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Abstract

Deep Boltzmann machines (DBMs), one of the first “deep” learning methods ever studied,
are multi-layered probabilistic models governed by a pairwise energy function that describes
the likelihood of all variables/nodes in the network. In practice, DBMs are often constrained,
i.e., via the restricted Boltzmann machine (RBM) architecture (which does not permit intra-
layer connections), in order to allow for more efficient inference. In this work, we revisit the
generic DBM approach, and ask the question: are there other possible restrictions to their
design that would enable efficient (approximate) inference? In particular, we develop a new
class of restricted model, the monotone DBM, which allows for arbitrary self-connection in
each layer, but restricts the weights in a manner that guarantees the existence and global
uniqueness of a mean-field fixed point. To do this, we leverage tools from the recently-
proposed monotone Deep Equilibrium model and show that a particular choice of activation
results in a fixed-point iteration that gives a variational mean-field solution. While this
approach is still largely conceptual, it is the first architecture that allows for efficient ap-
proximate inference in fully-general weight structures for DBMs. We apply this approach to
simple deep convolutional Boltzmann architectures and demonstrate that it allows for tasks
such as the joint completion and classification of images, within a single deep probabilistic
setting, while avoiding the pitfalls of mean-field inference in traditional RBMs.

1 Introduction

This paper considers (deep) Boltzmann machines (DBMs), which are pairwise energy-based probabilistic
models given by a joint distribution over variables x with density

p(X) o exp Z x] @iy + Zb;razz , (1)
(i,j)€E i=1

where each x;., denotes a discrete random variable over k; possible values, represented as a one-hot encoding
z; € {0,1}*; E denotes the set of edges in the model; o, € R*:*k; represents pairwise potentials; and
b; € R¥ represents unary potentials. Depending on the context, these models are typically referred to as
pairwise Markov random fields (MRFs) (Koller & Friedman),2009), or (potentially deep) Boltzmann machines
(Goodfellow et al., [2016} [Salakhutdinov & Hintonl 2009; Hinton, 2002). In the above setting, each z; may
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Figure 1: Neural network topology of different Boltzmann machines. The general case is a complete graph
(red dashed lines are a subset of edges that are in BM but not RBM). Our proposed parameterization is a
form of general Boltzmann machine.

represent an observed or unobserved value, and there can be substantial structure within the variables; for
instance, the collection of variables x may (and indeed will, in the main settings we consider in this paper)
consist of several different “layers” in a joint convolutional structure, leading to the deep convolutional
Boltzmann machine (Norouzi et al., 2009).

Boltzmann machines were some of the first “deep” networks ever studied |Ackley et al.| (1985)). However, in
modern deep-learning practice, general-form DBMs have largely gone unused, in favor of restricted Boltzmann
machines (RBMs). These are DBMs that avoid any connections within a single layer of the model and thus
lead themselves to more efficient block-based approximate inference methods.

In this paper, we revisit the general framework of a generic DBM, and ask the question: are there any
other restrictions (besides avoiding intra-layer connections), that would also allow for efficient approximate
inference methods? To answer this question, we propose a new class of general DBMs, the monotone deep
Boltzmann machine (mDBM); unlike RBMs, these networks can have dense intra-layer connections but are
parameterized in a manner that constrains the weights so as to still guarantee an efficient inference procedure.
Specifically, in these networks, we show that there is a unique and globally optimal fixed point of variational
mean-field inference; this contrasts with traditional probabilistic models where mean-field inference may
lead to multiple different local optima. To accomplish this goal, we leverage recent work on monotone Deep
Equilibirum (monDEQ) models (Winston & Kolter, [2020), and show that a particular choice of activation
function leads to a fixed point iteration equivalent to (damped) parallel mean-field updates. Such fixed point
iterations require the development of a new proximal operator method, for which we derive a highly efficient
GPU-based implementation.

Our method also relates closely with previous works on convergent mean-field inference in Markov random
fields (MRFs) (Krahenbiihl & Koltun, 2013; |Baqué et al., [2016; Lé-Huu & Alahari, 2021); but these ap-
proaches either require stronger conditions on the network or fail to converge to the true mean-field fixed
point, and generally have only been considered on standard “single-layer” MRFs. Our approach can be
viewed as a combined model parameterization and (properly damped) mean-field inference procedure, such
that the resulting iteration is guaranteed to converge to a unique optimal mean-field fixed point when run
in parallel over all variables.

Although the approach is still largely conceptual, we show for the first time that one can learn and perform
inference in structured multi-layer Boltzmann machines which contain intra-layer connections. For example,
we perform both learning and inference for a deep convolutional, multi-resolution Boltzmann machine, and
apply the network to model MNIST and CIFAR-10 pixels and their classes conditioned on partially observed
images. Such joint probabilistic modeling allows us to simultaneously impute missing pixels and predict the
class. While these are naturally small-scale tasks, we emphasize that performing joint probabilistic inference
over a complete model of this type is a relatively high-dimensional task as far as traditional mean-field
inference is concerned. We compare our approach to (block structured) mean-field inference in classical
RBMs, showing substantial improvement in these estimates, and also compare to alternative mean-field
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inference approaches. Although in initial phases, the work hints at potential new directions for Boltzmann
machines involving very different types of restrictions than what has typically been considered in deep
learning.

2 Background and related work

This paper builds upon three main avenues of work: 1) deep equilibrium models, especially one of their
convergent version, the monotone DEQ; 2) the broad topic of energy-based deep model and Boltzmann
machines in particular; and 3) work on concave potentials and parallel methods for mean-field inference. We
discuss each of these below.

Equilibrium models and their provable convergence The DEQ model was first proposed by Bai et al.
(2019). Based on the observation that a neural network ¢'* = o(Wq; +Uz+0b) with input injection x usually
converges to a fixed point, they modeled an effectively infinite-depth network with input injection directly
via its fixed point: ¢* = o(Wq*+Ux+Db). Its backpropagation is done through the implicit function theorem
and only requires constant memory. [Bai et al.| (2020) also showed that the multiscale DEQ models achieve
near state-of-the-art performances on many large-scale tasks. [Winston & Kolter| (2020) later presented a
parametrization of the DEQ (denoted as monDEQ) that guarantees provable convergence to a unique fixed
point, using monotone operator theory. Specifically, they parameterize W in a way that I — W = mI (called
m-strongly monotone) is always satisfied during training for some m > 0; they convert nonlinearities into
proximal operators (which include ReLU, tanh, etc.), and show that using existing splitting methods like
forward-backward and Peaceman-Rachford can provably find the unique fixed point. Other notable related
implicit model works include [Revay et al.| (2020)), which enforces Lipschitz constraints on DEQs; [El Ghaoui
et al.| (2021) provides a thorough introduction to implicit models and their well-posedness. |Tsuchida & Ong
(2022) also solves graphical model problems using DEQs, focusing on principal component analysis.

