_profit = 3000
profit_percentage = 25

bags_sold = calculate_bags_sold(selling_price,
total_profit, profit_percentage)

print(f"The number of bags sold is: {bags_sold}")

To evaluate the overall logic error, in t-th itera-178

tion of the training phase, where the Python code179

of the solution to the question is denoted as Ct, 180

self-evaluation is achieved by 181

Macro_SE = LLM(et|P,Ct, πMA−SE), (1) 182

where πMA−SE is the self-evaluation prompt as 183

shown in Table 1 and et is the evaluation at this 184

iteration in the form of “Correct / Incorrect”. For 185

the aforementioned example, the format of et is as 186

follows. 187

# The Python code is: (B) Incorrect, because this
# problem requires establishing equation, but
# selling_price is 100 according to problem
# description and bag_sell should be unknown variable.

With the self-evaluation result, LLM is em- 188

ployed to achieve self-modification, denoted as 189

Macro_SM = LLM(Ct+1|P,Ct, et, πMA−SM ), (2) 190

where πMA−SM is the self-modification prompt as 191

shown in Table 1 and Ct+1 is the new modified 192

code. For the aforementioned example, Ct+1 is as 193

follows. 194

# The Python code is: (B) Incorrect, because this
# problem requires establishing equation, but
# selling_price is 100 according to problem
# description and bag_sell should be unknown variable.
# Modify above Python code
def solution():

bag_sell = Symbol('bag_sell', positive=True)
selling_price = 100
profit = 3000
profit_percentage = 25
solution = solve_it(bag_sell * selling_price

* profit_percentage / 100 - profit, bag_sell)
ans = solution[bag_sell]
return ans

Micro Self-Training In micro self-training, our 195

main focus lies on each calculation in the Python 196

code. This includes understanding and rectifying 197

errors, such as using incorrect numbers or perform- 198

ing incorrect calculations. The subsequent example 199

illustrates a specific flaw in the incorrect calcula- 200

tion equation. 201

# Math Problem: Meredith is a freelance blogger who
# writes about health topics and submits to
# clients each day as her permanent job. A blog
# article takes an average of 4 hours to research
# and write about. Last week, she wrote 5 articles
# on Monday and 2/5 times more articles on
# Tuesday than on Monday. On Wednesday, she wrote
# twice the number of articles she wrote on
# Tuesday. Calculate the total number of hours she
# spent writing articles in the three days.
# Question: How to answer the problem by Python code?
# Write Python Code to solve the math problem.
def solution():

hours_to_write_one_article = 4
num_articles_on_monday = 5
num_articles_on_tuesday =

num_articles_on_monday * 2 / 5
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Figure 2: Illustration of the Combination Method.

num_articles_on_wednesday =
num_articles_on_tuesday * 2

total_num_articles = num_articles_on_monday
+ num_articles_on_tuesday
+ num_articles_on_wednesday

ans = total_num_articles

* hours_to_write_one_article
return ans

To evaluate the one-line calculation error, in t-th202

iteration of the training phase, where the Python203

code of the solution to the question is denoted as204

Ct = {C(t)
1 , · · · , C(t)

n }, where C
(t)
i represents the205

i-th line code, self-evaluation is achieved by206

Micro_SE = LLM(e
(t)
i |P,Ct, πMI−SE), (3)207

where πMI−SE is the self-evaluation prompt as208

shown in Table 1 and e
(t)
i is the evaluation at this209

iteration in the form of “Correct / Incorrect”. For210

the aforementioned example, the format of et is.211

# The calculation: num_articles_on_tuesday =
# num_articles_on_monday * 2 / 5 is
# (A) Correct
# (B) Incorrect
# The calculation is: (B) Incorrect, because
# num_articles_on_tuesday should be 2/5 more
# than num_articles_on_monday.

With the self-evaluation result, LLM is em-212

ployed to achieve self-modification, denoted as213

Micro_SM = LLM(C
(t+1)
i |P,Ct, e

(t)
i , πMI−SM ), (4)214

where πMI−SM is the self-modification prompt as215

shown in Table 1 and C
(t+1)
i is the new modified216

code. For the aforementioned example, Ct+1 is as217

follows.218

# Fix the errors in above code
def solution():

average_hour_to_write_article = 4
num_articles_on_monday = 5
num_articles_on_tuesday = num_articles_on_monday

