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Abstract

We study the fundamental problem of calibrating a linear binary classifier of the
form o(ﬁ)Tx), where the feature vector x is Gaussian, o is a link function, and w
is an estimator of the true linear weight w*. By interpolating with a noninformative
chance classifier, we construct a well-calibrated predictor whose interpolation
weight depends on the angle Z(w,w,) between the estimator «w and the true
linear weight w,. We establish that this angular calibration approach is provably
well-calibrated in a high-dimensional regime where the number of samples and
features both diverge, at a comparable rate. The angle £ (w0, w, ) can be consistently
estimated. Furthermore, the resulting predictor is uniquely Bregman-optimal,
minimizing the Bregman divergence to the true label distribution within a suitable
class of calibrated predictors. Our work is the first to provide a calibration strategy
that satisfies both calibration and optimality properties provably in high dimensions.
Additionally, we identify conditions under which a classical Platt-scaling predictor
converges to our Bregman-optimal calibrated solution. Thus, Platt-scaling also
inherits these desirable properties provably in high dimensions.

1 Introduction

Calibration of predictive models is a fundamental problem in statistics and machine learning, es-
pecially in applications that require reliable uncertainty quantification. A well-calibrated model
ensures that its predicted probabilities align closely with true event probabilities—a property essential
in fields such as medical decision-making [7, 41]], meteorological forecasting [[14} 28l 23| 165! 64],
self-driving systems [60]], and natural language processing [66, [29].

Numerous algorithms have been proposed for calibrating the outputs of a trained model, including
classical methods such as Platt scaling [70} 131,169,311, histogram binning [89}[77]], isotonic regression
(90,140, 121136 44], and more recent approaches such as temperature scaling [[29}47]], ensemble-based
methods [S0} 158, 86} 81]], and Bayesian strategies [45} 21], among others.

While extensive prior work has studied calibration [48], [77] [30, [74] 43]], this literature primarily
focuses on traditional asymptotic theories or finite-sample learning theoretic arguments. These
approaches often overlook the impact of problem dimensionality, which is particularly relevant
for high-dimensional settings where the number of features may be substantial. Alternatively, a
separate line of research has explored calibration within a high-dimensional proportional asymptotic
regime, where the sample size n and the feature dimension d both diverge, at a comparable rate.
This proportional scaling regime has gained significant traction in modern statistics and machine
learning. In statistics, its popularity stems from the fact that theories derived under this regime
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capture high-dimensional phenomena observed in moderate to large sized datasets unusually well
(42016} 125,180, (91} 15117811391 163} 184} 152, 153]]. Consequently, this has spurred the creation of innovative
methods displaying remarkable practical performance [[61} 27} 9, 54}(76,|57]. In machine learning,
this regime has proven exceptionally valuable and effective in analyzing the behavior of modern
neural networks and other interpolation learners under overparametrization [55} 134,156} 159 12} [75} 167]).
For binary classification in this proportional regime, a substantial line of work [[79,[78}[92]] establishes
that classical logistic regression yields seriously biased estimates; building upon these, [3]] shows
that logistic regression tends to be inherently overconfident, while [22] discusses the impact of
regularization under the same model. Finally, [21] introduces expectation consistency and derives a
limiting calibration error formula as a function of the signal prior and other problem parameters.

Despite these advancements, an approach that is provably calibrated in high dimensions, without
knowledge of the true signal prior, is missing. Moreover, there is a lack of principled understanding
regarding optimal calibration strategies from among the available options. Additionally, rigorous
guarantees on the performance of classical calibration methods, such as Platt scaling, in modern
high-dimensional scenarios is notably absent from the literature. In this paper, we address these
gaps. We consider the challenge of calibrating a binary linear predictor in a frequentist setting
under a Gaussian design. Our contributions are three-fold: (i) we introduce a data-driven predictor
that can provably calibrate in a broad class of high-dimensional binary classification problems;
(i1) we show that our calibrated predictor is Bregman-optimal, meaning it uniquely minimizes any
Bregman divergence relative to the true label-generation probability; (iii) we establish conditions
under which a classical Platt-scaled predictor converges to this Bregman-optimal calibrated solution,
thereby formally showing that Platt scaling is both well-calibrated and Bregman optimal in our
high-dimensional setting. Although we derive our theoretical results assuming Gaussian features,
extensive recent universality results suggest that these should continue to hold for sufficiently light
tailed distributions (see Section 8] for a discussion). We provide experiments that demonstrate this
robustness to the Gaussian assumption (Section [H.2] and ).

We construct our calibrated predictor by interpolating with an uninformative (“‘chance”) predictor,
where the interpolation weight is determined by the angle Z(w, w,) between the estimated linear
weight w and the true weight w,. Our construction crucially leverages recent developments from
the literature on observable estimation of unknown parameters in high dimensions. For instance,
leveraging advances in [38] [8] 9] [10} (18 54], we can show that the angle Z(1, w, ) is consistently
estimable when n and d grow proportionally. To our knowledge, this is the first provable calibration
method in a high-dimensional setting, and it uncovers a conceptual link between optimal calibration
and Z (1, w,): the poorer the alignment of w with w,, the greater the noise needed to be injected to
prediction logits to ensure calibration.

2 Setting
Suppose we observe i.i.d. data (y;, ;) satisfying
yl-iri\(ziBern (O’ (ijz)), i=1,...,n, €))]

where o : R — [0, 1] denotes the link function and the covariates x; € R? are drawn independently
as x; id N(0,Y), with 3 assumed to be known (say from a separate unlabeled dataset as in [17} [18]).
The true linear weight w, € R4 is an arbitrary deterministic vector, and we assume without loss
of generality that w, Yw, = |Jw,|/% = 1. The training dataset is denoted as X = [z1,. .. Jan] €
R andy = [y1,...,yn] € R™

To quantify the degree of miscalibration, we define the calibration error at level p for any predictor f
as

A;al(f) =p—Eq,., [U (wjxneW) | f(xneW) = p} )

where E, _ denotes the expectation over zpew ~ N(0,X). A predictor is said to be well-calibrated

if A;ﬂl( f ) = 0 for all p in the range of f. Intuitively, this means that when the predictor assigns a
probability p to label 1, the true probability of label 1 is indeed p.