Markov random field (MRF) and its variants MRF is a form of energy-based models, which model
joint probabilities of the form py(xz) = exp (—Ey(x)) /Zy for an energy function Fy. A common type of
MRF is the Boltzmann machine, the most successful variant of which is the restricted Boltzmann machines
(RBM) (Hinton, [2002) and its deep (multi-layer) variant (Salakhutdinov & Hinton, [2009). Particularly,
RBMs define Eg(v,h) = —a'v —b"h — v Wh, where § = {W,a,b}, v is the set of visible variables, and
h is the set of latent variables. It is usually trained using the contrastive-divergence algorithm, and its
inference can be done efficiently by a block mean-field approximation. However, a particular restriction of
RBMs is that there can be no intra-layer connections, that is, each variable in v (resp. h) is independent
conditioned on h (resp. v). A deep RBM allows different layers of hidden nodes, but there cannot be
intra-layer connections. By contrast, our formulation allows intra-layer connections and is therefore more
expressive in this respect. See Figure [1| for the network topology of RBM, deep RBM, and general BM (we
also use the term general deep BM interchangeably to emphasize the existence of deep structure). Wu et al.
(2016)) proposed a deep parameterization of MRF, but their setting only considers a grid of hidden variables
h, and the connections among hidden units are restricted to the neighboring nodes. Therefore, it is a special
case of our parameterization (although their learning algorithm is orthogonal to ours). Numerous works also
try to combine deep neural networks with conditional random fields (CRF) (Kriahenbiihl & Koltun, 2013;
Zheng et all 2015; |[Schwartz et al., |2017)) These models either train a pre-determined kernel as an RNN or
use neural networks for producing either inputs or parameters of their CRFs.

Parallel and convergent mean-field It is well-known that mean-field updates converge locally using
a coordinate ascent algorithm (Blei et all [2017). However, local convergence is only guaranteed if the
update is applied sequentially. Nonetheless, several works have proposed techniques to parallelize updates.
Krahenbiihl & Koltun| (2013) proposed a concave-convex procedure (CCCP) to minimize the KL divergence
between the true distribution and the mean-field variational family. To achieve efficient inference, they
use a concave approximation to the pairwise kernel, and their fast update rule only converges if the kernel
function is concave. Later, Baqué et al|(2016) derived a similar parallel damped forward iteration to ours
that provably converges without the concave potential constraint. However, unlike our approach, they do
not use a parameterization that ensures a global mean-field optimum, and their algorithm therefore may



Published in Transactions on Machine Learning Research (04/2023)

not, converge to the actual fixed point of the mean-field updates. This is because |Baqué et al. (2016]) used
the prox} proximal operator (described below), whereas we derive the prox} operator to guarantee global
convergence when doing mean-field updates in parallel. What’s more, Baqué et al.| (2016|) focused only on
inference over prescribed potentials, and not on training the (fully parameterized) potentials as we do here.
Lé-Huu & Alahari (2021)) brought up a generalized Frank-Wolfe based framework for mean-field updates
which include the methods proposed by Baqué et al. (2016)); [Krahenbiihl & Koltun| (2013). Their results
only guarantee global convergence to a local optimal.

3 Monotone deep Boltzmann machines and approximate inference

In this section, we present the main technical contributions of this work. We begin by presenting a param-
eterization of the pairwise potential in a Boltzmann machine that guarantees the monotonicity condition.
We then illustrate the connection between a (joint) mean-field inference fixed point and the fixed point of
our monotone Boltzmann machine (mDBM) and discuss how deep structured networks can be implemented
in this form practically; this establishes that, under the monotonicity conditions on ®, there exists a unique
globally-optimal mean-field fixed point. Finally, we present an efficient parallel method for computing this
mean-field fixed point, again motivated by the machinery of monotone DEQs and operator splitting methods.

3.1 A monotone parameterization of general Boltzmann machines

In this section, we show how to parameterize our probabilistic model in a way that the pairwise potentials
satisfy I —® > ml, which will be used later to show the existence of a unique mean-field fixed point. Recall
that ® defines the interaction between random variables in the graph. In particular, for random variables
z; € RFi, T; € R*i | we have ®,; € RF:xk;  Additionally, since ® defines a graphical model that has no
self-loop, we further require @ to be a block hollow matrix (that is, the k; x k; diagonal blocks corresponding
to each variable must be zero). While both these conditions on ® are convex constraints, in practice it
would be extremely difficult to project a generic set of weights onto this constraint set under an ordinary
parameterization of the network.

Thus, we instead advocate for a mon-convex parameterization of the network weights, but one which guar-
antees that the monotonicity condition is always satisfied, without any constraint on the weights in the
parameterization. Specifically, define the block matrix

A=[ A Ay - A, ]

with A; € R?¥* matrices for each variables, and where d can be some arbitrarily chosen dimension. Then
let A; be a spectrally-normalized version of A;

Ay = Ay min{vT—m/| A2, 1} (2)

i.e., a version of A; normalized such that its largest singular value is at most v/1 — m (note that we can
compute the spectral norm of A; as ||A;|l2 = HAZTAZH;/ % which involves computing the singular values of
only a k; x k; matrix, and thus is very fast in practice). We define the A matrix analogously as the block

version of these normalized matrices.

Then we propose to parameterize ® as
® = blkdiag(ATA) — ATA (3)

where blkdiag denotes the block-diagonal portion of the matrix along the k; x k; block. Put another way,
this parameterizes ® as
—ATA;, ifi#j
T e (4)
0 ifi =7.
As the following simple theorem shows, this parameterization guarantees both hollowness of the ® matrix
and monotonicity of I — ®, for any value of the A matrix.
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Theorem 3.1. For any choice of parameters A, under the parametrization equation [3 above, we have that
1)®; =0 foralli=1,...,n, and 2) I — ® = ml.

Proof. Block hollowness of the matrix follows immediately from construction. To establish monotonicity,
note that

I—®>ml < I+ AT A —blkdiag(ATA) = mI
I —blkdiag(ATA) = mI <= I — ATA; = mI, Vi (5)
— ||Aills < VI —m, Vi.

This last property always holds by construction of A;. O

3.2 Mean-field inference as a monotone DEQ

In this section, we formally present how to formulate the mean-field inference as a DEQ update. Recall from
before that we are modeling a distribution of the form Equation . We are interested in approximating
the conditional distribution p(xy|x,), where o and h denote the observed and hidden variables respectively,
with a factored distribution q(xz) = [[;c), ¢i(w:). Here, the standard mean-field updates (which minimize
the KL divergence between ¢(xy) and p(xy|x,) over the single distribution ¢;(x;)) are given by the following
equation,

qi(z;) := softmax Z D,iq,(x;) + b
ji(i,§)€E

where overloading notation slightly, we let ¢;(z;) denote a one-hot encoding of the observed value for any
j € o (see e.g., Koller & Friedman| (2009) for a full derivation).

The essence of the above updates is a characterization of the joint fixed point to mean-field inference. For
simplicity of notation, defining

T

q= [fh(xl) q2(z2) ] .

We see that gy, is a joint fixed point of all the mean-field updates if and only if
qn, = softmax (®pnqn + Prox, + by) (6)

where x, analogously denotes the stacked one-hot encoding of the observed variables.

We briefly recall the monotone DEQ framework of |Winston & Kolter| (2020). Given input vector x, a
monotone DEQ computes the fixed point z*(x) that satisfies the equilibrium equation z*(x) = o(Wz*(x) +
Ux +b). Then if: 1) o is given by a proximal operatorﬂ o(x) = prox}e (z) for some convex closed proper
(CCP) f, and 2) if we have the monotonicity condition I — W > mlI (in the positive semidefinite sense)
for some m > 0, then for any x there exists a unique fixed point z*(x), which can be computed through
standard operator splitting methods, such as forward-backward splitting.

We now state our main claim of this subsection, that under certain conditions the mean-field fixed point can
be viewed as the fixed point of an analogous DEQ. This is formalized in the following proposition.