* 2 / 5 + num_articles_on_monday
num_articles_on_wednesday

= num_articles_on_tuesday * 2
total_num_articles = num_articles_on_monday

+ num_articles_on_tuesday
+ num_articles_on_wednesday

ans = total_num_articles

* average_hour_to_write_article
return ans

Combination With two answers modified at the 219

macro and micro levels, it is necessary to propose 220

a method for combining them into a single answer 221

that represents the optimized result for this iteration. 222

One intuitive approach is to merge these two steps 223

sequentially, where the code is first passed through 224

one stage and then pushed into another stage. How- 225

ever, experimental results have also confirmed that 226

this approach leads to lower results due to the ac- 227

cumulation of errors at each stage. Therefore, we 228

propose combining the two codes by selecting one 229

with the assistance of LLM, which is done by 230

LLM(Ct+1|P,Macro_SM,Micro_SM, πMerge), (5) 231

where πMerge represents the prompt used to com- 232

bine two codes, as illustrated in Table 1. Further- 233

more, Figure 2 provides a concrete example for 234

further clarification. 235

3 Experiments 236

3.1 Setup 237

Benchmarks. In our research, our primary objec- 238

tive was to enhance the reasoning abilities of LLMs 239
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Task Few-Shots Prompt

Micro Self-Evaluation

Math Problem: {question}
# Python code, return ans
{python code}
The calculation: {one line code} is (A) Correct (B) Incorrect
Answer: (A) Correct / (B) Incorrect, because {reason}

Micro Self-Modification

Math Problem: {question}
# Python code, return ans
{python code}
# The {one line code} is incorrect, because {reason}
# Modify above {one line code}

Macro Self-Evaluation

Math Problem: {question}
# Python code, return ans
{python code}
Is the Python code (A) Correct (B) Incorrect
Answer: (A) Correct / (B) Incorrect, because {reason}

Macro Self-Modification

Math Problem: {question}
# Python code, return ans
{python code}
# The overall Python code is incorrect, because {reason}
# Modify above Python code

Combine Macro and Micro

Math Problem: {question}
(A) {python code} (B) {python code}
Answer (A) / (B)
Explanation: The correct answer is {correct answer} because

Table 1: Few-shots prompts for self-evaluation and self-modification in the micro and macro level.

specifically for solving math word problems. To ac-240

complish this, we utilized a selection of diverse and241

challenging datasets, namely GSM8K (Cobbe et al.,242

2021), AQuA (Ling et al., 2017), SVAMP (Patel243

et al., 2021), and TabWMP (Lu et al., 2023). Each244

dataset possesses distinct characteristics and com-245

plexities, providing valuable opportunities to test246

and enhance various aspects of LLMs.247

Baselines. We consider two types of baselines:248

(1) Chain-of-Thought (CoT) (Wei et al., 2022)249

prompting in free-text reasoning and (2) Program-250

Aided Language models (PAL) (Ling et al., 2017)251

and Program-of-Thought (PoT) (Chen et al., 2022)252

prompting in program-aided reasoning. In addition253

to these baselines, we employ self-training tech-254

niques, utilizing (4) Self-Evaluation Guided Beam255

Search (SEGBS) (Xie et al., 2023), which lever-256

ages self-evaluation as a signal during beam search,257

and (5) LogicLLM (Jiao et al., 2023), which em-258

ploys self-supervision through in-context learning259

to enhance reasoning capabilities. To facilitate self-260

evaluation, we adopt a task formulation similar to261

multiple-choice question answering, following the262

approach outlined by Kadavath et al. (2022).263

Prompt Detailed settings of few-shot prompts264

for self-evaluation and self-modification in the mi-265

cro and macro level are shown in Table 1.266

Backbone Models. We employed a thorough 267

testing approach using both open-source and 268

closed-source LLMs as the backbone models. For 269

the open-source category, we utilized Vicuna-13B 270

v1.5 (Zheng et al., 2023), which is a chat model 271

fine-tuned on the LLaMa-2 (Touvron et al., 2023) 272

framework. In the closed-source category, we em- 273

ployed Code-Davinci-002 and ChatGPT (gpt-3.5- 274

turbo-0613) (OpenAI, 2022), both built on the foun- 275

dation of GPT-3 (Brown et al., 2020). 276

Hyperparameters The only hyper-parameter re- 277

quiring tuning in our approach is the number of 278

training iterations. Since all four tasks we evalu- 279

ate are reasoning tasks, we select the validation 280

set of GSM8K to fine-tune this parameter for each 281

model. Once optimized on the GSM8K validation 282

set, we generalize the chosen number of training 283

iterations across all tasks. Moreover, we select PoT 284

as the foundational method for generating the ini- 285

tial Python code due to its superior stability and 286

performance compared to PAL. 287

3.2 Main Results 288

Performance Across Different Methods and 289

Models The empirical results outlined in Table 2 290

illustrates the performance enhancements brought 291

about by the M2ST approach across various mod- 292

els. In the “code-davinci-002” model, M2ST sig- 293
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Models Method GSM8K AQuA SVAMP TabWMP