We consider the regularized M-estimator

_ RS T

@ = arg min_ ;Kyi (w'z;) + g(w),
where g(+) is a convex penalty and /(-) is a convex loss function. In this setting, we consider a
sequence of problem instances {y(d), X (d), w,(d)}4>1 such that X (d) € R™@*? and y(d) € R™
generated from (T)). It is well-known that in the special case where £(-) equals the logistic loss and g(-)
is zero, the corresponding predictor a(ﬁ)Tmnew) is grossly mis-calibrated in the high-dimensional
regime % — (0, +00) [791[781 13, 22]], even where it is well-defined and unique [L6].

In what follows, we present, for the first time, a predictor that is provably well-calibrated in this
regime (for general convex losses and penalties beyond the special case mentioned above). We
achieve this through an angular calibration idea, and furthermore, establish that this is optimal in the
sense that it minimizes any Bregman divergence to the true label distribution. We conclude showing
an interesting connection—Platt scaling converges to our angular predictor—and therefore is both
provably well-calibrated and optimal in the aforementioned sense.

3 Introducing angular calibration

Most calibration strategies adjust a pre-trained predictor by learning a mapping F': u — F(u) of
the logits @ " Tpeyw. Platt scaling, for example, stipulates the parametric form F(u) = o(Au + B),
where A, B € R are fit on a holdout dataset. This raises a natural question:

Among all well-calibrated predictors of the form F (" Tyew ), which one is “the best”?

In this section, we introduce a predictor with such an optimality property by interpolating between
the prediction logits 0 "  and an uninformative chance predictor. Specifically, we show that if the
interpolation weight is determined by the angle between the estimator @ and the true weight w,,

given by
0, = arccos (M) , 2)
@]l [[wlls

then the resulting interpolated predictor minimizes any Bregman divergence to the true label dis-
tribution among all predictors of the form F (i Zpew ). To the best of our knowledge, a predictor
that is both provably calibrated and optimal (in the aforementioned sense) has not been previously
introduced for high-dimensional problems.

Notably, our predictor uses the angle defined in (2)), thus to define a data-driven predictor, we require
a consistent estimate of this angle. Fortunately, recent advances in the high-dimensional literature
(c.f., [38][8L 9L 10} 18] 54]) allow us to estimate the inner product (@, w*>2, and therefore 6., when n
and d grow proportionally. We discuss the details of this estimation scheme later in Section[6] For

now, we present our angular calibration idea assuming that we have access to a consistent estimator
for 0,.

Definition 3.1. (Angular Predictor) Let

fang (@Ta:newg 9) =Ez (0’ (cos (é) . (%) + sin (é) . Z)) 3)

where @ is a consistent estimator of 6, defined as in (13) and E denotes expectation with respect to
the Gaussian noise Z ~ N(0,1). We will later refer to fane as the angular predictor for simplicity.

Theorem [3.2] below shows that the angular predictor is well-calibrated. We defer the proof to
Section[Al

Theorem 3.2. Assume the link function o is continuous. Then, the predictor fang defined in (3)) is
well-calibrated as d,n — co,n/d — (0, 00). That is, for any p contained in the range of o, we have
that

A (fang ( é)) =p—Eq,., [o (w, Tnew) | fang (@Txnew; é) = p} -0,

in probability where 0 is a consistent estimator for 0, (Cf. Proposition .



The above utilizes the result that when § = 0, exactly, fang (+; 6.) is exactly well-calibrated (we

state and prove this formally in Theorem and that 0 is consistent for 6,. We will later show that
fang (-; 9) = fang (+;0,) is in fact optimal in the sense that it minimizes any Bregman divergence
to the true label distribution. The construction (3)) admits an intuitive interpretation. By the basic
trigonometric identity cos?(6, ) + sin?(#,) = 1, we can see that the logits, that is, the argument of
o(+) in (3), is an interpolation between the informative component @0 " Zpew and the noninformative
Gaussian noise Z. Notice that when @ is well aligned with w, (i.e., cos?(f,) = 1), the angular
predictor fang lies closer to the informative predictor a(@T Znew ). Conversely, when w, and @ are
orthogonal (i.e., sin?(6,) = 1), fang defaults to the non-informative chance predictor E[o(Z)] =
E[o(w,] Tyew)]. In other words,

The poorer the alignment between w, and W, the greater the magnitude of noise Z required to
maintain calibration.

We will show in the next section that this angular interpolation idea leads to a uniquely Bregman
optimal calibrated predictor. This provides the first calibration procedure that is calibrated and
optimal in high dimensions, provably. Peusdocode for angular calibration, using angle estimator from
Section[@] is included in Section[G]

4 Main Result I: Calibrating Optimally using Angular Calibration

Before formally stating our results on optimality of angular calibration, we first define the following
random probability vectors for label distribution,

o T ~ ol new ~ ) Aan ol new s )
Qs = (1 (w, @rnew) )7 Gr = (1 f%’(@@r%zw)), Gang (0) = ( f Ag('UJ x H)A)

- O'(’LU* xnew) 1-— fang(U/}TJ?neW; 9)

“)
where F' : R — [0, 1] is any measurable function. Here, g, corresponds to the ground-truth probability
distribution of the new label, ¢ the prediction probability distribution of an F'-calibrated predictor,
and gang the prediction probability distribution of our angular predictor.

Next, we define the Bregman loss function.

Definition 4.1 (Bregman Loss Functions). Let ¢ : R? ~ R be a strictly convex differentiable
function. Then, the Bregman loss function D, : R? x R? — R is defined as

Dy(z,y) = ¢(x) — ¢(y) — (. —y, Vo(y))-

The Bregman loss function class covers common losses such as the squared loss Dy(z,y) =
|z —y Hg and Kullback-Liebler (KL) divergence Dy(x,y) = Z?:l x;jlog (z;/y;) between two
probability vectors x, y.