Proposition 3.1. Suppose that the pairwise kernel ® satisfies I —® > mlﬂfor m > 0. Then the mean-field
fixed point
qn, = softmax (®pnqn + ®Prox, + by) (7)

corresponds to the fixed point of a monotone DEQ model. Specifically, this implies that for any x,, there
exists a unique, globally-optimal fized point of the mean-field distribution qp,.

1A proximal operator is defined by prox§ (z) = argmin, % |z — 2|2 + af(2).
2Technically speaking, we only need I — ®p,;, = mI, but since we want this to hold for any choice of h, we need the condition
to apply to the entire ® matrix.
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Figure 2: Illustration of a possible deep convolutional Boltzmann machine, where the monotonicity structure
can still be enforced.

Proof. As the monotonicity condition of the monotone DEQ is assumed in the proposition, the proof of
the proposition rests entirely in showing that the softmax operator is given by prox}c for some CCP f.
Specifically, as shown in [Krahenbiihl & Koltun| (2013)), this is the case for

f(z)—zzilogzi;Z@Jrﬂ{Zzi1a ziZO} (8)

?

K2

i.e., the restriction of the entropy minus squared norm to the simplex (note that even though we are sub-
tracting a squared norm term it is straightforward to show that this function is convex since the second
derivatives are given by 1/z; — 1, which is always non-negative over its domain). O

3.3 Practical considerations when modeling mDBMs

The construction in Section [3.I] guarantees monotonicity of the resulting pairwise probabilistic model. How-
ever, instantiating the model in practice, where the variables represent hidden units of a deep architecture
(i.e., representing multi-channel image tensors with pairwise potentials defined by convolutional operators),
requires substantial subtlety and care in implementation. In this setting, we do not want to actually rep-
resent A explicitly, but rather determine a method for multiplying Av and ATv for some vector v (as we
see in Section this is all that is required for the parallel mean-field inference method we propose). This
means that certain blocks of A are typically parameterized as convolutional layers, with convolution and
transposed convolution operators as the main units of computation.

More specifically, we typically want to partition the full set of hidden units into some K distinct sets
T

] (9)
where e.g., g; would be best represented as a height X width x groups x cardinality tensor (i.e., a collection of
multiple hidden units corresponding to different locations in a typical deep network hidden layer). Note that
here q; is not the same as g;(x;), but rather the collection of many different individual variables. These g;
terms can be related to each other via different operators, and a natural manner of parameterizing A, in this
case, is as an interconnected set of convolutional or dense operators. To represent the pairwise interactions,
we can create a similarly-factored matrix A, e.g., one of the form

a=[a @ ... ax

A, 0o ... 0
Ay Axp - 0

A= . . ) . (10)
A1 Ags - Agk

where e.g., A;; is a (possibly strided) convolution mapping between the tensors representing g; and g;. In
this case, we emphasize that A;; is not the kernel matrix that one “slides” along the variables. Instead, A;;
is the linear mapping as if we write the convolution as a matrix-matrix multiplication. For example, a 2D
convolution with stride 1 can be expressed as a doubly block circulant matrix (the case is more complicated
when different striding is allowed). This parametrization is effectively a general Boltzmann machine, since
each random variable in Equation @D can interact with any other variables except for itself. Varying A;;,
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the formulation in Equation is rich enough for any type of architecture including convolutions, fully-
connected layers, and skip-connections, etc.

An illustration of one possible network structure is shown in Figure 2] To give a preliminary introduction to
our implementation, let us denote the convolution filter as F', and its corresponding matrix form as A. While
it is possibly simpler to directly compute AT Aq, A usually has very high dimensions even if F' is small.
Instead, our implementation computes CONVTRANSPOSE(F', CONV(F, q)), modulo using the correct striding
and padding. The block diagonal element of AT A has smaller dimension and can be computed directly as
a 1 x 1 convolution. The precise details of how one computes the block diagonal elements of A7 A, and how
one normalizes the proper diagonal blocks (which, we emphasize, still just requires computing the singular
values of matrices whose size is the cardinality of a single g;(z;)) are somewhat involved, so we defer a
complete description to the Appendix (and accompanying code). The larger takeaway message, though, is
that it is possible to parameterize complex convolutional multi-scale Boltzmann machines, all while ensuring
monotonicity.

3.4 Efficient parallel solving for the mean-field fixed point

Although the monotonicity of ® guarantees the existence of a unique solution, it does not necessarily guar-
antee that the simple iteration

(1)

q,’ = softmax(tI)hhq,(t_l) + ®pox, + by) (11)

3

will converge to this solution. Instead, to guarantee convergence, one needs to apply the damped iteration
(see, e.g. (Winston & Kolter| 2020))

q](lt) = prox§} ((1 - Oz)q;(fil) + a(‘I’hh(I;(ltil) + ®roo + bh)) . (12)

The damped forward-backward iteration converges linearly to the unique fixed point if o < 2m/L?, assuming
1 — ® is m-strongly monotone and L-Lipschitz (Ryu & Boyd, 2016)). Crucially, this update can be formed in
parallel over all the variables in the network: we do not require a coordinate descent approach as is typically
needed by mean-field inference.

The key issue, though is that while prox} () = softmax(z) for f defined as in Equation , in general, this
does not hold for o # 1. Indeed, for a # 1, there is no closed-form solution to the proximal operation,
and computing the solution is substantially more involved. Specifically, computing this proximal operator
involves solving the optimization problem

o 1 «
prox§(z) = argzmln §||x — 2|5+ ozzi:zi log z; — §||z||§ s.t zzzzz =1, z>0. (13)

The following theorem, proved in the Appendix, characterizes the solution to this problem for o € (0,1)
(although it is also possible to compute solutions for o > 1, this is not needed in practice, as it corresponds
to a “negatively damped” update, and it is typically better to simply use the softmax update in such cases).

Theorem 3.2. Given f as defined in Equation , a € (0,1), and x € R¥, the prozimal operator proxﬁ’é(x)

is given by \
le’ l1—« T, — o+
prox} (z); = 1aW< - exp< - )),

where X € R is the unique solution chosen to ensure that the resulting 3, prox§(z;) = 1, and where W (-) is
the principal branch of the Lambert W function.

In practice, however, this is not the most numerically stable method for computing the proximal operator,
especially for small a, owing to the large term inside the exponential. Computing the proximal operation
efficiently is somewhat involved, though briefly, we define the alternative function

g(y) =log %W (l;aexp (% —1)> (14)
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(a) Test data with 60% pix- (b) Original image (c) Imputation with 60% (d) Imputation with 60%
els randomly masked pixels randomly masked us- pixels randomly masked us-
ing mDBM ing RBM

Figure 3: MNIST pixel imputation using mDBM (bottom left) and deep RBM (bottom right), where the
RBM test results are generated using mean-field inference instead of Gibbs sampling.

and show how to directly compute g(y) using Halley’s method (note that Halley’s method is also the preferred

manner to computing the Lambert W function itself numerically (Corless et al., [1996))). It updates x,,41 =

2f (xn) f'(n) : . s .
Tn = PG ) P ) and enjoys cubic convergence when the initial guess is close enough to the root.

Finding the prox operator then requires that we find A\ such that Zle exp(g(xz; + A)) = 1. This can be
done via (one-dimensional) root finding with Newton’s method, which is guaranteed to always find a solution
here, owing to the fact that this function is convex monotonic for A € (—oo,1). We can further compute
the gradients of the g function and of the proximal operator itself via implicit differentiation (i.e., we can do
it analytically without requiring unrolling the Newton or Halley iteration). We describe the details in the
appendix and include an efficient PyTorch function implementation in the supplementary material.