Code-Davinci-002

CoT 65.6 45.3 74.8 65.2
PAL 72.0 - 79.4 -
PoT 71.6 54.1 85.2 73.2

SEGBS 80.2 55.9 89.6 79.1
LogicLLM 76.2 47.3 82.4 69.7
M2SF 83.4↑2.2 59.3↑3.4 89.8↑0.2 81.9↑2.8

Vicuna-13b v1.5

CoT 40.7 29.4 48.4 41.5
PAL 49.1 - 53.1 -
PoT 48.6 32.9 53.2 44.3

SEGBS 52.3 33.2 56.8 46.2
LogicLLM 45.2 30.4 50.6 42.7
M2ST 55.9↑3.6 34.2↑2.0 57.9↑1.1 49.4↑3.2

ChatGPT

CoT 79.4 53.1 79.3 76.2
PAL 81.6 - 85.8 -
PoT 82.3 57.2 86.6 79.5

SEGBS 84.3 59.5 88.4 82.7
LogicLLM 80.7 55.9 83.3 78.4
M2ST 86.5↑2.2 62.6↑3.1 89.2↑0.8 84.8↑2.1

Table 2: Main results of M2ST on reasoning tasks GSM8K, AQuA, SVAMP, TabWMP under Code-davinci-002,
Vicuna-13b v1.5 and ChatGPT.

nificantly outperforms other methods, achieving re-294

markable improvements with an accuracy increase295

of 2.2% on GSM8K, 3.4% on AQuA, 0.2% on296

SVAMP, and 2.8% on TabWMP compared to the297

next best method, SEGBS. This underscores the ef-298

ficacy of the M2ST methodology in refining LLMs’299

reasoning processes through its innovative evalua-300

tion and modification strategy.301

Consistency Across Backbone Models Analy-302

sis of the M2SF method across different models,303

including “Vicuna-13b v1.5” and “ChatGPT”, re-304

veals consistent performance enhancement. For305

instance, within the Vicuna-13b v1.5 model, M2ST306

demonstrates significant accuracy improvements307

of 3.6% on GSM8K, 2.0% on AQuA, 1.1% on308

SVAMP, and 3.2% on TabWMP, over SEGBS. Sim-309

ilarly, in the ChatGPT model, M2ST leads with an310

accuracy increase of 2.2% on GSM8K, 3.1% on311

AQuA, 0.8% on SVAMP, and 2.1% on TabWMP.312

These results highlight the robustness and adapt-313

ability of the M2ST approach across various LLM314

architectures, marking a significant step forward in315

enhancing LLM reasoning capabilities.316

3.3 Further Analysis317

Micro and Macro Only. To demonstrate the ef-318

fectiveness of combining macro and micro self-319

training, we conduct an ablation analysis by com-320

paring its performance with that of single-phrase321

self-training. The detailed results of this analysis322

can be found in Table 3. In this comparison, we323

consider SEGBS as the baseline since it represents 324

a special case of micro-only self-training without 325

self-modification. 326

Our findings reveal that both micro-only and 327

macro-only approaches consistently outperform 328

PoT and PAL, providing evidence for the effec- 329

tiveness of self-training. Specifically, in the case 330

of code-davinci-002, micro-only achieves an av- 331

erage performance improvement of 3.1% across 332

the four tasks compared to PoT, while macro-only 333

demonstrates an average performance increase of 334

4.3% across the same tasks compared to PoT. Nev- 335

ertheless, it is worth noting that both micro-only 336

and macro-only approaches perform inferiorly to 337

SEGBS. This outcome is expected since SEGBS 338

utilizes beam search, which significantly expands 339

the search space, allowing for more comprehensive 340

exploration. 341

However, the performance of M2ST surpasses 342

that of SEGBS, providing compelling evidence 343

for the necessity and effectiveness of combining 344

macro and micro self-training. Specifically, M2ST 345

achieves an average improvement of 2.7% over the 346

maximum performance between micro-only and 347

macro-only self-training under code-davinci-002. 348

Moreover, when considering the minimum perfor- 349

mance between micro-only and macro-only self- 350

training, M2ST exhibits an average improvement 351

of 4.6%. These results further highlight the advan- 352

tages of integrating macro and micro self-training 353

within the M2ST framework. 354
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Models Method GSM8K AQuA SVAMP TabWMP