Theorem states that the prediction probability Gang generated by the angular predictor uniquely
minimizes any Bregman loss against the ground-truth probability vector ¢, within the class of g for
any F'. We defer the proof of the Theorem below to Section[B]

Theorem 4.2 (Optimality of angular predictor). Let ¢ : R? + R be any strictly convex differentiable
function, and let Dy be the corresponding Bregman loss function. Let By, [$(qy)] be finite. Then, the
expected Bregman loss B [Dy(qx, 4r)] admits a unique minimizer (up to a.s. equivalence) among
all gp,VF € F :={f : R — [0,1]}. Let this minimizer be F, = argminpcr E;  [Dy(q«,Gr)]-
Further suppose that the link function o is continuous. We then have that as n,d — 0o, we have

~ 2
Cjang(o) - CjF* (wanew)H2 —0

in probability. That is, the label prediction probability vector from angular calibration converges to
the optimal label prediction probability vector given by F,.

We note that as = 0,, (jang(é) precisely attains the optimal solution F, (@ " ey ). We defer the
technical statement to Theorem [B.2]in Section
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Figure 1: Platt scaling of a logistic ridge predictor converges to angular calibration predictor, as
holdout set size increases. The plot is generated with Gaussian data with covariance ¥ = 52
where X1, = 0.5/F1 vk, € {1, ...,d}, sigmoid link function in a data deficient setting where
n = 1000, p = 2000. See more details in Section[’Z]

5 Main Result II: Platt scaling is provably calibrated and Bregman-optimal

Platt scaling is arguably the most widely used calibration method in modern machine learning,
yet its theoretical properties in high-dimensional settings remain unexplored. In this section, we
identify conditions under which Platt scaling converges to our angular predictor, and is therefore
well-calibrated and Bregman-optimal in high dimensions.

Platt scaling finds a mapping F' of the prediction logits i | ey, by minimizing the log-likelihood
on a holdout dataset. In this section, we specifically consider the setting where we have a holdout
dataset (Zho,i, Uno,s ), and the negative log-likelihood

Tho

nho Z ~Yho,i 10g w Tho z)) - (]- - yho,i) log(]- - F(T/U\T‘Thoyi)). (5)

The Platt calibration procedure then searches for a mapping F* within some hypothesis class Fpiatt that
minimizes the negative log-likelihood. Elementary asymptotic theory then shows that as ny, — oo
(i.e. the holdout set is sufficiently large), L(f) in (E[) converges to the population loss

e e ()| G REL))) o

almost surely up to a constant. This is exactly the argument of the Bregman loss E,, . . [Dg(qx, ¢r)]
from Theorem for ¢ specialized as the negative Shannon entropy. That is, such calibration
procedures are essentially trying to optimizing the Bregman loss but within the restricted hypothesis
class.

This naturally raises the question of whether calibration procedures such as Platt scaling can achieve
the optimal Bregman loss, say in the limit of a sufficiently large holdout set. Theorem [5.1] shows that,
if o is a probit link function (or is closely approximated by one up to an affine transformation—for
instance, sigmoid(z) ~ ®(1/7/8 x)), and if the negative log-likelihood (3] is minimized over the
hypothesis class of the form o(Au+ B), A, B € R then the resulting Platt-scaled predictor converges
to our angular predictor as ny, — oo. Combining this connection with our results for the predictor
fang(u; 6.) which is our angular predictor fang(u; 0) with 6 = 6, exactly. As mentioned previously
(see also Theoremand Theoremin Appendix), fang (u; 0, ) is exactly calibrated and Bregman-
optimal, which shows that Platt scaling is both provably calibrated and Bregman optimal. This offers



the first formal high-dimensional guarantees of this kind for the widely well-known Platt scaling
procedure. We defer the proof of the Theorem below to Section [C]

Theorem 5.1. Consider the predictor f”h‘* (u) calibrated by the Platt scaling procedure, that is,

platt
fAl;llgcét (@Txnew) = U(Anho . @Tﬂjnew + Bnh0)7
with A" B™e = argmin £, (u— o(Au+ B)) @)
(A,B)er

for by, (-) defined in (). If the link function o satisfies o () = ®(a-z+b) for some a € R\{0},b € R
and the point (A, B,.) defined in () is contained in a compact subset H C R?, the angular predictor
defined in (3)) satisfies R

Fung(38.) = (A -u+ B.) € Fous, ®)
where

A — cos(6.) , B. — b 1 1 ©)

[@]5;1/1 + a2 sin®(6.) ¢ 1+ a2sin®(6,)

and Fplare = {u — o(Au + B) : A, B € R}. Moreover, as ny, — o0, we have that Anno
A,, Brwo B, in probability and

f:l;;t (u) - fang (u; 9*)

in probability.  Here, in-probability convergence is with respect to the randomness of

{(@ho,ir Yno,i) i }

—0 (10)

sup
u€R

To be clear, the above theorem considers the asymptotics in the holdout set ny,, for a fixed sample
size and dimension n, d of the training dataset. We illustrate Theorem [5.1]in Figure/[I] (see Section

for detailed settings) where the solid red line plots our angular predictor u — fang(u) defined in

(3) and the dashed lines plot the predictor u — fgfait (u) calibrated by Platt scaling on increasingly
large holdout sets ny,. We observe that the Platt scaling predictors indeed converge to our angular

predictor as the holdout set sizes ny,, increase.

6 Consistent angle estimation

Observe that the angular predictor fan, depends on the unobserved quantity (w,, @)s. Using recent
advancements from Equation (TI]) we are able to provide a consistent estimator for this quantity. For
simplicity, we outline the estimation procedure here for a twice-differentiable loss function ¢ and
strongly convex, twice-differentiable penalty g; analogous results for unregularized M-estimation and
other losses/penalties found in [8]. We note that this result is part of a long line of development in
observable estimation of unknown quantities in high dimensions [38 9, [10} [18},154].