Comparison to [Winston & Kolter| (2020) Although this work uses the same monotonicity constraint
as in (Winston & Kolter| (2020), our result further requires the linear module @ to be hollow, and extend
their work to the softmax nonlinear operator as well. These extensions introduce significant complications,
but also enable us to interpret our network as a probabilistic model, while the network in [Winston & Kolter
(2020) cannot.

3.5 Training considerations

Finally, we discuss approaches for training mDBMs, exploiting their efficient approach to mean-field inference.
Probabilistic models are typically trained via approximate likelihood maximization, and since the mean-
field approximation is based upon a particular likelihood approximation, it may seem most natural to use
this same approximation to train parameters. In practice, however, this is often a suboptimal approach.
Specifically, because our forward inference procedure ultimately uses mean-field inference, it is better to
train the model directly to output the correct marginals, when running this mean-field procedure. This is
known as a marginal-based loss (Domke, |2013). In the context of mDBMSs, this procedure has a particularly
convenient form, as it corresponds roughly to the “typical” training of DEQ.

In more detail, suppose we are given a sample x € X (i.e., at training time the entire sample is given),
along with a specification of the “observed” and “hidden” sets, o and h respectively. Note that the choice of
observed and hidden sets is potentially up to the algorithm designer, and can effectively allow one to train
our model in a “self-supervised” fashion, where the goal is to predict some unobserved components from
others. In practice, however, one typically wants to design hidden and observed portions congruent with the
eventual use of the model: e.g., if one is using the model for classification, then at training time it makes
sense for the label to be “hidden” and the input to be “observed.”

Given this sample, we first solve the mean-field inference problem to find g7 (x) such that
gy = softmax (®nnqy; + Prox, + bp) . (15)

For this sample, we know that the true value of the hidden states is given by x;. Thus, we can apply
some loss function ¢(g}, %) between the prediction and true value, and update parameters of the model
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6 = {A, b} using their gradients

Ol(gy, xn) _ Ol(gy,xn) Oy _ Ol(gy, xn) (I_ 39(!12)>_1 99(q3) (16)

tolv) o oqy, 80 oqy, gy, o0
with
9(qj,) = prox§ (1 — a)qy, + (Prrqy, + Proo + bp))

and where the last equality comes from the standard application of the implicit function theorem as typical
in DEQs or monotone DEQs. The key to gradient computation is noticing that in Equation , we can
rearrange:

u

)

o Mg x) ( I ag(c{m)l W[ A C ATy
oqj; oq;; aq;, oq;,

which is just another fixed-point problem. Here all the partial derivatives can be handled by auto-
differentiation (with the correct backward hook for prox$), and the details exactly mirror that of Winston
& Kolter| (2020)), also see Algorithm

As a final note, we also mention that owing to the restricted range of weights allowed by the monotonicty
constraint, the actual output marginals ¢;(z;) are often more uniform in distribution than desired. Thus, we
typically apply the loss to a scaled marginal

i () oc ()™ (17)

where 7; € Ry is a variable-dependent learnable temperature parameter. Importantly, we emphasize that
this is only done after convergence to the mean-field solution, and thus only applies to the marginals to
which we apply a loss: the actual internal iterations of mean-field cannot have such a scaling, as it would
violate the monotonicity condition.

Algorithm 1 FORWARDITERATION

Require: Observed RV x,, parameters ®, b, damp parameter a € (0, 1).
Find the fixed point gj; to

ay) = prox$ ((1 —a)g"V + a(®png T + Bpox, + bh))

Algorithm 2 BACKWARDITERATION

Require: Loss function ¢, fixed point gj, true value x; parameters 6.
Find the fixed point u* to
_ . 99(q) | 9lg;, )
=u * *
dqj, oqj,

Compute the final Jacobian-vector product as

00 00

A simple overview of the algorithm is demonstrated in Algorithm [3| The task is to jointly predict the image
label and fill the top-half of the image given the bottom-half. For inference, the process is almost the same
as training, except we don’t update the parameters.



Published in Transactions on Machine Learning Research (04/2023)

Algorithm 3 TRAINING

Require: Damp parameter a € (0, 1), neural network parameters ®, b, weight on classification loss w.
for each epoch do
for (p,y) in data do
Let @y, = {pn,y} where py, is the top-half of the image p and y is the label. Let x, be the bottom-half
of the image p,.
q; = FORWARDITERATION(z,, ®, b, ), notice that x;, is not revealed to the network here.
Get the estimated top half of the image and label {py, 7} = gj.
Calculate imputation loss and classification loss (1 — w)&.(Pp, pr) + wle (3, y).
Update ®,b using Algorithm
end for
end for

(a) Test data has 50% pixels (b) Imputed pixel inference (c) Original image (d) Imputation with deep
randomly masked (without injection labels) RBM.

Figure 4: CIFAR-10 pixel imputation using mDBM and deep RBM

4 Experimental evaluation

As a proof of concept, we evaluate our proposed mDBM on the MNIST and CIFAR-10 datasets. We demon-
strate how to jointly model missing pixels and class labels conditioned on only a subset of observed pixels.
On MNIST, we compare mDBM to mean-field inference in a traditional deep RBM. Despite being small-scale
tasks, the goal here is to demonstrate joint inference and learning over what is still a reasonably-sized joint
model, considering the number of hidden units. Nonetheless, the current experiments are admittedly largely
a demonstration of the proposed method rather than a full accounting of its performance.

We also show how our mean-field inference method compares to those proposed in prior works. On the
joint imputation and classification task, we train models using our updates and the updates proposed by
[Krdhenbiihl & Koltun| (2013) and [Baqué et al(2016)), and perform mean-field inference in each model using
all three update methods, with and without the monotonicity constraint.

mDBM and deep RBM on MNIST For the joint imputation and classification task, we randomly mask
each pixel independently with probability 60%, such that in expectation only 40% of the pixels are observed.
The original MNIST dataset has one channel representing the gray-scale intensity, ranging between 0 and 1.
We adopt the strategy of [Van Oord et al| (2016)) to convert this continuous distribution to a discrete one.
We bin the intensity evenly into 4 categories {0, ..., 3}, and for each channel use a one-hot encoding of the
category so that the input data has shape 4 x 28 x 28. We remark that the number of categories is chosen
arbitrarily and can be any integer. Additional details are given in the appendix.

The mDBM and deep RBM trained on the joint imputation and classification task obtain test classification
accuracy of 92.95% and 64.23%, respectively. Pixel imputation is shown in Figure [3] We see that the deep
RBM is not able to impute the missing pixels well, while the mDBM can. Importantly, we note however that
for an apples-to-apples comparison, the test results in the RBM are generated using mean-field inference.
The image imputation of RBM runs block mean-field updates of 1000 steps and the classification runs 2
steps, and increasing number of iterations does not improve test performance significantly. The RBM also
admits efficient Gibbs sampling, which performs much better and is detailed in the appendix.
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Figure 5: MNIST and CIFARI10 pixel imputation using mDBM, when only the top half is shown to the
model. Left: observed images; middle: imputation results; right: original images.

Table 1: Squared ¢ error (standard deviation) for MNIST image imputation. Images are observed
20%, 40%, 60%, 80% respectively. RBM outputs are bucketized into 10 bins. The errors are averaged over
the whole dataset and the number of bins. The experiments are executed 5 times with independent random
masks and the same models. Standard deviations are calculated across 5 runs.