Code-Davinci-002

PAL 72.0 - 79.4 -
PoT 71.6 54.1 85.2 73.2

SEGBS 80.2 55.9 89.6 79.1
Micro-Only 78.4↓1.8 52.6↓3.3 88.2↓1.4 77.8↓1.3
Macro-Only 77.5↓2.7 56.5↑0.6 87.3↓2.3 79.4↑0.3

M2SF 83.4↑2.2 59.3↑3.4 89.8↑0.2 81.9↑2.8

Vicuna-13b v1.5

PAL 49.1 - 53.1 -
PoT 48.6 32.9 53.2 44.3

SEGBS 52.3 33.2 56.8 46.2
Micro-Only 51.2↓1.1 31.7↓1.5 55.6↓1.2 45.3↓0.9
Macro-Only 50.8↓1.5 33.1↓0.1 54.5↓2.3 45.1↓1.1

M2ST 55.9↑3.6 34.2↑2.0 57.9↑1.1 49.4↑3.2

ChatGPT

PAL 81.6 - 85.8 -
PoT 82.3 57.2 86.6 79.5

SEGBS 84.3 59.5 88.4 82.7
Micro-Only 84.5↑0.2 58.9↓0.6 88.7↑0.3 82.1↓0.6
Macro-Only 83.0↓1.3 57.3↓2.2 87.2↓1.2 82.3↓0.4

M2ST 86.5↑2.2 62.6↑3.1 89.2↑0.8 84.8↑2.1

Table 3: Ablation analysis on micro-only and macro-only. PAL and PoT are listed to illustrate the effectiveness of
self-training. ↑ represents accuracy increases compared to SEGBS while ↓ represents the opposite.

Macro and Micro One by One. Instead of se-355

lecting either macro or micro self-training with356

prompts, an intuitive method involves subjecting357

the Python code to both self-training methods se-358

quentially. To validate the effectiveness of this359

selection approach over the sequential method, we360

perform a corresponding ablation analysis. This361

analysis aims to verify the validity of the selection362

process rather than the sequential application of363

the two self-training methods. Detailed results are364

shown in Table 4.365

Our findings demonstrate that regardless of366

whether micro self-training is performed first or367

macro self-training is performed first, the sequen-368

tial application of these two steps consistently369

yields inferior performance compared to perform-370

ing both steps individually. Specifically, the micro-371

macro sequence leads to a performance decrease372

of 2.3%, while the macro-micro sequence results373

in a performance decrease of 2.7%. We attribute374

this decline in performance to the accumulation375

of errors at each step. Therefore, the selection ap-376

proach, where one of the methods is chosen, avoids377

this problem and consistently delivers better perfor-378

mance.379

Training Iteration. As the M2ST method is380

based on self-training, it is of utmost importance381

to establish the criteria for convergence. To accom-382

plish this, we choose the validation set of GSM8K383

and fine-tune the convergence parameter for each384

model. After optimizing this parameter on the 385

GSM8K validation set, we apply the selected num- 386

ber of training iterations to all tasks in a general- 387

ized manner. In order to examine the impact of 388

this hyper-parameter on performance, we conduct 389

a comprehensive ablation analysis, the results of 390

which are depicted in the following Figure 3 and 391

Figure 4. We choose the number of iterations in 392

the range [0, 10] and test on four reasoning tasks. 393

We find that for the code-davinci-002 model, the 394

optimal performance is achieved with 5 iterations, 395

while for the ChatGPT model, the best performance 396

occurs with 3 iterations. Beyond these optimal 397

numbers, the performance starts to decline due to 398

overfitting and the accumulation of errors. It is 399

crucial to strike a balance between the number of 400

iterations and performance to avoid such issues. 401

4 Related Work 402

Calibration and Self-Evaluation in Large Lan- 403

guage Models LLMs have broad knowledge but 404

face challenges with calibration—aligning predic- 405

tions with actual outcomes—a critical concern 406

in high-stakes fields like healthcare and finance 407

(Ouyang et al., 2022). Studies indicate that even 408

advanced LLMs struggle with calibration, empha- 409

sizing the need for effective solutions (Jiang et al., 410

2021; Liang et al., 2023). Research has been 411

geared towards enhancing LLMs’ self-assessment 412

and calibration. (Kadavath et al., 2022) show that 413
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Models Method GSM8K AQuA SVAMP TabWMP