A data driven estimator for (w,, 73)22 proposed in [8] is:

. ~ ~ 2
(21X - 44012 + 29T X — 572)

~112 A N A
REXTO| BTN + 5 XD - 502 - 472

1
n2
where 1[) € R™ is the vector with components 1[)1 =/ (m;r@) U= % Tr (D — DXﬁXTD) =
14

n

)1/2.

Tr (XI?IXTD) for D = diag (£/(X®)) and H = (X" DX +nV2g(@)) " and # = (

It can be shown that ‘&f — (wy, &3);’ — 0 in suitable high-dimensional sense. We refer the technical
statement to Theorem [D.1lin Section

To estimate (w,, W)y,, we also need to estimate its sign. We require reserving a constant fraction
Nho = a - n of the n training data for the sign estimator,

MNho
Sgn := sign (Z @ ke yf°> . (12)
i=1
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Figure 2: Reliability plots for angular calibration and Platt scaling of a logistic ridge predictor.
Left panel uses a small holdout set for Platt scaling with ny, = 100; Right panel uses a large
holdout set with ny, = 2000. The plot is generated with Gaussian data with covariance ¥ = %2

where ¥, = 0.5/~ vk 1 € {1,...,d}, sigmoid link function in a data deficient setting where
n = 1000, p = 2000. See Sectionﬂfor more details.

It can be shown that the probability of wrong sign identification using sgn decreases exponentially
with ny,,. We defer the proof to Section@

Proposition 6.1. Suppose that o'(x) is well-defined and non-negative almost everywhere and
o'(z) > 0 on a set with non-zero Lebesgue measure. We then have for some absolute constant ¢ > 0,

Py, (581 = sign ((w,, B)5)) > 1 — 2exp (—cnho (cos (6,) -IEU’(Z))Z)

Mho
i=1"

where Z ~ N (0, 1) and Py, is with respect to the randomness in (yzho, a?]l“‘))
Plugging (TT) and (T2) into (), we have the following estimator 6 for 6, in (2)

6 := arccos (||ﬁ)\||;s/gﬁ dz). (13)
Theorem [6.2] below shows that @ is consistent.

Corollary 6.2. Under the assumption of Proposition[6.1|and Theorem[D.1] as n,d — co, we have
that |0 — 0| — 0 in probability where ny, = a - n for a fixed constant o« > 0.

7 Numerical experiments

7.1 Simulations

This section presents a simple simulation to demonstrate results in Section[6] We generate i.i.d. sam-

ples z; N(0,%),i = 1,..,n where £ = 1S and £y, = 0.5F U vkl € {1,..,d}; we
also generate labels from (1) with o(u) = sigmoid(3u + 1) = 1/(1 + exp(—(3u+1))) and

w, ~ N(0,I5) (normalized to ||w,|ls; = 1). We consider the case of ridge logistic regres-
sion with £y, (w'z) = —y;log(Pw(x;)) — (1 — ;) log(1 — Pu(x;)) With P, (z;) = m
and g(w) = 2’\—d||w||§ with A = 0.5. We assume that we are in a data deficient setting where

n = 1000, p = 2000.

The realizability plots in Figure are generated from a test set of size niest = 20000. To produce
these plots, we bin the predicted probabilities for label 1 (on the x-axis) and then compute the average
of the observed label within each bin (on the y-axis). Perfect calibration would align the binned



Table 1: ECE on pretrained feature extractors. “Uncal.” = uncalibrated; “Angular” = our method;
“Platt/Iso” use nyo € {100,500} labeled hold-out points.

Model-Dataset Uncal. Angular Platt 100 Iso 100 Platt 500 Iso 500
ResNet-34-CIFAR-10 0.1236  0.0199 0.0561 0.0484 0.0259 0.0298

MiniLM-20 Newsgroups  0.1392  0.0249 0.0931 0.1107 0.0679 0.0813
ChemBERTa-Tox21 0.1389  0.0132 0.0236 0.0497 0.0175 0.0293

points with the 45° line. In the left and right panels, Platt scaling is derived using holdout sets of
Nho = 100 and ny, = 20000, respectively, whereas both the uncalibrated predictor and the angular
predictor remain unchanged across the two panels.

From the reliability plots, we see that the uncalibrated predictor (blue) is poorly calibrated, while,
as expected, the angular predictor (green) shows good calibration. Here, we have used the angle
estimator (TT) and the sign estimator (I2) to estimate the value of (w,, W)y,. The estimated value for
(wy, W)y, is 0.4356 while the true value is 0.4526. We also ran 5000 Monte Carlo trials where we
found the probability of incorrect sign estimation to be 0.89% with a holdout set of size 1y, = 100.

In contrast, the left panel of Figure [2| shows that Platt scaling (orange) with a holdout set size of
nho = 100 fails to properly calibrate. However, when the holdout set size is increased to ny,, = 20000,
Platt scaling also calibrates correctly. When ny,, = 20000, the predictor calibrated from Platt scaling
is found to be (using scikit-learn package’s CalibratedClassifierCV routine [68]])

e (57 Epew) = 0(A™0 - B Zpew + B™0), with A" = 0.3396, B™ = —0.1521.

platt

We now check if A™e° and B™we are indeed close to A,, B, as claimed in Theorem [5.1, Note
that even though the link function is not strictly a probit function as required by Theorem[5.1] by
approximating sigmoid(u) ~ ®(+/7/8 - u), we have o(u) ~ ®(/7/8(3u + 1)). We then obtain
A, = 0.2991, B, = —0.1597 from () setting a = 3\/%7 b= \/m, which are indeed quite
close to A™e = 0.3396, Bmhe = —().1521.

7.2 Semi-real experiments

We assess angular calibration on semi-real tasks that keep real-data covariates but simulate labels
from the known generative model. We maintain settings in Section [7.1]but replace data covariates
with: (1) final-layer logits of pretrained deep networks; and (ii) classic UCI benchmarks.

We found that (TT)) plug-in estimator for (w*, ) is unstable on these real datasets. This is a known
issue for estimators like (11) that are based on Wigner-type random-matrix-theoretic assumptions.
Modifying these estimator are an active research area [54, 57]. To isolate calibration effects, we
simulate w* and labels, using the true angle.