Observation
Method 0.2 0.4 0.6 0.8
mDBM 53.310 (0.0776) | 23.330 (0.0204) | 13.140 (0.0234) 5.936 (0.0102)
RBM 53.086 (0.0556) | 36.596 (0.0417) | 22.746 (0.0234) | 10.564 (0.0186)

We report the image imputation ¢5 loss on MNIST in Table [} We randomly mask p = {0.2,0.4,0.6,0.8}
portion of the inputs. For each p, the experiments are conducted 5 times where each run independently
chooses the random mask. The model is trained to impute images given 40% pixels and is fixed throughout
the experiments. Since the RBMs model Bernoulli random variables whereas mDBMs model distributions
over a set of one-hot variables, we “bucketize’ﬂ the outputs of RBMs into bins of size 10. The £5 norm of
the difference between bucketized imputations and the original images is computed. The norms are then
divided by the number of bins and averaged over the whole MNIST dataset. In this way, we get {g1,. .., us}
where each p; is the average f5 reconstruction error over the whole dataset, and the standard deviations are
calculated over {p1,...,us}. Our proposed method has a clear advantage over RBMs.

We additionally evaluate mDBM on a task in which random 14 x 14 patches are masked. To obtain good per-
formance on this task requires lifting the monotonicity constraint; we find that mDBM converges regardless
(see appendix). mDBM can also extrapolate reasonably well, see Figure

mDBM and deep RBM on CIFAR-10 We evaluate mDBM on an analogous task of image pixel
imputation and label prediction on CIFAR-10. Model architecture and training details are given in the
appendix. With 50% of the pixels observed, the model obtains 58% test accuracy and can impute the
missing pixels effectively (see Figure . The baseline deep RBM is trained to impute the missing pixels
using CD-1 with number of neurons 3072-500-100. The imputation error is reported in Table [2] and the
experiments are conducted in the same fashion as those on MNIST. Contrary to grayscale MNIST, RBM
outputs are bucketized into 10 bins for each of the RGB channels on CIFAR-10. mDBMs also take bucketized
images as inputs where each of the RGB channels is bucketized into 10 bins.

3That is, if the number of bins is 2 and the RBM outputs a probability p, the bucketized output is 0 if p < 0.5 and 1
otherwise.
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Table 2: Squared ¢y error (standard deviation) for CIFAR10 image imputation. Images are observed
20%, 40%, 60%, 80% respectively. RBM outputs are bucketized into 10 bins for each of the RGB chan-
nels. mDBMs also take bucketized images as inputs where each of the RGB channels is bucketized into 10
bins. The errors are averaged over the whole dataset and the number of bins. The experiments are executed
5 times with independent random masks and the same models. Standard deviations are calculated across 5
runs.

Observation
Method 0.2 0.4 0.6 0.8
mDBM 77.439 (0.0281) | 48.496 (0.0166) | 29.749 (0.0241) | 14.077 (0.0143)
RBM 139.375 (0.0231) | 103.615 (0.0315) | 68.845 (0.0219) | 34.339 (0.0291)
—&— Our

Baque

Table 3: Relative update residual when monotonicity
is enforced.

. Inference |y ihenbiihl | Baqué | mDBM ) ,_’_,.—/—*'}
Train

Number of iterations

Krahenbiihl 0.0004 0.0061 | 0.0024 e
Baqué 1.250 0.0059 | 0.0024 Tolerance decreasin)
mDBM 1.144 0.0057 | 0.0017

Figure 6: Convergence speed of infer-
ence methods on a model trained with
Krédhenbiihl’s updates.

Comparison of inference methods We conduct several experiments comparing our mean-field inference
method to those proposed by [Krahenbtihl & Koltun| (2013) and Baqué et al.|(2016)), denoted as Krédhenbiihl’s
and Baqué’s respectively. While a full description of these methods and the experiments is left to the
appendix, we highlight some of the key findings here. We train models using the three different update
methods: ours, Krihenbiihl’s and Baqué’s; we then perform inference using all three methods as well. A
comparison to the regularized Frank-Wolfe method raised by |[Lé-Huu & Alahari| (2021) can be found in the
appendix.

Table [3 shows the relative update residuals ||q}(f+1) - q}(f)H / ||q}(f)|| after 100 steps of each inference method
on each model. We observe that Krahenbiihl’s method diverges when the model was not trained using the
corresponding updates, whereas Baqué’s and ours converge on all three models, with our method converging
more quickly. The improved convergence speed can also be seen in Figure @ However, note that Baqué’s
method is not guaranteed to converge to the true mean-field fixed-point. As we show in the appendix
(Figure , on an untrained model our method converges to the true fixed-point while Baqué’s does not.

Future directions It is extremely useful to consider fundamentally different restrictions as have been
applied to meanfield inference and graphical models in the past, and our work can lead to a number of
interesting directions: (1) Theorem is only a sufficient but not necessary condition for monotonicity. Im-
proving this could potentially make our current monotone model much more expressive. (2) In Theorem 3.1
the parameter m > 0 describes how monotone the model is. Is it possible to use a m < 0 to ensure that
the model is “boundedly non-monotone”, but still enjoys favorable convergence property? (3) Our model
currently only learns conditional probability. Is it possible to make it model joint probability efficiently?
One way is to mimic PixelCNN: let P(2}) = [}, P(z,|z}~"). This is inefficient for us in both inference
and training, is there a way to improve? (4) Although we have a fairly efficient implementation of prox§, it
is still slower than normal nonlinearities like ReLU or softmax. Is there a way to efficiently scale mDBMs?
(5) [Tsuchida & Ong (2022)) explores the connection between PCA and DEQs, what are other probabilistic
models that can also be expressed within the DEQ framework? (6) Bechmark mDBM image imputations
together with [Yoon et al.| (2018); [Li et al.| (2019); Mattei & Frellsen| (2019); [Richardson et al.| (2020).

12



Published in Transactions on Machine Learning Research (04/2023)

5 Conclusion

In this work, we give a monotone parameterization for general Boltzmann machines and connect its mean-
field fixed point to a monotone DEQ model. We provide a mean-field update method that is proven to
be globally convergent. Our parameterization allows for full parallelization of mean-field updates without
restricting the potential function to be concave, thus addressing issues with prior approaches. Moreover, we
allow complicated and hierarchical structures among the variables and show how to efficiently implement
them. For parameter learning, we directly optimize the marginal-based loss over the mean-field variational
family, circumventing the intractability of computing the partition function. Our model is evaluated on the
MNIST and CIFAR-10 datasets for simultaneously predicting with missing data and imputing the missing
data itself. As a demonstration of concept, we also deliver several illustrations of interesting future directions.

References

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann machines.
Cognitive science, 9(1):147-169, 1985.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. arXiv preprint arXiv:1909.01377,
2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. arXiv preprint
arXiv:2006.08656, 2020.

Pierre Baqué, Timur Bagautdinov, Francois Fleuret, and Pascal Fua. Principled parallel mean-field inference
for discrete random fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 5848-5857, 2016.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859-877, 2017.

Robert M Corless, Gaston H Gonnet, David EG Hare, David J Jeffrey, and Donald E Knuth. On the
lambertw function. Advances in Computational mathematics, 5(1):329-359, 1996.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based on effec-
tive number of samples. In Proceedings of the IEEE/CVFE Conference on Computer Vision and Pattern
Recognition, pp. 9268-9277, 2019.