Code-Davinci-002

Micro-Only 78.4 52.6 88.2 77.8
Macro-Only 77.5 56.5 87.3 79.4
Micro-Macro 76.8↓1.6 51.3↓3.9 87.6↓0.6 76.5↓2.9
Macro-Micro 75.3↓3.1 54.7↓1.8 86.1↓2.1 75.6↓3.8

M2SF 83.4↑5.0 59.3↑2.8 89.8↑1.6 81.9↑2.5

Vicuna-13b v1.5

Micro-Only 51.2 31.7 55.6 45.3
Macro-Only 50.8 33.1 54.5 45.1
Micro-Macro 50.8↓0.4 30.3↓2.8 53.2↓2.4 44.7↓0.6
Macro-Micro 50.3↓0.9 29.8↓3.3 53.4↓2.2 43.5↓1.6

M2ST 55.9↑4.7 34.2↑1.1 57.9↑2.3 49.4↑4.1

ChatGPT

Micro-Only 84.5 58.9 88.7 82.1
Macro-Only 83.0 57.3 87.2 82.3
Micro-Macro 83.7↓0.8 56.7↓2.2 85.4↓3.3 81.6↓0.7
Macro-Micro 82.3↓2.2 56.5↓2.4 86.1↓2.6 80.9↓1.4

M2ST 86.5↑2.0 62.6↑3.7 89.2↑0.5 84.8↑2.5

Table 4: Ablation analysis on micro-macro and macro-micro. Micro-only and macro-only are listed for comparison.
↑ represents accuracy increases compared to the maximum between micro-only and macro-only while ↓ represents
the opposite.

Figure 3: Accuracy of Code-Davinci-002 on four tasks
with different numbers of iterations.

Figure 4: Accuracy of Vicuna-13b-v1.5 on two tasks
with different numbers of iterations.

larger models can reliably evaluate their output414

across tasks. (Jain et al., 2023) introduce a self-415

supervised method for assessing LLM behavior on416

real-world data. (Zhu et al., 2023) explore how417

training influences model calibration, and (Zhao418

et al., 2023) propose a self-supervision framework419

for automatic LLM calibration and error correction,420

boosting LLM accuracy and reliability in sensitive421

applications without manual intervention.422

Self Training Self-training, a semi-supervised 423

learning paradigm, has been pivotal in advanc- 424

ing LLM capabilities. The key idea is to assign 425

pseudo labels from a learned classifier to unlabeled 426

data, and use these pseudo-labeled examples to 427

further improve the original model training (He 428

et al., 2020; Zhang et al., 2022). (Huang et al., 429

2022)’s study that demonstrated LLMs’ ability to 430

self-improve using only unlabeled datasets. In ad- 431

dition, the emergence of Reinforced Self-Training 432

(ReST) showcases a novel stride in aligning LLMs 433

with human preferences, particularly in the realm 434

of language modeling (Gulcehre et al., 2023). Re- 435

cent methodologies like Self-Instruct and CRITIC 436

further enhance LLMs’ autonomy in generating, 437

critiquing, and refining outputs (Paul et al., 2024; 438

Wang et al., 2022; Gou et al., 2023). 439

5 Conclusion 440

In conclusion, our proposed Macro-Micro Self- 441

Training (M2ST) method marks a significant ad- 442

vancement in the domain of LLMs, particularly in 443

enhancing their mathematical reasoning capabili- 444

ties. By ingeniously integrating macro and micro 445

levels of self-training, our methodology not only 446

addresses errors in logic and calculation at their re- 447

spective scales but also harmonizes them through a 448

robust selection process, thereby mitigating the ac- 449

cumulation of inaccuracies. Empirical evaluations 450

across diverse benchmarks and models underscore 451

the superiority of M2ST over existing approaches, 452

demonstrating its effectiveness in refining LLMs’ 453

reasoning processes for a variety of complex tasks. 454
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Limitation455

One limitation of the proposed method is its re-456

stricted applicability to scenarios that involve incre-457

mental reasoning, where problems can be broken458

down into smaller steps. This limits its usabil-459

ity in complex, non-linear problems that require460

holistic analysis or simultaneous consideration of461

multiple factors. Additionally, the method’s se-462

quential nature leads to a decrease in reasoning463

speed compared to parallel or concurrent reason-464

ing approaches, making it less suitable for time-465

critical applications or situations that demand real-466

time decision-making. These limitations should be467

taken into account when considering the implemen-468

tation of the method.469
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