Each dataset is split into training set n, a large unlabeled pool 7¢oy >> Ntrain fOr covariance estimation,
and nyess. We report Expected Calibration Error (ECE; lower is better) [29]. Post-hoc baselines use a
labeled hold-out of size ny, € {100,500} (“Platt 100/500” and “Iso 100/500”).

Pretrained representations. We fit a linear head on frozen embeddings and calibrate the resulting
logits: ResNet-34 (ImageNet-1K pretrain) on CIFAR-10 [35} 24} 46], MiniLM sentence embeddings
on 20 Newsgroups [85, [72, 51]], and ChemBERTa on Tox21 from MoleculeNet [20} |87]. We
have n x d = (300 x 512)/(800 x 384)/(800 x 768), neoy = 30,000/3,000/3,000 and nes; =
10,000/1,000/500 for CIFAR-10 / 20NG / Tox21. The results are reported in Table |1} the reliability
plots are deferred to Section [H.2]

UCI benchmarks. On Communities & Crime, Splice-junction Gene Sequences, and Madelon
[71L[1,132]), we train linear predictors on raw covariates with nxd = (200 100) /(100 x 180) /(300 x
500), neoy = 700/2000/900, and niese = 593,/900/900 for Communities & Crime / Splice-junction
/ Madelon. The results are reported in Table [2} the reliability plots are deferred to Section



Table 2: ECE on UCI datasets. Conventions as in Table
Dataset Uncal. Angular Platt 100 Iso 100 Platt 500 Iso 500
Communities & Crime 0.1700 0.0296 0.0620 0.0661 0.0262 0.0436

Splice-junction Gene Seq  0.1262  0.0208 0.0568 0.1041 0.0556 0.0879
Madelon 0.1473  0.0267 0.0721 0.0719 0.0299 0.0624

8 Extensions and future directions

We derived our theoretical results assuming that the covariates are Gaussian—although at first pass this
might appear stylistic, recent universality results [37, 156} 33| 26|49/ 162]] demonstrate that these results
should continue to hold as long as the covariates have sufficiently light tails. We demonstrate this with
further experiments. In Section[H.2]and Figure ] we reproduce Figure[T]and 2] with non-Gaussian
design matrices (iid Rademacher and uniform entries respectively) where we observe that our results
continue to be accurate. Establishing such universality formally should be an interesting avenue for

future work—we include an informal discussion here. Consider a general setting where xiig 22z,
where z; has iid entries with zero mean, unit variance and finite moments, and > = p‘lE where ¥
has bounded condition number. Denote @ = ©/2%, @, = £1/2w* and Znew, Znew t0 be observations
at test time with the same distribution as x;, z; respectively. If we could apply the multivariate CLT
[11], we would obtain

p p
(p_l/Q Z 7E*,iznew,ivp_l/Z Z @iznew,i> = (Zh ZZ) s (14)
i=1 =1

where (Z1, Z3) ~ N(0, L) for some positive definite covariance matrix L € R?*2. To apply the
multivariate CLT, we require to check the following moment condition (c.f. [[L1])

s wt Ve (e @\ (@]
AR AL W Ol P S T o

3 _ ~ PO
<PVE [y o] o (D) (5 S 100l + 5 S ail?) =0 (35)-

We claim that the above holds almost surely for sufficiently large p, if we have constants W7, Wy > 0
for which the following holds

H{U\HZZ <@7 w*>§] ) 1 P ~ 3 1 P 3
~ — L, - Wy 3|y — W; — (W ’W .
( (W, wi)s, ||w*||; pé' il p;‘ | (W1, Wa)

Recent universality results for either approximate message passing algorithms [19] or convex gaussian
minmax theorems (CGMT) [33] allow one to prove this beyond Gaussian designs. Numerous
works have already applied such arguments in the context of other high-dimensional problems
(37,162,156, 49]]. Using (T4), the conditional distribution (I3)) in the proof of Theorem [3.2] can be
extended to non-Gaussian, Wigner-type features preconditioned by some known £'/2, thus leading
to a proof of Theorem 2 beyond Gaussian designs. In the interest of space, we defer formalizing this
to future work.

Finally, we consider binary classification in this work; it would be interesting to extend our results to
multi-index models, which includes multi-class classification, additive and interaction models, and
two-layer neural networks [82, 88, [15]]; see details in Section@ Multi-index model can be defined
as follows: for K > 2 and unobserved indices W, = [wy1, ..., Wek] € R4*K the true logits and
model outputs are G := W,  Tpewy € RE, 7 (2pew ) = g(G) where g is a generalized link (vector- or
scalar-valued). We show in Section [Fthat, given an estimator W = [wy, . .., Wk]| of W,, angular
predictor in Definition [3.1) may be extended for the multi-index model as follows,

Fung (/WTxnew ) = Ey [g (M,S + L, Z)]

where the matrix quantity M, and L, depends on cross-index angles (w, We)y, , ¢, k € [K]. Though
no estimators are given for these cross-index angles in literature as far as we know, recent theory for
multi-index models [82] suggests that analogues of the single-index angle estimators [8] are feasible.
We leave this to future works.
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A Proof of Theorem

Before proving Theorem we first show that fang (+; 0.) is exactly calibrated.
Theorem A.1. The predictor fang defined in () is well-calibrated at all p € [0, 1] when . That is,
foranyp € [0,1] and any d,n € Ny

A (fang (-;9*)) =p—E,,. [a (@] Zew) | Fang (@7 Znew: 0) = p] o

Proof of Theorem[A.1} Let us define the following event

A= {fang (w;rxnew;e*) :p}
We have

Emnew [O— (ijnew) | A]

DB B [0 (0] 700w | 28] | A]

@ E.... []EZ [a <1 -cos (0,) - ooy @ + sin (6,) - Z)] | A}

[@]ls
= Exnew [fang (wjxnew; 0*) | A}
= p.

where (i) follows from tower property of expectation and the fact that fang (Znew) depends on Zpey
only through x| @, (ii) follows from conditional expectation of multivariate Gaussian distribution

new

1
[0, Tnew | ey @] L Tols cos (0,) -z @ +sin(6,) - Z (15)
w|is

for some Z ~ N(0,1). O

Proof of Theorem[3.2] Using result from Theorem it suffices to show that as |é — 6. — 0in
probability, we have that

A5 (fans (:0.)) = A5 (fang (59) )| = 0. (16)
Let us introduce the following notation for the ease of presentation:

X = O'(wjznew)a Y/ = fang (ﬁ—rxnew; é) 5 }/* == ]Eang (@Txnevﬁ 0*) .