Justin Domke. Learning graphical model parameters with approximate marginal inference. IEEF transactions
on pattern analysis and machine intelligence, 35(10):2454-2467, 2013.

Laurent El Ghaoui, Fangda Gu, Bertrand Travacca, Armin Askari, and Alicia Tsai. Implicit deep learning.
SIAM Journal on Mathematics of Data Science, 3(3):930-958, 2021.

Tan Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1. MIT press
Cambridge, 2016.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771-1800, 2002.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

Philipp Krahenbiihl and Vladlen Koltun. Parameter learning and convergent inference for dense random
fields. In International Conference on Machine Learning, pp. 513-521. PMLR, 2013.

Miguel Lazaro-Gredilla, Wolfgang Lehrach, Nishad Gothoskar, Guangyao Zhou, Antoine Dedieu, and Dileep
George. Query training: Learning a worse model to infer better marginals in undirected graphical models
with hidden variables. arXiv preprint arXiv:2006.06803, 2020.

Khué Lé-Huu and Karteek Alahari. Regularized frank-wolfe for dense crfs: Generalizing mean field and
beyond. Advances in Neural Information Processing Systems, 34, 2021.

13



Published in Transactions on Machine Learning Research (04/2023)

Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Misgan: Learning from incomplete data with
generative adversarial networks. arXiv preprint arXiv:1902.09599, 2019.

Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and imputation of incomplete
data sets. In International conference on machine learning, pp. 4413-4423. PMLR, 2019.

Mohammad Norouzi, Mani Ranjbar, and Greg Mori. Stacks of convolutional restricted boltzmann machines
for shift-invariant feature learning. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2735-2742. IEEE, 20009.

Max Revay, Ruigang Wang, and Ian R Manchester. Lipschitz bounded equilibrium networks. arXiv preprint
arXiv:2010.01732, 2020.

Trevor W Richardson, Wencheng Wu, Lei Lin, Beilei Xu, and Edgar A Bernal. Mcflow: Monte carlo flow
models for data imputation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 14205-14214, 2020.

Ernest K Ryu and Stephen Boyd. Primer on monotone operator methods. Appl. Comput. Math, 15(1):3-43,
2016.

Ruslan Salakhutdinov and Geoffrey Hinton. Deep boltzmann machines. In Artificial intelligence and statis-
tics, pp. 448-455. PMLR, 2009.

Idan Schwartz, Alexander G Schwing, and Tamir Hazan. High-order attention models for visual question
answering. arXiv preprint arXiv:1711.04323, 2017.

Russell Tsuchida and Cheng Soon Ong. Deep equilibrium models as estimators for continuous latent variables.
arXiv preprint arXiv:2211.05943, 2022.

Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In Interna-
tional Conference on Machine Learning, pp. 1747-1756. PMLR, 2016.

Homer F Walker and Peng Ni. Anderson acceleration for fixed-point iterations. STAM Journal on Numerical
Analysis, 49(4):1715-1735, 2011.

Ezra Winston and J Zico Kolter. Monotone operator equilibrium networks. arXiv preprint arXiv:2006.08591,
2020.

Zhirong Wu, Dahua Lin, and Xiaoou Tang. Deep markov random field for image modeling. In Furopean
Conference on Computer Vision, pp. 295-312. Springer, 2016.

Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation using generative adver-
sarial nets. In International conference on machine learning, pp. 5689-5698. PMLR, 2018.

Shuai Zheng, Sadeep Jayasumana, Bernardino Romera-Paredes, Vibhav Vineet, Zhizhong Su, Dalong Du,
Chang Huang, and Philip HS Torr. Conditional random fields as recurrent neural networks. In Proceedings
of the IEEE international conference on computer vision, pp. 1529-1537, 2015.

14



Published in Transactions on Machine Learning Research (04/2023)

A Appendix

A.1 Deferred proofs

Theorem 3.2. Given f as defined in Equation , a€(0,1), and z € R¥, the prozimal operator prox?(a:)

is given by X \
o « -« T, —a+
prox§(z); = 1_@W< o exp( 5 )):

where A € R is the unique solution chosen to ensure that the resulting >, prox$(x;) = 1, and where W(-) is
the principal branch of the Lambert W function.

Proof. By definition, the proximal operator induced by f (the same f in Equation ) and « solves the
following optimization problem:

1
min §Hx —z|* + a?zi log z; — %HzHQ

S.t. ZZ‘ZO,’L':L...,d,
IR
of which the KKT condition is

—z;+zi+a+alogz; —az;+ A —p; =0,for i € [d]

d
i >0, 2 >0, ZMMZQ Zzizl-
i€[d) i=1

We have that p; = 0 is feasible and the first equation of the above KKT condition can be massaged as

—zi+zi+a+alogz, —az;+ A —pu; =0

— (1-a)z;+alogzi=x; —a— A
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where W is the lambert W function. Notice here z; > 0. Our primal problem is convex and Slater’s condition

holds. Hence, we conclude that
f— o W(la@(p(xia)\)).
11—« a «

A.2 Convolution network

It is clear that the monotone parameterization in Section [3|directly applies to fully-connected networks, and
all the related quantities can be calculated easily. Nonetheless, the real power of the DEQ model comes in
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when we use more sophisticated linear operators like convolutions. In the context of Boltzmann machines,
the convolution operator gives edge potentials beneficial structures. For example, when modeling the joint
probability of pixels in an image, it is intuitive that only the nearby pixels depend closely on each other.

Let A € RFXFXTXT denote a convolutional tensor with kernel size r and channel size k, let x denote some
input. For a convolution with stride 1, the block diagonal elements of AT A simply form a 1 x 1 convolution.
In particular, we apply the convolutions

— AT(A(2)) + A(z) (18)
where A is a 1 x 1 convolution given by
Al = Al T AL 5 ). (19)
.

We can normalize by the spectral norm of A term to ensure strong monotonicity. Since A can be rewritten
as a k X k matrix and k is usually small, its spectral norm can be easily calculated.

It takes more effort to work out convolutions with stride other than 1. Specifically, the block diagonal terms
do not form a 1 x 1 convolution anymore, instead, the computation varies depending on the location. It is
easier to see the computation directly in the accompanying code.

Grouped channels It is crucial to introduce the concept of grouped channels, which allows us to represent
multiple categorical variables in a single location, such as the three categorical variables representing the three
(binned) color channels of an RGB pixel. In this case, each of the three RGB channels will be represented by
a different group of k£ channels representing the k bins. The grouping is achieved by having the nonlinearity
function (softmax) applied to each group separately. We remark that the convolutions themselves are not
grouped, otherwise none of the red pixels would interact with green or blue pixels, etc. Instead, we want
all RGB channels to interact with each other (except that channel ¢ at position (7, k) does not interact with
itself). That means in Equation , the blkdiag(ATA) is grouped in the following way. Recall that this
block diagonal term has element of size k; x k; for ¢ € [n]. This parameterization has only 1 group. With
g groups, the element of the block diagonal matrix then has size k;, x k;,..., ki, x k;, for i € [n], where
> jelg] ki, = ki. We also observe empirically that grouping the latent variables improves the performance.

A.3 Efficient computation of prox§

The solution to the proximal operator in damped forward iteration given in Theorem [3.2]involves the Lambert
W function, which does not attain an analytical solution. In this section, we show how to efficiently calculate
the nonlinearity o(z;), as well as its Jacobian matrix for backward iteration.