Then, we can write LHS of (16) as

EX |V =p] ~E[X | Y, =p]| =

1 1 1 1
f?(P)/o zfyy(z,p)de — fY*(p)/o zfxy, (z,p)dx

where fy, fv,, fx,v., fx v are the distribution density functions of Y, Y, and joint density functions
of (X,Y,) and (X,Y’). We now show that the RHS of the above converges to 0. Firstly, ﬁ(m -

%@| — 0 because |Y —Y.| — 0 in probability (and thus in distribution) by continuous mapping
Y
theorem. Secondly,

— 0

1 1
‘/ zfxy(z,p)de —/ zfxy, (x,p)dx
0 0

by bounded convergence theorem and the fact that (X Y) converges to (X, Y,) jointly. We conclude
the proof. O
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B Proof of Theorem 4.2

We first state a result from [4]] for general random variables.

Proposition B.1 (Theorem 1, [4]]). Let ¢ : R? i R be a strictly convex differentiable function,
and let Dy be the corresponding Bregman loss function. Let X be an arbitrary random variable
taking values in RY for which both E[X| and E[¢(X)] are finite. Then, among all functions of Z, the
conditional expectation is the unique minimizer (up to a.s. equivalence) of the expected Bregman loss,
ie.,

arg min E[D4(X,Y)] =E[X | Z].

Yeo(Z)

Using the above results, we show that angular calibration with 6 = 6, minimizes Bregman divergence
to true label distribution among predictors of the form F(i ' Zpey).

Theorem B.2 (Optimality of angular predictor). Let ¢ : R? +— R be any strictly convex differentiable
function, and let D be the corresponding Bregman loss function. Let B, [$(qx)] be finite. Then, the
expected Bregman loss E,, . [Dy(q4, 4r)] admits a unique minimizer (up to a.s. equivalence) among
all gp,VF € F := {f : R — [0,1]}. Let this minimizer be F, = argminpcr E;, . [Dy(qx, Gr))-
We then have that almost surely

qang(g*) - F* ('@Txncw)

where {ang(0+) is the label prediction probability vector by angular calibration given in @) with 6
replaced by 0,.

Proof of Theorem|[B.2] Firstly, we set X,Y, Z in Theorem [B.T]as

U(wjxnew) F(@Txnew) ~T
X + (1 - U(wanew)>, Y (1 _F(@ ) )’ Z W Tpew-

The result then follows from Theorem [B.T|and the following
g wan W ~ j ng (Tnew
Bpx 1 2=k (, 70 o) ) fald] = (| Sl

— o(w, Tnew 1 = fang(Tnew)

where we used (T5) and (3] for the last equality. O
Now we are ready to state proof of Theorem 4.2}

Proof. Using result from Theorem[B.2] it suffices to show that

Gang () = Gang (6.)

in probability. This is an immediate consequence of the continuous mapping theorem under the
assumption ¢ is continuous. O

‘—>0
2

C Proof of Theorem 5,11

Before proving Theorem [5.1} we first state two classic analysis results that we will later use.

Proposition C.1 (Theorem 5.7, [83]]). Let ¢,, be random functions on H, £* be a fixed function on H,
and 0* € H such that (i) uniform convergence of n=1£,, to £* holds:

Sup | =6, (8) — £(8)] 2220 o,
0cH n n—oo

(ii) the mode of 0* is well-separated, i.e for all € > 0,

sup 05(6) < % (0%)
0EH:d(0,0%)>e

Then any sequence O, maximizing ¢, converges in probability to 6.
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Proposition C.2 (Theorem 10.8, [73]]). Let C be a relatively open convex set, and let f1, f2, ..., be a
sequence of finite convex functions on C. Suppose that the sequence converges pointwise on a dense
subset of C, i.e. that there exists a subset C' of C such that its closure satisfies c1C’ D C' and, for
each x € C', the limit of f1(x), fa(x), ..., exists and is finite. The limit then exists for every x € C,

and the function f, where
fla) = Jim fi(x)

is finite and convex on C. Moreover the sequence f1, fa, ..., converges to f uniformly on each closed

bounded subset of C.

Now we are ready to prove Theorem 5.1]

Proof of Theorem[5.1] (8) is obtained from applying the well-known identity below for probit func-
tion ®(+)
I
Eb(u+o-2) =0 ———), Z~NO1
to2)=o (L) 0.1

to (3).
To prove that A™e — A, B™> — B, as ny, — oo, we would like to apply (C.I) by setting
n 4 Npo, 0 <+ {A, B}, 0% + {A,, B.},

Mho

gn(g) — ‘enho (Av B) = Z —Yho,i log(FA,B(ﬁ}\TfEho,i)) - (]- - yho,i) IOg(]. - FA,B(@T‘rho,i))a
i=1
(17)
and
0*(0) « ¢*(A, B) :=E,,, { o (W] Tew ) 10g (Fap (07 Znew ))
(13)

— (1 —0 (wjxnew )) log (1 —Fap (@Tajnew ))

where we used the notation

Fap(u):=0(Au+ B) = ®(a(Au+ B) + b).
Here, RHS of @) is up to an affine transform of the KL divergence (]§[) and, therefore, it follows
from (8] and (??) that its minimizer is indeed A, B..

To verify condition (i) of Theorem [C.I] we first note that (I7) converges to (I8) point-wise in
probability following from law of large number theorem. Furthermore, we note that the functions

fi(u) := —log(®(u)), fa(u) := —log(1 — ®(u))

are both strictly convex functions. To see this, one can show second derivatives are positive for all
u € R by utilizing the two elementary inequalities: u®(u) + ®'(u) > 0, u®(u) + '(u) > u. It
then follows that £,,, (A, B) is a convex function of (A, B) on the domain R?. Uniform convergence
on H is then an application of Theorem [C.2}

To verify condition (ii) of Theorem we only need to show that £*(A, B) is a strictly convex
function in (A, B). Let us write the inside of the expectation of (T8) as

f(A,B)=0(H)fi(aA-H+aB+b)+ (1 —-0(H))f2(aA-H+aB+b)
where H := w, 0w ~ N (0, 1). Then, we have that

V2f(A,B) = (o(H)- f!'(aA-H+aB+b)-+(1—o(H)) g(aA-H+aB+b)).(“2H2 ‘LQH)

a’H  a?
which is positive-definite almost surely when a # 0. Hence, we have that almost surely
f(#(Ar, Br) + (1 = 1)(A1, Br)) < tf((A1, B1)) + (1 =) f (A1, Br))
which implies that
Eq,, [ (t(A1, B1) + (1 = t)(A1, B1)) < By, f ((A1, B1)) + (1 = t)Eq,,, f ((A1, B1)) .
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The claim that £*(A, B) is strictly convex follows.

It then follows from Theoremthat Ao — A, B™e — B, in probability as ny,, — co. The

uniform convergence f;g‘;t (1) — fang(u) follows immediately.

O

D Inner product estimation

We restate the following results from Theorem 4.4, [8]]. We note that the quantity {)’;; in the error

bound is observable and is typically of constant order in the proportional regime. See [8] for details.

Theorem D.1. Suppose ¢ is continuously differentiable and g is strongly convex and twice differential
penalty function. Assume also that % < % < % for some § > 0, for arbitrarily large probability
1 — 6, the following holds

Cit

A~ e . n
D242

E|a? — (w,,0)3| <

* >~

where C'is a constant depending only on g and §.

E Sign estimation

Proof of Theorem[6.1] With respect to randomness in validation dataset (that is, @ is treated as
deterministic), we have that @ ' 21 - yh© are iid across i and satisfies that
~T ho ho L ~T h (we, W)y 7 :
w iO'yiO:w xiO-BeI‘ni (O’ <’me xi0—|—SlH(9*)-Zi

L | @|sU; - Bern; (o (cos (6,) U; + sin (6,) - Z;)) = H;

X

iid

where Z; “Y N(0,1) and we have used w21 £ ||@||x; - U; for U; % N(0,1). It follows from

Gaussian integration by parts that
EH; = (w,, @)y, - Eo’ (cos (0+) U; + sin (04) - Z;) = (w4, W), Eo'(Z).
Meanwhile, H; is subGaussian with subGaussian norm
1515, < @3 U1, < 313
By theorem assumption, E¢’(Z) > 0 and
sign ((wy, W)y, Eo’(Z)) = sign ((wy, ©0)y)
So the sign identification of sgn is correct if the following event holds

1 Mho N
— ZwTaji -y — (W, W)y Eo’(Z)

< Nwy, W) Eo'(Z)] .
Ttho 327

By Hoeffding’s inequality,

1 MNho R ~
Pho ( -~ Zw—rl'i “Yi — (w*,w>2 ]Eo'/(Z) > |<w*’w>2 EO”(Z)|>
© =1

< 2exp (— CTtho (EUI(ZA)); {w, @>2E> = 2exp (—cnho (cos (6.) ~Ea’(Z))2) .

||wH2

The theorem statement follows. O
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F Angular calibration for multi-index models

Let Tpew ~ N(0,%) C R Fix K > 2 and let W, = [w,1, ..., w.x] € R*E, Define
G =W, Thew € R, 7(2pew) = 9(G),
where g is a generalized link (vector- or scalar-valued). This setup covers:
* Two-layer nets (frozen outer layer): g(u) = >, ax o(uy)
* Multi-class softmax: g(u) = softmax(u)
* Additive index model: g(u) = >, fi(ur)
* Interaction index model: g(u) = >, fr(ur) + Doy hre(ur, we)

The following extends angular calibration to mutli-index models. Note that to apply the angular
predictor (I9), we must estimate cross-index angles (w,.j, We)y,, similarly to the single-index case.
Though no estimator is given in literature as far as we know, recent theory for multi-index models
[82] suggests that analogues of the single-index angle estimators [8] are feasible. We leave derivation
of these estimators to future works.

Theorem F.1 (Angular calibration for multi-index models). Let W= [W1, ..., 0] € R>*K be any
estimator. Set

D = diag(||@1 ||z, - . ., |@k|ls), S:=D"'WTzme, € RE.
Then we have K x K covariance blocks
Cov(G) = W, EW,, R:=Cov(S)=D'WTSWD!, C:=Cov(G,S)=WSWD!
where

Ry = (Wy,, We)x

<w*ka{0\€>2
= Tk AR Cre =
[@els: ([ ]s:” H

@ellslwedls

Then, assuming that R is invertible, we may define

M,:=CR™',  %,:=Cov(G)-CRCT

and we have that G | S ~ N'(M, S, %,). Forany factor L, with L,L] = %, and any Z ~ N (0, I )
independent of everything, define the multi-index angular predictor

Fang (W Znew) = Ez [g(M,S + L, Z)] . (19)
Then for any p € A~ and any d,n € N,
pP— E |:7T(xnew) ‘ fang(WT-Tnew) = p:| = 0.