Let f(y) = =W (=2 exp (£ — 1)), and we have

-« [

1-— 1-—
x = log f(y) = log a + loge¥/*™' + log ¢ w ( a exp (E — 1)) ,
1-« « « «

where the last equality uses the identity log(W (z)) = logz —W (z). Rewrite W (=% exp (£ — 1)) = f(y)=%

« o
and massage the terms, we have that solving log f(y) is equivalent to finding the root of

hz)=y—a—e*(1—a)—ax.

Direct calculation shows that h'(z) = —a — (1 — @)e® and h'’(z) = —(1 — «)e”. Note here y is the input and
it is known to us, and x is a scalar. Hence we can efficiently solve the root finding problem using Halley’s
method. For backpropagation, we need g—f/, which can be computed by implicit differentiation:

hz)=y—a—e"(l—a)—azx =20
dz 1 1

dy  a+(l—a)e* y—az’
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Now we can find A s.t ), z; = 1 using Newton’s method on g(A) =", elog(f(zi+A) —1 = (. Note this is still
a one-dimensional optimization problem. A direct calculation shows that g—/g\ =, eloeld (zi+>\))%

and above we have already calculated that

)

dlog(f(x; +A)  dx* 1

d\ dy  y+A—azx’

For backward computation, by the chain rule, we have:

M — elogf(wiﬁ»)\)w
dl‘i dl‘l
— elog f(wit+)) 1+ d)\/dx;
zi+ A —alog(f(zi + X))’

where the last step is derived by implicit differentiation. Now to get dA/dz;, notice that by applying the
implicit function theorem on p(x, A(z)) = Y, 8/ @+N) — 1 =0, we get

d\  (dp\ ™' dp

Thus we have all the terms computed, which finishes the derivation.

B Additional Experiments and Details

Here we provide the model architectures and experiment details omitted in the main text.

B.1 Details

Model architectures For MNIST experiments (except for the extrapolation), using the notation in Equa-
tion , the mDBM consists of a 4-layer deep monotone DEQ with the following structure:

Aq 0 0 0

Az Az 0 0

Az Az Azz 0 |7
0 0 Az Ay

where A1 is a 20 x 20 x 3 x 3 convolution, Ass is a 40 x 40 x 3 x 3 convolution, As; is a 40 x 20 x 3 x 3
convolution with stride 2, As3 is a 80 x 80 x 3 x 3 convolution, As; is a 80 x 20 x 3 x 3 convolution with
stride 4, Ags is a 80 x 40 x 3 x 3 convolution with stride 2, A43 is a (80-7-7) x 10 dense linear layer, and
A4y is a 10 x 10 dense linear layer. The corresponding variable g as in Equation @ then has 4 elements of
shape (20 x 28 x 28), (40 x 14 x 14),(80 x 7 x 7), (10 x 1). When applying the proximal operator to q, we
use 1,10, 20, 1 as their number of groups, respectively.

The deep RBM consists of 3-layers where the first hidden layer has 300 neurons, and the last hidden layer
(representing the digits) has 10 neurons, amounting to in total 239,294 parameters. For comparison, the
mDBM has 192,650 parameters.

The mDBM used on CIFAR-10 is the same as for the MNIST experiments with the following exceptions:
Aqqis a 20 x 20 x 3 x 3 convolution, Ags is a 24 x 24 X 3 X 3 convolution, As; is a 24 x 20 x 3 x 3 convolution
with stride 2, Ag3 is a 48 x 48 x 3 x 3 convolution, As3; is a 48 x 20 X 3 x 3 convolution with stride 4, Ass
is a 48 x 24 x 3 x 3 convolution with stride 2, Ays is a (48 - 8 - 8) x 10 dense linear layer, and A4y is a
10 x 10 dense linear layer. The corresponding variable g as in Equation @ then has 4 elements of shape
(60 x 32 x 32),(24 x 16 x 16),(48 x 8 x 8),(10 x 1). When applying the proximal operator to g, we use
1,6,12,1 as their number of groups, respectively.
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For the MNIST extrapolation experiments, we use mDBM of the following structure:

A 0 0 0
Ay Asy 0 0
Az Az Az 0 |7
Ay Ay Ay Ay

where A1 is a 4 x 4 x 3 x 3 convolution, Ass is a 40 x 40 x 3 x 3 convolution, As; is a 40 x 4 x 3 x 3
convolution with stride 2, A3z is a 80 x 80 x 3 x 3 convolution, Ag; is a 80 x 4 x 3 X 3 convolution with
stride 4, Ags is a 80 x 40 x 3 x 3 convolution with stride 2, A4; is a (428 -28) x 100 dense linear layer,
Ayo is a (40 - 14 - 14) x 100 dense linear layer Ay3 is a (80 -7 -7) x 100 dense linear layer, and Ayy is a
100 x 100 dense linear layer. The corresponding variable g as in Equation @D then has 4 elements of shape
(4 x 28 x 28),(40 x 14 x 14),(80 x 7 x 7),(100 x 1). When applying the proximal operator to g, we use
1,10, 20, 10 as their number of groups, respectively.

The model used for CIFAR-10 extrapolation has the same structure, where Ay is a 30 x 30 x 3 x 3 convolution,
Ass is a 60 x 60 x 3 x 3 convolution, Aoy is a 60 x 30 x 3 X 3 convolution with stride 2, Asz is a 80 x 80 x 3 x 3
convolution, A3; is a 80 x 30 x 3 x 3 convolution with stride 4, Ass is a 80 x 60 x 3 x 3 convolution with
stride 2, A4y is a (20-32-32) x 100 dense linear layer, A4s is a (60-16 - 16) x 100 dense linear layer A4z is a
(80 - 8- 8) x 100 dense linear layer, and A4y is a 100 x 100 dense linear layer. The corresponding variable g
as in Equation (9)) then has 4 elements of shape (30 x 32 x 32), (60 x 16 x 16), (80 x 8 x 8), (100 x 10). When
applying the proximal operator to g, we use 1,6, 8,10 as their number of groups, respectively.

mDBM Training details and hyperparameters Treating the image reconstruction as a dense classifi-
cation task, we use cross-entropy loss and class weights 11:6?” with 8 = 0.9999 (Cui et al, |2019)), where n; is
the number of times pixels with intensity ¢ appear in the hidden pixels. For classification, we use standard
cross-entropy loss. To enable joint training, we put equal weight of 0.5 on both task losses and backpropa-
gate through their sum. For both tasks, we put 7;®q; into the cross-entropy loss as logits, as described in
Equation . Since mean-field approximation is (conditionally) unimodal, the scaling grants us the ability
to model more extreme distributions. To achieve faster damped forward-backward iteration, we implement
Anderson acceleration (Walker & Ni, |2011)), and stop the fixed point update as soon as the relative difference
between two iterations (that is, ||qir1 — q¢]|/||g:|]) is less than 0.01, unless we hit a maximum number of 50
allowed iterations. For Prox§ and the damped iteration, we set @ = 0.125 (Although one can tune down «
whenever the iterations do not converge, empirically this never happens on our task).

We use the Adam optimizer with learning rate 0.001. For MNIST, we train for 40 epochs. For CIFAR-10,
we train for 100 epochs using standard data augmentation; during the first 10 epochs, the weight on the
reconstruction loss is ramped up from 0.0 to 0.5 and the weight on the classification loss ramped down from
1.0 to 0.5; also during the first 20 epochs, the percentage of observation pixels is ramped down from 100%
to 50%.