Proof. Let Tpew ~ N (0,X) and define

G =W, zpew €RE,  §:= D"'W 2y € RE,

with D = diag(||@1]|s, - - -, [|Tk]|s) and |lu|s = VuT Xu, (u,v)s := u' Zv. Set the 2K x d
linear map
W, G
T .= D_lw_r] , Y = [S} =T Tnew-

Since xyeyw 1S Gaussian and Y is a linear transform, Y is jointly Gaussian with mean 0 and covariance

Cov(Y)=TST' = { W, EW, WISWD1 }

D'WTSW, D-'W'sSWD!
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Thus,
Cov(G) = W) EW,, R:=Cov(S)=D'WT'SWD™, C:=Cov(G,S)=W,SWD".
In particular, for k, ¢ € [K],

Rip = (W, We)x

(Wyk, We) s
= 2 Cre =
[@lls: [@ells’ M

s [@ells
Define the K x K matrices
M, :=CR™',  %,:=Cov(G)-CR'C".
Consider the linear residual
U:=G-MS=G-CR'S.
Because Y is Gaussian, U is Gaussian; further,
Cov(U, S) = Cov(G,S) —CR ' Cov(S,8) =C —CR 'R =0,
so U and S are independent (uncorrelated jointly Gaussian vectors are independent). Moreover,
Cov(U) = Cov(G) — CR™'CT =%,.
Hence we have the orthogonal decomposition
G=MS+U, U 1 S, U~ N(0,%,).

Equivalently, the conditional distribution is

G|S ~ N(MS, 5,),
which is the standard multivariate normal conditioning formula via the Schur complement.
Finally, let L, be any matrix satisfying L, L] = ¥, and let Z ~ N(0, I ) independent of (G, S).
Then U 4 L, 7 and

G|S L MS+L.Z
Therefore, for any measurable g (vector- or scalar-valued) with the requisite integrability,

Elg(G) | S] =Ez[g(M.S + L. Z)],

which yields the stated multi-index angular predictor

f/;ng (W\Txnew) =Kz [Q(M*S + L*Zﬂ .

To conclude, set X := 7(Tyew) = g(G) € AK~! and
Y = ]’”;ng(WTxneW) =E[g(G) | 5].
Then Y is o(S)-measurable and Y = E[X | S] almost surely. We claim that
EX|Y]=Y a.s.
Indeed, for any bounded measurable  : AK~1 — R,
E[p(Y) (X = Y)] = B[ Ep(Y) (X - ¥) | 5] | =Eo(v) (E[X | 5] - Y)] =0,

so E[X | Y] =Y (coordinate-wise) by the defining property of conditional expectation.

By the existence of regular conditional expectations, this implies that for Py--almost every p € AK—1,
B (o) | Fons (7 T 2new) =] = EIX | ¥ =3] =,

ie.,
p— E{W(xneW) ’ J?ang(w—rxnew) = p} =0.

This establishes exact calibration of the multi-index angular predictor. O
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G Pseudocode

Algorithm 1: Angular Calibration

Input :Training data {(x;, y;)}7q; link o; convex loss ¢ and penalty g;
covariance X (known or estimated from unlabeled data);

holdout set {(z1°, y2°)} 25 for sign estimation;
Output : Calibrated predictor fang () that returns p € [0, 1] for any new z.
(A) Fit base linear model

@ + argmin,, =30 4y (w'z;) + g(w)

@5 + (@7 )"/

(B) Observable magnitude of (w,, W)x

i =l (@] D) b= (P, 1ha)T

D « diag(t)(X®)); H <+ (XTDX +nV2g(@)) "

b+ L1Te(D - DXHX'D); 4+ Te(XHXTD); 2+ ||¢|%*/n
(21X — 39l + 267 X — 47)

TP 9 )
X T 4 20X+ 2 - 52— 4

a;

— // Est. of (w,,W)%

1
2

(C) Sign via holdout correlation
sen  sign (3525 (@7 27°) y°)

(D) Angle & interpolation weights

Som < /a2
c(_bgfi\”/a; ¢ < min{1, max{—1, c}} // numerical clip
Wiz

0 « arccos(c); o< cosf=c; B+ sind=+1—a?

(E) Define calibrated predictor fang
For any new x:

Uz s u/||o)s
draw 2q,..., 20 ”fle(O, 1) and set fong(7) ~ = > j=10(as+ Bz;)

return fog(z)
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H Additional plots

H.1 Universality
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Figure 3: Reproduce Figure (in the third column) and@ (in first two columns) for Rademacher
entries. Upper Row: rerun simulations in Section [7|but with subGaussian designs W %!/2 where Wi

are sampled iid from Rademacher distribution, taking values 41, —1 with equal probability. Bottom

Row: we replace the sigmoid link function in Section El with a clipped relu link function o (x)
clip(3z + 0.5) where clip(z) = z,Vx € [0,1], clip(x) = 0,Vx < 0 and clip(z) = 1,Vz > 1.
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Figure 4: Reproduce Figure |1| (the third column) and |2| (first two columns) for uniform entries.
Upper Row: rerun simulations in Section (7| but with non-Gaussian designs WX/ where Wi
are sampled iid from uniform distribution, taking values in interval [—+/12/2, v/12/2] uniformly
at random. Bottom Row: we replace the sigmoid link function in Section [7] with a clipped relu
link function o(z) = clip(3z + 0.5) where clip(z) = z,Vx € [0,1], clip(z) = 0,Vx < 0 and
clip(z) = 1,Vx > 1.
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I Simulation code and reproduction

The simulation code Angular_calibration.ipynb, Semi_experiments.ipynb included as supplemen-
tary material. The experiment can be run on modern personal computers without needing special
computing hardware. Detailed instructions is provided in the simulation code.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have clearly state the claims made, including the contributions made in the
paper and important assumptions and limitations, in abstract and introduction

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Limitations and future directions section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: All assumptions are included either in section 2 or in each theorem statement.
Full proofs are included in appendices.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.

The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclose all the information needed to reproduce the main
experimental results.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have provided source code for our simulations in supplementary file, along
with detailed instructions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All simulation details are disclosed in Section 7 Simulations.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Section 7.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix F
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The paper conform, in every respect, with the Neur[PS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work is purely theoretical, aimed at advancing the mathematical under-
standing of calibration in an idealistic setting. It does not involve any personal, sensitive, or
protected information. As such, there is no plausible way for our methods to be used for
discrimination, profiling, surveillance, or any other harmful purpose.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLM is only used for minor grammar editing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
1L.LM) for what should or should not be described.
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