Deep RBM Training details and hyperparameters The deep RBM is trained using C'D-1 algorithm
for 100 epochs with a batch size of 128 and learning rate of 0.01.

Convergence of inference during training We note that, comparing to the differently-parameterized
monDEQ in |Winston & Kolter| (2020), whose linear module suffers from drastically increasing condition
number (hence in later epochs taking around 20 steps to converge, even with tuned «), our parameterization
produces a much nicer convergence pattern: the average number of forward iterations over the 40 training
epochs is less than 6 steps, see Figure[7]

mDBM patch imputation experiments We train mDBM on the task of MNIST patch imputation.
We randomly mask a 14 x 14 patch, chosen differently for every image, similar to the query training in
Lazaro-Gredilla et al. (2020). To make the model class richer, we lift the monotonicity constraint, and
find that the model converges regardless. Our model reconstructs readable digits despite potentially large
chunk of missing pixels (Figure . If the model is given the image labels as input injections, our model
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Figure 7: Convergence of forward-backward splitting.
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Figure 8: MNIST pixel patch imputation using mDBM

performs conditionaly generation fairly well (Figure . These results demonstrate the flexibility of our
parameterization for modelling different conditional distributions.

Deep RBM results using Gibbs sampling The deep RBM is trained as before. For joint imputation
and classification, the DBM uses Gibbs sampling of 10000 and 100 steps respectively, although the quality
of the imputed image and test accuracy are insensitive to the number of steps.

We randomly mask off 60% pixels, or a randomly selected 14 x 14 patch; the results are shown in Figure [9]
and are better than when mean-field inference is used, (shown in Figure [3)).

In the experiment with 60% of pixels randomly masked, we also test the model on predicting the actual digit
simultaneously. The test accuracy is 93.58%, comparable to the mDBM accuracy of 92.95%.

Comparison of inference methods We conduct numerical experiments to compare our inference up-
dating method to the ones proposed by [Krahenbiihl & Koltun| (2013); Baqué et al| (2016), denoted as
Krahenbiihl’s and Baqué’s respectively. Krahenbiihl's fast concave-convex procedure (CCCP) essentially
decomposes to Equation , the un-damped mean-field update with softmax. This update only converges
provably when @ is concave. Baqué’s inference method can be written as

q,(f) = softmax ((1 —a)log qff_l) + a(<I>th§f_1) + Ppox, + bh)) . (20)

This algorithm provably converges despite the property of the pairwise kernel function. However, this
procedure converges in the sense that the variational free energy keeps decreasing. Therefore their fixed
point may not be the true mean-field distribution Equation . In this experiment, we train the models
using three different updating methods, and perform inference using three methods as well, with and without
the monotonicity condition.
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(b) 14 x 14 patches are randomly masked. From left to right: imputed image, true image, masked image.

Figure 9: RBM for image imputation using Gibbs sampling

We also compare the convergence of our method to the regularized Frank-Wolfe method in [Lé-Huu & Alahari
(2021). Their update step can be written as

1

ql(fﬂ) =(1- a)q}gt) + asoftmax ()\

((I’hhq}(f) + éhowo + bh)) .

We use A = 0.7 as in their paper. Our method converges faster than the FW method. See the result in
Figure
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b
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) » - —
010 o008 006 004 002 0.00
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Figure 10: Convergence of our method vs. the regularized FW. This experiment is done using the same
setup as in Figure

Krahenbiihl’s and Baqué’s methods often do not converge in the backward pass (there’s no theoretical
guarantees neither). To rule out the impact of the backward iteration, during training we directly update
use the gradient of the forward pass, instead of using a backward gradient hook to compute Equation .
Figure[I2|and Figure[13]demonstrate how the three update methods impute missing pixels when trained with
different update rules, with and without the monotonicity condition, respectively. Krdahenbiihl’s usually does
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Table 4: Relative update residual when monotonicity is not enforced

Inference . .. ,
. Krahenbiihl | Baqué Our
Train
Krahenbiihl 0.0005 0.0065 | 0.0024
Baqué 1.0924 0.0119 | 0.0042
mDBM 1.1286 0.0065 | 0.0022
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Figure 11: TV distance and convergence speed

not converge when the model is trained with our method or Baqué’s, whereas the other two methods impute
the missing pixels well. The classification results are presented in Table [§] and Table [l Notice that when
trained with our method or Baqué’s, the convergence issue of Krahenbiihl’s leads to horrible classification
accuracy. Our method is superior to other inference methods when the model is trained in a different update
fashion. For example, if the model is trained by using Krahenbiihl’s, it makes sense that the model performs
the best if the inference is also Krahenbiihl’s since the parameters are biased toward that particular inference
method. However, our method in this case outperforms Baqué’s.

After these methods halt and return qg, we run one more iteration of

q}YL“-&-l = softmax (q)hhqg + Ppoxo + bh) ) (21)
and record the relative update residual ||gi ™ — gI'||/[lg]|| for randomly selected 4000 MNIST images.
The results are listed in Table [3] and Table [ To alleviate the effect of numerical issues, we strength the

convergence condition to either the relative residual is less than 1073 or the number of iterations exceeds
100 steps.
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Figure 12: Training and inference using all three update rules with 40% observed pixels with the monotonicity
condition. The labels on each row represent the training update rule, and the labels on the columns represent
the inference update rule.

Table 5: Classification error (standard deviation) when monotonicity is enforced

Train Inference Kréhenbiihl Baqué Our
Krahenbiihl 0.042 (0.0013) | 0.114 (0.0019) 0.0498 (0.0014)
Baqué 0.958 (0.0013) 0.038 (0.0010) 0.034 (0.0012)
mDBM 0.946 (0.0024) 0.0425 (0.0016) 0.0412 (0.0017)

It appears in Table [3|and Table 4] that although our method has a much lower residual compare to Baqué’s,
both of them seem small and convergent. This is because the “optimal” fixed point in this setting on MNIST
might be unique and both methods happen to converge to the same point. However, this is in general not true.
We compare our method vs Baqué’s on 400 randomly selected MNIST test images with 40% pixels observed,
and perform mean-field update until the relative residual of [0.1,0.05,0.01,0.005,0.001,0.0005,0.0001] is
reached (without step constraint), respectively. Then we measure the TV distance between the distributions
computed by these two methods on the remaining 60% pixels, as well as the convergence speed. The results
are demonstrated in Figure One can see that when the model is trained (using Krédhenbiihl’s, Figure,
the TV distance converges to 0 as the tolerance decreases. However, when the model is just initialized (but
still constrained to be monotone), the TV distance remains large (Figure . Even though in this case the
optimal fixed point may be unique, our method is still superior to Baqué’s: it takes us less iterations till
convergence, despite whether the model is trained or not.
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Figure 13: Training and inference using all three update rules with 40% observed pixels without the mono-
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tonicity condition. The labels on each row represent the training update rule

represent the inference update rule.
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Table 6: Classification error (standard deviation) when monotonicity is not enforced

Inference

. Krahenbiihl Baqué Our
Train
Krihenbiihl 0.035 (0.0017) 0.189 (0.0023) 0.051 (0.0015)
Baqué 0.762 (0.0013) 0.041 (0.0013) 0.055 (0.0012)
mDBM 0.90 (0.0002) 0.063 (0.0021) 0.036 (0.0017)
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